
Quantum Software Engineeringuantum
Transactions onIEEE

Received 29 January 2023; revised 11 April 2023; accepted 26 April 2023; date of publication 18 May 2023;
date of current version 4 July 2023.

Digital Object Identifier 10.1109/TQE.2023.3275868

isQ: An Integrated Software Stack for
Quantum Programming
JINGZHE GUO1 , HUAZHE LOU2, JINTAO YU2 , RILING LI3 ,
WANG FANG3 , JUNYI LIU3 , PEIXUN LONG3 , SHENGGANG YING3,
AND MINGSHENG YING1,3
1Department of Computer Science and Technology, Tsinghua University, Beijing 100190, China
2Arclight Quantum Computing Inc., Beijing 100086, China
3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100045, China

Corresponding authors: Riling Li; Mingsheng Ying (e-mail: lirl@ios.ac.cn; yingms@ios.ac.cn).

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFA0306700,
in part by the National Natural Science Foundation of China under Grant 61832015, and in part by the Young Scientists Fund of the
National Natural Science Foundation of China under Grant 62002349. (Jingzhe Guo and Huazhe Lou contributed equally to this work.)

ABSTRACT We introduce isQ, a new software stack for quantum programming in an imperative pro-
gramming language, also named isQ. The aim of isQ is to make programmers write quantum programs
as conveniently as possible. In particular, 1) the isQ language and its compiler contain many useful features,
including but not limited to classical control flow, such as recursion, decomposition of self-defined unitary
gates, and oracle programming and its circuit realization. 2) To make it flexible, an isQ program can be
compiled into several different kinds of intermediate representation and assemblies, including QIR, eQASM,
OpenQASM 3.0, and QCIS (specially tailored for the superconducting quantum hardware at the University
of Science and Technology of China). 3) Besides interfacing isQ with real superconducting hardware, a
QIR simulator is also developed for the demonstration and testing of isQ programs. The isQ software stack
encompasses abundant compiler optimizations of high-level quantum programs. To realize it, a distinct
multilevel intermediate representation (MLIR) dialect name isQ-IR is proposed.

INDEX TERMS Compilers, programming languages, quantum computing stacks.

I. INTRODUCTION
Recent progress in quantum hardware has convinced peo-
ple of the possibility that quantum computers outperform
their classical predecessors in solving some important prob-
lems [1], [2], [3], [4]. As quantum hardware keeps advancing,
we have entered a noisy-intermediate-scale-quantum (NISQ)
era. However, just like classical computers, quantum hard-
ware cannot unleash its full power unless equipped with a
series of quantum computing software, including but not
limited to the following:
1) quantum programming language(s) for writing quan-

tum programs;
2) quantum compilers for transformation and optimiza-

tion of quantum programs, as well as compiling quan-
tum programs to different hardware, e.g., supercon-
ducting and trapped-ion devices;

3) quantum simulators for debugging small-scale quan-
tum programs.

This article presents isQ, an integrated software stack for
quantum programming.

The structure of isQ is visualized in Fig. 1. isQ was first
proposed as an experimental and educational language. The
first version of its compiler was implemented in Python using
the PLY [5] module, converting the abstract syntax tree from
the input isQ programs directly into a modified Quil interme-
diate representation (IR) [6]. The original isQ language has
limited features, and the compiler is not extensible, e.g., it is
hard to implement sophisticated compiler optimizations [7].
To design a more powerful software stack that permits more
language features and various compiler optimizations, we
extended the isQ language and reimplemented the compiler
based on multilevel intermediate representation (MLIR) [8]
infrastructure. Specifically, we designed isQ-IR, an MLIR
dialect, as our compiler frontend target and implemented
various transformation passes that are useful for compiling
quantum programs, e.g., gate decomposition and qubit map-
ping. We also implemented code generators that convert isQ-
IR to different kinds of low-level and assemblies, including
QIR [9], eQASM [10], OpenQASM 3.0 [11], and QCIS [12].
Main Contributions: More explicitly, the contributions of

this article are as follows.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 4, 2023 2500116

https://orcid.org/0000-0002-7921-9771
https://orcid.org/0000-0001-8764-7779
https://orcid.org/0000-0002-9545-3779
https://orcid.org/0000-0001-7628-1185
https://orcid.org/0000-0001-5715-4885
https://orcid.org/0009-0000-9255-9335
https://orcid.org/0000-0003-4847-702X
mailto:lirl@ios.ac.cn
mailto:yingms@ios.ac.cn


Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

FIGURE 1. Structure of isQ compilation stack. The compiler first compiles the input programs into isQ-IR and then generates the target codes, such as
QCIS, OpenQASM 3.0, and QIR. Optimizations are permitted throughout the whole compilation process. Finally, the output QCIS and QIR codes could be
executed on corresponding hardware and simulators.

1) We propose an imperative quantum programming lan-
guage named isQ.

2) We propose isQ-IR, an IR for quantum programs,
leveraging MLIR [8] dialect infrastructure and rep-
resenting qubit dataflow in static-single-assignment
(SSA) form, thus allowing flexible transformations of
quantum programs.

3) Around isQ-IR, we built a versatile software stack: we
implement a compiler that can compile isQ programs
into isQ-IR; then, we leverage the MLIR framework
to transform and optimize quantum programs in isQ-
IR, and lower isQ-IR into multiple backends including
QIR, OpenQASM 3, and real-device QCIS.
a) isQ programs can be easily lowered to QIR.

Moreover, for debugging purposes, we imple-
mented our own QIR simulator that can execute
QIR programs compiled by the isQ compiler.
The simulator provides an interface for support-
ing different backends, including built-in CPU
and compute unified device architecture (CUDA)
backends.

b) isQ programs without feedback control can be
compiled to QCIS assembly, which can be exe-
cuted on the superconducting quantum hardware
at the University of Science and Technology of
China (USTC).

c) isQ-IR can also be compiled into OpenQASM
3.0, while most high-level structures in isQ can
be preserved and converted to OpenQASM 3.0
control flow.

The source code of the isQ project is in [13]. A simple help
document with a download link to an executable of isQ could
also be found in [14].

II. RELATED WORKS
A. QUANTUM PROGRAMMING LANGUAGES AND
COMPILERS
In [15] and [16], the theoretical foundations of quantum pro-
gramming are introduced. Meanwhile, a series of works in
quantum programming languages and compilers [17], [18],
[19], [20], [21], [22], [23], [24], [25] targeting different levels
of abstraction are proposed. For example, Qiskit [18], pro-
posed by IBM, is a well-established and popular Pythonic
circuit construction framework for OpenQASM 2 [26] and
OpenQASM 3 [11], which allows classical control flow and
can run on IBM’s hardware backends. There are also lan-
guages such as Q# [19] and Silq [20] that support pow-
erful language features. Q# has its independent compiler,
and compiled quantum programs can be executed on real
hardware or the simulator while Silq programs can only run
on a simulator.

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

A closely related work proposed previously is QCOR [23],
which also aims at building a practical and versatile quan-
tum programming software stack. QCOR modified Clang so
that quantum kernels (written in various quantum program-
ming languages) could be interleaved with C++ source code,
allowing existing C++ libraries to be imported out of conve-
nience for quantum programmers, e.g., the gradient descent
methods in variational quantum algorithms. By proposing its
own compiler framework, XACC [27], QCOR can compile
one quantum program into multiple backends.
While many of these works provide abundant optimiza-

tions at the quantum circuit level, one of the most distinctive
features of the isQ software stack is its compiler optimiza-
tions on high-level program structures. These optimizations
could be accomplished without unrolling the programs into
static quantum circuits. In particular, a quantum loop struc-
ture is considered, which is elaborated in Section V-C.

