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ABSTRACT Toeplitz matrix reconstruction algorithms (TMRAs) are one of the central subroutines in
array processing for wireless communication applications. The classical TMRAs have shown excellent
accuracy in the spectral estimation for both uncorrelated and coherence sources in the recent era. However,
TMRAs incorporate the classical eigenvalue decomposition technique for estimating the eigenvalues of the
Toeplitz-structured covariance matrices that demand very high computational complexity for large arrays.
We demonstrate a low-complexity quantum simulation framework exploiting the structured Hamiltonian
of Toeplitz and circulant variants. In this framework, we consider two approaches for the estimation of
the eigenvalue spectrum of a given Toeplitz-structured matrix: first, an analytical framework with Jordan
form-based sparse-decomposition of a dense-Toeplitz matrix, and second, an approximation method for
the conversion of a Toeplitz matrix into a circulant matrix embedding quantum subroutines. We have also
compared the efficacy of the proposed algorithms with standard Hamiltonian simulation and quantum phase
estimation techniques for different quantum time resolutions and gate complexities. We show quantum
gate-complexity analysis for our proposed algorithms. Considering the large dimensions of the Toeplitz
matrix, we have employed random matrix theory in deriving the error bounds for the estimated eigenvalues.
The numerical results are obtained partly in a classical computer and in an IBM quantum simulator.

INDEX TERMS Quantum algorithms, quantum communication, quantum signal processing, quantum sim-
ulation, structured Hamiltonian, Toeplitz and circulant systems.

NOMENCLATURE
|ψ〉 ∈ Cn×1 Quantum state vector in column form.
C,Cn,Cm×n Set of complex scalar, vector, and matrices.
R,Rn,Rm×n Set of real scalar, vector, and matrices.
‖x‖, ‖A‖ 2-norm of vector x and matrix A,

respectively.
|A| Determinant of matrix A.
Diag(x) Diagonal matrix with the vector x in

diagonal.
Pr(x) Probability of an event x.
dim(A) Dimension of the matrix A.
x, x,X Scalar, vector, and matrix quantity.
A†, a† (Complex conjugate) transpose of the (com-

plex) matrix A, and (complex) vector a
respectively.

Z Set of integers.
E[x] Expectation of a random variable x.
Var(x) Variance of a random variable x.
[N] Set of numbers starting 0, 1, 2, . . . ,N − 1.
σ⊗N N-times tensor product of the operator σ.

I. INTRODUCTION
Toeplitz matrices are ubiquitous in signal processing
and communication systems. Structured matrices such as
Toeplitz and circulant are used in several applications like
the direction-of-arrival (DoA) estimation [1], low-rank ma-
trix recovery [2], quadratic optimization [3], image recon-
struction [4], and compressive sensing [5] for its complex-
ity advantage over standard systems. Further, the covariance
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matrix obtained from the sample of a wide sense stationary-
random process holds the Toeplitz structure, which gives
practical advantages for performing certain signal process-
ing tasks [6]. They include covariance matrix estimation for
sparse array [7], and compressive covariance sampling for
spectrum estimation [8]. Several properties and asymptotic
behavior of Toeplitz matrices are described by Szego’s the-
orem [9]. General practice is to transform the Toeplitz ma-
trix TN ∈ CN×N into a circulant matrix CN ∈ CN×N using
suitable procedures to get O(N log N) time-complexity for
the computation of eigenvalues. The asymptotic equivalence
and convergence of the circulant matrix conversion process
are shown in [10] and [11].

A. TOEPLITZ MATRIX RECONSTRUCTION APPROACHES IN
RECENT WIRELESS COMMUNICATION APPLICATIONS
The Toeplitz matrix reconstruction algorithm (TMRA) is
widely used in the recent era for many wireless communi-
cation systems. For wireless channel estimation in a multitap
intersymbol-interference scenario, the wireless channel is of-
ten modeled as a banded Toeplitz-matrix [12], [13], [14]. In
recent times, for super-resolution DoA estimation problems
in array processing, Toeplitz matrix-based low-complexity
TMRA is proposed [1], [15], [16], [17], [18], [19]. We are
interested in finding the spectrum of a Toeplitz-structured
system using the quantum Hamiltonian simulation technique
to augment quantum advantage for certain applications. Es-
timating the spectrum through the quantum phase estimation
(QPE) procedure requires that the Hamiltonian system needs
to be a square and a Hermitian system. We explore a Toeplitz
system that arises in the DoA estimation in array processing.

B. ADVANCES IN QUANTUM SIMULATION-BASED
SPECTRUM ESTIMATION
Quantum simulation of physical systems in form of operators
and observables has become one of the most promising ar-
eas in quantum computation and quantum signal processing.
Specifically, the quantum eigenvalue estimation (QEE) prob-
lem stands as one of the central building blocks in quantum
literature [20], [21], [22], [23]. Quantum simulation-based
subroutines such as Hamiltonian simulation, QPE, and in-
verse quantum Fourier transform (IQFT) have been used
as building blocks for designing quantum circuits and sys-
tems [24], [25], [26]. Embedding quantum simulation with a
QPE technique, one can solve a large-scale linear system of
equations as proposed in [27] for Hermitian and sparse ma-
trices with exponential speed-up as compared to the classical
algorithm.
In the recent era, solving certain linear systems in a

quantum framework possess quantum complexity advan-
tages [27]. While solving the linear systems on a quantum
computer, we need to perform a Hamiltonian simulation that
takes the system (satisfying Hermitian property) as input and
prepares a unitary operator [28], [29]. Often, the computa-
tional complexity advantage considers that the Hamiltonian
system is sparse in nature. For a dense matrix with embedded

matrix structures such as Toeplitz, Hankel, and circulant, the
Hamiltonian simulation is not addressed well.
Our objective is to simulate a Toeplitz system TN through

quantum simulation efficiently. First, we take a general dense
Toeplitz matrix TN for finding its spectrum λ(TN ) via an
approximate linear sum of Jordan forms represented with
similar Hermitian sparse matrices. The sparsity augmented
through the linear approximation is expected to provide a
quantum complexity advantage in the quantum simulation.
The Hamiltonian simulation process helps to prepare the
unitary operator e−iTNτ , for the given Hamiltonian TN , and
time τ . The simulation is practically performedwith different
methods such as product formulas [30], truncated Taylor se-
ries [31], qubitization [29], and quantumwalk [28]. Here, our
objective is to design a quantum algorithm to approximate
a unitary operator U ≈ e−iTNτ of the Toeplitz-structured
Hamiltonian for efficient eigenvalue spectrum estimation of
the Toeplitz matrix TN .
Second, we show another approximation method, which

is the conversion of a Toeplitz matrix to a circulant ma-
trix CN for the estimation of spectrum λ(CN ). Integrating
Szego’s theorem [9] followed by IQFT, we have proposed
a quantum-assisted method for spectrum estimation of the
circulant system CN . We expect that the structured Hamilto-
nian simulation will have many practical applications due to
its complexity advantages.
For a dense and non-Hermitian Toeplitz matrix, we show

two methods: first, a Jordan decomposition-based sparse-
Hamiltonian simulation framework for efficient quantum
gate implementation of the structured matrix, and second, an
approximation method for finding the spectrum of a circulant
systemwith quantum subroutines.We show that the Toeplitz-
structured systems provide a low-complexity implementa-
tion for the Hamiltonian simulation via sparse-Jordan de-
composition of the underlying Toeplitz system while prepar-
ing the unitary operator for the phase estimation. Further, we
have proposed a quantum spectrum estimation algorithm for
circulant systems using quantum Fourier transform (QFT),
which surpasses the requirement of a standard Hamiltonian
simulation.

C. MOTIVATION OF THE PROPOSED WORK
From the literature, we have seen that the quantum Hamilto-
nian simulation is one of the central subroutines for many
quantum algorithms including the quantum linear system
solver [27]. However, the quantum speed-up is mostly shown
for the sparse and Hermitian matrices. In engineering ap-
plications, such as signal processing and communications,
the system matrices are often structured, dense, and some-
times non-Hermitian. In this work, we have considered a
dense Toeplitz matrix as a Hamiltonian and look into its
sparse decomposition via a proposed quantum framework.
We seek to get a quantum gate-complexity advantage for
the Hamiltonian simulation and the spectrum estimation of
a Toeplitz-structured matrix.
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We have considered the Hamiltonian simulation of a
Toeplitz-structured matrix for a low-complex quantum simu-
lation. It can be both Hermitian and non-Hermitian. The non-
Hermitian Toeplitz matrix has extensive usage in literature,
such as the study of non-Hermitian Hamiltonian system [32],
the generalized minimal residual method for numerical anal-
ysis of linear systems [33], and eigenvector localization [34].
Recently, the non-Hermitian doubly Toeplitzmatrix structure
has been studied in a convolution neural network to improve
its performance [35]. Here, we consider a problem, namely
TMRA from a signal processing and communication appli-
cation point of view. It is often seen that the Toeplitz matrix
is Hermitian for the TMRA problem such as the DoA esti-
mation [36]. We hope, our work on the quantum simulation
of the Toeplitz matrix will have applications for both Her-
mitian and non-Hermitian systems in near future to provide
quantum complexity advantages.

D. CONTRIBUTIONS
With the above background, our contributions to this work
are summarized as follows.

1) We have proposed a quantum framework for effi-
cient Hamiltonian simulation considering a dense,
Hermitian/non-Hermitian and structured Hamiltonian,
which has several technical novelties in its fold. The
proposed algorithm augments computational advan-
tage through a Jordan-decomposition-based sparse
representation and a modified Hamiltonian simulation.
It further opens an area to simulate dense and struc-
tured matrices in the quantum framework.

2) We have proposed an algorithm for the spectrum esti-
mation of a Toeplitz-structured Hamiltonian, via cir-
culant approximation. The algorithm shows an im-
proved complexity advantage as compared to the stan-
dard Hamiltonian simulation. The proposed one does
not require the QPE method and directly computes
the spectrum with the QFT circuit and measurement
operation, thereby reducing the complexity.

3) We have analyzed the bound in error for the spec-
trum estimation via circulant approximation of a large
Random matrix. In this context, we have developed
several propositions and lemmas in the error bound
and complexity computation, which would help in the
application of our proposed framework in quantum al-
gorithms design where the spectrum of eigenvalues is
required.

