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ABSTRACT Topological codes, a kind of quantum error correction code, have been used for current
quantum computers due to their local qubit layout and high threshold. With nearly linear complexity,
syndrome-based belief propagation (BP) can be considered as a decoding candidate for topological codes.
However, such highly degenerate codes will lead to multiple low-weight errors where the syndrome is
identical so that the BP decoding is not able to distinguish it, resulting in degradation in performance. In
this article, we propose a branch-assisted sign-flipping belief propagation (BSFBP) decoding method for
topological codes based on the hypergraph product structure. In our algorithm, we introduce the criteria to
enter the new decoding path branched from BP combined with a syndrome residual, which is obtained from
the syndrome-pruning process. A sign-flipping process is also conducted to disturb the log-likelihood ratio of
the selected variable nodes, which provides diversity in the syndrome residual. Simulation results show that
using the proposed BSFBP decoding is able to outperform the BP decoding by about two orders of magnitude.

INDEX TERMS Belief propagation (BP) decoding, hypergraph product (HGP) codes, topological codes.

I. INTRODUCTION

As transistors reduce in size, the quantum effect will be
increasingly important. For example, along with the short
length of the gate, the quantum tunneling effect will de-
crease performance. Thus, quantum computers become an-
other potential bottleneck route for Moore’s law. In a quan-
tum computer, the information will be disturbed by noise.
Thus, quantum error correction (QEC) codes are necessary
for the information-passing process.

The original famous QEC code was the 9-qubit Shor code,
which is able to correct both a single bit-flip error and a single
phase-flip error [1]. Later, a widely used type of QEC code,
called the Calderbank—Shor—Steane (CSS) code, was con-
structed using two related classical codes under a variety of
constraints [2], [3]. Since then, many QEC codes have been
constructed using existing classical codes, such as quantum
low-density parity-check (QLDPC) codes [4] and quantum
expander codes [5].
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Another type of code is the topological code, such as
the toric code [6] and surface codes [7], [8], which are de-
fined on a spin-lattice. Because of the locality of the stabi-
lizer measurements for topological codes, they have become
beneficial to fault-tolerant large-scale quantum implementa-
tion [9] and have been used in ongoing research [10], [11]. In
fact, almost all the QEC codes, from the earliest Shor code
to current topological codes, are classified as CSS codes.
A subtype of CSS construction, called hypergraph product
(HGP) construction, can also be used to construct topolog-
ical codes [12]. Furthermore, HGP construction preserves
the merits of topological codes and has a better minimum-
distance growth compared to other constructions, such as
hyperbolic construction [13]. Thus, our article will mainly
focus on such topological codes.

Since QEC codes can be regarded as a classical binary
code [14] or as a classical 4-ary additive code with some con-
straints [15], many decoding algorithms for classical codes
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can be applied. One of the main decoding algorithms that
have nearly linear complexity is belief propagation (BP) [16].
BP decoding, modified with the syndrome as its input due
to the quantum state collapse, has been used in QLDPC
codes, resulting in remarkable performance [17], [18],
[19], [20].

In addition, binary BP decoding can be used as an auxiliary
to yield the information of qubits for other decoding algo-
rithms. In this way, an output of binary BP decoding can be a
reliable input to the main decoders. For example, Grospellier
etal. [21] use the soft output from the binary BP decoding for
the small-set-flip (SSF) decoding, where the regular quantum
expander codes are considered [5]. Then, the SSF will search
all the supports of the generators in the stabilizer group and
add to the estimated error by the one that is able to reduce
the weight of the corresponding syndrome [22]. Recently, in-
spired by ordered-statistics decoding (OSD) for classical lin-
ear block codes [23], Panteleev and Kalachev [24] proposed a
quantum-version OSD using QLDPC codes, including OSD
with order 0 (OSD-0) as well as a higher order version. A
modified higher order OSD is proposed via a combination
sweep method (OSD-CS) [25], and the authors also show
that the quantum-version OSD can be used for topological
codes. However, BP decoding concatenated with OSD will
result in additional complexity and latency when compared
to pure BP decoding, which is a disadvantage for practical
applications [26].

Decoders intended for topological codes are typically
based on the minimum weight perfect matching (MWPM)
method [6], [27], which has the complexity O(N?) at the
worst case. Recently, some decoders based on MWPM have
been proposed especially for topological codes, which can
reduce the complexity approximately to O(NlogN) [28],
[29]. Although it has been shown that MWPM provides out-
standing performance for topological codes, the requirement
of pair-like syndromes limits its universality [30]. For exam-
ple, to date, the MWPM decoder cannot be applied directly
to some higher dimensional topological codes that include
parity-check matrices that have column weights larger than 2
[31]. Instead, BP decoding, which has a complexity that is
approximately linear to the code length, is a more general
decoder for different types of codes; thus, it is considered
here.

However, due to the highly degenerate nature of topolog-
ical codes, BP will suffer from performance degradation.
Degeneracy occurs when the codes contain many low-weight
stabilizers compared to their minimum distance [32], [33],
[34]. For the highly degenerate topological code, we find
that its parity-check matrix will include lower row and col-
umn weights, leading to multiple low-weight errors, which
have syndromes identical to the measured syndrome and will
cause the BP decoding to fail. Since the difference in perfor-
mance between using nonbinary BP and binary BP decoding
is not significant for topological codes [32], we will focus on
improving the performance of binary BP decoding under the
consideration of complexity.
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In this article, we propose a decoding algorithm termed
branch-assisted sign-flipping belief propagation (BSFBP)
decoding. In our algorithm, criteria are first proposed to
identify the specific estimated syndrome. Then, the syn-
drome residual is obtained from the proposed syndrome-
pruning process and is viewed as the syndrome input for the
new decoding path branched from the syndrome-based BP.
This branch-assisted process is able to mitigate the effect of
those indistinguishable error patterns that would cause the
syndrome-based BP to fail. We also propose a sign-flipping
(SF) process to disturb the log-likelihood ratio (LLR) of
the selected variable node. In this way, the process is able
to provide a new decoding path that has diverse estimated
syndromes, thereby improving the performance. BSFBP is
able to outperform BP decoding by about two orders of
magnitude. Our proposed decoding method can also be an
auxiliary for OSD, providing a significant performance gain,
which can compete with the MWPM for the considered 2-D
topological codes. We also show that our BSFBP can be
applied to those codes where the MWPM is limited, such as
3-D topological codes based on the homological product [35]
and other types of codes based on HGP structures.

The rest of this article is organized as follows. In
Section II, the background to QEC codes and binary BP de-
coding is introduced. Section III provides a detailed descrip-
tion of our proposed algorithm for topological codes. Our
simulation results are shown in Section I'V. Finally, Section V
concludes this article.