B. QUANTUM IRs
Many quantum compilers employed their own IR to trans-
form and optimize quantum programs. For example, XACC
defines a general IR for representing quantum programs, al-
lowing compiling from various quantum programming lan-
guages to various backends. ScaffCC [28] extended LLVM
IR to represent quantum operations to leverage the LLVM
framework for analyzing quantum programs, as well as
relying on LLVM to enable fast code generation (called
instrumentation-driven approach). QIR [9], one compilation
target of our toolchain, is another LLVM-based IR that intro-
duces quantum functionality by using LLVMs opaque struct
mechanism. Quantum MLIR dialect [29] is proposed to use
MLIR to fill the gap between quantum languages and QIR.
These IRs usually choose to model quantum operations

as “opaque operations.” While this allows an easy IR defini-
tion and implementation, this IR form obscures the quantum
dataflow between gates in the program, adds to difficulties
in tracking and recording qubits over quantum gates, and,
therefore, adds to difficulties in performing optimizations on
the program.
There have also been several works using SSA for rep-

resenting quantum programs. QIRO [30] is proposed as an
MLIR dialect that allows exposure of quantum dataflow as
use-def chains, thus allowing quantum dataflow analysis and
optimizations. QSSA [31] further proposed a single-use anal-
ysis to statically check if the no-cloning theorem is obeyed
in the program. Both IRs share some commonalities: For
example, they defined a handful of native gates as primi-
tive operations; instead of using MLIRs memref dialect de-
signed for representing memory, they both invented their
own extract-merge styled array SSA [32] for representing
multiqubit registers.
Compared with these MLIR-based SSA IRs, isQ-IR is de-

signed with extensibility and MLIR interoperability in mind.
To achieve extensibility, for example, no built-in gates are
defined by isQ-IR; instead, isQ-IR introduces a unified way

of defining and using gates, applying modifiers to defined
gates, and marking gates with special properties, thus allow-
ing generic transformation passes based on gate properties
to be easily implemented. For interoperability, isQ-IR com-
plies with MLIRs philosophy of modular dialect definitions
by reusing MLIR built-in dialects and passes when possible
instead of reinventing the wheel; this allows our compiler to
benefit from MLIRs powerful built-in analysis to optimize
quantum programs.

C. REAL-TIME CLASSICAL CONTROL VERSUS HYBRID
CLASSICAL-QUANTUM COMPUTING
Many quantum programming languages and software sup-
port combining the power of classical and quantum com-
puting. There are roughly two types of cooperation between
the classical and quantum parts: 1) hybrid classical-quantum
computing and 2) real-time classical control.1

Hybrid classical-quantum computing executes by per-
forming quantum computation and classical computation al-
ternatively. This is usually done on a classical computer con-
nected to a quantum device. The classical computer first up-
loads a simple quantum kernel to the quantum device, waits
for the quantum device to finish executing the kernel, and
collects its execution results. The classical computer then
performs some classical computation and uploads the next
quantum kernel. Note that between two executions of the
quantum kernel, the quantum device is reset, and the state
of qubits cannot be preserved between the two executions.
Examples of such hybrid quantum algorithms in the NISQ
era include VQE [33] and QAOA [34].
Real-time classical control allows classical computation to

be interleaved with quantum computation within one deco-
herence time. This often comes with support for intermediate
measurements (i.e., measuring some qubits in the middle
of the program) and classical control flow constructs like
branching statements, loops, and recursions. Since the de-
coherence time of near-term quantum devices is very short,
the real-time classical computation is usually carried out on
the near-qubit microcontroller, usually implemented on a
field programmable gate array (FPGA) chip [10], [35], rather
than on an external CPU. Allowing real-time classical con-
trol flows could help simplify the design of some quantum
algorithms, e.g., reducing the number of ancilla quantum
qubits [36], [37] used, and reducing the circuit depth such
as preparing a cat state [38]. Moreover, this kind of real-time
feedback control is indispensable for implementing quantum
error-correcting codes [39], [40].

Many quantum programming languages and toolchains
support hybrid classical-quantum programs [18], [23], [25],
[41], [42], [43], usually by adding support for construct-
ing and launching quantum kernels [e.g., OpenQASM or
embedded domain-specific language (DSL) in Python] in
a commonly-used programming language (e.g., C++ or

1In [11], these two types of classical computations are also referred to as
near-time classical computing and real-time classical computing.

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

Python). Recently, with the progress of quantum control
hardware, there have been quantum programming languages
also providing support for real-time classical control [11],
[18], [22]. Our isQ software stack supports real-time clas-
sical control in isQ language and supports near-time hybrid
computing by providing Pythonic wrappers for interaction
between quantum kernels and classical computers. See the
work in [14] for an example of computing the ground state
energy of a hydrogen molecule.

III. ISQ PROGRAMMING LANGUAGE
We designed isQ as a simple yet powerful imperative lan-
guage for writing quantum programs. isQ assumes that the
program is run on a classical processor with real-time access
to qubits and real-time measurement feedback control; if the
program does not use any feedback control, isQ can also be
compiled into flat quantum circuits.
Example III.1: We first give a simple program written in

isQ simulating quantum teleportation of one qubit, showing
the most basic features and the style of isQ language. More
examples are given in Section V.

A. CORE CONSTRUCTS
We introduce some basic features of isQ for quantum-
classical hybrid programming.

1) QUANTUM COMPUTING CAPABILITY
isQ provides basic support for computing using qubits: qubit
allocation, quantum gates, and measurements. isQ allows
allocating qubits in local scopes, which will be automatically
traced out when these qubits go out of the scope; a handful of
standard gates, both fixed and parametric, as well as compu-
tational basis measurement, are given as built-in operations.

2) CLASSICAL COMPUTATION AND CLASSICAL CONTROL
isQ provides support for real-time classical computation dur-
ing the execution of quantum programs, including integer
arithmetic and float-point arithmetic ope. isQ also provides

structured classical control flow constructs support includ-
ing if-statements, for- and while-loops, and procedure calls.
Moreover, isQ allows parametric gates to accept floating-
point values, a powerful type of classical control on quantum
devices.

B. NOTABLE LANGUAGE FEATURES
Next, we describe several notable high-level features of isQ
in detail, which are as follows.

1) USER-DEFINED GATES
isQ introduces two ways for defining new quantum gates by
users: 1) by specifying a unitary matrix and 2) by specifying
a procedure.
Gate definition by unitary matrix: isQ allows developers

to define new gates by directly specifying the unitary matrix
of the gate. The unitarity of the matrix is checked on the
compilation of the program.
Gate definition by procedure: isQ allows user-defined

gates by adding “ deriving gate” notation to a procedure def-
inition. However, this leads to the problem that an arbitrary
procedure may not describe a unitary quantum gate, e.g.,
the procedure contains measurements. Moreover, we want to
support defining parametric quantum gates by specifying a
procedure with classical parameters.
We address the following constraints for a procedure to be

used as a gate definition.

1) The parameters of the procedure must start with zero
or more classical (i.e., Boolean, floating, and integer)
parameters and then zero or more qbit parameters. No
arrays are allowed. Thus, all user-defined gates are
fixed-sized.

2) The procedure should have no return value.
3) If an adjoint version of the gate is used, no classical

control flow statements should appear in the procedure
body.

4) No measurement or side effects are allowed in the pro-
cedure body.