E. MATHEMATICAL NOTATIONS
Somemathematical notations and symbols used in this article
are described in the nomenclature.

F. ORGANIZATION OF THE ARTICLE
The rest of this article is organized as follows. Section II
provides the description of Toeplitz-matrices and their rep-
resentation using quantum gates. In Section III, proposed

algorithms for quantum Hamiltonian simulation of Toeplitz-
structured matrices are shown. The errors in the spectrum
estimation for Toeplitz and circulant systems are addressed in
Section IV. The computational complexity for the proposed
algorithms is discussed in Section V. We discuss the appli-
cation of the proposed quantum framework for array signal
processing in Section VI. The numerical results for the pro-
posed framework and application are shown in Section VII
Data availability for the implementation of the algorithm on
IBM quantum qiskit is discussed in Section VIII. Finally,
Section IX concludes this article.

II. STRUCTURED HAMILTONIAN FRAMEWORK
A. QUANTUM FORMALISM AND STANDARD
HAMILTONIAN SIMULATIONS
A brief introduction to quantum states and operators in quan-
tum computing theory is given here, considering the Dirac
notations for the state vectors.

1) QUANTUM STATE VECTOR
Quantum states are complex vectors |ψ〉 ∈ CN×1 defined
on the Hilbert space Hψ ∈ CN×N . The quantum state is a
superposition of the basis states written as

|ψ〉 =
N∑
i=1

βi |i− 1〉 (1)

where the coefficients βi ∈ C for i ∈ [N], and the probabil-
ity amplitudes |βi|2 follows that

∑N
i=1 |βi|2 = 〈ψ,ψ〉 = 1. A

qubit is a complex vector in C2, given by

|ψ〉 = β1 |0〉 + β2 |1〉 (2)

where the computational basis vectors (also called standard
basis, or z basis) are denoted by |0〉 = [1 0]†, and |1〉 =
[0 1]†, and |β1|2 + |β2|2 = 1.

2) QUANTUM OPERATOR AND OBSERVABLE
The quantum operators are related to the evolution of quan-
tum state vectors in the Hilbert space. The physical ob-
servables are Hermitian matrices whose eigenvalues are real
and nonnegative. The time-varying dynamics of the quan-
tum state vectors in relation to the observables is described
by Schrodinger’s equation [37]. A Hamiltonian H is a sys-
tem matrix (often a Hermitian operator in physical systems)
whose time evolution for time τ is given by a unitary operator
as

U = e−iHτ (3)

that satisfies U†U = UU† = I. However, a quantum mea-
surement operator projects a quantum state to measurement
basis vectors to find the probability of the state to a particular
basis, which is often a nonunitary operator.
Quantum Hamiltonian Simulation: A physical operator

(or an observable) is not always present in a unitary form
that can describe the quantum evolution of a state. Quantum
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Hamiltonian simulation is the algorithm to prepare an ap-
proximate unitary operator Ũ from a given physical operator
(or observable)H for the evolution time τ and precision ε as

‖Ũ− e−iHτ‖2 ≤ ε. (4)

In recent literature, there are some standard Hamiltonian
simulation algorithms such as Trotter–Suzuki approxima-
tion [38], [39], quantum signal processing [40], quantum
walk [41], and Taylor series approximation [31].

3) COMPLETENESS RELATION
Among various possible basis vectors, the orthonormal bases
are important for a quantum state to be in superposition given
by

|ψ〉 =
∑
i

ψi |ei〉 (5)

as 〈ei, e j〉 = δi j (satisfying the orthogonality relation).
(6)

The completeness relation for a set of basis vectors {|i〉} for
i ∈ [N], which can represent a quantum state as shown in (5)
must satisfy the following:∑

i

|i〉 〈i| = I. (7)

The eigenvectors of a physical operator (or an observable)
provide orthonormal basis states that are complete [42, Ch.
5.3].
A Note on Complexity of the Classical Algorithms for

Toeplitz-Based Eigenvalue Spectrum Estimation: The classi-
cal eigenvalue spectrum estimation method for the Toeplitz
matrix has a complexity of approximately Õ(N3) for a full-
rank matrix [43], Õ(NP2) and Õ(P3) for rank-deficient
Toeplitz matrices (with rank P < N) [44]. In our case,
we have considered the eigenvalue estimation of a large-
dimensional Toeplitz matrix for which the classical algo-
rithms incur significantly very large computational complex-
ity.
Here, we have considered a Toeplitz matrix TN ∈ CN×N

as a Hamiltonian operator for estimation of its eigenvalues-
spectrum λ(TN ) using a quantum formalism with low-
computational gate-complexity. Two different approaches
for estimating λ(TN ) using the quantum framework are
demonstrated. The first one is an analytical framework
for a generalized Toeplitz system with a proposed Jor-
dan form-based sparse-Hamiltonian simulation, and the sec-
ond one is an approximation method for Toeplitz to cir-
culant matrix conversion with a proposed circulant-QFT
framework.

B. TOEPLITZ-STRUCTURED HAMILTONIAN SIMULATION
We take a Toeplitz matrix TN with entries denoted
by t[h, k] = t[h− k] for h, k ∈ {0, 1, . . . ,N − 1} given as

follows:

TN =

⎡
⎢⎢⎢⎢⎢⎣

t[0] t[−1] . . . t[−(N − 1)]

t[1] t[0]
. . .

...

...
. . .

. . . t[−1]
t[N − 1] . . . t[1] t[0]

⎤
⎥⎥⎥⎥⎥⎦ . (8)

The Hamiltonian simulation of matrix TN needs to be per-
formed to prepare a unitary operator for further process-
ing in the QPE technique to find the spectrum. However,
the direct implementation of matrix TN requires it to be in
symmetric or Hermitian form, i.e., T†

N = TN . In this work,
we consider the quantum architecture design for both Her-
mitian and non-Hermitian matrices. However, for the large-
dimensional-matrix simulation, we consider the Hermitian
case to analyze the error. We show that the Hamiltonian
matrix TN will possess an efficient low-complex quantum
simulation while it is expressed with a sparse decomposition
technique.
Note on Non-Hermitian Toeplitz Matrix for Preparing the

Hamiltonian: For the non-Hermitian Toeplitz matrix, there
is the classical procedure to prepare a unitary similar to a
Hermitian matrix (as discussed in [45]). The TN can be uni-
tarily similar to a Hermitian matrix SN with entries s[h, k] for
h, k ∈ [N] via the unitary matrix U = 1√

2
(IN + iJN ), where

JN is the N × N backward identity operator (see [45 Th.
3.3]). The elements of the Hermitian matrix SN is given as

s[h, k] = 1

2
(th−k + tk−h)+ i

2
(th+k−N−1 − tN+1−h−k ) (9)

where th−k := t[h− k], and i =
√−1 is the complex imagi-

nary number. It can be further noted that TN can be viewed
as a linear combination of the N × N Jordan form JN (0), the
transpose of JN (0), and its power. The Jordan form JN (0) can
be written as

JN (0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0
. . . 1

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

For the quantum simulation, we may require a possible Her-
mitian Hamiltonian representation for every Jordan form
JN (0). The Jordan form JN (0) is unitarily similar to the Her-
mitian matrix SN (0) via the operation of UN = 1/

√
2(IN +
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iJN ) given by

SN (0) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ i

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 −1 0
... . .

.
. .
.
. .
.
1

0 . .
.
. .
.
. .
.
0

−1 . . . . . . . . . ...
0 1 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(11)

Hence, we may express that a Toeplitz matrix is unitarily
similar to aHermitianmatrix (see [46, Th. 4]), with a possible
Jordan form representation.
A Note on Sparse-Decomposition of the Toeplitz Matrix:

Based on the literature [45], [46], it is evident that a Her-
mitian Toeplitz matrix can be expressed in a Jordan normal
form, which is a sparse decomposition of the Toeplitz ma-
trix. Further, we see that a non-Hermitian Toeplitz matrix
possesses a similar decomposition with a Jordan form and
its Hermitian form, which we discuss next.

1) SPARSE AND JORDAN-CANONICAL REPRESENTATION
FOR THE HAMILTONIAN TN

For thematrixTN , wemay augment the sparse representation
of the Jordan form for the efficient Hamiltonian simulation.
Matrix TN ∈ CN×N can be represented in terms of linear
combinations of sparse matrices (Jordan forms, and identity
matrices) and their powers as follows:

TN = t[0]IN +
N∑
n=1

(
t[−n]JnN + t[n]J†nN

)
(12)

where JN = JN (0) ∈ CN×N is the Jordan operator corre-
sponding to a zero-eigenvalue of some matrix [45]. We will
exploit this representation under the quantum framework for
an efficient quantum circuit realization for the Toeplitz ma-
trix TN .

2) PROPOSED QUANTUM REALIZATION CIRCUIT FOR A
TOEPLITZ HAMILTONIAN OPERATOR
We show the circuit realization of a Toeplitz operator of
dimension 4× 4 using a proposed composite quantum Jor-
dan gate, and the extension to the generalized case. For a
4× 4, we propose a quantum Jordan operator as given by
the following lemma.
Lemma 1: A composite quantum gate can be realized for

the Jordan operator JN for N = 4 using the elementary quan-
tum gates as

J4 = (σ0 ⊗ lL)+ (lL ⊗ σx)− (lL ⊗ lL) , and (13)

J†4 = (σ0 ⊗ lu)+ (lu ⊗ σx)− (lu ⊗ lu) (14)

where σ0, σx, lu, and lL denote identity, Pauli-X , raising
ladder, and lower ladder gates, respectively. Here, the ele-
mentary quantum gates (2× 2 operators) are discussed as

follows:

Identity gate: σ0 :=
[
1 0
0 1

]

Pauli-X gate: σx :=
[
0 1
1 0

]

Pauli-Y gate: σy :=
[
0 −i
i 0

]

Raising ladder operator: lu := 1

2

(
σx − iσy

) = [0 0
1 0

]

Lower ladder operator: lL := 1

2

(
σx + iσy

) = [0 1
0 0

]
.