II. PRELIMINARIES

Topological quantum codes, such as toric code [6] and sur-
face code [7], [8], are constructed based on the lattice. The
qubits for the topological codes are located on the edge,
while stabilizer operators are related to the vertices and the
plaquettes of the lattice. Thanks to their tolerance to local
errors, they have been used for fault-tolerant quantum com-
puting [9]. An HGP structure can also be used to construct
a class of topological codes that have growing minimum
distance [12], which will be described as follows.

A. QEC CODES IN HGP STRUCTURES

Pauli matrices are useful for describing the operations acting
on a single qubit in quantum computation [36]. They are
defined as follows:

(9 ()
00l

where X, Y, and Z anticommute with each other. A single
qubit state |¢) can be represented by a linear superposi-
tion of two orthonormal basis vectors [0) = (1 0)7,|1) =
(0 1), where T is the transpose operator. That is, |¢) =
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a1 10) + ap |1) € Hp, where ) and «; are in the set of com-
plex numbers C, |o I> + |aa|> = 1, and H, denotes the 2-D
complex vector space. X can also be viewed as a bit-flip
since X |¢) = a1 |1) + a2 |0). Similarly, Z is a phase-flip
since Z |¢) = a1 |0) — ap |1), and ¥ = iXZ represents both.
The Pauli matrices together with the multiplicative factors
41 and =+ i form a Pauli group G| under the matrix multipli-
cation. Thus, an n-fold tensor product of Pauli group G, is
denoted as

G, =g
= (], i, £X, +iX, 1Y, iV, +Z, +iZ)}®" (2)

for n qubits.

The stabilizer formalism is useful for describing QEC
codes [37]. Given G,, an [[n, k, d]] quantum code is able
to encode k qubits to an n-qubit codeword with a mini-
mum weight of Pauli operations d, where the weight is the
number of qubits operated by a nonidentity Pauli matrix.
The double bracket is used for quantum codes to distinguish
from the conventional [n, k, d] notation for classical codes.
An [[n, k, d]] stabilizer code Cs is defined by its stabilizer
group S C G, where —I ¢ S and all the elements commute
mutually. A codeword |{) € Cy is the +1 eigenstate of all
the stabilizers, i.e., P |¥) = |¥), P € S. In addition, S can
be characterized by n — k generators g; € G,,,0 <i <n —k.
That is, every element P € S can be represented as a product
of go, - - ., gu—k—1. Hence, by the isomorphism between Pauli
group and binary vector, i.e., I — (0 0), X — (1 0), Z —
(01),Y = (1 1), these n — k generators g; together can be
represented in terms of parity-check matrix Hg for Cg, where
each row i of Hy is the binary representation of g; [38]. For
example, a generator XZZX[ with n = 5 can be represented
as a 2n-binary vector (100100 1 1 00), where the 1s in
the leftmost and rightmost 7 bits correspond to the qubits, in
which X operate and Z operate, respectively [14].

An [[n, kx — kz, d]] CSS code [2], [3] is a kind of stabi-
lizer code, which is constructed using two classical codes
Cx[n, kx, dx] and Cz[n, kz,dz], where d > min{dx,dz},
C; C Cx, and both Cy and C&, the dual of Cy, are able to
correct up to #-bit errors, i.e., both dy, dz > 2t + 1. Given
the parity-check matrix Hy of Cy and Hy of C&, the CSS
code constructed from Cy and Cz has the form

"o (HZ 0 ) )
0 Hy
where Hy - H = 0.

HGP code [12] is also a class of CSS codes. Given
two classical binary codes Ci[ny, k1, d1] and Ca[na, ka2, d>]
that have parity-check matrices H; € F,""""! and H, €
F2m 2™ respectively, the HGP code has parameters [[n17; +
mymy, kiky + Kyky, d]], where d = min{d;, d, d», d;} and
k(d}) are the dimensions (minimum distances) of the trans-

pose code of Cj, i.e., the code specified by the transpose of
H;, for i = 1,2. Hx and Hz of the CSS form in the HGP
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FIGURE 1. Parity-check matrix H; for the [[162,2,9]] toric code.
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FIGURE 2. Parity-check matrix Hz for the [[113,1,8]] surface code.

construction are
Hx = (Hy ® I, I,, ® H)) )
Hz = (I,, ® Hy H ®1y,) S

where [; denotes the k x k identity matrix. It can be eas-
ily verified that HGP is a CSS code since Hy -HZT =0.
In this article, we consider the symmetric HGP for which
Hy = H, = Hy € F,"”"". The HGP structure can also be
used to construct topological codes that have a minimum
distance proportional to n'/?, where n is the length of the
quantum code. For example, the [[2ni, 2, np]] toric code and
the [[ni + (np — 1)2, 1, np]] surface code considered in this
article are obtained based on the HGP structure using the
np X nyp parity-check matrix Hp of an [ny, 1, np] closed-loop
repetition code and the full-rank (n;, — 1) X ny, parity-check
matrix Hp, of a classical [np, 1, np] repetition code, respec-
tively [25]. Figs. 1 and 2 show the structure of Hz of the
[[162,2,9]] toric code as well as for the [[113,1,8]] surface
code with the parity-check matrices Hj shown in Fig. 3(a)
and (b), respectively. Blanks in these figures represent zeros.

As mentioned in Section I, topological codes are highly
degenerate, which means that the weights of their stabiliz-
ers, i.e., the row weights of their parity-check matrices, are
also low. For example, Fig. 1 shows that the average row
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FIGURE 3. Parity-check matrix Hj, used in different topological codes.
(a) Toric code (n, = 9). (b) Surface code (n, = 8).

and column weights are 4 and 2, respectively, for H; for
the [[162,2,9]] toric code, while for H; of the [[113,1,8]]
surface code, the average row and column weights are lower
than 4 and 2, respectively. This fact also results in a low-
average column weight and will have an adverse impact on
the syndrome-based BP decoding algorithm.

B. BINARY BP DECODING

BP is an efficient iterative decoding algorithm for classical
LDPC codes [39], [40] and can also be applied to QEC
codes [14]. For classical codes, the information of trans-
mitted bits from the noisy channel is measured and treated
as the intrinsic information for the BP decoding so as to
estimate the transmitted bits. Unlike decoding on classical
codes, transmitted information cannot be measured directly
since the measurement will collapse a qubit to the specific
classical state (0 or 1). Thus, there is no intrinsic information
from the channel for quantum codes. Instead, it is only the
syndrome that can be obtained from the measurement on the
auxiliary qubits [36]. Thus, the syndrome-based BP decoding
is used for QEC codes [41]. In this article, we will focus on
the syndrome-based binary BP decoding, which we refer to
as BP for simplicity.

In this article, we consider the discrete error model, where
errors disturb each qubit independently and their effects can
be described by the Pauli matrices, i.e., for a single qubit, the
error operating on it can be described by X (bit flip), Z (phase
flip), and Y (both). Furthermore, since ¥ can be decomposed
into X and Z, under the consideration that X and Z are un-
correlated, the noise model can be further viewed as two
independent channels: bit-flip and phase-flip channels [36].

