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ABSTRACT We present a novel derivation and implementation of the finite-difference method (FDM) that
is gauge invariant and incorporates spin–orbit coupling for the study of quantum systems. This version of
FDM is meant to assist in the design and simulation of quantum devices that utilize multiple internal degrees
of freedom (e.g., spin) by providing a way to directly use the effective Hamiltonian, which is often used to
mathematically describe such systems. Our derivation is validated via comparison with perturbation theory
and a quasi-tight-binding calculation and is shown to reproduce the expected results to a high degree of
accuracy. This implementation of the FDM is expected to be very useful due to both its generality as well as
its relative ease of implementation.

INDEX TERMS Device simulation, finite-difference method (FDM), numerical modeling, quantum engi-
neering, technology computer-aided design (TCAD).

I. INTRODUCTION
The goal of building a truly scalable quantum computer
is currently being pursued by many groups, and different
approaches to qubit manipulation and hosting are being in-
vestigated. Proposals for scalable quantum computer archi-
tectures range from the use of silicon with micromagnets
and inhomogeneous magnetic fields to superconductors and
condensed noble gases [1], [2], [3], [4], [5], [6], [7], [8],
[9]. However, one tool, which has been lacking in these re-
search efforts, is an effective simulation method, which can
describe the quantum system, that the qubit exists in, and
then simulate its performance based on that system. This
is analogous to the development of technology computer-
aided design in the traditional semiconductor industry [10],
[11], [12], [13] and has been attempted previously for quan-
tum systems [14], [15]. Unfortunately, many of these meth-
ods rely on system specific information and, therefore, are
difficult to generalize to all quantum systems. For exam-
ple, for the simulation of bilayer graphene (BLG) methods,
such a basis of localized states [16], [17] has been used,
which produces very accurate results. However, such meth-
ods are limiting in which one must have the prior knowledge
of what the appropriate orbital basis is for the system of
interest.

We propose to instead make use of the effective Hamilto-
nian, which is generally well known for most quantum sys-
tems of interest [18], [19], [20]. The effective Hamiltonian
generally describes the various effects of the system on a
given particle within a confinement potential, and solving
the effective Hamiltonian for a given system then will return
the various eigenstates that the particle may exist in within
that system. Such calculations are particularly useful when
modeling qubits in which one of the confined particle’s states
may be used to encode information, such as the particle’s
spin or valley. To do this, we propose solving the effective
Hamiltonian in real space directly using the FDM. However,
to do this, we need to be able to incorporate many different
quantum effects in a gauge-invariant way, such as the mag-
netic vector potential as well as spin–orbit coupling (SOC),
which are used to manipulate the state of the particle and,
therefore, its qubit state. In this work, we will describe how
one can derive a gauge-invariant finite-difference form of an
effective 2×2 Hamiltonian for a 2-D system as well as how
such a system can be extended to arbitrarily higher internal
degrees of freedom (spin, valley, etc.). We also validated our
proposed method via comparison with second-order pertur-
bation theory and the well-known tight-binding (TB) numer-
ical method.
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II. DERIVATION
In this section, we go over the necessary steps to derive our
gauge-invariant form of the FDM. In general, our derivation
may be conceptualized in two parts. First, the Peierls sub-
stitution is applied to make the general Hamiltonian gauge
invariant, which is then discretized. Second, the natural or-
dering method commonly used in the FDM is extended so as
to handle additional internal degrees of freedom.

A. PEIERLS SUBSTITUTION
The first step in our derivation is to rewrite the general Hamil-
tonian for a 2-D electron gas (2DEG) in the presence of an
out-of-plane magnetic field. In this case, it is necessary to
find away to represent the resultingmagnetic vector potential
in a gauge-invariant way under finite differences. This is
most easily accomplished by using the Peierls substitution
as described in [21], [22], [23], [24], and [25]. In this case,
the initial Hamiltonian describing the potential that a particle
experiences within the generalized 2DEG is given by

Ĥ = 1

2m

[
−i�∇ + q

⇀

A (x, y)

]2
σ0 +V (x, y) σ0

+ 1

2
gμB

⇀

Bzσz + iα

(
σy
∂

∂x
− σx

∂

∂y

)
(1)

wherem is the particle effective mass, q is the particle charge,
⇀

A(x, y) is the magnetic vector potential, V(x, y) is the in-
plane confinement potential, σ0 is the identity matrix, g is the
dimensionless magnetic moment, μB is the Bohr magneton,
⇀