Proof: The expression in the right-hand side of (13) can
be realized as follows:

(σ0 ⊗ lL)+ (lL ⊗ σx)− (lL ⊗ lL)

=

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

= J4. (15)

Similarly, it holds true for J†4 using gates lu, σ0, and σx. In
Fig. 1(a), we show a proposed architecture of Jordan gate J4
and its transpose-operator J†4. �

a) 4× 4 Toeplitz matrix implementation using J4 and J†4
A Toeplitz matrix can be obtained using the proposed Jordan
operators as

T4 = (t[0]× I4)+ (t[−1]× J4)+ (t[−2]× J24)

+ (t[−3]× J34)+ (t[1]× J†4)

+ (t[2]× J†24 )+ (t[3]× J†34 )

=

⎡
⎢⎢⎣
t[0] t[−1] t[−2] t[−3]
t[1] t[0] t[−1] t[−2]
t[2] t[1] t[0] t[−1]
t[3] t[2] t[1] t[0]

⎤
⎥⎥⎦ . (16)

The first term t[0]× I4 generates the diagonal terms of the
Toeplitz matrix. Matrix J4 and its different powers are given
as follows:

J4 =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

J24 =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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FIGURE 1. Proposed quantum architecture for a Toeplitz Hamiltonian of size 4 × 4 using elementary quantum gates: Here, dark dots represent
connections, the circle ⊗ with notation “T ” denotes tensor operation, circle ⊕ denotes adder circuit (addition or subtraction depends on the sign of the
inputs), σ0, σx, lu, and lL are identity gate, Pauli-X gate, upper-ladder operator, and lower ladder operator, respectively. (a) Proposed 4 × 4 Jordan gate J4

and its transpose operator J†4. (b) Proposed 4 × 4 Toeplitz matrix T4 realization using Jordan gates.

J34 =

⎡
⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (17)

Similarly, we can get the different powers of matrix J†4 which
will give us realization for the off-diagonals below the main
diagonal of T4.
Following (12) for N = 4, we show a proposed quantum

architecture for the representation of Toeplitz operator T4
in Fig. 1. In our circuit representation, the dark dots rep-
resent connections, the circle ⊗ with notation “T” denotes
tensor operation, and circle ⊕ denotes adder circuit (addi-
tion or subtraction operation are denoted by the sign of the
inputs). For the composite J4 gate, we need two lower ladder
operators, and one Pauli-X and one Pauli-Y gate, respec-
tively. For the implementation of J†4, we need additionally
two raising ladder gates. For a 4× 4 Toeplitz matrix with
symbols, [t3, . . . , t0, . . . , t3] can be implemented using the
proposed Jordan gates, as shown in Fig. 1(b). Here, I4 is
prepared first using the tensor product of two 2× 2 identity
gates.
Note:One can prepare both Hermitian and Non-Hermitian

Toeplitz matrices using the same circuit as shown in
Fig. 1(b), by changing the input symbols only (for Hermitian
case, t[−i] = t[i]†).

b) Realization of a Toeplitz matrix of dimension N× N with
the proposed quantum Jordan gates
We can extend the circuit realization for the generalized case
with dimension N × N.
Lemma 2: For a Hermitian Toeplitz matrix TN = T†

N ∈
CN×N for N > 4 and N = 2nq with input qubit size of nq,

there exists a recursive representation for the Hermitian
Toeplitz operator using quantum-Jordan gates given by

TN := t[0]σ⊗N0 +
N−1∑
j=1

t[− j]J jN + t[ j]J† jN (18)

where σ⊗N0 is the identity operator of dimension N × N, and
the Jordan operators JN and J†N are the matrices of the form

JN =
[
JN

2
lu N

2

0N
2
JN

2

]
(19)

J†N =
⎡
⎣ J†N

2
0N

2

lL N
2
J†N

2

⎤
⎦ . (20)

Proof: A Toeplitz matrix can be represented with Jordan
operators as shown in (12). For the first diagonal, we can
prepare an identity operator of size N × N, where N = 2nq

for input qubits nq. We will show the recursive relation for
the Jordan operators using the principle of mathematical
induction.
For N = 8 with input size nq = 3, we will use the elemen-

tary quantum gates as discussed in Section II-B1 to prepare
the operators for the higher dimension. Operator J4, and J†4
can be implemented using Lemma 1 [as shown in Fig. 1(a)].
Operator lu N

2
:= lu ⊗ lu is a 4× 4 raising ladder operator,

and 04 is a zero-matrix of dimension 4× 4. The right-hand
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side of (19) can be expanded for N = 8 as

[
JN

2
lu N

2

0N
2
JN

2

]
=
[
J4 lu4
04 J4

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J8. (21)

Similarly, we get gate J†8 using J†4, 04, and lower ladder gate
lL4 = lL ⊗ lL of size 4× 4. Using the principle of mathemat-
ical induction for nq = nq + 1 input qubits, one can imple-
ment the recursive operator for JN and J†N . �
Corollary 1: For a family of rank-deficient Toeplitz ma-

trices, TN of size N × N and rank r < N, the decomposition
given by (12) exists, and there is an efficient quantum algo-
rithm that can simulate every TN ∈ CN×N .
Proof: For every TN ∈ CN×N with rank r < N, there is at

least an eigenvalue 0 ∈ λ(TN ) for which we can find a Jordan
canonical block in the form of JN (0), as given in (10). Hence,
there will be an efficient sparse decomposition of TN in the
form of JN (0), as given by (12), which can be implemented
by a quantum simulation algorithm efficiently. �
Note on Circuit Depth and Gate Counts: In most of the

recent quantum simulators, such as IBM-QISKIT [47] and
Google Cirq [48], the elementary gates such as Pauli gates,
and Hadamard gates are available. The ladder gates (which
are often used in quantum photonic circuits) can be imple-
mented using combinations of Pauli gates on the quantum
simulator.We discuss the circuit depth and the number of ele-
mentary gates required for the implementation of the Toeplitz
matrix given as follows. Note that the depth of a quantum
circuit is a metric that calculates the longest path between
the input and the output of the circuit.

1) A 2× 2 Toeplitz matrix is a simple Hermitian matrix,
and hence, it can be implemented with one Pauli-0 and
one Pauli-x gate. Here, the circuit depth for the Toeplitz
matrix is 2.

2) A 4× 4 Toeplitz matrix needs two Pauli-0 gates for
the preparation of its principal diagonal. Further, we
need to prepare six off-diagonals using Jordan gates
as given in (16). To prepare a 4× 4 Jordan gate J4,
four elementary gates are required (one Pauli-0, two
lower ladder gates, and one Pauli-x gate, respectively).
Similarly, we need four elementary gates for preparing
J†4 (one Pauli-0, two upper ladder gates, and one Pauli-x
gate, respectively). From Fig. 1(a), we can see that the
circuit depth for every J4 gate is 4.

3) For a Toeplitz matrixT8, we need three Pauli-0 gates to
prepare its diagonal structure, i.e., I8 = σ⊗30 . We need
to prepare 14 Jordan gates (including seven symmetric

Jordan gates) J8, and J
†
8 ∈ R8×8. Here, for the prepara-

tion of 8× 8 Jordan gate using the recursive algorithm,
we need two J4 gates and two elementary lu gates.

4) The quantum architecture of a Toeplitz matrix with di-
mension N × N (considering N as the power of 2) can
be prepared with elementary quantum gates as follows.

a) To prepare the principal diagonal, we need
log2 N number of σ0 gates,

b) We have (2N − 2) off-diagonals that can be pre-
pared with combinations of JN gates including
(N − 1) number of J†N gates. Considering each
Jordan gate JN as a unit, the depth of the cir-
cuit is N. Using the recursive implementation of
the Jordan gate, we need two Jordan subcircuits
JN

2
and an additional upper ladder operator of

dimension N
2 × N

2 . Here, to implement a ladder
operator lu N

2
, we need log N

2 elementary lu of

dimension 2× 2 gates.
5) The number of elementary gates required for the simu-

lation of a unitary matrix U(2n) is given by �(n34n)
(see [49, Sec. VIII]). Considering, N = 2n, the gate
complexity is approximately �(N2(logN)3). In our
case, the depth of the circuit for a Toeplitz matrix of
dimension N × N is given by N, and the number of
elementary gates is in polynomial with logN approx-
imately. Hence, the approximate gate complexity in
simulating a Toeplitz matrix with elementary gates is
given by �̃(NPoly(logN)).

3) EFFICIENT HAMILTONIAN SIMULATIONS WITH JORDAN
FORM AND IMPLEMENTATION OF THE UNITARY OPERATOR
For the estimation of eigenspectrum λ(TN) of a general-
ized Toeplitz matrix TN , we will perform the Hamiltonian
simulation-based QPE method. For the QPE, we need to
prepare a unitary operator from the Toeplitz matrix given as
follows:

UN := exp [−iTNτ ] . (22)

The above unitary matrix UN is expressed in an exact form
with a matrix exponential function, which is often very dif-
ficult to simulate with realizable quantum gates. The Hamil-
tonian simulation algorithm helps to find an approximate
unitary matrix ŨN closer to the exact operator UN (with the
minimum difference in the spectral norm). For the practical
implementation of this approximate unitary operator via the
Hamiltonian simulation, we consider a precision εT given by

‖ŨN − exp [−iTNτ ] ‖ ≤ εT . (23)

The problem in (23) is addressed by suitable quantum frame-
works, such as product formula (e.g., Trotter–Suzuki ap-
proximation) [38], [39], quantum walk [41], quantum signal
processing [40], and Taylor series approximation [31].
Here, we will use the truncated Taylor series approxima-

tion technique for the quantum simulation of the Toeplitz
matrix. The approximation of the Hamiltonian up to orders
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of L is given by

ŨN =
L∑
l=0

(−iTNτ )l
l!

+ εT (24)

With a bigger size of L, the Taylor series approximation error
εT can be minimized.

4) QPE FOR SPECTRUM ESTIMATION OF TN

QPE can be implemented in several ways [50], [51] with an
objective to estimate phases θ j of eigenvalue λ j for j ∈ [N]
for the unitary operator ŨN , given as

ŨN |v〉 j = λ̃ j |v〉 j
= ei2πθ j |v〉 j . (25)

Here, |v〉 j ∈ CN is an eigenstate of ŨN ∈ CN×N (known
in prior from oracle) and the corresponding eigenvalue is
λ j. The eigenvalue estimation for Hamiltonian TN is now
mapped to phase estimation for the unitary operator ŨN .