5) While ancilla qubit allocation is allowed, the program-
mer should guarantee that all ancilla qubits are reset to
|0〉 when released.

Example III.2: We hereby define aU3 gate using a proce-
dure that accepts three angles and one qubit

U3(θ, φ, λ) = ei(φ+λ)/2RZ (φ)RY (θ )RZ (λ) (1)

=
(

cos θ
2 −eiλ sin θ

2
eiφ sin θ

2 e
i(φ+λ) cos θ

2

)
. (2)

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

2) DECORATED GATES AND GATE DERIVING NOTATION
Controlled and adjoint quantum gates have been proven
useful in constructing quantum circuits. isQ supports
using quantum gates in their decorated form, i.e., in
(multi)controlled or adjoint (inverse) version as follows.

1) “ctrl〈N〉” can be added before gate calling to add N
controller bits to the gate. 〈N〉 can be omitted for
N = 1.

2) “nctrl〈N〉” can be added to add N negated-controller
bits to the gate, i.e., appending X gates before and after
controller bits. 〈N〉 can be omitted for N = 1.

3) “inv” can be added to use the adjoint (inverse) version
of the gate.

When decorated forms of user-defined gates are used, isQ
will automatically generate controlled and adjoint versions
of these gates. For controlled gates, new qubit parameters are
inserted after the classical parameters and before the original
qbit parameters.
Example III.3: For the example above, if we want to per-

form a controlledU3 gate on two qubits a and b, we need to
write

In this example, a is the control qubit, and b is the target
qubit.

3) ORACLE SUPPORT
Quantum oracles are important constructs in quantum algo-
rithms like Grover search [44] or recursive Fourier sampling
(RFS) [45]. Currently, isQ language permits oracle definition
by directly writing out the truth table of oracle functions
with type f : {0, 1}m → {0, 1}n, or using a simple expression
containing some input variable(s).
Example III.4: For Boolean function f (x, y) = x ∧ ¬y,

we may define a quantum oracle computing the function as

F |a0a1b〉 = |a0a1〉 |b⊕ (a0 ∧ ¬a1)〉 . (3)

isQ allows defining the oracle gate in different ways. After
defining the oracle, it can be used directly as a quantum gate

4) BUNDLE OPERATION
isQ provides a compact way named bundle operation for
expressing parallel quantum operations. If a quantum gate
or measurement is applied to all or a slice of the qubits in an
array, the array or the slice can be used as the arguments of the
functions. To represent a slice of an array, we adopt a syntax

similar to the one used in Python. A slice contains three
parts that represent the start index, end index (excluded),
and incremental step, respectively, separated by two colons
(:). These parts can be omitted, and default values would be
applied.
Example III.5: The following code example shows the

usage of bundle operations:

Note that the bundle operation can also be used in mul-
tiqubit gates, e.g., cnot. In that case, the number of actual
operations is determined by the shortest array or slice, i.e.,
q[:: 3], in the previous case.

IV. iSQ COMPILER ARCHITECTURE
In this section, we describe the design of our compiler that
provides fundamental support for features of the isQ lan-
guage. The compiler is based on MLIR [8] infrastructure, a
highly extensible compiler framework that supports repre-
sentation, transformation, and code generation for domain-
specific computing, e.g., neural network and circuit logic.
Specifically, for our purpose, the following statements hold.

1) We defined isQ-IR, an MLIR dialect supporting cer-
tain quantum operations, as our IR for representing
and transforming quantum programs. Our isQ frontend
generates isQ-IR directly.

2) Based on MLIR’s powerful general IR transformation
framework, we utilized both existing general transfor-
mation passes provided by MLIR, as well as our own
quantum-specific transformation passes, to transform
and optimize quantum programs. In particular, many
optimizations on high-level program structures are im-
plemented.

3) By utilizing MLIRs code generation and lowering in-
frastructure, we are able to generate different types of
output code, including both high-level representations
like QIR and OpenQASM 3.0 [11] and low-level real-
device instruction sets like QCIS.

A. DIALECT DEFINITION OF ISQ-IR
The principles for defining our isQ-IR dialect include the
following.

1) Allowing easy reuse of compilation infrastructures
provided by MLIR, including compilation infrastruc-
tures originally designed for transforming classical
programs. We designed our dialect in integration with
existing MLIR dialects (scf, affine, memref, etc.) and
only added a minimum number of required operations
enough for quantum programs while preserving the
necessary properties for quantum-agnostic transforma-
tion passes to transform the IR correctly.

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

2) Facilitating gate-level optimizations. We adopted an
SSA form of representing qubit dataflow, which al-
lows local quantum-circuit fragments to be exposed
as def-use chains by a memory dependency analysis.
MLIRs powerful rewrite framework also simplifies the
definition of gate identities and transformations.

3) Preserving high-level program structures. isQ-IR al-
lows high-level program information, e.g., decorated
gates, built-in gate optimization hints, and gate defi-
nition by matrices and oracles, to be represented. We
can perform high-level optimizations (e.g., canceling
out user-defined UU†), lower the high-level opera-
tions (e.g., inlining and gate-decomposition), perform
low-level optimizations, and finally generate low-level
code.

4) Allowing extension for future features. Our dialect is
designed to be extensible so that we can add more
features easily, e.g., new compilation passes and new
ways of defining gates.

1) NEW MLIR TYPES
isQ-IR represents quantum dataflow in SSA form. isQ-IR
defined two new types for describing quantum programs:
!isq.qstate and !isq.gate〈N, hints〉.

!isq.qstate (referred to as qstate for short) represents
an intermediate state (which may be entangled with other
qubits) of a single qubit, which can be seen as an “open
wire” in a quantum circuit fragment. We do not define new
types for representing qubits or qubit arrays; instead, we
model them using memref〈n× !isq.qstate〉. Qubit alloca-
tion/deallocation is represented by memref.alloc and mem-
ref.free; for quantum operations, we need to use mem-
ref.load operation (or affine.load) to extract the qstate out,
perform operations to obtain a new value, and use mem-
ref.store (or affine.store) to store it back.
Using quantum SSA representation poses additional re-

quirements for legality, which are as follows.

1) Every qstate must be stored in the exact memory loca-
tion where it was loaded from. This is guaranteed by
our input IR.

2) Two qstates that are both “alive” at a certain point of
a program must belong to two different qubits. They
should be seen as distinct “open wires” in a quantum
circuit, on which we can safely perform multiqubit
gates or freely switch gates on disjoint qubits.

3) Passes should not introduce qstates that are not finally
stored back to its memref or store an invalid qstate
back. This condition ensures that there are no extra un-
used !isq.apply statements. To meet this requirement,
our gate rewrite passes carefully remove redundant
SSA values and the store operations that are associated
with them.

!isq.gate〈N,hints〉 represents a pure quantum N-qubit
gate as an SSA value that can be decorated, applied to qubits,

and passed around. hints in the gate type describes special
properties about the gate. Currently, supported hints include
the following.

1) hermitian, indicating that the gate is Hermitian, e.g.,
cnot, H.

2) diagonal, indicating that the gate has a diagonal matrix
form, e.g., CZ, RZ .

3) antidiagonal, indicating that the single-qubit gate is
antidiagonal, e.g., X .

4) symmetric, indicating that the order of gate operands
does not matter, e.g., SWAP and CZ gates.

5) phase, indicating the gate is in the form Un =∑
0�i<2n−1 |i〉 〈i| + eiθ |111 · · · 1〉 〈111 · · · 1|. All

phase gates are naturally diagonal and symmetric.