The noisy model containing independent bit-flip and
phase-flip channels can be analogized as two independent
binary symmetric channels (BSCs) with the crossover prob-
ability p [14]. For example, based on the isomorphism be-
tween the Pauli operators and the binary vector, an n-tuple
error e, where elements are Pauli matrices, is able to trans-
form into 2n-bit vector (ey €,), where ey and e, are two n-bit
vectors which can be viewed as errors from two independent
BSCs, respectively. Then, for a CSS code with the form (3),
we obtain the syndrome s = (Sx S;), Where sx = Hz - ex and
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s; = Hx - e,. Then, sx and s, are independently fed to the
BP decoding algorithm. Eventually, the logical error rate Pegg
for the CSS code is Py + Pz — (Px - Pz), where Px and P,
denote the classical logical error rates for codes Cx and Cz,
respectively.

In this article, since we consider the symmetric HGP struc-
ture for which H; = H; and the transmission is over the two
independent BSCs that have an identical p, the decoding
performance for Hz and Hx are nearly identical. Thus, we
can only focus on one type of error and one parity-check
matrix, for instance, ex from the bit-flip channel and Hz. In
the following description, we will omit the subscript of ex
and sy, denoted as e and s, respectively.

Given an M x N matrix Hz from the HGP structure, and
the measured syndrome s € FZM as the input, where M =
N — K, BP decoding can be conducted on the Tanner graph
for Hz, where each error location corresponds to a variable
node and each syndrome location corresponds to a check
node. Define j and i as the index for the variable node and the
check node, where 0 < j < N and 0 <i < M, respectively.
The index set of variable nodes neighboring the ith check
node is defined as N'(i) = {jIHz;; = 1}, and vice versa. Let
L’j‘. be the LLR for the jth variable node at the kth iteration.
Qf.‘j denotes the message from the jth variable node to the ith

check node at the kth iteration, and Rf?. denotes the message
from the ith check node to the jth variable node at the kth
iteration. The maximum number of iterations of BP decoding
is denoted as I .. To reduce the computational complexity,
we use normalized min-sum BP decoding [42], [43], which
is shown as follows.

1) Initialization: Set k = 0. Since there is no intrinsic in-
formation from the channel, we initialize each variable
node j with the prior LLR, i.e., L(} =In 1_71’ Initialize
R§?> with L9 for all j and i € N'(j).

2) Vertical message exchange: For 0 <i < M, j € N (i),
compute

(k) —
oM = Rii’ - k=0 (6)
iJ LY —R&D k> o.
J ij
3) Horizontal message exchange: For 0 <i <M, j e
N(), compute

k i k
Ro=(=1"-g- ] sen (Qij,)-
JENG).j'#]
min |0 @)
JeNG). £

where s; denotes the ith element in the measured syn-
dromesand 8 =1 — 2% denotes a scaling factor [44].

4) Elementwise LLR update: For 0 < j < N, update L’j‘.+l
as

k+1 _ 70 k
=194 )" R (8)
ieN ()
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5) Hard decision: For0 < j < N

k+1
o — 0, Lj >0
J 1’ LIJ('+1 < 0

€))

where é’j‘. denotes the jth element of the estimated error

&k for the kth iteration. Then, the estimated syndrome
at the k iteration is 8 = & - HY .

a) If the decoding is able to converge to the measured
syndrome, i.e., ¢k = s, declare as a success.

b) Otherwise, setk = k 4 1 and repeat from Step 2. If k =
Imax, then declare as a failure.

Note that for BP decoding on classical codes, to com-
pute Ri.‘j, we do not need to compute (—1)% as in (7) since
the prior LLR L? contains the transmitted information from
the channel. While using syndrome-based BP decoding on
quantum codes, we cannot directly measure the transmitted

information. Thus, we set L? for each variable node by using

the given cross probability p of BSC. To compute Rff T the ith
element of the measured syndrome s; is aided to update the
LLR for the jth variable node. Eventually, the jth element
of the estimated error is obtained by summing the prior LLR

together with all the information sent to the jth variable node.

Iil. PROPOSED ALGORITHM

In this section, we will first show the structure of the parity
check matrix in HGP form. Then, from this structure, we
find that except for weight-1, for other low-weight errors,
i.e., where the weight is equal to or larger than 2, another
error exists with the same weight and syndrome as the given
error and the corresponding syndrome. Thus, the BP decod-
ing algorithm cannot converge to the measured syndrome.
To improve the BP decoding on topological codes, we pro-
pose a BSFBP decoding approach inspired by observations
through the BP decoding process of those errors. Although
the proposed decoder is based on 2-D topological codes, it
can also be applied to the 3-D versions, which we will show
in Section IV.

A. HGP STRUCTURE FOR TOPOLOGICAL CODES
Although the locality nature of topological codes constructed
from the HGP form is beneficial to the real implementa-
tion, it also leads to lower row and column weights from
the perspective of the parity-check matrix, which will cause
ambiguity between different errors with the same weights.
Considering Hz constructed based on an my, X ny, parity-
check matrix Hp, using the symmetric HGP structure, i.e.,
M =myp-np, N = ni + mi, we denote the first ni columns
as section Sy, which corresponds to I ® Hp, and the final
mi columns as section S, which corresponds to HbT ® 1.
For example, in Fig. 1, the first 81 columns from left to
right together represent section S; of Hz for the [[162,2,9]]
toric code and the remaining 81 columns together represent
section S,. Furthermore, S; can be divided into n;, Hj-type
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block columns where each Hp-type block column contains
np columns. Likewise, S> can be divided into my I-type
block columns where each /-type block column contains n1,
columns. For the [[113,1,8]] surface code shown in Fig. 2, all
the representations are the same as for the toric code, except
Hj, as shown in Fig. 3(b).

Now, we will demonstrate the correspondence between
the error and the syndrome by considering the weight-1 and
weight-2 errors. In Statement 1, we show that each weight-1
error yields a unique syndrome. We denote the set of the
nonzero element location for a given vector v as Zy.

Statement 1: For topological codes based on the symmet-
ric HGP structure, given an arbitrary weight-1 error e with
syndrome s, there is no other weight-1 error having the iden-
tical syndrome s.

Proof: Suppose an error e with Z, = {j}, where j is
located at S and its corresponding syndrome s with
To={j, j—1 (mod my)}; if my | j, then Ty = {j, j—1
(mod my,) + my}.

1) No other weight-1 error ¢ where Zy = {j'}, where
j' # jand j' and j are in the same block column in
S1, has the identical syndrome s since H}, is the parity-
check matrix for the repetition code.

2) No other weight-1 error ¢ where Zy = {j'}, where
J' # jand j’ and j are in different block columns in Sy,
has the identical syndrome s since these two syndromes
do not have overlapping locations of nonzero elements.