The efficient implementation of QPE needs unitary ŨN

to be conditioned on the state of the ancillary qubits in a
controlled fashion given by

|0〉 〈0| ⊗ I+ |1〉 〈1| ⊗ ŨN (26)

where I represents identity operator, and |0〉 and |1〉 are com-
putational bases for the ancillary qubits. The superposition
states of the qubits are generated by Hadamard gates, while
the controlled operation is performed byU-rotation gates.

5) QUANTUM TIME RESOLUTION
The time-evolution of a quantum state through Hamiltonian
simulation requires a time resolution for the preparation of
unitary operator ŨN ∈ CN×N . Here, we define a terminol-
ogy called, quantum time resolution (QTR) for Hamiltonian
simulation.
Definition: The minimum amount of time τ required to

prepare the unitary operator ŨN ∈ CN×N for the Hamilto-
nian simulation of a Hermitian matrix TN ∈ CN×N , within
bounded error ‖UN − ŨN‖ < εT for εT > 0, is the QTR.
A QTR is a sufficient amount of time, such that the ex-

pected error in the simulation converges asymptotically.

C. CIRCULANT APPROXIMATION-BASED QFT
FRAMEWORK
A Toeplitz matrix is asymptotically (for N →∞) equivalent
to a circulant matrix CN with bounded error ‖CN − TN‖.
Here, CN and TN are asymptotically equivalent and both are
bounded as follows [9]:

‖TN − CN‖ ≤ εA (27)

where εA is the approximation error in generating the cir-
culant matrix from original TN . Note that matrix CN may
become sparse if there are sufficient zero (0) entries in c. The
generating function t̃( f ) for a Toeplitz matrix TN following

Szego’s theorem [9] is given by

t̃( f ) =
∞∑

k=−∞
t[k]e j2πk f , for f ∈ [0, 1] (28)

where t[k] is the Fourier series expansion for the generating
function t̃( f ), given as follows:

t[k] =
∫ 1

0
t̃( f )e− j2πk f df , for k ∈ Z. (29)

Szego’s method for the Toeplitz matrix in an asymptotic case
follows:

lim
N→∞

1

N

N−1∑
n=0

λn(TN ) =
∫ 1

0
t̃( f )e− j2πk f df (30)

where λ(TN ) is the spectrum of TN . For practical estimation
of the spectrum λ(TN ) via quantum algorithm, t̃ is approxi-
mated at first by partial Fourier sum [10] given by

PN−1( f ) =
N−1∑

k=−(N−1)
t[k]e j2πk f (31)

for some finite N. Circulant matrix CN is constructed in a
way that it possesses eigenvalues λi for i ∈ [N], which are
samples of PN−1( f ), and are denoted as PN−1( nN ). We are
interested to compute the first row c = [c0, c1, . . . , cN−1] of
the circulant matrix CN , as spectrum λ(CN ) for the circulant
matrixCN can be easily computed from cN . Vector cN can be
generated from PN−1( nN ) as a sequence given by

c[k] = 1

N

N−1∑
n=0

PN−1
( n
N

)
e j2πk

n
N

= 1

N

N−1∑
n=0

N−1∑
ñ=−(N−1)

t[ñ]e j2π (k+ñ)
n
N

=
N−1∑
n=0

t[ñ]
N−1∑

ñ=−(N−1)

1

N
ej2π (k+ñ)

n
N (32)

=
{
t[0], if k = 0

t[−k]+ t[N − k], for k = 1, . . . ,N − 1.
(33)

Note: In (32), we have considered the fact that

∑N−1
n=0

1

N
ej2π (k+ñ)

n
N =

{
1, mod(k + ñ, N) = 0
0, otherwise.

Note: Further, if c ∈ CN and c−k = c†k for k ∈ [N], CN

becomes Hermitian. For finite N, the error analysis for the
approximation of CN from a general Toeplitz matrix TN is
discussed in Section IV.

1) QUANTUM STATE PREPARATION
After generating vector cN ∈ CN as an approximate alternate
of TN , the first step is to prepare a quantum state vector |c〉
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as

|c〉 = 1

|cN |
∑
j∈[N]

cN[ j] | j〉 . (34)

A specialized memory model called quantum random access
memory (QRAM) helps to encode state |c〉 in quantum su-
perposition. The oracle QRAM that is the standard model
for qubit encoding requires time complexity ofO(

√
Nnz(c)),

where Nnz(c) denotes the number of nonzero elements in
the sparse-vector c. Further reduction of time-complexity for
vector and matrix encoding can be done with the augmented-
QRAM method [52], where an ancillary qubit with superpo-
sition state is prepared with conditional rotation, amplitude
amplification, and quantum key-value mapping techniques.
With augmented QRAM, the below transformation can be
implemented as a unitary operator as follows:

|k, 0〉 → |k, c〉
for k ∈ [N], c ∈ CN, and |c| = 1. (35)

ANote onComplexity for Quantum State Preparation:The
quantum amplitude encoding of theN-dimensional vector |c〉
can be prepared with O(log n) qubits. Hence, the superposi-
tion states can be prepared for the input qubits withO(log n)
number of elementary Hadamard gates. The time complexity
related to this quantum state preparation with augmented
QRAM technique is given by Õ(logN) (as shown by [52,
Claim: 2.3.1]).

2) SPECTRUM ESTIMATION OF CN WITH QFT
A circulant matrix CN has eigenvectors u(m) =
1/
√
N[1, e−2π im/N, . . . , e−2π im(N−1)/N]′, with correspond-

ing eigenvalues λm =
∑

k∈[N] cke−2π imk/N for m ∈ [N] [9].
Suppose, U = [u(1),u(2), . . . ,u(N )] be the unitary matrix,
and � = Diag(λm) is a diagonal matrix. Hence, it follows
that CN = U�U† is unitarily similar to a diagonal matrix,
and hence, it is normal. It is observed that only the first row
of CN is required in the eigenvalue expression, instead of
the whole matrix. As we have the quantum state vector |c〉
prepared via some QRAM method, we propose the below
statement.
Statement: For a circulant matrix CN ∈ CN×N , eigenval-

ues λm for m ∈ [N] can be computed by the application of
QFT on the state vector |c〉 ∈ CN without implementation of
the quantum eigenvalue decomposition (EVD) method. The
below expressions show the QFT conversion of probability
amplitude c j to λ as follows:

| j〉 → 1√
N

∑
l∈[N]

e2π i jl/N |l〉

∑
j∈[N]

c j | j〉 →
∑
l∈[N]

λl |l〉 . (36)

Algorithm1:Quantum JordanGate-Based SpectrumEs-
timation of a Toeplitz Matrix.

1: Input TN, nq,M1, ŨN ← 0N×N, τ ← τth,
UN ← e−iTNτ , N, εT , |ψ〉, L, v j for j ∈ [N]

2: Output λ(TN )
3:

TN ← t[0]σ⊗N0 +
N−1∑
j=1

(
t[− j]J jN + t[ j]J† jN

)

�using (18).
4: For l = 1 : L, do:
5: A0← (−iTNτ )l

l!
ŨN ← A0 + ŨN �Taylor series
approximation

6: If (‖UN − ŨN‖ ≤ εT )
7: break;
8: End If
9: End For
10: For j = 1 : N, do:
11: φ0← |0〉⊗N |v j〉 �Initialization
12: φ̃1← 1√

2n
(|0〉 + |1〉)⊗N |v j〉 �Superposition

13:

φ̃2← 1√
2n

2n−1∑
l=0

e(2π iθ j l) |l〉 ⊗ |v j〉

�Controlled unitary
14:

λ̃ j ← 1

2n

2n−1∑
h=0

2n−1∑
l=0

e

(
2π il
2n (h−2nθ j )

)
|h〉 ⊗ |v j〉

�IQFT
15: For m = 1 : M1, do:
16: Measure(m, nq)
17: End For �Quantum Measurement
18: End For �End of QPE for all eigenvalues
19: Return: λ(TN ) = {λ̃ j for j ∈ [N]}

Here, the QFT works as a linear operator for the conversion
of probability amplitudes from basis | j〉 to |l〉. For the ef-
ficient implementation of QFT for |c〉, we seek N = 2n for
n ∈ Z.

III. PROPOSED ALGORITHM
A. QUANTUM SPECTRUM ESTIMATION OF A TOEPLITZ
SYSTEM USING JORDAN-FORM-BASED REPRESENTATION
In Algorithm 1, we have presented a pseudocode for the
spectrum estimation of a Toeplitz matrix TN with Jordon-
form-based sparse-representation.
Note:With a slight abuse of notation, we consider “spec-

trum estimation” as a quantum eigenspectrum estimation. In
our subsequent algorithms, we have shown QPE based on
eigenspectrum estimation as follows.
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FIGURE 2. Block-level circuit description of Algorithm 1.

Description of Algorithm 1: Among the input variables,
TN denotes the Toeplitz matrix, N = 2n represents the size
of the spectrum λ(TN ); UN, τth, εT , |ψ〉, and L are exact
unitary matrix (classically prepared), time of evolution, pre-
cision, quantum state vector, and the number of terms for the
Taylor approximation, respectively. τth can be obtained based
on the experimental setup as detailed in the numerical sec-
tion. Note that v j is an eigenstate of ŨN prepared by an ora-
cle, with eigenvalue e2π iθ j (where θ j is unknown) for j ∈ [N].
In the proposed algorithm, we have shown amodified Hamil-
tonian simulation for the preparation of unitary operator UN .
Here, we have incorporated Jordan’s decomposition-based
representation of the Toeplitz matrix TN for the preparation
ofUN . The Taylor series expansion gives an approximate uni-
tary evolutionUN of the Hamiltonian TN , with L-terms (with
the tradeoff between complexity and precision). The stan-
dard QPE method is performed on oracle-prepared eigen-
state v j to estimate the eigenvalues of the unitary operator
ŨN . Here, an N-length state vector is initialized with tensor
representation. Next, we perform Hadamard operations for
the superposition of the ancillary qubit φ0. The superposition
state gives the quantum advantage of parallelism to augment
quantum speed in the computation. Next, we create quan-
tum interference through successive controlled-U gate oper-
ations on the superposition states to control phase rotation
on |1〉- computational bases. Further, IQFT is executed to
the controlled-state vectors via the auxiliary resisters |h〉. The
measurement is performed at the output of the IQFT circuit
on a computational basis to detect the phase changes of the
qubits acting on the quantum eigenstates. The eigenvalues
are obtained from the measurement that is stored in variable
λ̃ j for j ∈ [N]. Here, we have shown steps 23–26 as steps of
the quantum measurement. Here, nq = logN is the required
number of qubits for the quantum experiment. The quantum
shots are referred to the number of experiments performed to
get the histogram. We have specified the number of quantum
shots by M1. Function Measure(m, nq) performs the mea-
surement of the quantum state (at the output of IQFT) on