2) NEW OPERATIONS
Table 1 lists isQ-IR-defined MLIR operations. Instead of
defining a built-in basic gate set in the IR, all gates are defined
through isq.defgate. Both nonparametric gate and paramet-
ric gate families can be defined. The operation is attached
with an attribute “definition,” allowing specifying multiple
ways of defining the operation, as follows:

1) “qir,” definition by a QIR [9] function;
2) “unitary,” specifying a unitary matrix definition;
3) “oracle,” specifying an oracle truth-table definition;
4) “decomposition,” specifying gate decomposition by a

builtin.func.

A builtin.func can be used to describe a decomposition of
a gate only if the following holds.

1) The function accepts gate parameters and n qstates as
arguments exactly.

2) The function returns an n-qstate tuple exactly.
3) Returned qstates correspond to argument qstates in ex-

act order.
4) There are no external quantum operation calls (e.g.,

measurements) in the function body.
5) For autogeneration of the adjoint version, the function

should only consist of one basic block and contains no
operations with subregions.

Note that these requirements correspond with our require-
ments for gate-defined procedures in the isQ language. These
requirements allow us to automatically generate a controlled
(and adjoint) version of a gate.
A defined gate can be referenced using isq.use operation.

If the gate has classical parameters, they must be specified as
operands of isq.use. A gate can then be applied to qstates us-
ing an isq.apply operation, returning new SSA qstate values
that can be applied on by the next gates or stored back.

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

TABLE 1. New MLIR Operations Defined by isQ-IR

isq.decorate is added to represent decorated (controlled
and adjoint) operations. An isq.decorate operation is at-
tached with two attributes, ctrl and adjoint. The ctrl at-
tribute is a list of Boolean values, where “false” indicates
the corresponding controller bit is negated. The operand of
isq.decorate is an !isq.gate, and the result is also an !isq.gate
with correct size and hints as follows.

1) Adding controller bits increases the gate size.
2) Adjoint version of the Hermitian gate is equivalent to

an nonadjoint version.
3) Adjoint version of diagonal is still diagonal. The same

is true for antidiagonal and symmetric.
4) Controlled diagonal gates are still diagonal gates. The

same is true for positively-controlled phase gates.

isq.declare_qop represents external quantum operations
other than pure gates (e.g., measurements) that can be called
by isq.call_qop that operates on zero or more qubits and zero
or more classical inputs, interacts with the external environ-
ment, and return zero or more classical output.
We use signature [n](input ) → out put to represent a quan-

tum operation that works on n qstates and classical values
input, returning n qstates and classical values out put. For
example, (computational basis) measurement is an operation
that operates on one qubit and yields an i1 value and, thus,
has signature [1]() → i1. This is equivalent to traditional
function signature (!isq.qstate) → (!isq.qstate, i1). The sig-
nature for qubit reset is [1]() → (), and for printing integer
[0](index) → ().

Several auxiliary operations are defined as well.
isq.downgrade removes hints from a gate’s type signature so
that the gate fits into other operations that require a different
yet compatible type of gate as arguments. isq.apply_gphase
and isq.accumulate_gphase are defined as side-effective for
applying global phase. While global phases have no effect,
generating controlled versions of user-defined gates requires
the global phase to be preserved.
Example IV.1: Consider the following function definition.

The gates on ancilla qubit %Q introduce global phase (−1)
to the system and can be optimized out. However, if we try

to generate a controlled version of this function, eliminating
them early will result in an error in a relative phase.

isq.apply_gphase accepts an !isq.gate〈0〉, indicating ap-
plying the specified global phase to the system. When be-
ing “controlled,” they will be converted to isq.apply op-
erations. isq.accumulate_gphase operates on memref〈? ×
!isq.qstate〉 so that the corresponding local qubits are con-
sidered “alive” and will not be optimized out.
Global phase operations can be simply removed after gen-

erating all controlled versions of gates. In the example above,
in the function for the original gate, we can safely remove
%Q and corresponding gates while in the function for the
controlled-gate %Q will be preserved.

B. TRANSFORMATIONS ON ISQ-IR
1) REUSED CLASSICAL TRANSFORMATION PASSES
Our definition of isQ-IR allows for multiple transformation
passes provided by MLIR to be reused without modification.

1) Canonicalization, CSE, Symbol-DCE: these are useful
SSA transformations that could be used to simplify
code and remove unnecessary computation.

2) Memref subview folding: recognized as “fold-memref-
subview-ops” in MLIR. This pass removes proba-
ble redundant memref.subview ops generated by our
front end, thus removing unnecessary potential mem-
ory aliasing and simplifying store-load forwarding.

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

3) Store-load forwarding: recognized as “affine-scalrep”
in MLIR. This pass can be used to forward
affine.store-d SSA values to following affine.load,
thus exposing the use-def chain that we need for gate
cancellation.

4) Loop unrolling: recognized as “affine-loop-unroll” in
MLIR. This pass unrolls loops in the program and is
useful for canceling more gates when targeting real
devices.

5) MLIR built-in lowering passes:These are useful passes
for lowering other MLIR dialects to QIR.

2) GATE-LEVEL TRANSFORMATION PASSES
Leveraging MLIRs rewrite framework, we implemented a
handful of transformations that decompose and transform the
quantum part of the program.
Canonicalization: Several useful local peephole optimiza-

tion patterns are added to MLIRs canonicalizer, executed
after every transformation pass.

1) Decorate-op folding: A rewrite pattern that folds two
consecutive isq.decorate operations into one.

2) Gate cancellation: Rewrite pattern that cancels out
pairs of Hermitian gates andUU† gate pairs.

3) Symmetric operand rearranging:When all inputs of a
symmetric gate are from outputs of one gate, reorder
the operands to match the output order of the previous
gate. This is useful for canceling two CZ gates in “re-
verse” directions.

4) CZ cancellation by commutation: Two CZ gates on
the same pair of qubits, if there are no gates or only
diagonal gates between them, can be canceled out.

Recognize famous gates: This pass inserts the definition of
isQ builtin gates, including Paulis, Pauli rotations,U3, cnot,
and Tof f oli.
Pauli-rotation to U3: This pass converts all parametric

Pauli rotations into parametricU3 gates.
Fold decorate gates: This pass folds all isq.decorate op-

erations, which are as follows.

1) Negated controller bits are eliminated by inserting X
gates.

2) For matrix-defined gates, a newmatrix definition of the
decorated gate is generated.

3) For decomposition-defined gates, the builtin.func is
cloned and modified by adding controller bits and/or
inverting the gate sequence.

After this pass, global phase auxiliary operations can be
removed.
Decompose controlled U3: This pass decomposes con-

trolled, parametricU3 gate using AXBXC rule [46], resulting
in controlled-X , controlled-GPhase (controlled phase shift),
and RZ and RY operations. Controlled-X and controlled-
GPhase are decomposed recursively according to the work
in [46]. This pass eliminates all controlled parametric gates.

Decompose known matrices: This pass decomposes
unitary-matrix-defined gates into a bunch of basic gates using
quantum Shannon decomposition [47]. Till now, all gates are
basic gates.
Remove trivial gates: This pass removes constant gates

that are very close to the identity gate.
Oracle synthesis: This pass parses the defined oracles and

converts them into reversible circuits. To enhance the perfor-
mance, we adopt algorithms such as the Quine-McCluskey
algorithm and implement some optimizations like the reuse
of dirty ancilla qubits.