3) No other weight-1 error € where Zy = {j'}, where j’
is in S», has the identical syndrome s. This is evident
from Figs. 1 and 2. |

The case where an error has a nonzero element located at
S, with syndrome s is similar since no other weight-1 error in
S} or S has a corresponding syndrome identical to s. That is,
given a weight-1 error, it corresponds to a unique syndrome.

In contrast, given a weight-2 error, another weight-2 error
might exist where these two errors have an identical syn-
drome. For example, a special case is given as follows.

Statement 2: Given a weight-2 error e where Z¢ = {j, j +
1}, where j and j + 1 are in the same block column in S, a
weight-2 error exists, which has an identical syndrome to e.

Proof: For a toric code, where my, = np, the weight-2
error e will yield the corresponding syndrome s where
Zy={j. j+m, j+1,j+1+n}, where j= j—nJ. We
are able to identify an error ¢ where Zy = {j, j/ + np},
where j’ and j’ + n,, are in different block columns in S;. The
corresponding syndrome s has an identical Zy = {j/, j —
1, j/+mnp j —1+4n} to the syndrome of e if we se-
lect j/ = j+ 1. For a surface code, where mj, = nj, — 1, the
weight-2 error e will yield the corresponding syndrome s,
where Zg = {j, j +my, j+ 1, j+ 1 4+ my}. We are able to
identify an error € where Zy = {j’, j/ + np}, where j and
j' + nyp are in the different block columns in S;. Its cor-
responding syndrome s’ contains Zy = {j/, j/ — 1, j/ — 1 +
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FIGURE 4. Tanner graph for the [[162,2,9]] toric code.

np — 1, j/ +np — 1}, where j/ = j' — (él.Pick]_'/ =j+1
then, the two syndromes are identical since mp, =n, — 1. B
For the case of larger weights such as a weight-3 case, we
can combine a weight-1 error pattern with a weight-2 error
pattern described above. Then, another weight-3 error exists
with the identical syndrome based on the statements above.

B. BP DECODING FOR TOPOLOGICAL CODES

In this article, we will consider the [[162,2,9]] and
[[242,2,11]] toric codes together with the [[113,1,8]] and
[[181,1,10]] surface codes from [25] in order to demonstrate
the error rate performance. For the specific topological codes
mentioned above, using the weight-1 case, though no strict
proof of the convergence to the measured syndrome exists
for the BP decoding, the simulation achieved by tracing all
weight-1 errors shows that BP decoding is able to converge
to the measured syndromes. However, when the weight is
greater than or equal to 2, as described in Section III-A,
for such topological codes with both low row-weight and
column-weight of the parity-check matrices, many pairs of
errors that have an identical syndrome will exist such that
the BP decoding cannot distinguish from the syndrome and
will not converge to the measured syndrome.

We will show an example of the BP decoding pro-
cess for the [[162,2,9]] toric code. Given the error
e where 7, = {3,12,23,37,40,55} (solid circles), its
corresponding syndrome s has Zg = {2, 3, 11, 12, 22, 23,
36, 37, 39, 40, 54, 55} (solid squares). Fig. 4 shows the re-
lated section of the Tanner graph for this code, where variable
node v; corresponds to the jth error location and check node
¢; corresponds to the ith syndrome location. We will use both
names interchangeably. Furthermore, the error (or syndrome)
pattern is denoted as the set of locations of a fraction of the
nonzero elements of the error (or syndrome). Then, it can be
shown from Fig. 4 that the weight-2 error pattern {83, 84},
shown as red dashed circles, and the weight-2 error pattern
{3, 12}, shown as red solid circles, yield the identical syn-
drome pattern {2, 3, 11, 12}. These error patterns that have
identical weights yielding an identical syndrome pattern, de-
noted in red, are indistinguishable to the BP decoder. Other-
wise, if the given syndrome pattern corresponds to a unique
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TABLE 1. Estimated Error and Syndrome for Each Iteration Using the BP
Decoding

Ze of real error e
3,12, 23,37, 40, 55
Iter. k | Zsr of estimated error | Zy of estimated syndrome §

Zs of measured syndrome s
2,3,11,12,22,23,36,37, 39, 40, 54, 55
13

é

Oth |3, 12, 23, 37, 40, 55,22, 23, 36, 37, 39, 40, 54, 55
83, 84

Ist 13, 22, 23, 28, 37, 38, 1,10 23, 27, 28, 32, 37, 41, 48, 49, 63,
39,40, 49,55,64,... |64, ..

122nd 12, 37, 40, 84 3,11, 36, 37, 39, 40

123rd| 12, 23, 37, 40, 55 11,12,22,23, 36,37, 39, 40, 54, 55
124th|3, 12, 23,37, 40, 55, 83 |3, 12,22, 23, 36, 37, 39, 40, 54, 55
125th|23, 37, 40, 55 22,23, 36,37, 39, 40, 54, 55
126th|3, 12, 23,37, 40, 55,84 |2, 11, 22,23, 36, 37, 39, 40, 54, 55
127th|23, 37, 40, 55 22,23, 36,37, 39, 40, 54, 55

error pattern with the minimum weight, then we call such
an error pattern distinguishable and it is denoted in blue. At
the zeroth iteration in BP decoding, all the indistinguishable
error patterns corresponding to the identical syndrome occur,
as shown in Table 1. This can be deduced from the BP decod-
ing. For instance, jo =—BIn l;—p since s; = 1 and Q;; =
lnl;—p in (7) for i =2,3,11,12,Vj € N'(i). Then, in (8),
L} =-281n %” +1In %” <0 for j = 3,12, 83, 84. Thus,
the weight for the estimated syndrome 8 is less than the mea-
sured syndrome s since the syndrome pattern {2, 3, 11, 12}
corresponding to an indistinguishable error pattern will be-
come zero due to the addition under mod 2 if all the indistin-
guishable error patterns occur.

As iterations increase, messages will pass between vari-
able nodes and check nodes, and until the 122nd iteration,
most of the locations of the nonzero elements in & are iden-
tical to the locations of nonzero elements in e, as shown in
Table 1. One can see that pattern {23, 37, 40, 55} is distin-
guishable as it is fixed following the 123rd iteration. When
the maximum number of iterations is reached, BP decoding
will not converge to the measured syndrome due to those
indistinguishable error patterns.

To improve the BP decoding, three phenomena can be
used as aids. First, we find that most of the time, at the
zeroth iteration, the hard-decision output will include all the
indistinguishable error patterns. Second, we find that at some
iterations, the estimated syndromes are close to the measured
syndrome such as the 123rd, 124th, and 126th iteration, as
shown in Table 1. Last but not least, we find that those dis-
tinguishable error patterns and their corresponding syndrome
patterns might be auxiliary to decoding those indistinguish-
able patterns at the beginning of the decoding process due to
the interactive message passing between them.