Bz is the magnitude of the out-of-plane magnetic field vector,
and α is the Rashba SOC interaction constant. σx, σy, and σz
are the Pauli matrices and have their usual meanings. The
Peierls substitution is performed as described in [22] on a
discretized wavefunction via the transformation described as

ψ̃i, j = Exp

[
i
q

�

∫ xl , ym

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i, j (2)

where, in (2), we have used the discretized form of the
Schrodinger equation with i representing the x-coordinate
index, j representing the y-coordinate index, and the vector
potential integral with respect to ds being the path integral
between two points on the 2-D discretized space (xi, y j and
xl, ym). It is important to not confuse the number i with the
index i used in this article. The two are distinguished by the
fact that indexing i will only show as a subscript. Using this
transformed wavefunction, the general Hamiltonian for the
2DEG can be simplified to that shown in (3). Note that (2)
is the wavefunction of (3) and that the vector potential of (1)
has been made into a phase factor of the wavefunction (2).
This is analogous to what was done in [26]

H̃ = − �
2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
σ0 +V (x, y) σ0 + 1

2
gμB

⇀

Bzσz

+ iα

(
σy
∂

∂x
− σx

∂

∂y

)
. (3)

This Hamiltonian can now be used to operate on the trans-
formed wavefunction and is gauge invariant under gauge
transformation. However, it is important to note that the
transformed wavefunction now must be used in all subse-
quent calculations.

B. FINITE-DIFFERENCE FORM
Next, to make our resulting problems solvable via computa-
tional methods, the finite-difference form of (3) acting upon
the wavefunction (2) must be derived. For this derivation, we
will only consider the x-components since the y-components
follow the same pattern and can be derived separately using
the derivation described for the x-component. First, it should
be noted that we will be using the symmetric gauge vector
potential for the rest of this article as described by

A
(
xi, y j

) =
(

−1

2
y jBz,

1

2
xiBz

)
. (4)

To approximate the position derivatives in x and y, a com-
pact stencil will be used along with the central balanced
FDM. The derivation presented here closely follows that of
the article presented in [26]. Applying the FDM to the trans-
formed wavefunction, we first write out the effect of the FD
on (2), as shown in the following equation:

∂

∂x
Exp

[
i
q

�

∫ xl , ym

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i, j

= 1

2�x

(
Exp

[
i
q

�

∫ xi+1, y j

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i+1, j

−Exp

[
i
q

�

∫ xi−1, y j

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i−1, j

)
. (5)

For the x-derivative, the phase factor that the FD wave-
function picks up is nonzero when considering adjacent
wavefunction values. The path integral within the exponen-
tials is then approximated via trapezoidal integration with the
approximate form of the FD first derivative with respect to x
simplifying to that shown in the following equation:

∂

∂x
Exp

[
i
q

�

∫ xl , ym

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i, j

∼= 1

2�x

(
Exp

[
− i

2�
q�xy jBz

]
ψ̂i+1, j

− Exp

[
i

2�
q�xy jBz

]
ψ̂i−1, j

)
. (6)

In (6), it has been assumed that the 2DEG wavefunction
has been evenly discretized over the simulation space and
that the magnitude of the difference between points (xi, y j )
and (xi±1, y j ) is equal to�x. Furthermore, the path integral is
only in the x-direction and, therefore, only the x-component
of the vector potential needs to be considered. The same
method may be used to determine the approximate second
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derivative of the transformed wavefunction with respect to x,
as shown in the following equation:

∂2

∂x2
Exp

[
i
q

�

∫ xl , ym

xi, y j

A
(
xi, y j

)
ds

]
ψ̂i, j

∼= 1

�2
x

(
Exp

[
− i

2�
q�xy jBz

]
ψ̂i+1, j − 2ψ̂i, j

+Exp

[
i

2�
q�xy jBz

]
ψ̂i−1, j

)
. (7)

The phase factor of the portion of the wave-
function at the center of the stencil (ψ̂i, j) evaluates
to 1 as the path integral value is zero. Using this
method, it is possible to calculate the approximate
form of the first and second derivatives in x and y
for the transformed 2-D wavefunction. For convenience, the
approximate FD forms of the first and second derivatives
with respect to y are given in (8) and (9), respectively

∂

∂y
Exp

[
i
q

�

∫ xl , ym

xi, y j

A
(
xi, y j

)
ds

]
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]
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)
(8)
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q

�
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)
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]
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(
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[
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q�yxiBz

]
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[
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]
ψ̂i, j−1

)
. (9)

Now that the FD form of the x and y derivatives acting on
the transformed wavefunction is known, the FD form of the
2DEG Hamiltonian (3) can be determined as follows:

H̃

(
Exp

[
i
q
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(
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)
ds

]
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)
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q�xy jBz

]
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(
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[
− i
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))
(10)

Equation (10) is what will be used in the rest of this article
for determining the values to be used in the subsequent FD
matrix. However, it is not immediately clear how (10), which
is a 2×2 matrix FD equation, can be solved, which is the next
issue we address in our derivation.