3) HIGH-LEVEL PROGRAM STRUCTURE TRANSFORMATION
PASSES
Moreover, some transformation passes on high-level pro-
gram structures are implemented within isQ-IR. These
transformation passes directly optimize high-level pro-
gram structures without unrolling them into quantum
circuits.
Example IV.2: Consider the following two lines of isQ

codes:

Here, q is a qubit array, and a, b are two classical vari-
ables. We cannot directly cancel out these two Hadamard
gates since the values of a and b are uncertain until run-
time. Therefore, the compiler does not know beforehand
whether they can be executed in parallel. However, consider-
ing that quantum operations are usually more expensive than
classical operations, the codes could be converted into the
following form with the semantics unchanged:

This simple example above shows that optimizations on
high-level program structures may sometimes bring benefit.
Within isQ-IR, we implement some characteristic optimiza-
tions targeted at structures like for-loop and recursion, which
are elaborated in Sections V-C and V-D.

C. ISQ-IR TO DIFFERENT LOW-LEVEL IRs
1) LOWER TO QIR
After these passes, we defined lowering passes to convert
isQ-IR to QIR.
Expand decomposition: Replace all gates defined by de-

composition with builtin.call to decomposition function or
QIR stub.

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

Reg2mem: Finally, we convert qstate to auxiliary type
!isq.qir.qubit and gate applications to QIR calls. Mea-
surements, resets, and print operations, represented using
isq.call_qop, are converted to corresponding QIR functions.
Lower to LLVM: lower auxiliary type !isq.qir.qubit to

llvm.struct〈“Qubit”, opaque〉, the corresponding type in
QIR. Applying lowering rules of other dialects (affine, scf,
etc.) results in legal QIR.

2) CODEGEN TO QCIS
Our isQ compiler supports generating QCIS assembly that
can execute on superconducting hardware. Challenges for
targeting QCIS superconducting hardware include the fol-
lowing.

1) QCIS hardware uses a different instruction set: for
single-qubit parametric gates, QCIS supports RZ ; for
two-qubit gates, QCIS provides CZ instead of cnot.
Therefore, retargeting gates in the program are re-
quired.

2) QCIS hardware does not support classical control flow
or feedback control. The “quantum” part of our pro-
gram must be extracted and flattened.

3) Superconducting hardware has qubit connectivity con-
straints. Qubit mapping is required to map logical
qubits in the isQ program onto real hardware qubits.

To solve these problems, we proposed new passes to con-
vert an isQ program into a valid QCIS assembly that can
execute on real devices.

1) We first check input isQ-IR to make sure there are no
reset statements or uses of measurement results. This
prevents feedback control in the program.

2) We retarget gates in the program into QCIS instruction
set by converting cnot into H-CZ-H triples and U3
into RZ,X2P,X2M [12], [18].

3) We extract all quantum gates by executing the program
on our simulator and collect every gate call. This effec-
tively flattens high-level control flow structures in the
program (loops and conditional branches) into a gate
list.

4) We perform qubit mapping on the collected gate list
by our qubit mapper based on the work in [48], gener-
ating QCIS assembly executable on superconducting
hardware.

3) CODEGEN TO OPENQASM 3.0
We implemented a direct code generator from isQ-IR to
logical-level OpenQASM 3.0, a high-level quantum assem-
bly language with control flow support. Since the control
flow primitives in OpenQASM3 are high-level ones (e.g., if-
statement, while-statements) instead of low-level ones (e.g.,
goto statements, basic blocks), we map structured MLIR
control-flow operations directly to OpenQASM3, e.g., scf.if
onto if-statements, affine.for onto for-statements.

FIGURE 2. 7-qubit Bernstein–Vazirani circuit with the secret string as
110111.

V. EXAMPLES
In this section, we present several illustrative implementa-
tions of some interesting quantum algorithms that can clearly
manifest the main features of isQ.

A. PURE QUANTUM PROGRAM
We use a simple example, Fourier sampling, also called the
Bernstein–Vazirani algorithm [49], to show the main work-
flow of isQ software stack, from isQ language to hardware-
supported QCIS assembly.
Example V.1 (Bernstein–Vazirani algorithm): Assume a

function generates a Boolean value by

f (x) = s · x (mod 2)

where s is a “secret string” and the dot (·) represents bit-
wise product sum. Bernstei–Vazirani algorithm computes s
by applying f once. We first give the implementation of a
small-scale Bernstein–Vazirani algorithm on seven qubits,
with s = 110111.

The above isQ program represents a 7-qubit circuit shown
in Fig. 2. Note that H gates and measurement are bundle
operations that are applied to all the qubits. After canoni-
calization and constant folding, the program above can be
compiled to the following isQ-IR:

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

FIGURE 3. Optimized circuit whose original form is shown in Fig. 2.

First, we perform loop unrolling to obtain unrolled loop
kernel

Applying MLIR-builtin load-store forwarding pass is able
to recover the dataflow on q[6] and other qubits

Now qubit data dependency is exposed by the use-def
chain upon which our quantum passes can take effects: A
conversion pass converts cnot into CZ and H supported by
QCIS while the canonicalizer eliminates consecutive H gate
pairs on q[2], effectively eliminating the qubit. The circuit
form of the program at this point is given in Fig. 3.

FIGURE 4. Qubit topology of a 56-qubit processor in our experiments.
Gray nodes represent unavailable qubits on the device. Green and blue
qubits are used qubits. Red edge indicates a SWAP gate is inserted here
during qubit mapping.

To extract the flattened circuit, we first lower isQ-IR to
auxiliary QIR form

The snippet will be further lowered to QIR, compiled
by LLVM, and linked with our simulator. We implemented
a special backend in the simulator that converts to code-
generation calls, e.g., __quantum__qis__x__body(i) gener-
ating a “X Qi” QCIS instructions. These instructions will be
collected and mapped to real hardware using our qubit map-
ping pass. In the pass, we adopt an algorithm in [48] that uses
simulated annealing to find a good initial mapping scheme
and then uses heuristic search to schedule operations, i.e.,
insert swap gates. For demonstration, we choose a 56-qubit
superconducting quantum processor. The qubit topology of
this processor and the chosen qubits by themapper are shown
in Fig. 4. The circuit immediate after the mapping pass is
given in Fig. 5.

After the qubit mapping pass, we re-import the circuit as
isQ-IR to perform retargeting (to eliminate the SWAP gate),

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

FIGURE 5. Circuit representation after qubit mapping.

FIGURE 6. Final program after postmapping optimization.

canonicalization (to cancel Hadamard andCZ gates from the
SWAP gate), lowering to QIR and QCIS code generation, to
get the final runnable QCIS program.
Finally, to illustrate the effect of these optimizations,

we conducted real-hardware experiments on the processor
depicted in Fig. 4. We ran the circuit in Fig. 6, comprising 19
gates. For comparison, we ran another circuit generated by
running the circuit in Fig. 2 on the processor, using the same
qubit mapping scheme but without any optimizations. This
generated circuit comprises 39 gates. The results are shown
in Fig. 7. Both circuits were executed for 12 000 shots. For
the optimized circuit, 5687 shots return the correct results,
i.e., the success rate is 47.39%; in contrast, the other circuit
only has 1103 correct shots, i.e., the success rate is 9.19%.
These experiments show that our optimizations bring notice-
able improvement.