computational bases forM1 shots and nq qubits. The compu-
tation of the probability from themeasurement is discussed in
Section IV-B.
A Note on Fig. 2: We have shown a block-level circuit

description of Algorithm 1 for the spectrum estimation of a
Toeplitz-structured matrix in Fig. 2. Here, we have shown the
sparse-decomposition-based representation of the Toeplitz
matrix using identity and Jordan operators for N × N di-
mension. A detailed circuit of this part (implementation of
the Jordan operators and the Toeplitz operator) for a smaller
dimension of 4× 4 is shown in Fig. 1. In the Hamiltonian
simulator subcircuit, the approximate unitary operator ŨN is
prepared. In the QPE circuit, the approximate unitary oper-
ator (in our case ŨN) is conditionally applied to the phase
registers to raise its power with 20 to 2t for t qubits for the
initialization of state |0〉 following the approach as shown
in [37, Ch. 5.2]. Through the QPE circuit, the phases of
the approximated unitary operator are estimated. Here, H
denotes Hadamard gate, c denotes the classical register, |0〉
is the controlled qubit, and |v〉 represents the eigenstate.
Measurements are performed at the output of IQFT on a
computational basis and stored in the classical registers.
A Note on Input Eigenstates: For the computation of the

eigenvalue spectrum of the Toeplitz matrix using Algorithm
1, we have assumed that the input eigenstates |v j〉 are known.
For a circulant matrix, these states are known a priori. How-
ever, the eigenvectors are not known for the generalized
Toeplitz matrix in advance. Hence, input eigenstates need
to be prepared for the QPE algorithm, which must be suffi-
ciently close to an actual eigenvector [20]. In [53], the authors
have shown quantum subroutines for finding the eigenvectors
of a Hamiltonian operator and discussed its application to
atomic physics. A further refinement of eigenvector compu-
tation with a small number of quantum gates is shown in [54],
where a classical eigenvector is taken initially to prepare it on
a quantum state using fine grid approximation. Recently, an
iterative QPE method is proposed to estimate phase θ using
polarization qubits described by a higher dimensional Hilbert
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Algorithm 2: Quantum Spectrum Estimation for a
Toeplitz Hamiltonian via Circulant Approximation.
1: Input t[k] for
k = N − 1, . . . , 0, . . . ,−(N − 1), nq,M2

2: Output λ(CN )
3: For k = 1 : N

4: c[k]←
{
t[0], if k=0

t[−k]+ t[N − k], �Symbol

conversion using (33)
5: End For
6: Return: cN = {c[k] for k ∈ [N]}
7: |c〉 ← 1

|cN |
∑

j∈[N] cN[ j] | j〉 �State Preparation
8: |k, c〉 ← |k, 0〉 using (35).
9: | j〉 ← 1√

N

∑N
l=1 e2π i jl/N |l〉

10:
∑

l∈[N] λ̂l |l〉 ←
∑

j∈[N] c j | j〉
11: For m = 1 : M2, do:
12: Measure(m, nq)
13: End For �Quantum Measurement
14: End For �End of QPE for all eigenvalues
15: Return: λ(CN ) = {λ̂l for l ∈ [N]}

space [55]. In [20], the authors have shown theoretically that
for a sparse and Hermitian operator, the generalized eigen-
value problem can be solved.

B. QUANTUM SPECTRUM ESTIMATION OF A CIRCULANT
APPROXIMATE TOEPLITZ SYSTEM
We have shown a pseudocode for the spectrum estimation
of the Toeplitz matrix via circulant matrix approximation in
Algorithm 2.
Description of Algorithm 2: For a given Toeplitz ma-

trix with structure generating symbols t[k] for k = N −
1, . . . , 1, 0,−1, . . . ,−(N − 1), vector cN containing the
symbols of the circulant matrix can be generated using (33).
We will see that error ‖CN − TN‖ is bounded by desired
precision ε for the Toeplitz to circulant approximation. For a
circulant systemCN , term cN is its first row.We take symbols
t[k] as input of the algorithm, and we are interested to find
the spectrum λ(CN ) of the circulant system, generated using
the symbol conversion as shown. Before further process-
ing, we need to prepare the quantum state vector |c〉 with
normalization followed by quantum superposition, as shown
in (34). The augmented QRAM technique can be used to
store the quantum state vector |c〉 in the memory efficiently.
After preparing the state vector |c〉, we are ready to perform
the IQFT operation.We apply the Fourier bases | j〉 and apply
on state |c〉 to get the amplitudes λl on bases |l〉 for l ∈ [N].
Here, we have given steps 17–20 for the quantum measure-
ment. Here, we take input qubits of size nq = logN for the
quantum experiment. M2 number of quantum shots are per-
formed to get the histogram. Here, Function Measure(m, nq)
performs themeasurement of the quantum state (at the output
of IQFT) on computational bases forM2 shots and nq qubits.

The computation of the probability from the measurement is
discussed in Section IV-B and the the result in Section VII-E.

IV. ERROR BOUND IN ESTIMATED SPECTRUM FOR
CIRCULANT APPROXIMATION
We incur an approximation error εA for approximating the
circulant variant CN from the Toeplitz matrix TN given by

‖TN − CN‖ ≤ εA. (37)

In the asymptotic case (N →∞), the approximation error
εA→ 0. However, for finite N, we get an estimated spec-
trum λ(CN ) = {λ̂cl for l ∈ [N]} for the circulant matrix CN

obtained from the Toeplitz matrix TN . In this spectrum es-
timation process, the true eigenvalues of the Toeplitz matrix
can be written as

λt = λ̂c + εQFT + εQ (38)

where λ̂c ∈ λ(CN ) denotes the estimated eigenvalue, λt ∈
λ(TN ) represents the true eigenvalue, εQFT is the quantization
error in the QFT process, and εQ is the estimation error in the
eigenvalues for the propagation of the approximation error
εA in generating the circulant matrix. Our objective is to
quantify the estimation error based on (38) given by

E
[
‖λt − λ̂c‖2

]
≤ E

[
‖εQFT‖2

]
+ E

[
‖εQ‖2

]
. (39)

Note that we have used ‖.‖ to denote the 2-norm of the
corresponding vector. Computing the error bound for εQFT,
and εQ separately is often numerically intractable. Hence, we
define a variable for the combined errors as

εQQ := εQFT + εQ. (40)

A. ERROR BOUND ON εQQ

For finding the bound εQQ, we consider that the Toeplitz ma-
trix is Hermitian (i.e., T†

N = T) and it is a large dimensional
(N →∞) random matrix whose elements are independent
and identical samples taken from a circularly symmetric
Gaussian distribution with zero mean and variance of real
and imaginary part be

σ 2T
2 each, as follows:

t[k] ∼ CN (0, σ 2
T ) ∀ k ∈ [N]. (41)

Following (33), the elements c[k] that are drawn from TN
also follow the circularly symmetric Gaussian distribution
with zero mean and modified variance for real and imaginary

parts to be
σ 2C
2 each, given as follows:

c[k] ∼ CN (0, σ 2
C ) ∀ k ∈ [N]. (42)

The estimation error εQQ can be written (avoiding the error
for implementation of the QFT circuit) as

εQQ = (λt − λ̂c). (43)

In general, the joint probability density function p(λt , λ̂c)
is not tractable for a large matrix. Hence, we consider the
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following variables to progress further:

δ1 = λt

δ = δ1 − λ̂c. (44)

We assume that the joint probability density function p(δ, δ1)
for the variables δ and δ1 are independent, which can be
represented as

p(δ, δ1) = p(λt )p(λ̂c)

|J | (45)

where J denotes the Jacobian matrix. The Jacobian matrix
for (44) is

J =
[
1 −1
1 0

]
(46)

with |J | = 1. Now, the error probability function p(δ) can
be written as

p(δ) =
∫ ∞
−∞

p(δ1) p(δ1 − δ) dδ1. (47)

First, we will find the probability function p(λ̂c), i.e.,
p(δ1 − δ) with the following lemma.
Note: In many signal processing and communication ap-

plications, the systemmatrix can be Hermitian. However, the
elements of the matrix need not be Gaussian, and indepen-
dent identically distributed. For the large dimensional Hermi-
tian matrix, as in our case, the probability density function
of eigenvalues follows that of the Wigner matrix [56, Sec.
II-B1], irrespective of the distribution of individual elements
in the matrix.
Lemma 3: The probability density of the estimated eigen-

values λ̂c drawn from the elements t[k] ∼ CN (0, σ 2
T ) ∀ k ∈

[N] using (33) follows circularly symmetric Gaussian distri-
bution with zero mean and variance Nσ 2

C .
Proof: The estimated eigenvalues λ̂c can be written as

λ̂c[n] =
N−1∑
k=0

c[k]ei2πkn ∀ n ∈ [N]. (48)

For a large-dimensional matrix, the probability density of
λ̂c[n] will follow Gaussian distribution (applying the cen-
tral limit theorem). Here, c[k] follows the independent and
identical, complex circularly symmetric Gaussian distribu-
tion CN (0, σ 2

C ) from (42). Hence, the sum of the elements
c[k] ∀k ∈ [N] for every eigenvalue will follow the circularly
symmetric Gaussian distribution with zero mean and vari-
ance of Nσ 2

C . We can write the density function p(λ̂c) as

p(λ̂c) = 1√
2πNσC

exp

[
−(λ̂c)2
2Nσ 2

C

]
. (49)

Replacing λc by δ1 − δ in (49), we get the distribution
p(δ1 − δ) as follows:

p(δ1 − δ) = 1√
2πNσC

exp

[
−(δ1 − δ)2

2Nσ 2
C

]
. (50)

�
Next, we will find the probability density function p(λt ),

i.e., p(δ) for the Hermitian Toeplitz matrix TN = T†
N

for a large dimension (N →∞). The eigenvalues λt [ j] ∈
λ(TN )∀ j ∈ [N] for the Toeplitz matrix TN ∈ CN×N for
large N will follow the distribution given by [56]

p(λt ) =
√
4σ 2

T − (λt )2

2πσ 2
T

, 0 ≤ λt ≤ 2σT . (51)