C. NEW DECODING PATH BRANCHED FROM BP

Although indistinguishable error patterns may interfere with
the BP decoding to converge to the measured syndrome,
some estimated syndromes exist that are close to the mea-
sured syndrome for certain iterations. Thus, we thought it
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might be feasible to perform another new path of the BP
decoding, hereafter called the branch and the original path is
denoted as the trunk, using the information from those esti-
mated syndromes. We expect that the syndromes used for the
branch correspond to less indistinguishable error patterns and
are close to the measured syndromes. To achieve this goal,
we introduce a syndrome-pruning process so as to obtain the
syndrome residual from both the measured syndrome and the
specific estimated syndrome, and view it as the input for the
branch. In addition, to identify such a specific estimated syn-
drome, we need to design some criteria during the iterative
decoding.

First, a benchmark is needed in order to compare the close-
ness of the estimated syndrome to the measured syndrome.
Most of the time, at the zeroth iteration, the estimated er-
ror contains all the possible indistinguishable error patterns.
During the decoding process, if some indistinguishable error
patterns disappear at a specific iteration, the corresponding
estimated syndrome will be close to the measured syndrome,
compared to the estimated syndrome §°. Thus, it is reason-
able to set 8 as the zeroth benchmark b. To identify an
estimated syndrome that is closer to the measured syndrome
than §°, we use the Hamming distance as a metric since the
syndrome can be viewed as a binary vector. That is, the first
criterion is introduced as

Cl w@E@s)<wbds)

where w(c) is the Hamming weight for a vector ¢, and @
is the addition under mod 2.

To further determine that the selected estimated syndrome
is part of the measured syndrome and, thus, given the validity
of syndrome pruning, we introduce the second criterion:

C2 Set Ty ={ief0,1,...M—1} |sf=1}cZ=
(ie{0,1,...M—1}|s; = 1}.

When the estimated syndrome for the kth iteration §,

k # 0, satisfies both C.1 and C.2, the syndrome-pruning pro-
cess is conducted. The syndrome residual g is obtained by
pruning s using §%, i.e., 7y = s — §X. For this decoding branch,
T is seen as the input for the BP decoding, which means
that 75 replaces the s in (7). Suppose that at the £th iteration
in the branch, if the estimated syndrome corresponding to
the error &¢ is identical to s, then we can declare that the
decoding process is able to converge to the measured syn-
drome since Hy - (&K + &%) = 8k + 1, = s. Otherwise, when
the maximum number of iterations in the branch is reached,
the process will return to the trunk of the BP decoding. Mean-
while, b is replaced by §, which can not only result in a lower
w(b @ s) for the next branch but also cope with the case
where not all indistinguishable error patterns are included at
the zeroth iteration.

We will show how such branch-assisted belief propagation
(BBP) works and how both criteria C.1 and C.2 and the
syndrome-pruning process are able to obtain the syndrome
residual by using Fig. 4 and Table 1. Considering BBP decod-
ing, the zeroth estimated syndrome §° will be recorded as the
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FIGURE 5. Example of the BBP decoding for the [[162,2,9]] toric code.

TABLE 2. Reduction Ratio of Unsolvable Weight-2 and -3 Errors for BBP
Compared to BP

Codes [ [[162, 2, 9]] [[242, 2, 11]] [[113, 1, 8]] [[[11, 1, 10]]
w=2 [49.6% 69.7% 49.6% 51.2%
w=3 [56.7% 78.0% 64.1% 63.6%

zeroth benchmark, where w(b @ s) = 4. At each iteration,
only the estimated syndromes satisfying C.1 will be identi-
fied. In Table 1, since w(§!2 @ s) = 2 < 4 and §!23 satisfies
C.2, the estimated error &!23 is recorded. Then, the measured
syndrome is pruned using the estimated syndrome §'23, and
the syndrome residual g, where Z, = {2, 3}, will be seen as
the input to the new decoding branch. Since 75 corresponds
to a unique weight-1 error, as shown in Fig. 5, according to
Statement 1 in Section III-A, the decoding algorithm is able
to converge to a unique syndrome. Indeed, combining the
recorded &!23 and é, where Ze, = {3}, it can be shown that
the channel error e is found.

From the simulation of the considered topological codes,
it can be shown that our BBP decoding algorithm is able to
converge to the measured syndrome for those weight-2 and
weight-3 errors that the BP decoding is able to converge.
Thus, we will focus on those weight-2 and weight-3 errors
that the BP decoding cannot solve, i.e., meaning that it can-
not converge to the measured syndrome. Table 2 shows that
the BBP decoding process is able to reduce the unsolvable
weight-2 errors from the BP decoding for the toric codes and
surface codes considered by roughly 50%. In addition, when
extended to the case of weight-3 errors, our BBP algorithm
is able to reduce the number of unsolvable errors by about
60%.

Now, we will discuss the difference in performance be-
tween the BP and BBP decoding processes based on the
same complexity, i.e., the same average number of iterations.
Following the settings used in [25], the maximum number
of iterations for the BBP decoding is set to N for both the
toric codes and the surface codes. To compare fairly, the
comparison between the BP and BBP decoding will be under
nearly the same average number of iterations. For the BBP
decoding, the average number of iterations is computed using
both the maximum iteration I, for the trunk and 7%, for the

branch. Fig. 6 shows that for the [[162,2,9]] toric code, the

2100415



@IEEE Transactions on,
uantumEngineering

Huang et al.: BSFBP DECODING FOR TOPOLOGICAL QUANTUM CODES BASED ON HGP

30

BP(toric)
26 BBP(toric)

24 BP(surface)
22 —*— BBP(surface)

20
18

12

Logical errorrate (x1 0'3)
>
Lo
il
I
1

"
i

oON MO

o)
/
|
/

¢
|

|

16
|

|

1/

[

|

®

|

H

|

0 20 40 60 80 100 120 140
Average number of iterations
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FIGURE 7. Logical error rate versus average number of iterations at
p=0.02.

logical error rate when using BBP decoding will converge
to 3 x 1073 when the average number of iterations is 80,
while BP decoding only converges to 1.5 x 1072 based on
the same average number of iterations. For the [[113,1,8]]
surface code illustrated in Fig. 2, the logical error rate for
BBP decoding will decrease when the average number of
iterations is 8. Fig. 7 shows that the comparison between the
BP and BBP decoding for the case where there is a higher
crossover probability, where similar comparison results can
be observed.

In brief, the BBP algorithm introduces a new decoding
path with syndrome residual 75 as its branch input. In this
way, Ts in (7) will correspond to the error having less indis-
tinguishable patterns, and the new decoding might eventually
converge to . It is interesting to explore the introduction
of a subbranch within a branch to improve the BBP decod-
ing. However, simulation shows that the performance when
having an additional subbranch is similar to the performance
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FIGURE 8. Example for the [[162,2,9]] toric code.