B. PROGRAM WITH CLASSICAL CONTROL
We then give the second example, iterative phase estimation,
a quantum algorithm that requires real-time feedback con-
trol.
Example V.2 (Iterative phase estimation): Iterative phase

estimation (IPE) [36] is a kind of phase estimation algo-
rithm requiring only one ancilla qubit [11], [37]. IPE requires
real-time intermediate measurement and feedback control:
For every iteration, the ancilla qubit is operated on, mea-
sured, and reset; the parameter of RZ gate in each iteration
is determined by previous measurement outcomes; all gates
andmeasurementsmust be finishedwithin decoherence time.
The circuit of IPE is depicted in Fig. 8 The following is our
isQ program for a two-qubit, 20-bit precision IPE instance:

FIGURE 7. Top: The probabilistic distribution of results of the optimized
circuit. Bottom: The probabilistic distribution of results of the circuit
directly from mapping the raw circuit.

We created two examples, IPE the example above, and
IPE-9, an IPE instance butU is a 9-qubit gate. We write two
examples in both isQ and Q#, and compile and simulate them
to compare the compilation and simulation performance. All
experiments are carried out on the same PC with an Intel
i9-11900 K CPU.
Table 2 shows that our toolchain has much smaller over-

head for both compilation and execution for IPE. While Q#
toolchain compiles the controlled-U in IPE-9 into mutiqubit
controlled gates and runs such controlled gates directly on the
simulator, we are able to compile the program into finer-grain
cnot and U3 gates and simulate them with a low overhead
while preserving overall performance.

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

FIGURE 8. Circuit of iterative phase estimation.

TABLE 2. Evaluation Results Between isQ and Q# on Comping and
Simulating Two Programs

FIGURE 9. Loop body in circuit form. The +1 and −1 boxes represent the
“increment” gate and its inverse. The dashed box represents the negated
controller to the inversed gate.

C. COMPILING LOOP PROGRAMS
To show the optimizing capability of our compiler on high-
level program structures, we give an example of using our
compiler to compile and schedule a quantum loop program.
Example V.3: (Quantum random walk) Quantum random

walk is the quantum analog of classical random walk. Quan-
tum random walk is done by alternatively performing a coin-
tossing operator on the coin space and a walking operator
on both the coin space and walk space. We give an example
of performing a quantum random walk using a Hadamard
coin on a 2-qubit walking space, or equivalently, on the graph
of a square. The loop body is given in Fig. 9, where the
“increment” procedure and its inverse are represented by the
boxes marked as +1 and −1, respectively. Note that two X
gates are needed to change the controlled gate to one with
the negated controller.

Traditionally, optimizing quantum program compilers per-
form circuit optimization on unrolled quantum circuits
only. While optimizing the entire quantum circuit allows
maximizing circuit optimization, it requires the compilation
time to grow as the number of gates in the entire program
grows.
Specifically, for simple quantum loop programs consist-

ing of f or-loops, isQ supports performing gate-level opti-
mization at loop-level without having to unroll the entire
loop [50]: if a gate at the beginning of an iteration can be
canceled out or merged into one U3 gate with another gate
from the next iteration. By leveraging MLIR support for
affine expressions, our compiler is able to analyze which
gates across iterations can be merged, therefore reducing the
number of gates and total depth.
Example V.4: For the loop body in Fig. 9, if we unroll

the loop body and allow U3 gate, starting from the second
iteration every H gate can be merged with the last X gate
from the previous iteration. By detecting this pattern, we can
compile the original loop into an equivalent loop program
that performs this gate merging:

We compared our compiler with the Qiskit compiler in
compiling the program in Example V.3. Both compilers com-
pile the program into {CZ,U3} basis. Since Qiskit does not
support interiteration optimizations, we conducted a third
group of experiments where we instruct Qiskit to first unroll
the loop and then optimize the unrolled circuit. The following
two metrics are used in the comparison.

1) Average loop kernel depth. This metric characterizes
the average circuit depth of a single iteration of the
loop. For isQ and Qiskit without explicit loop un-
rolling, the average loop kernel depth is obtained by
counting the circuit depth of the optimized loop body.

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

TABLE 3. Evaluation Results of isQ and Qiskit Compiling a Loop Program

For Qiskit with explicit loop unrolling, the average
loop kernel is obtained by performing optimization on
the unrolled circuit and dividing the total depth by the
number of iterations.

2) Compilation time.We testedmultiple optimization lev-
els of Qiskit and measured the time of the whore com-
piling process.

The evaluation result is presented in Table 3. When Qiskit
compiles the loop without unrolling, the resulted depth is
larger than isQ, meaning the resulted circuit would run a
longer time on a quantum computer. When the circuit is first
unrolled, the average loop kernel depth becomes smaller.
However, it is still slightly larger than isQ. The reason is that
the default O3 transpiler of Qiskit does not remove a redun-
dant identity single-qubit gate generated in the compilation.
In addition, our compiler also saves compilation time by

optimizing directly on the loop program without having to
unroll the loop. It can be seen from the table that the compi-
lation time is nearly the same for different iteration numbers.
However, the compilation time for Qiskit scales with the
iteration number. Although current NISQ hardware may not
support the large number of gates listed in the table, we an-
ticipate that as quantum hardware develops to support deeper
circuits and higher-level control flow, direct optimization of
quantum loop programs will become increasingly important,
just like its role in the compilation of classical programs.

D. COMPILING RECURSIVE QUANTUM PROGRAMS
In Section V-B, quantum programs with classical control are
discussed. Nowadays, many quantum software tools support
the classical control flow. We still take Qiskit for example.
After the OpenQASM 3.0 [11] was proposed, Qiskit has ex-
panded its support for various classical control flow features,
including mid-circuit measurements, if-branches, for-loops,
and while-loops. However, it currently does not support re-
cursion. In this section, we present two examples of quantum
programs that incorporate recursion. We demonstrate how to
write these programs using the isQ language and compile
them into low-levels IRs.
Example V.5: The first example from the work in [15]

demonstrates a recursive procedure characterized by a

FIGURE 10. Flowchart of a recursive procedure.

flowchart depicted in Fig. 10. In this flowchart, the term
“discard r” refers to a reset operation, i.e., “r := |0〉.” The ex-
ample serves to showcase isQ’s capabilities in compiling re-
cursive quantum programs and implementing optimizations
on high-level program structures.
We implement the example in isQ, as shown in the

following:

Compiling the program directly without any optimiza-
tions, as shown in the flowchart, leads to the creation of a
new ancilla qubit at every level of recursion, which restricts
the recursion depth when only a small number of qubits are
available. Whereas, the isQ compiler identifies an optimiza-
tion opportunity by reusing measured qubit: Once qubit p
has been measured with the outcome stored in a classical
variable, it can be recycled and reused at the next recursion
level; when the ancilla is freed, the state of original p can be
easily restored according to previous measurement outcome.
Consequently, only three qubits are required overall, regard-
less of the recursion depth.
We demonstrate how the optimization is done at IR level.

The procedure proc_X is compiled to IR snippet as follows:

VOLUME 4, 2023 2500116



Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

Our compiler is able to find the following.

1) The lifetime of the qubit allocated in the loop is out-
lived by the lifetime of the qubit in the procedure pa-
rameter.

2) As of allocation, the state of the outer qubit just went
through a measurement.

Therefore, the measured qubit can be reused as the ancilla
and restored when the ancilla usage is finished, eliminating
the allocation in the loop:

The second example is the RFS including both recursion
and oracle definitions.
Example V.6 (Recursive Fourier Sampling): RFS [49],

[51] is the recursive version of the Bernstein–Vazirani algo-
rithm in SectionV-A. The height-hRFS problem is defined to
be a h-depth tree with each subtree of the root corresponding
to a height-(h− 1) RFS. The RFS problem could be solved
recursively. The following is an instance of RFS of height-2.