C. EXTENDING THE FDM
When the FDM is used to solve the Schrödinger equation,
it is usually assumed that the Hamiltonian is either 2-D or
3-D and only considers the effective mass and confinement
potential [22]. This is commonly referred to as the effective
mass approximation and it generally works well for low-
energy electrons near the bottom of the conduction band. Fur-
thermore, this approximation is commonly used in modeling
nanostructures [27], [28]. Effects, such as SOC, are usually
not considered because there is not an obvious way for these
effects to be incorporated into a 2-D or 3-D Hamiltonian.
However, in [29], it was proposed that the effects of SOC
could be included in a FDHamiltonian by extending the basis
of the system into additional degrees of freedom. This can
be understood as an extension of the natural ordering that
is used when defining the matrix eigenvalue problem to be
numerically solved in the traditional FD schemes [30]. In
the traditional FD schemes used for numerically solving the
Schrödinger equation, the effect of extra spatial dimensions
is taken care of by unfolding the 2-D array of points, over
which the Schrödinger equation is sampled, into a 1-D vector.
The usual method is to take the first row of the simulation
space, which may be N units in length, and use them as the
first N elements of the eigenvector. The next row is then used
to set the next N elements of the eigenvector and so on [30].
Therefore, for an evenly spaced 2-D grid over which the
Schrodinger equation is sampled at N2 points, the eigenvec-
tor will be of length N2 and the finite-difference matrix will
be of size N2 × N2. To include the Zeeman and SOC effects,
we take these position basis vectors and use them as the
basis for the 2 × 2 Hamiltonian. This is formally described
as follows:

H̃ψ̃i, j =
[
H̃11 H̃12

H̃21 H̃22

]
ψ̃i, j (11)

where the different components of the 2×2 Hamiltonian are
given by (10). The spin vectors associated with (11) are
2 × 1. The finite-difference form of the different components
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of the 2 ×2 Hamiltonian is listed in (12)–(15)

H̃11ψ̃i, j = − �
2

2m

(
1

�2
x
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Exp

[
− i
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q�xy jBz

]
ψ̂i+1, j − 2ψ̂i, j
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i
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q�xy jBz

]
ψ̂i−1, j

)

+ 1

�2
y

(
Exp

[
i
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]
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+Exp

[
− i

2�
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]
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))

+V (x, y) ψ̂i, j + 1

2
gμB

⇀

Bzψ̂i, j (12)

H̃12ψ̃i, j = − iα

(
i

2�x

(
Exp

[
− i

2�
q�xy jBz

]
ψ̂i+1, j

−Exp

[
i
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q�xy jBz

]
ψ̂i−1, j

)

+ 1

2�y

(
Exp

[
i
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]
ψ̂i, j+1

−Exp

[
− i

2�
q�yxiBz

]
ψ̂i, j−1

))
(13)

H̃21ψ̃i, j = iα

(
i

2�x

(
Exp

[
− i

2�
q�xy jBz

]
ψ̂i+1, j

−Exp

[
i
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q�xy jBz
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ψ̂i−1, j

)

− 1

2�y

(
Exp

[
i
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−Exp

[
− i
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]
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H̃22ψ̃i, j = − �
2

2m

(
1

�2
x

(
Exp

[
− i

2�
q�xy jBz

]
ψ̂i+1, j

−2ψ̂i, j + Exp

[
i

2�
q�xy jBz

]
ψ̂i−1, j

)

+ 1

�2
y

(
Exp

[
i

2�
q�yxiBz

]
ψ̂i, j+1 − 2ψ̂i, j

+Exp

[
− i

2�
q�yxiBz

]
ψ̂i, j−1

))

+V (x, y) ψ̂i, j − 1

2
gμB

⇀

Bzψ̂i, j. (15)