As we have taken TN = T†
N , the eigenvalues will lie in the

range 0 ≤ λt ≤ 2σT , considering that the elements t[k] for
k ∈ [N] has zero mean and variance σ 2

T .
Proposition 1: The probability density function of the to-

tal estimation error, p(εQQ) for a Hermitian and large random
Toeplitz matrix TN of size N × N is bounded by the follow-
ing expression (taking Taylor series approximation):

p(εQQ) ≈ 1√
2πNσC

(
1+ εQQ

(
δ1π − 4σT

(
π
2 − 1

))
3Nσ 2

Cπ

)

for
√
2πNσC > 0. (52)

Proof: Using expressions (50) and (51) in (47), we get the
integral as

p(δ) =
∫ 2σT

0

√
4σ 2

T − δ21
2πσ 2

T

1√
2πNσC

exp

[
−(δ1 − δ)2

2Nσ 2
C

]
dδ1

= 1√
2πN2πσ 2

TσC

∫ 2σT

0

√
4σ 2

T − δ21

× exp

[
−(δ1 − δ)2

2Nσ 2
C

]
dδ1. (53)

We take the Taylor series approximation for the exponen-
tial function to avoid intractability of the higher order terms
as follows:

f (δ1) := exp

[
−(δ1 − δ)2

2Nσ 2
C

]

≈ 1+ δ1δ

Nσ 2
C

exp

[
−δ2
2 Nσ 2

C

]
+O(n2). (54)

Now, p(δ) can be written as follows:

p(δ) = 1√
2πN2πσ 2

TσC

∫ 2σT

0

√
4σ 2

T − δ21

×
(
1+ δ1δ

Nσ 2
C

exp

[
−δ2
2 Nσ 2

C

])
dδ1

= I1 + I2 (55)

where the integrals

I1 := 1√
2πN2πσ 2

TσC

∫ 2σT

0

√
4σ 2

T − δ21dδ1 (56)
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I2 := 1√
2πN2πσ 2

TσC
× δ

Nσ 2
C

∫ 2σT

0

(√
4σ 2

T − δ21
)
δ1dδ1.

(57)

Integral
∫ 2σT

0

√
4σ 2

T − δ21dδ1 is of form
∫ a

0

√
a2 − x2dx

whose solution is given by∫ a

0

√
a2 − x2dx =

[
x

2

√
a2 − x2 + a2

2
sin−1

( x
a

)]a
−a

= a2π

4
(58)

where a = 2σT , and x = δ1. Hence, using result (58), integral
(56) becomes

I1 = 1√
2πN2πσ 2

TσC
× 4σ 2

Tπ

4

= 1

2σC
√
2πN

. (59)

We compute integral
∫ 2σT
0 (

√
4σ 2

T − δ21 )δ1dδ1 in (57) as

I3 :=
∫ 2σT

0

(√
4σ 2

T − δ21
)
δ1dδ1

= δ1
∫ 2σT

0

(√
4σ 2

T − δ21
)
dδ1

−
∫ 2σT

0

d

dδ1
δ1

(∫ (√
4σ 2

T − δ21
)
dδ1

)
dδ1

= δ1σ 2
Tπ −

∫ 2σT

0

δ1

2

√
4σ 2

T − δ21

+ 2σ 2
T sin

−1
(
δ1

2σT

)
dδ1 [using result from (58)]

= δ1σ 2
Tπ −

1

2

∫ 2σT

0
δ1

√
4σ 2

T − δ21dδ1

− 2σ 2
T

∫ 2σT

0
sin−1

(
δ1

2σT

)
dδ1 (60)

I3 = δ1σ 2
Tπ −

1

2
I3 − 2σ 2

T

∫ 2σT

0
sin−1

(
δ1

2σT

)
dδ1 (61)

3

2
I3 = δ1σ 2

Tπ − 2σ 2
T

∫ 2σT

0
sin−1

(
δ1

2σT

)
dδ1

I3 = 2

3
δ1σ

2
Tπ −

4

3
σ 2
T I4. (62)

Integral I4 :=
∫ 2σT
0 sin−1

(
δ1
2σT

)
dδ1 has form

∫ a
0 sin−1

( x
a

)
with a = 2σT and x = δ1, which can be computed as follows:

I4 :=
∫ a

0
sin−1

( x
a

)

=
[
x sin−1

( x
a

)
+
√
a2 − x2

]a
0

= a sin−1(1)− a

= 2σT
(π
2
− 1

)
(∵ a = 2σT ). (63)

Hence, (62) and (57) become

I3 = 2

3
δ1σ

2
Tπ −

(
4

3
σ 2
T × 2σT

(π
2
− 1

))

= 2

3
σ 2
T

(
δ1π − 4σT

(π
2
− 1

))
, and (64)

I2 = 1√
2πN2πσ 2

TσC
× δ

Nσ 2
C

× I3

= 1√
2πN2πσ 2

TσC
× δ

Nσ 2
C

× 2

3
σ 2
T

(
δ1π − 4σT

(π
2
− 1

))

= δ
(
δ1π − 4σT

(
π
2 − 1

))
3Nσ 3

Cπ
√
2πN

. (65)

Hence, probability p(εQQ) is approximated as

p(εQQ) ≈ I1 + I2

= 1√
2πNσC

+ εQQ
(
δ1π − 4σT

(
π
2 − 1

))
3Nσ 3

Cπ
√
2πN

= 1√
2πNσC

(
1+ εQQ

(
δ1π − 4σT

(
π
2 − 1

))
3Nσ 2

Cπ

)

(66)

with the constraint that
√
2πNσC > 0. �

Variance of εQQ : For computing the moments (mean and
variance) of εQQ, we consider a truncated probability density
for range (−εB, εB). Value εB depends on the system bit reso-
lution and parameter estimation error using quantum circuits.
The mean of the total error εQQ is given by

με =
∫ εB

−εB
εQQp(εQQ)dεQQ

= 1√
2πNσC

×
∫ εB

−εB

(
εQQ +

ε2QQ

(
δ1π − 4σT

(
π
2 − 1

))
3Nσ 2

Cπ

)
dεQQ

= 1√
2πNσC

[
ε2QQ

2
+
ε3QQ

(
δ1π − 4σT

(
π
2 − 1

))
9Nσ 2

Cπ

]εB
−εB

= 2ε3B
(
δ1π − 4σT

(
π
2 − 1

))
√
2πNσC × 9Nσ 2

Cπ
. (67)

The variance of the total error εQQ can be computed as
follows:

σ 2
εQQ
=
∫ εB

−εB
(εQQ − με )2p(εQQ)dεQQ
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=
∫ εB

−εB
(x− c1)2 × c2(1+ xc3)dx

= c2

∫ εB

−εB
(1+ c3x)× (x2 − 2c1x+ c21)dx

= 2c2

[
ε3B

3
+ c21εB − 2c1c3

ε3B

3

]

= 2c2εB

[
c21 +

ε2B

3
(1− 2c1c3)

]
(68)

where the constants are c1 := με , c2 := 1√
2πNσC

, and

c3 :=
(δ1π − 4σT (

π
2 − 1))

3Nσ 2
Cπ

, respectively. Hence, the bound

of the total error can be given by (69), shown at the bottom
of this page.
Note on QFT Precision: The quantization error εQFT de-

pends on the number of bits to represent an element from ar-
ray cN . If the distance between two consecutive quantization
levels is�Q, the total variance of the error in representing N
number of elements with a precision of Nq-bits is given by

σ 2
εQFT
= N × �

2
Q

12

= N × 2−2×(Nq−2)

12
(70)

where the quantization error�Q = 1
2(Nq−2) . By increasing the

number of qubits, the quantization error εQFT can be reduced.

B. MEASUREMENT NOISE AND PROBABILITY OF
CORRECT MEASUREMENT OUTCOME
Each eigenvalue is estimated from a quantum algorithm us-
ing approximated QFT and QPE. The experiment needs to
be repeated multiple times to maximize the probability of
the outcome of a measurement basis, mitigating the mea-
surement noise. Here, we consider that the quantum cir-
cuit is simulated for m ∈ [M] times, with one or multiple
rounds given by r = 1, . . . ,Rn. The ancillary qubits are pre-
pared in a superposition state through the application of
Hadamard gates controlsUτr (26) with integer variable τr per
round. The ancillary qubits are read out in the X-basis and
give measurement outcome mr ∈ {0, 1}. The total number
of controlled-U rotation over M experiments can be given
by 
T =

∑M
n=1

∑Rn
r=1 τr. However, for each experiment,

the number of controlled-U rotations is 
 =∑Rn
r=1 τr. The

coherence length 
coh is defined in [57] as


coh := τerr

NqτU
. (71)

Note that
coh limits the maximum of the controlled-U oper-

ations per experiment with
 ≤ 
coh. In (71),
τerr

Nq
represents

time-to-failure of Nq qubits, τU denotes the time required to
implement single controlled-U gate, and τerr is the time-to-
error of a single qubit. Hence, the value of 
 is a crucial
parameter that is related to the QTR of the quantum hardware
as discussed in Section II-B4.

In our simulation, we have considered that the ancilla qubit
is rotated by Rz(γ1) = e−iγ1/2. Here, γ1 is the phase for ro-
tation around the Z-axis direction for the controlled-rotation
Uτ1 . Hence, the eigenstate output from the operator Uτ1 is

1√
2

∑
j

β j

(
|0〉 + ei(τ1λ j+γ1) |1〉

)
|ψ j〉 (72)

where β j is the normalizing coefficient for eigenstates |ψ〉 j
corresponding to eigenvalues λ j. There is uncertainty in get-
ting the result on a particular X-basis as the experiment is
repeated for M-times. The probability of measurement of
the first ancillary qubit (say c1) on mr ∈ {0, 1} basis can be
written as

Prc1 =
∑
j

D j cos
2
(
τ1λ j

2
+ γ1 − mrπ

2

)
(73)

where Dj ≡ |β j|2, and the outcome-state of the ancillary
qubit is given by∑

j

β̃ j exp

(
i

2
τ1λ j + γr

)
cos

(
τ1λ j

2
+ γr − mrπ

2

)
|ψ〉 j .