The isQ software stack can compile this RFS instance into
various IRs, such as eQASMandQCIS. The difference is that
eQASM supports dynamic classical control while compiling
it to QCIS requires unrolling the entire program, resulting in
an extensive static circuit. We have evaluated the compiled
output using both the eQASM simulator and the QCIS sim-
ulator we implemented. In both cases, the correct result of 1
was obtained, indicating that g(s) = 1 for this instance.

VI. CONCLUSION
This article describes a software stack for quantum program-
ming, including a high-level quantum programming lan-
guage and tools to compile and simulate the programs. The
isQ programming language provides a series of high-level
language features to facilitate writing quantum programs.
By leveraging MLIR infrastructure, we defined isQ-IR, an
MLIR dialect for representing quantum-classical hybrid pro-
grams, and built an isQ compiler, allowing some powerful
transformations and optimizations of isQ programs. Finally,
backend code-generators and simulators allow isQ programs
to be finally compiled to and tested out on different back-
ends, both simulated environment and real superconducting
hardware, and also allow cooperation with lower-level com-
pilation toolchains.

2500116 VOLUME 4, 2023



Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING Engineeringuantum
Transactions onIEEE

A. FUTURE WORK
Potential future works include further extending the isQ
programming stack and adding more optimization passes,
resource analysis and adding assertion functions, etc. Tar-
geting isQ to more different kinds of quantum hardware,
e.g., trapped-ion quantum devices, is also one of the future
tasks.

ACKNOWLEDGMENT
The authors thank Zhicheng Zhang, Kezhen Zhang, Qisheng
Wang, Xiangzhen Zhou, Keli Zheng, and Ji Guan for their
kind help and enlightening discussion. The authors are also
grateful to the fellows in USTC for providing access to their
superconducting hardware.

REFERENCES
[1] F. Arute et al., “Quantum supremacy using a programmable super-

conducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019,
doi: 10.1038/s41586-019-1666-5.

[2] H.-S. Zhong et al., “Quantum computational advantage using photons,”
Science, vol. 370, no. 6523, pp. 1460–1463, 2020, doi: 10.1126/sci-
ence.abe8770.

[3] Q. Zhu et al., “Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling,” Sci. Bull., vol. 67, no. 3, pp. 240–245, 2022,
doi: 10.1016/j.scib.2021.10.017.

[4] “February 23, 2022 |IonQ Aria Furthers Lead as World’s Most Power-
ful Quantum Com.” [Online]. Available: https://ionq.com/news/february-
23-2022-ionq-aria-furthers-lead

[5] D. M. Beazley, “PLY (Python Lex-Yacc),” 2020. [Online]. Available:
https://ply.readthedocs.io/

[6] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical
quantum instruction set architecture,” 2016, arXiv:1608.03355,
doi: 10.48550/arXiv.1608.03355.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Noida, India: Pearson Education India, 2007.

[8] C. Lattner et al., “MLIR: A compiler infrastructure for the end of Moore’s
law,” 2020, arXiv:2002.11054, doi: 10.48550/arXiv.2002.11054.

[9] Q. Alliance, “QIR specification,” 2022. [Online]. Available: https://github.
com/qir-alliance/qir-spec

[10] X. Fu et al., “eQASM: An executable quantum instruction set architec-
ture,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture, 2019,
pp. 224–237, doi: 10.1109/HPCA.2019.00040.

[11] A. W. Cross et al., “OpenQASM 3: A broader and deeper quantum as-
sembly language,” ACM Trans. Quantum Comput., vol. 3, no. 3, 2022,
Art. no. 12, doi: 10.1145/3505636.

[12] “QCIS instruction set introduction,” 2023. [Online]. Available:
https://quantumcomputer.ac.cn/UserBook.html

[13] “The iSQ project,” 2023. [Online]. Available: https://github.com/arclight-
quantum/isQ-Compiler

[14] “The website of iSQ docs,” 2023. [Online]. Available: http://www.arclight
quantum.com/isq/index.html

[15] P. Selinger, “Towards a quantum programming language,”
Math. Struct. Comput. Sci., vol. 14, no. 4, pp. 527–586, 2004,
doi: 10.1017/S0960129504004256.

[16] M. Ying, Foundations of Quantum Programming. San Mateo, CA, USA:
Morgan Kaufmann, 2016. [Online]. Available: https://shop.elsevier.
com/books/foundations-of-quantum-programming/ying/978-0-12-802
306-8

[17] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Val-
iron, “Quipper: A scalable quantum programming language,” in Proc.
34th ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2013,
pp. 333–342, doi: 10.1145/2491956.2462177.

[18] Qiskit contributors, “Qiskit: An open-source framework for quantum com-
puting,” 2023.

[19] K. Svore et al., “Q#: Enabling scalable quantum computing and develop-
ment with a high-level DSL,” in Proc. Real World Domain Specific Lang.
Workshop, 2018, pp. 1–10, doi: 10.1145/3183895.3183901.

[20] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-level quan-
tum language with safe uncomputation and intuitive semantics,” in Proc.
41st ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2020,
pp. 286–300, doi: 10.1145/3385412.3386007.

[21] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t | ket〉: A retargetable compiler for NISQ devices,”
Quantum Sci. Technol., vol. 6, no. 1, Nov. 2020, Art. no. 014003,
doi: 10.1088/2058-9565/ab8e92.

[22] X. Fu et al., “Quingo: A programming framework for heterogeneous
quantum-classical computing with NISQ features,” ACM Trans. Quantum
Comput., vol. 2, no. 4, pp. 1–37, 2021, doi: 10.1145/3483528.

[23] A. Mccaskey, T. Nguyen, A. Santana, D. Claudino, T. Kharazi, and
H. Finkel, “Extending C for heterogeneous quantum-classical comput-
ing,” ACM Trans. Quantum Comput., vol. 2, no. 2, pp. 1–36, 2021,
doi: 10.1145/3462670.

[24] N. Khammassi et al., “OpenQL: A portable quantum programming frame-
work for quantum accelerators,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 18, no. 1, pp. 1–24, 2021, doi: 10.1145/3474222.

[25] A. Matsuura et al., “An Intel quantum software development kit for ef-
ficient execution of variational algorithms,” in Proc. APS Mar. Meeting
Abstr., 2022, vol. 2022, pp. N36–006.

[26] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta,
“Open quantum assembly language,” 2017, arXiv:1707.03429, doi:
10.48550/arXiv.1707.03429.

[27] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and T. S.
Humble, “XACC: A system-level software infrastructure for heteroge-
neous quantum-classical computing,”Quantum Sci. Technol., vol. 5, no. 2,
2020, Art. no. 024002, doi: 10.1088/2058-9565/ab6bf6.

[28] A. JavadiAbhari et al., “ScaffCC: Scalable compilation and analy-
sis of quantum programs,” Parallel Comput., vol. 45, pp. 2–17, 2015,
doi: 10.1016/j.parco.2014.12.001.

[29] A. McCaskey and T. Nguyen, “A MLIR dialect for quantum assem-
bly languages,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2021,
pp. 255–264, doi: 10.1109/QCE52317.2021.00043.

[30] D. Ittah, T. Häner, V. Kliuchnikov, and T. Hoefler, “Qiro: A static
single assignment-based quantum program representation for opti-
mization,” ACM Trans. Quantum Comput., vol. 3, no. 3, Jun. 2022,
doi: 10.1145/3491247.