TABLE 3. Estimated Error and Syndrome for Each Iteration Using the BBP
Decoding

Ze of real error e Zs of measured syndrome s
0,7,9, 159 0,7,8,9,17,78
Iter. K |Zgr of estimated|Zg, of estimated syn-|Enter the
error &F drome §F branch ?
Oth 0,8,9, 81,89 7,8 No
122nd |8,9 7,8,9,17 Yes
123rd (8,9, 81 0,7,8,17 Yes
124th (9,79, 81, 159 0,6,17,79 No
125th |7,8,9, 81, 160 0,6,7,8,17,79 No
126th (9,79, 159 6,9,17,79 No

when using the original BBP decoding for the considered
topological codes.

For those errors that cannot be solved by the branch, the
syndrome residuals still correspond to some indistinguish-
able error patterns. Here, we give an example as follows.
Consider the [[162,2,9]] toric code, an error € where Z, =
{0, 7,9, 159} has the corresponding measured syndrome s
where Zgs = {0, 7, 8,9, 17, 78}, as shown in Fig. 8. In this
example, error pattern {7, 159} and another pattern {79, 160}
have the identical corresponding syndrome pattern {7, 78},
and error patterns {0, 9} and {81, 89} have the identical cor-
responding syndrome pattern {0, 8,9, 17}. While decoding
syndrome pattern {7, 8}, error pattern {8} is a more reason-
able candidate for the decoding since it has a lower weight
compared to those real error patterns mentioned above. Thus,
the observation at the zeroth iteration will violate the as-
sumption of the BBP decoding, as shown in Table 3, since
L} =Lisy =Ll =L =—BIn L +In 2 >0 in (8).
Table 3 shows that, after sufficient iterations, the nonzero
elements of the estimated error all belong to one of the in-
distinguishable error patterns, and even the BBP decoding
will fail to converge to the measured syndrome.

D. SF PROCESS INTRODUCED IN THE TRUNK

To decode such an error described above, a heuristic method
is to perturb the bit LLR in an indistinguishable error pat-
tern. Another method inspired by the third observation in
Section III is to introduce an error pattern not containing
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TABLE 4. Estimated Error and Syndrome for Each Iteration Using the
BSFBP Decoding

TABLE 5. Reduction Ratio @ for Unsolvable Weight-2 and Weight-3 Errors
for BSFBP Decoding Compared to BP Decoding

Ze of real Error e Zs of measured Syndrome s Codes|Strat. [[[162,2,9]] [[[242, 2, 11]][[113, 1, 8]] [[[181, 1, 10]]

0,7,9, 159 0,7,8,9,17,78 w=2 |1 99.17% 99.68% 90.27% 91.71%

Iter. k | Zs of estimated er- | Zyx, of estimated syn-|Enter the | Target v 2 99.59% 99.68% 99.56% 94.08%
ror &F drome §* branch ? 3 99.17%  [99.35%  [87.17% 93.84%

0th 10,8,9,81,89 7,8 No 81 w=3 |1 99.48% 99.79% 85.55% 91.69%

s B s e v 2 99.54% 99.75% 85.70% 92.07%

53nd [8,9,79, 81, 159 0,6,7,8,17,79 No 79 3 99.62% 99.78% 85.78% 92.25%

54th |7,8,9,81 159 0,8,17,78 Yes 10 aSince the SF process involves random selection, it cannot guarantee

55th |7, 79, 82, 159 1,7,10,79 No 79 the successful decoding of every error that a single si‘mulalilon‘ol\ BP

56th [0, 1,7, 89, 150 1.7.17.78 No 31 tc:tzllec'onverge on. Thus, we show the average reduction ratio in this

57th |7, 159 7,78 No 9

58th |7,9, 159 7,9,17,78 Yes —

any location of the indistinguishable patterns. Then, due to
the interactive message passing, there will be more different
estimated syndromes than the original BBP decoding, which
will also provide more diverse syndrome residuals for the
BBP decoding. Thus, we propose an SF process for our BBP
decoding algorithm where we change the sign of the posterior
LLR for the selected variable node denoted in (8).

To decide which variable node’s LLR sign should be
flipped, we will first use the difference between the estimated
syndrome 8" at the kth iteration and the measured syndrome
s in the trunk. At each iteration in the decoding process, the
indices i of the mismatched check nodes, i.e., §f #+s;, are
recorded. The process is shown as follows.

1) After computing &% in the trunk, if §* # s, werecord the
different indices between 8" and s as set U = Ty =
{i]§% # 51,0 <i < M}.

2) Find a variable node v; based on U and flip the sign of
L’j‘.Jrl in (8) and move to the next iteration in the trunk.

In Step 2), we consider three different strategies to select
the variable node whose LLR will be flipped. These strategies
depend on the attributes of the chosen variable node. One
reasonable strategy is to select the variable node involved in
the largest number of mismatched check nodes, i.e., this vari-
able node is likely to result in an estimated syndrome close
to the measured syndrome. Since our SF process operates
within the iterative decoding process, another strategy is to
impose a disturbance on a randomly selected variable node
related to the mismatched check node, which will provide
diverse syndrome residuals and enhance the probability of
convergence to the measured syndrome by the BBP decoding
algorithm. Finally, we also consider a balanced strategy by
comparing the LLR for those variable nodes neighboring the
mismatched check nodes.

For now, we will show how our BSFBP works for the ex-
ample above by using the so-called Global selection strategy.
For example, compared to Table 3, Table 4 shows that at
the 55th iteration, the SF process flips the LLR for variable
node vy, which results in an estimated error containing a
distinguishable pattern {82}. At first glance, it seems that the
flipping procedure moves the estimated syndrome away from
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the measured syndrome. Nevertheless, the sign of the poste-
rior LLR for vg is also indirectly flipped to positive in the next
iteration, and the magnitude of its LLR is increased in the
following iterations. At the 57th iteration, the decoder suc-
cessfully identifies the error pattern {7, 159} instead of error
pattern {8}, and the syndrome pattern {7, 78} is fixed. Then,
at the 58th iteration, syndrome residual s where Z,, = {0, 8}
corresponds to a weight-1 error &;, where Zg = {0}, which
can be solved by the BBP decoding algorithm according to
Statement 1 in Section III-A.

Three variable node selection strategies are described as
follows.

S.1 Global selection strategy: This process will perform
a global search from all the variable nodes neighbor-
ing all the mismatched check nodes and select the
variable node which has the most neighboring check
nodes with indices belonging to U, i.e., select the
variable node v;, where j € N (i), Vi € U such that
IN(j) N E| is the maximum for all E € P(U), where
| - | denotes the cardinality of the set and P(U') denotes
the power set of U. This strategy needs to compare at
most d,, - d,; candidate variable nodes.

S.2 Reliability-based selection strategy: The process will
select the variable node with the least reliability,
which is neighboring a randomly selected check node
whose indices belong to U, i.e., randomly select a
check node c;, where i € U. Select a variable node
vj, where the reliability [L5] < |L%| for all j '
N (i), j/ # j. In this way, this strategy only needs to
compare d., candidate variable nodes.