(74)

Thus, the probability of correct measurement outcome for the
first ancillary qubit is given by

Prb = 1

N

N∑
k=1

∑
j

D j

Rn∏
r=1

cos2
(
τrλk

2
+ γr − mrπ

2

)
(75)

where λk ∈ λ(TN ) denotes the kth eigenvalue.
We have already assumed that the quantum system has

Na-bits resolution and the probability of correctly measuring
every single bit is determined as Prb in (75). Let yi be the
decimal value of the ith binary string of length Nq. Let yki,l be
an Nq length binary string with l bits reversed with respect to
yi and k indicates the kth realization of such string.
Proposition 2: The variance of the quantummeasurement

noise wm for a Nq-bits quantum resolution system after the

σ 2
εQQ
≈ 2εB√

2πNσC

⎡
⎣
(
2ε3B

(
δ1π − 4σT

(
π
2 − 1

))
√
2πNσC × 9Nσ 2

Cπ

)2

+ ε
2
B

3

(
1− 2

(
2ε3B

(
δ1π − 4σT

(
π
2 − 1

))
√
2πNσC × 9Nσ 2

Cπ

) (
δ1π − 4σT

(
π
2 − 1

))
3Nσ 2

Cπ

)⎤
⎦
(69)
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quantum simulation task can be computed as follows:

σ 2
q = Dq

2Nq∑
i=1

Nq∑
j=1

Nq j∑
k=1

Pr jb(1− Prb)
Nq− j‖yi − yki, j‖2

with Dq = 1

2Nq
∑Nq

j=1 Nq j × Nq
. (76)

Proof: The probability of j-bits mismatch for yi is Pr
j
b(1−

Prb)Nq− j. It is considered that the sign bit is equally prone to
flip incurring an error. Therefore, the mean of the error will
be zero. There will be Nq j number of binary strings having
j-bits in mismatch with respect to yi and l = 1, 2, . . . ,Nq.
The index i varies as i = 1, 2, . . . , 2Nq . Therefore, the aver-
age value of the error can be given by (76). �

V. COMPUTATIONAL COMPLEXITY
We will consider that eigenvalues λl ∈ λ(TN ) of the Hamil-
tonian TN (or equivalently the phases θ j of the eigenvalues
of unitary ŨN) has the binary b-bits representation. Here, the
overall complexity of estimating N eigenvalues is the sum
of N × (3b+ b2/2) and the complexity of the Hamiltonian
simulation [37]. With Taylor series approximation [31], the
complexity of the Hamiltonian simulation is given by

CGHam = O
(
nq log2( κεT )

log log( κ
εT
)

)
(77)

where nq denotes the number of qubits required for simulat-
ing a d-sparse Hamiltonian with simulation error bounded by
εT , and the term κ = d2‖TN‖maxτ . For a dense matrix, the
Hamiltonian simulation complexity is significantly large and
the quantum speed-up may be compromised. Next, we will
discuss the modified Hamiltonian simulation for a possible
quantum complexity advantage. We will further see that the
circulant approximation technique will produce guaranteed
complexity improvement by avoiding the QPE approach for
the estimation of the spectrum for bounded error.

A. COMPLEXITY FOR HAMILTONIAN SIMULATION OF A
TOEPLITZ MATRIX REPRESENTED IN SPARSE AND
JORDAN-CANONICAL FORM
The form in (18) is a generalized decomposition of a Toeplitz
matrix in Jordan canonical form-based Hermitian represen-
tation that can be used in many quantum simulations with
required normalization or modification. Here, its computa-
tional complexity for the Hamiltonian simulation framework
is discussed.
Proposition 3: The complexity for the Hamiltonian sim-

ulation of a Hermitian Toeplitz-structured system TN ∈
CN×N in form (18) to prepare a unitary operator ŨN

for time τ with the error in spectral norm given by

‖ŨN − exp (−iTNτ )‖ ≤ εT can be approximated with Tay-
lor series method as

CGHJ = Õ

⎛
⎜⎜⎝nq

log2
(
ω
τ

εT

)

log log

(
ω
τ

εT

)
⎞
⎟⎟⎠ (78)

where ω denotes a constant term, and nq is the required
number of qubits.
Proof: Here, the simulation complexity for t[0]IN is of

order Õ(1) as it needs to simulate the first element of the
Toeplitz matrix multiplied with identity operator. As TN =
T†
N , we need only Õ(1) complexity for each t[i], where i =

1, . . . ,N. Hence, the simulation complexity for
∑N

n=1 t[n]�J

is (N − 1)× Õ(1). Given that the number of qubits nq is
taken as N = 2nq , the Hamiltonian complexity for nq-qubits
resolution following Taylor series approximation can be
computed as follows.
In our case, the sparsity d = 2 for sparse-Jordan rep-

resentation of TN for simulating every t[i], where i =
0, . . ., N − 1. Hence, we get κ = O(4× ‖TN‖maxτ ) fol-
lowing (77), where τ is the simulation time. Let us con-
sider the product 4× ‖TN‖max as a constant ω. Term κ/εT

becomes
ω × τ
εT

. Hence, the overall complexity for sim-

ulating the Hamiltonian TN will become approximately

Õ

⎛
⎜⎜⎝nq

log2
(
ω
τ

εT

)

log log

(
ω
τ

εT

)
⎞
⎟⎟⎠. �

B. COMPUTATIONAL COMPLEXITY FOR SIMULATING A
TOEPLITZ MATRIX WITH CIRCULANT APPROXIMATION
The circulant matrix CN approximated from a Toeplitz-
structured Hamiltonian TN can be generated using a sin-
gle array cN = {c[k] for k ∈ [N]} with approximation error
bounded by εA as shown in (33). The array vector cN repre-
sents the first row of the circulant matrix CN , which gen-
erated all the below consecutive rows of the matrix by a
right cyclic shift of the array elements. The following lemma
shows the complexity in obtaining the estimated spectrum
λ(CN ) for matrix CN .
Lemma 4: For an nq-qubit representation of the input ar-

ray cN of size N = 2nq , which generates the circulant ma-
trix, the eigenvalues λcl ∀ l ∈ [N] can be obtained using an
ideal nq-qubit unitary QFT circuit with gate-complexity of

O(nq(
nq+1
2 )), while an approximate QFT circuit compris-

ing Clifford and T -gates may incur a gate-complexity of
O(nq log(

nq
εA
)) within error bounded by εA.

Proof: For estimating the eigenvalues λcl ∈ λ(CN ), the
proposed Algorithm 2 does not call Hamiltonian simulation,
thereby the complexity to prepare the unitary matrix UN

from the Hamiltonian TN as shown in (77) can be reduced
significantly. It suffices that the QFT circuit along with mea-
surement operators can directly produce the eigenvalues of

VOLUME 4, 2023 5500423



Engineeringuantum
Transactions onIEEE

Laskar et al.: LOW-COMPLEXITY QUANTUM SIMULATION FRAMEWORK

TABLE 1. Computational Query Complexity of Different Hamiltonian Simulation

the HamiltonianTN approximated by the circulant matrixCN

by accessing the first row ofCN . It offers significant quantum
speed-up in the computation of eigenvalues. With classical
eigenvalue computation with fast Fourier transform (FFT) on
a similar setting will need O(nb2nb ) gates for processing 2nb

elements [37, p. 220]. It shows that the QFT circuit-based
spectrum estimationmethod can provide exponentially faster
operation while running on a quantum computer than the
classical FFT-based eigenvalue estimation technique.
In approximate quantum Fourier transform (AQFT) tech-

niques, the rotation gates with rotation angles smaller than
a certain threshold value are removed. Recently, an nq-qubit
AQFT circuit shows that circuit built on T -gates can reduce
the QFT complexity from O(n2q) to O(nq log(nq)) opera-
tions [58]. While we incur an approximation error bounded
by εA, the complexity of eigenvalue computation by the
AQFT method becomes

CGAQFT=O
(
nq log

(
nq
εA

))
+log

(
nq
εA

)
log

(
log( nq

εA
)

εA

)
.�

(79)

A complexity comparison for different Hamiltonian sim-
ulation algorithms for a dense Toeplitz matrix is shown in
Table 1.

VI. APPLICATION IN ARRAY SIGNAL PROCESSING
Spectral estimation for a Hermitian Toeplitz matrix is perva-
sive in many array processing applications [1], [17], [19]. We
have considered a DoA estimation problem here to demon-
strate the application of our proposed quantum framework in
modern array processing.
We assume that P narrow far-field signals impinge on

a uniform linear array (ULA) with M (M > P) antennas
from the directions of θ = {θ[P]} simultaneously at time t,
as shown in Fig. 3. The received signal vector at the array
output can be written as

y(t ) =
P∑
i=1

a(θi)xi(t )+ v(t ) = Ax(t )+ v(t ). (80)

Here, x(t ) = [x1(t ), x2(t ), . . . , xP(t )]† denotes the
incident signal vector and the received signal vector
y(t ) = [y1(t ), y2(t ), . . . , yP(t )]†, v(t ) represents the additive
noise vector (assumed to be circular complex Gaussian

FIGURE 3. Receiver front-end with ULA of sensor size M, and sensing
incident rays from P objects.

white noise), and A(t ) = [a(θ1), a(θ2), . . . , a(θP)]†

is the array manifold matrix with manifold vectors
a(θi) = [1, e−iπ sin(θi ), e−i2π sin(θi ), . . . , e−iπ (M−1) sin(θi )]†
(assuming the distance between antenna elements be
dx = λx

2 for wavelength of λx). The source signal x(t ), and
noise vector v(t ) are assumed to be uncorrelated given by

E
[
x(t1)x(t2)

†
]
= Diag(σ2x )δt1,t2 (81)

E
[
v(t1)v(t2)

†
]
= σ 2

v Iδt1,t2 (82)

where σ2x = [σ 2
1 , σ

2
2 , . . . , σ

2
P] represents the power param-

eter of x(t ), σ 2
v denotes the noise variance, and δt1,t2 = 1 for

t1 = t2 or 0 elsewhere. The covariance matrix of the received
signal vector can be obtained as

Ty = E
[
y(t1)y(t2)

†
]

=
P∑
i=1

σ 2
i a(θi)a(θi)

† + σ 2
v I

= Tx + σ 2
v I (83)

where Tx =
∑P

i=1 σ 2
i a(θi)a(θi)

† = A Diag(σ 2
x )A

† is a Her-
mitian Toeplitz matrix of the source signals. The expression
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TABLE 2. Simulation Parameters

in (83) shows that the covariance matrix Ty is also a Hermi-
tian Toeplitz matrix. We take an estimated Toeplitz matrix in
practical applications for L number of snapshots given by

T̂y = 1

L

L∑
j=1

y(t j )y(t j )†. (84)

For the spectrum estimation of the estimated Hermitian
Toeplitz matrix given in (84), the classical TMRA ap-
proaches perform EVD techniques. We can apply our pro-
posed Algorithm 1 here for spectrum estimation with quan-
tum complexity advantage. The performance of the classical
TMRA and the proposed quantum algorithm is shown in
Section VII.
Note: The standard DoA estimation method (as shown

in [1]) can be applied after the quantum spectrum estimation
for finding DoAs. Here, we restrict our result to spectrum
estimation problems to augment the complexity advantage
(as discussed in Section V).