[31] A. Peduri, S. Bhat, and T. Grosser, “QSSA: An SSA-based IR for quantum
computing,” in Proc. 31st ACM SIGPLAN Int. Conf. Compiler Construc-
tion, 2022, pp. 2–14, doi: 10.1145/3497776.3517772.

[32] K. Knobe andV. Sarkar, “Array SSA form and its use in parallelization,” in
Proc. 25th ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., 1998,
pp. 107–120, doi: 10.1145/268946.268956.

[33] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum ap-
proximate optimization algorithm,” 2014, arXiv:1411.4028,
doi: 10.48550/arXiv.1411.4028.

[34] A. Peruzzo et al., “A variational eigenvalue solver on a photonic quan-
tum processor,” Nature Commun., vol. 5, no. 1, Jul. 2014, Art. no. 4213,
doi: 10.1038/ncomms5213.

[35] M. Zhang et al., “Exploiting different levels of parallelism in the quan-
tum control microarchitecture for superconducting qubits,” in Proc.
IEEE/ACM 54th Annu. Int. Symp. Microarchitecture, 2021, pp. 898–911,
doi: 10.1145/3466752.3480116.

[36] M. Dobší ček, G. Johansson, V. Shumeiko, and G. Wendin, “Arbitrary
accuracy iterative quantum phase estimation algorithm using a single
ancillary qubit: A two-qubit benchmark,” Phys. Rev. A, vol. 76, no. 3,
pp. 399–406, 2007, doi: 10.1103/PhysRevA.76.030306.

[37] A. D. Córcoles et al., “Exploiting dynamic quantum circuits in a
quantum algorithm with superconducting qubits,” Phys. Rev. Lett.,
vol. 127, Aug. 2021, Art. no. 100501, doi: 10.1103/PhysRevLett.127.
100501.

[38] A. B. Watts, R. Kothari, L. Schaeffer, and A. Tal, “Exponential separation
between shallow quantum circuits and unbounded fan-in shallow classical
circuits,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput., 2019,
pp. 515–526, doi: 10.1145/3313276.3316404.

[39] P. W. Shor, “Scheme for reducing decoherence in quantum com-
puter memory,” Phys. Rev. A, vol. 52, no. 4, 1995, Art. no. R2493,
doi: 10.1103/PhysRevA.52.R2493.

[40] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quan-
tum memory,” J. Math. Phys., vol. 43, no. 9, pp. 4452–4505, 2002,
doi: 10.1063/1.1499754.

VOLUME 4, 2023 2500116

https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1126/science.abe8770
https://dx.doi.org/10.1126/science.abe8770
https://dx.doi.org/10.1016/j.scib.2021.10.017
https://ionq.com/news/february-penalty -@M 23-2022-ionq-aria-furthers-lead
https://ionq.com/news/february-penalty -@M 23-2022-ionq-aria-furthers-lead
https://ply.readthedocs.io/
https://dx.doi.org/10.48550/arXiv.1608.03355
https://dx.doi.org/10.48550/arXiv.2002.11054
https://github.penalty -@M com/qir-alliance/qir-spec
https://github.penalty -@M com/qir-alliance/qir-spec
https://dx.doi.org/10.1109/HPCA.2019.00040
https://dx.doi.org/10.1145/3505636
https://quantumcomputer.ac.cn/UserBook.html
https://github.com/arclight-quantum/isQ-Compiler
https://github.com/arclight-quantum/isQ-Compiler
http://www.arclightquantum.com/isq/index.html
http://www.arclightquantum.com/isq/index.html
https://dx.doi.org/10.1017/S0960129504004256
https://shop.elsevier.com/books/foundations-of-quantum-programming/ying/978-0-12-802306-8
https://shop.elsevier.com/books/foundations-of-quantum-programming/ying/978-0-12-802306-8
https://shop.elsevier.com/books/foundations-of-quantum-programming/ying/978-0-12-802306-8
https://dx.doi.org/10.1145/2491956.2462177
https://dx.doi.org/10.1145/3183895.3183901
https://dx.doi.org/10.1145/3385412.3386007
https://dx.doi.org/10.1088/2058-9565/ab8e92
https://dx.doi.org/10.1145/3483528
https://dx.doi.org/10.1145/3462670
https://dx.doi.org/10.1145/3474222
https://dx.doi.org/10.48550/arXiv.1707.03429
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1016/j.parco.2014.12.001
https://dx.doi.org/10.1109/QCE52317.2021.00043
https://dx.doi.org/10.1145/3491247
https://dx.doi.org/10.1145/3497776.3517772
https://dx.doi.org/10.1145/268946.268956
https://dx.doi.org/10.48550/arXiv.1411.4028
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1145/3466752.3480116
https://dx.doi.org/10.1103/PhysRevA.76.030306
https://dx.doi.org/10.1103/PhysRevLett.127.100501
https://dx.doi.org/10.1103/PhysRevLett.127.100501
https://dx.doi.org/10.1145/3313276.3316404
https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1063/1.1499754


Engineeringuantum
Transactions onIEEE

Guo et al.: ISQ: AN INTEGRATED SOFTWARE STACK FOR QUANTUM PROGRAMMING

[41] M. Broughton et al., “TensorFlow quantum: A software frame-
work for quantum machine learning,” Aug. 2021, arXiv:2003.02989,
doi: 10.48550/arXiv.2003.02989.

[42] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: An open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
Jan. 2018, doi: 10.22331/q-2018-01-31-49.

[43] Rigetti Computing, “pyQuil Documentation,” 2023. [Online]. Available:
https://pyquil-docs.rigetti.com

[44] L. K. Grover, “Fixed-point quantum search,” Phys. Rev. Lett., vol. 95,
no. 15, 2005, Art. no. 150501, doi: 10.1103/PhysRevLett.95.150501.

[45] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM J.
Comput., vol. 26, no. 5, 1997, doi: 10.1137/S0097539796300921.

[46] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information. Cambridge, U.K.: Cambridge Univ. Press,
2000.

[47] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic
circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25,
no. 6, pp. 1000–1010, Jun. 2006, doi: 10.1109/TCAD.2005.855930.

[48] X. Zhou, S. Li, and Y. Feng, “Quantum circuit transformation based on
simulated annealing and heuristic search,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 39, no. 12, pp. 4683–4694, Dec. 2020,
doi: 10.1109/TCAD.2020.2969647.

[49] E. Bernstein and U. V. Vazirani, “Quantum complexity the-
ory,” SIAM J. Comput., vol. 26, no. 5, pp. 1411–1473, 1997,
doi: 10.1137/S0097539796300921.

[50] J. Guo and M. Ying, “Software pipelining for quantum loop programs,”
IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 2815–2828, Apr. 2023,
doi: 10.1109/TSE.2022.3232623.

[51] S. Aaronson, “Quantum lower bound for recursive Fourier sampling,”
Quantum Inf. Comput., vol. 3, no. 2, pp. 165–174, 2002.

2500116 VOLUME 4, 2023

https://dx.doi.org/10.48550/arXiv.2003.02989
https://dx.doi.org/10.22331/q-2018-01-31-49
https://pyquil-docs.rigetti.com
https://dx.doi.org/10.1103/PhysRevLett.95.150501
https://dx.doi.org/10.1137/S0097539796300921
https://dx.doi.org/10.1109/TCAD.2005.855930
https://dx.doi.org/10.1109/TCAD.2020.2969647
https://dx.doi.org/10.1137/S0097539796300921
https://dx.doi.org/10.1109/TSE.2022.3232623


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