S.3 Random selection strategy: The process will ran-
domly select a variable node neighboring a randomly
selected check node whose indices belong to U, i.e.,
select a variable node v;, j € N(i), i € U. The com-
plexity is the lowest among these three strategies.

We show the reduction ratio of unsolvable weight-2 and
weight-3 errors for the BSFBP decoding compared to the BP
decoding in Table 5, which shows that the BSFBP decoding
can reduce the number of unsolvable weight-2 and weight-
3 errors for the considered toric codes across all selection
strategies by up to 99%. For the considered surface codes, the
reduction ratio is about 90% for both weight-2 and weight-3
errors compared to the BP decoding process. Overall, our
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FIGURE 9. Performance comparison for BSFBP using different selection
strategies based on the [[162,2,9]] toric code.
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FIGURE 10. Performance comparison for BSFBP using different selection
strategies based on the [[113,1,8]] surface code.

BSFBP decoding algorithm is able to converge to the mea-
sured syndrome between 99.48% and 99.99% of weight-2
and weight-3 errors depending on the codes considered.
Figs. 9 and 10 show the performance when using different
selection strategies. These show that the relationship between
strategies and performance depends on the codes. For ex-
ample, the performance when using S.1 and S.2 for toric
codes is almost identical, while, for the surface codes, the
randomness of the selection seems to assist with the decod-
ing. A possible explanation is that surface codes have an
irregular parity-check matrix. Here, the term “regular” for
the parity-check matrix refers to the fact that each row and
column has a uniform weight. Otherwise, the parity-check
matrix is called “irregular,” which is equivalent to saying that
the degree of all check nodes or variable nodes is not equal.
Unlike toric codes, where every variable node has two neigh-
boring check nodes, i.e., degree 2, the considered surface
codes have degree-2 and degree-1 variable nodes, i.e., some
of the variable nodes are only neighboring one check node.
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FIGURE 11. Logical error rate versus the average number of iterations at
p=0.01.

Since the criterion for the global selection S1 is to identify
the variable node that has the most mismatched neighboring
check nodes, this selection is affected by the degree of the
variable node and is prone to choosing variable nodes that
have higher degrees, while the random selection $3 randomly
chooses a variable node regardless of the degree. Thus, for
this case, using S3 provides a slightly better performance.
However, it is obvious that the random selection is highly
dependent on the maximum number of iterations, while the
global selection is more stable. For example, if the maximum
number of iterations is set to 30, the performance is almost
the same when using either S1 or S3.

We also compare the performance between the BBP and
BSFBP decoding based on Strategy S.1 under the same av-
erage number of iterations, as shown in Fig. 11. We show
that the BSFBP decoding process not only reduces the logical
error rate by about one order of magnitude compared to BBP
decoding but also reduces the average number of iterations,
which means that using the SF process is able to converge
much faster.

E. SUMMARY OF BSFBP

The details for the complete BSFBP decoding process are
shown in Algorithm 1. First, based on the structure of topo-
logical codes, the specific estimated syndrome is identified
using two criteria in Step 9. Then, the syndrome residual is
obtained in Step 10 and used as the input to a new branch
in the BSFBP decoding algorithm. To provide our decoding
with diverse syndrome residuals, we also introduce a flipping
element to the posterior LLR in the trunk at Step 21 based
on flexible selection strategies. Note that in [17] and [18], a
random perturbation and a perturbation based on the symbol
of the stabilizers of QLDPC codes are used on the prior
channel probabilities, respectively, to refine the initial prior
probability for the nonbinary BP decoding. In contrast, our
SF process aims to provide diverse syndrome residuals by
perturbing the posterior LLR for the binary BP decoding.
In summary, our BSFBP decoding is able to mitigate the
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Algorithm 1: BSFBP Decoding.

1: Initialization: Given Hy € F,"*V,s € FM, and
channel crossover probability p, set the trunk
iteration index k = 0. Initialize L) = In =2 and R}’

using L(; for all j and i € N (j).
2:whilek < I, do
:  Vertical message exchange as (6)
Horizontal message exchange as (7)
Elementwise LLR update as (8).
Hard decision as (9) and set b = §°.
if$¢ =& . H! = s then
Declare a decoding success.
else if §* satisfies both C.1 and C.2 then
Syndrome-pruning process: 7s = s @ §.
Initialization: Use 74 as the syndrome input and
set the iteration index ¢ = O for the branch.
while ¢ < 12 do
Repeat (6)—(8) using syndrome input tg and
the iteration index £.
14: if Hard decision: %* = 74 then
15: Declare a decoding success.
16: end if
17: Set £ = £ + 1 and repeat from Step 13
18: end while
19: When £ = Iy, set b = §€. Move to Step 21.
20: end if
21:  SF process: L]]‘.'H = —L]J‘.'H for the target v; from
one of the selected strategies.
22:  Setk =k + 1 and repeat from Step 3.
23: end while

24: Declare a failure when k = I ..

—_— =
TV N AW

—_
W N

effects of those indistinguishable error patterns and improve
the performance of the considered topological codes.

IV. EXPERIMENTAL RESULTS

A. SIMULATION ON TOPOLOGICAL CODES

From the discussion presented in Section II, it is sufficient
to simulate only one type of error. Thus, only the bit-flip
channel and H; will be considered for 2-D codes as in [25],
while for 3-D codes, the phase-flip channel and Hy will be
considered as in [45]. In the simulation, we will show the per-
formance of our proposed decoding algorithm compared to
other methods using binary BP decoding [21], [25] based on
the BSC model. For 2-D topological codes, we use variable
node selection strategy S.2 in the SF process for toric codes,
while for surface codes, S.3 is used. For 3-D topological
codes, we use S.2 for both codes due to the lower maximum
number of iterations, as discussed in Section III-D.

We show the performances of the [[162,2,9]] and the
[[242,2,11]] toric codes in Figs. 12 and 13, respectively.
These shows that, since our BBP decoding algorithm uses
the structure of topological codes, it is able to surpass the
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FIGURE 12. Performance comparison for the [[162,2,9]] toric code using
different decoding algorithms.
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FIGURE 13. Performance comparison for the [[242,2,11]] toric code
using different decoding algorithms.

performance of conventional BP decoding. The small-set-flip
(SSF) can also be applied directly on regular HGP codes [22].
However, the performance of HGP codes with code lengths
below 500 using SSF decoding is not significant, as shown
in [46], and even worse than using BP decoding for the toric
codes considered. Thus, we consider the BP decoding con-
catenated to SSF (BP+SSF). BP+SSF uses BP decoding to
yield an estimated error and then searches for all the supports
of the M stabilizer generators and adds to the error using
the support vectors, which is able to repeatedly reduce the
corresponding syndrome to zero. Consequently, most of the
computation time is due to SSF. In this article, SSF will
only operate when BP decoding reaches a predetermined
fixed number of iterations, which is set to an average num-
ber of iterations. This method can be viewed as a variant
of the hybrid decoder presented in [21] to reduce the time
complexity. Figs. 12 and 13 show that our BSFBP decoding
algorithm can outperform BP+SSF when the predetermined
fixed iterations are set to 20 and 30 for the [[162,2,9]] and
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FIGURE 14. Performance comparison for the [[113,1,8]] surface code
using different decoding algorithms.
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FIGURE 15. Performance comparison for the [[181,1,10]] surface code
using different decoding algorithms.

the [[242,2,11]] toric codes, respectively. Both the figures
show that the proposed BSFBP decoding algorithm is able to
improve the logical error rate close to 107 when p = 0.01
and surpass the conventional BP decoding method by about
two orders of magnitude.