Looking at the 2×2 Hamiltonian in this way, it is apparent
that the Hamiltonian is Hermitian, as expected. This is also
where our derivation deviates from that of the standard FDM
when applied to a quantum system [30]. In this case, the
spin-up and spin-down portions of the system are treated as
an additional basis within the FDM. It is important to note
that when unfolding the resulting eigenvector of our system,
every point on the sampled grid has two values. One of the

values is that of the Schrödinger equation for the spin-up
state, while the other value is that of the spin-down state.
The off-diagonal elements, which model SOC interactions,
are naturally incorporated into the eigenstates of the final
system.
Assuming that (11) is uniformly discretized over the 2-D

region, the final finite-difference matrix will have a dimen-
sion of 2N2 × 2N2, where N refers to the number of sam-
pled points along the x and y axes. It should also be noted
that, in all our subsequent calculations, the wavefunction
is assumed to go to zero at the boundary of the simula-
tion space. Furthermore, the method described here may
be extended to more complex effective Hamiltonians, such
as the 4 × 4 effective Hamiltonian, used to describe the
low-energy electronic structure of transition metal dichalco-
genides (TMDCs) [19], [20] and BLG [31]. The one major
disadvantage of this method is that it can be memory in-
tensive and, therefore, may require a large amount of high-
speed RAM to accurately determine the eigenstates of the
resulting finite-difference matrix. However, due to the rel-
atively cheap price of large amounts of high-speed mem-
ory, this would seem to be an acceptable tradeoff in ex-
change for the methods’ generality. Therefore, although our
implementation of the FDM is less resource efficient than
the other methods of eigenvalue/eigenstate calculation, it
is more general and scalable and, therefore, may be more
easily applied to a larger number of quantum systems of
interest.
In this article, the FD matrix described by (11) is written

as a sparse matrix with the values of �x and �y being de-
termined by the number of sampling points in the x and y
directions. The number of sampling points is referred to asNx
and Ny, respectively, and determines the sampling resolution
of the confining potentialV (x, y). As the sampling resolution
increases, the resulting eigenvalues and eigenstates of the
FD matrix converge toward the true eigenvalue/eigenstate
solutions. The FD matrix is solved via an eigensolver. In our
case, we have used the ARPACK sparse Hermitian matrix
solver [32], as implemented in SciPy [33].

III. VALIDATION
To validate the accuracy of our derived FD scheme, we start
with a parabolic potential with Rashba SOC. The Hamilto-
nian of an electron in a 2-D parabolic potential with Rashba
SOC and an external out-of-plane magnetic field is described
as follows:

Ĥ = 1

2m

[
−i�∇ + q

⇀

A (x, y)

]2
σ0 + 1

2
mω2

0

(
x2 + y2

)
σ0

+ 1

2
gμB

⇀

Bzσz + iα

(
σy
∂

∂x
− σx

∂

∂y

)
(16)

where the terms in (16) have the same meaning as those
in (1), with the only additional term being ω0 that repre-
sents the angular frequency of the parabolic potential. In our
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FIGURE 1. First three energy levels (E1, E2, and E3) of a parabolic
potential with SOC as determined by second-order perturbation theory
versus applied external magnetic field, as well as the FDM result for the
same system with N = 51. The results are visually very close, although
the FDM seems to underestimate the energy.

calculations, we use an effective mass of 0.014me [34] and
a g-factor of −40 [35]. We also choose to use a very low
Rashba SOC value of 5 meV · nm. This small Rashba SOC
value is chosen to improve the accuracy of the second-order
perturbation theory energy levels from the article preseted
in [36], which we use to check the accuracy of our FDM.
The parabolic confinement potential is set to �ω0 = 7.5 meV
and the simulation domain is 200 nm × 200 nm, with the
boundary condition being that the wavefunction is equal to
zero at the edges of the simulation domain.
By plotting the first three eigenvalues calculated by our

proposed FDM with Nx, Ny = 51, alongside the second-
order perturbation theory solutions, it seems visually that
the FDM is quite accurate. This result is shown in Fig. 1
and shows visually that the results are quite close even for
a relatively low-resolution calculation.
However, to show convergence toward the correct eigen-

values, we compute the first three eigenvalues of our FD

matrix, with the applied external magnetic field (
⇀

Bz) ranging
from 0.033̄ to 2 T and then calculate the absolute percent
error relative to the second-order perturbation theory solu-
tions. The zero magnetic field case was avoided because the
implemented FDM returns three solutions when there are
only two physically present. This is due to the dimension
of the FDM Hamiltonian that we have implemented, which
assumes that the spin splitting is always present. We perform
this calculation for Nx, Ny = 51, 101, 201 and plot the total
absolute percent error of the three lowest energy levels of the
system, as shown in Fig. 2.