If we use our BSFBP decoding method as an auxiliary
to OSD, the performance can be improved significantly. We
consider OSD-0 and the higher order OSD using a combina-
tion sweep method (OSD-CS), as described in [25]. OSD-0
supposes that nonzero elements of an error are more likely
to exist in those locations of the error that have a lower reli-
ability rather than in other locations where the reliability is
higher. In contrast, OSD-CS will consider the case that some
nonzero elements will exist in locations that have a higher
reliability. Figs. 12 and 13 show that the performance of our
BSFBP decoding process concatenated with OSD-0 is almost
identical to the BP decoding method concatenated with OSD-
CS. When the BSFBP decoding process is concatenated with
OSD-CS, it is able to reach a logical error rate of about 10~7
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FIGURE 16. Performance of the 2-D toric code with distance 11 and the
3-D toric code with lattice size of 6. The maximum number of BP
iterations for the 2-D and 3-D toric codes is N and 30, respectively.
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FIGURE 17. Performance of the 2-D surface code with distance 8 and
3-D surface codes with lattice size of 6. The maximum number of BP
iterations for the 2-D and 3-D surface codes is N and 30, respectively.

when p = 0.01 for the [[162,2,9]] toric code and 108 for the
[[242,2,11]] toric code.

Figs. 14 and 15 show the performance of the [[113,1,8]]
and the [[181,1,10]] surface codes, respectively. By using the
BSFBP decoding process, the performance improves by al-
most two orders of magnitude compared to the conventional
BP decoding method. Since the BP+SSF decoding approach
presented in [21] is devised for codes with a regular parity-
check matrix, it is not considered for the surface code with
the irregular parity-check matrix. In contrast, using BSFBP
decoding combined with OSD-CS produces an error rate
below 107> and 10~ for the [[113,1,8]] and the [[181,1,10]]
surface codes, which improves two and one orders of mag-
nitude compared to the BP decoding concatenated with both
OSD cases, respectively. Thus, this shows that BSFBP can
be a better auxiliary to concatenate OSD. It also shows that
our BSFBP decoding method itself can even outperform the
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FIGURE 18. Performance comparison between BP and BSFBP for
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[[256,32]] bicycle code and N for the [[25,1,5]] surface code and
[[625, 25, 8]] QLDPC codes, respectively.

BP decoding concatenated with OSD, which indicates that it
is possible to explore other modified BP decoders with lower
complexity and better performance than OSD for the surface
codes.

In Figs. 16 and 17, we show the performance for the
toric code with a distance of 11 and the surface code with
a distance of 8 when using the MWPM [31], respectively.
The results show that by concatenating to OSD, it is pos-
sible to compete with the MWPM decoder for the consid-
ered 2-D topological codes. Although it has been shown
that MWPM provides outstanding performance for topolog-
ical codes, it requires codes that have a parity-check matrix
containing column weights of, at most 2, which limits its
universality [30], [31].

Consider the 3-D topological codes based on the homo-
logical product, which can be viewed as a generalization of
the HGP construction [35]. These 3-D topological codes are
popular for single-shot error correction, which means that the
decoding process needs only measure the noisy syndrome
in a single shot [45]. Both 3-D toric and surface codes are
characterized by the X-stabilizer generators Hy, Z-stabilizer
generators Hz, and a meta-check matrix M., which is used to
correct syndrome noise. In this article, we will consider our
decoder when applied to the 3-D toric and surface codes, both
with a lattice size of 6 under the phase-flip channel, given the
noiseless syndrome (without meta-checks). With a maximum
number of iterations equal to 30, as in [47], Figs. 16 and
17 show that our BSFBP decoder can also operate on 3-D
topological codes and even outperform BP by two orders
of magnitude. For these codes, MWPM has restrictions on
direct decoding since the column weights in Hy and Hz are
larger than 2.

B. SIMULATION ON OTHER CODES

In this subsection, we will further explore the performance
of other codes by using our proposed decoder in Fig. 18.
First, the [[25,1,5]] surface code that is rotated by 45° is
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considered [48]. This shows that our BSFBP is able to pro-
vide an improvement of about two orders of magnitude
compared to BP. Then, we apply our decoder on [[256,32]]
bicycle code with a maximum number of iterations equal
to 12, as in [20]. The result shows that our decoder pro-
vides only a slight improvement. The reason for this is
that the design of our BBP is based on the HGP struc-
ture; hence, only the SF process might provide an effect
for the bicycle code. This can be indicated clearly by com-
paring it to the performance on the [[625, 25, 8]] QLDPC
codes based on the HGP structure [25], which can im-
prove performance by 1.5 orders of magnitude compared to
BP.

V. CONCLUSION

In this article, we proposed a BSFBP decoding method for
topological codes based on the HGP structure. Our algo-
rithm introduced the criteria and syndrome-pruning process
to compute the specific syndrome residual. Then, a new de-
coding path using this syndrome residual as the input was
then branched from BP. An SF process was also proposed
on the original path of BP, which can provide more diverse
syndrome residuals for decoding. For the considered topo-
logical codes, our BSFBP provided remarkable performance
as a stand-alone decoder compared to BP. On the other hand,
as an auxiliary decoder to OSD, we showed that it is pos-
sible to compete with the MWPM for the considered 2-D
topological codes. We also showed that our BSFBP can be
applied to those codes where the MWPM is limited, such
as 3-D topological codes and other types of codes based on
HGP structures.

Though for 2-D topological codes, it might be difficult
to devise a BP-based decoder, which can compete with
those state-of-the-art MWPM-based decoders such as in [28]
and [29] based on similar performance and complexity, for
single-shot codes such as 3-D toric and surface codes, the
optimal decoder still needs to be explored in the future.
Moreover, considering fault-tolerant computation, it would
be interesting to compare the time overhead by applying our
decoder on single-shot codes to hardware-efficient decoders
such as those presented in [49], [50], and [51], when using
multiple rounds of syndrome measurement on codes that
have similar code parameters.
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