From Fig. 2, we observe that our proposed FDMconverges
with the second-order perturbation theory solution with in-
creasing N. This is exactly the result that we would expect
from a valid discretization of the Hamiltonian. We may also
note that the error increases with increasing external mag-
netic field. However, as the numerical resolution of the FDM

FIGURE 2. This plot shows the total absolute percent error versus the
applied external magnetic field. The error is calculated by taking the
difference between the FDM eigenvalue and the second-order
perturbation theory energy level and then dividing by the perturbation
theory value. This is done for the three lowest energy levels of the
parabolic potential with SOC and the results are summed together and
multiplied by 100. The three different lines represent the error
associated with the FDM calculation for different numerical resolutions.
In this case, Nx, Ny = 51, 101, and 201 were used.

is increased, the error associated the increasing magnetic
field also decreases. Overall, this would seem to indicate that
our proposed FDM is convergent.
The intended application of our proposed method is mod-

eling realistic quantum systems in which qubits reside.
Therefore, we aimed to find the eigenstates of a realistic QD
potential [37]. The potential in which the electron resides was
calculated numerically using the Poisson solver described in
[38] and [39]. The model uses the proposed gate geometry in
[37] when calculating the potential. The calculated confine-
ment potential is shown in Fig. 3.
Since there are no analytical solutions to the asymmetric

potential, as presented in Fig. 3, we instead compared our
results to those of a quasi-TB model, which was a varia-
tion on the TB model implemented in [40] and [41], but
for a rectangular 2-D lattice with single hopping parameter.
Hence, we will refer to this implementation as quasi-TB. In
our simulation, we chose an effective mass (m∗) 0.067me, g-
factor of 0.44, and Rashba SOC (αR) of 8 meV · nm [42]. For
this calculation, Nx, Ny = 101 for both the quasi-TB method
as well as our implemented FDM. The first ten eigenvalues
of the potential were calculated with both methods. These
results are plotted in Fig. 4. The percent error between the
quasi-TB method and the implemented FDM for the first
eigenvalue is shown in Fig. 5.

From these calculations, it is seen that our version of the
FDM agrees well with the results calculated by the quasi-TB
method that serves as a reference method. In Fig. 4, it is
quite clear that, for low external magnetic fields (< 2 T), our
implemented FDM and the quasi-TB are in good agreement.
However, as the applied external magnetic field increases in
strength, the solutions begin to diverge. The error of the FDM
versus the quasi-TB method, as shown in Fig. 5, would seem
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FIGURE 3. Confinement potential for the electron is given as a heatmap.
In this case, the asymmetric shape of the potential is due to the
interaction of the electrostatic gates used to define the quantum dot.

FIGURE 4. Calculated eigenvalues for the potential given in Fig. 1 using
both the FDM and the quasi-TB. The red points represent the values
obtained by the FDM, while the blue dots are those of the quasi-TB
method.

to imply that the FDM implemented in our calculations is
possibly one order lower in accuracy when compared with
the quasi-TB method. This could mean that the quasi-TB
method approaches the true eigenvalues faster than our FDM.
It should be noted that the main advantage of our proposed
FDM is its simplicity and ease of implementation. Further-
more, the previous parabolic results demonstrate that our
implemented FDM is convergent. However, our implemen-
tation of the FDM could be improved by using a higher
order approximation for the derivatives and the path integrals
in the derivation, as described in Section II. Other sources
of relative error between the two methods could be due to

FIGURE 5. This plot shows the error versus the applied external
magnetic field in the FDM for a calculation in which 1012 points were
sampled in the 2-D potential, as presented in Fig. 1. In this plot, the error
in the FDM is calculated using the quasi-TB method as the reference.
This is done by taking the absolute difference in the ground state energy
between the two methods and dividing by the ground state energy of the
quasi-TB result. Multiplying this result by 100 gives the relative percent
error.

differences in the numerical implementation of the vector
potential among other factors. In this case, the quasi-TB uses
the Landau gauge, while the implemented FDM uses the
symmetric gauge.

IV. CONCLUSION
From these results, it is evident that our gauge-invariant FDM
with Rashba SOC accurately determines the eigenstates of
quantum systems, which experience both out-of-plane mag-
netic fields as well as Rashba SOC. Also, the way in which
we extended the FDM to include Rashba SOC effects means
that the method could be extended to apply to the 4×4 effec-
tive Hamiltonians used to describe the low-energy electronic
structure of TMDCs and BLG. Furthermore, the successful
inclusion of Rasha SOC implies that Dresselhaus effects
could also be included with only minor modifications of the
equations presented in this article. In general, the method
described within this article can be applied to any effective
Hamiltonian with an arbitrary number of internal degrees
of freedom so long as consistent ordering is preserved. Our
method is, therefore, highly general and can be applied to any
quantum system if it can be modeled by a suitable effective
Hamiltonian. Future work will focus on including the effects,
such as interactions with external electric fields as well as
time dependence.
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