VII. NUMERICAL RESULTS
In this section, we have obtained numerical results related to
the proposed algorithm for the Toeplitz-structured Hamilto-
nian simulation and its spectrum estimation. Here, we have
shown the simulation result of our proposed algorithm in
sections, partly performed on a classical computer and partly
on a real-time IBM quantum simulator (IBM “Statevector”
quantum simulator). We have shown the numerical results
of estimation error and algorithmic complexity (in compar-
ison to the standard Hamiltonian simulation) in Sections
VII-A–VII-C, which are performed on a classical simulator
(MATLAB-2021b) following the parameters, as shown in
Table 2. Further, the application of the proposed algorithms
on a TMRA problem is discussed in Section VII-D. Finally,
we have shown the implementation of the algorithm of find-
ing eigenvalues of a Toeplitz matrix on an IBM quantum
machine (IBM “Statevector” simulator) in Section VII-E.
We have limited the application to find the second principal
eigenvalue and the minimum eigenvalue with the highest
eigenvalue being 1. As we have limited quantum resources
presently for academic research, we have shown the anal-
ysis part (which requires simulation of large-dimensional
matrices) on the classical computer and a small-scale appli-
cation of the proposed algorithm on the real-time quantum
simulator.

FIGURE 4. Comparison of spectrum for a Toeplitz matrix of size N = 32
and its circulant approximation.

A. ESTIMATED SPECTRUM AND ERROR-PROBABILITY
FOR THE CIRCULANT APPROXIMATION
Here, we have shown a numerical simulation framework for
the circulant approximation of a Toeplitz matrix in Wigner
form, whose elements follow independent and identically
distributed Gaussian probability distribution, with zero mean
and unit variance. We have given the spectrum estimated by
Algorithm 2 and computed the error probability.
Fig. 4 shows the plot of eigenvalues (normalized) of a

Toeplitz matrix TN in Wigner form, where the matrix dimen-
sion is taken to be 32× 32. Here, λti for i ∈ [N] denotes the
true eigenvalues (computed using the classical eigenvalue de-
composition technique), and λci for i ∈ [N] represents the es-
timated eigenvalues using proposed Algorithm 2. The eigen-
values are plotted here in ascending order. It can be observed
that the circulant approximations for larger N will produce
almost the same eigenvalues with quantum simulation for a
Toeplitz matrix.
We increase the matrix dimension to ensure the conver-

gence of the error variance for the approximation method
used in Algorithm 2. We have shown the probability of
approximation error Pr(δ) with varying matrix dimensions
in Fig. 5. Based on the result in (66), an empirical result
is shown here, taking the variance σC = 1, and the matrix
dimension is varied from N = 10 to 1000 with increment
30. For a dimension of 1000× 1000, the error probability is
Pr(δ) < 12× 10−3 approximately. Further, the figure shows
that for the increase in matrix dimension, the error probabil-
ity decreases.

B. EFFECT OF QTR ON ESTIMATED SPECTRUM FOR THE
TOEPLITZ-STRUCTURED HAMILTONIAN SIMULATION
Wehave performed the eigenvalue spectrum estimation prob-
lem for a given Hermitian Toeplitz matrix using the pro-
posed Algorithm 1 and compared it with the classical EVD
approach. The proposed simulation technique depends on the
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FIGURE 5. Error probability for the estimated spectrum of a circulant
matrix generated from a large-dimensional random Hermitian Toeplitz
matrix.

FIGURE 6. Normalized eigenvalue spectrum for a Toeplitz matrix
estimated using Algorithm 1 for different QTR compared with spectrum
using classical EVD.

evolution time parameter or QTR (τ ). Here, we have taken an
expression for the QTR τ given by

τ := 1

η‖TN‖2 (85)

where η is a constant (controlling parameter for the QTR).
The different choices of η are considered in the numerical
simulations, as the ideal value of the τ is often unknown. For
improper choice of QTR, we have seen the estimated spec-
trum. deviates from the true spectrum estimated classically.
In Fig. 6, we have shown the normalized eigenvalues for

a Toeplitz matrix of dimension 8× 8 with elements taken
from a normal distribution. For τ1, τ2, and τ3, the values of η
are taken as 2, 1, and 0.1 respectively, and ‖TN‖2 = 1. Here,
the estimated spectrum (using the proposed Algorithm 1) has

FIGURE 7. Complexity for the standard Hamiltonian simulation and the
structured Hamiltonian simulation.

deviated significantly from the true eigenvalues for different
values of the QTR. Here, we have seen the estimated
eigenvalues are closest to the true eigenvalues of the Toeplitz
matrix for the parameter τ1 as compared to τ2 and τ3.

C. COMPARISON OF COMPUTATIONAL GATE-OPERATION
COMPLEXITY
An empirical simulation of gate-operation complexity of
the proposed structured Hamiltonian simulation as given
in (78) in comparison with standard Hamiltonian simula-
tion is shown in Fig. 7. Here, the term ω is taken as 4
approximately, τ = 0.48, ‖T‖max = 1 and the simulation
error is taken to be εT = 0.01. In this plot, the computa-
tional complexity between the proposedmethod and standard
Hamiltonian simulation is computed for different sizes of
inputs nq = log2(N), where N × N is the dimension of the
Hamiltonian matrix. As N grows, the structured Hamiltonian
simulation shows significant complexity improvement as
compared to standard Hamiltonian simulation. For a matrix
dimension of 210 × 210, the proposed structuredHamiltonian
simulation-based spectrum estimation algorithm takes 468
gate operations approximately, whereas the standard Hamil-
tonian simulation takes 1400 gate operations approximately.
The proposed framework enhances about 66.57% operation
complexity advantage for a qubit size of 10. Hence, em-
bedding a Toeplitz-structured Hamiltonian in the simulation
shows efficient quantum operations and reduced quantum
circuit complexity.
The gate-operation complexity in the circulant approxima-

tion method as shown in Algorithm 2 is given in Fig. 8 and
compared with the complexity of the standard Hamiltonian
method, as well as the Toeplitz-structured Hamiltonian sim-
ulation method proposed in Algorithm 1. The AQFT-based
approximation method takes the least quantum gate opera-
tions in comparison with the other methods, as it surpasses
the requirement of Hamiltonian simulation and directly uses
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FIGURE 8. Complexity of eigenvalue estimation of a Hamiltonian TN
with a different quantum framework.

FIGURE 9. Normalized eigenvalues for the TMRA problem using the
classical and proposed quantum algorithm.

the QFT (which takes lesser quantum gates than the Hamil-
tonian simulation).
For an input qubit size of nq = 10, and matrix dimen-

sion of 1024× 1024, the required quantum gate opera-
tions in the circulant approximation method is 199 approxi-
mately, whereas the Toeplitz-structured method and the stan-
dard Hamiltonian simulation method take 468 and 1400
operations, respectively. Hence, the circulant approxima-
tion method achieves more complexity efficiency of approx-
imately 57.48% than the Toeplitz-structured Hamiltonian
simulation, and about 85.79% than the standard Hamiltonian
simulation, at the cost of approximation error.

D. COMPARISON OF ESTIMATED SPECTRUM IN ARRAY
PROCESSING
In Fig. 9, we show the estimated spectrum for a Hermi-
tian Toeplitz matrix using the classical TMRA approach

FIGURE 10. Probability of error (Pe) with SNR.

and proposed quantum Algorithm 1. The parameters taken
in the simulation are given in Table 2. We take a simula-
tion framework with sensor (antenna) size of M = 16 uni-
formly distributed with the distance between elements be λ

2
with λ = 3.7 mm considering a transmission frequency of
80 GHz. We have kept the signal power to be 0.5 W for a
sinusoidal signal, and the standard deviation of the Gaussian
additive noise to be 0.01. We have taken ten-objects in front
of the receiver whose angular positions θ can be uniformly
distributed within (−π2 , π2 ). We took 5000 simulations to
take an estimate of the Hermitian Toeplitz matrix T̂y for the
TMRA problem in our setting. We have found that l2 and
Frobenius norm of the estimated matrix is approximately
‖T̂y‖2 = 1.0087, and ‖T̂y‖F = 1.99, respectively.

In the quantum simulation of matrix T̂y, we take QTR =
0.48 with preparing the unitary operator exp(−iT̂yτ ). For
computing the QTR, we have used expression (85) with
‖T̂y‖2 = 1.0087. We have simulated the quantum algorithm
on a classical computer due to quantum resource limitations.
In Fig. 9, the (normalized) eigenvalues for matrix T̂y com-

puted by classical method and the proposed quantum Algo-
rithm 1 is shown. These two methods have an almost simi-
lar eigenvalue spectrum. We have seen that the mean abso-
lute error in spectrum estimation between these methods is
approximately 3× 10−3.

In Fig. 10, we have shown a comparison plot for the prob-
ability error in detecting objects using the classical and quan-
tum algorithms. For the source detection in array processing,
we have followed the QA-SDA algorithm as shown in [59]
using the estimated Toeplitz matrix T̂y. We have varied the
SNR and kept all other parameters the same as Table 2.
The probability of error (Pe) at an SNR of −11 dB for the
classical TMRA approach is 0.23 approximately, whereas
the Pe = 0.08 for the proposed quantum approach. The error
probability decreases at a higher SNR for both algorithms.
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FIGURE 11. Histogram of quantum measurement for the estimation of eigenvalues on an IBM Statevector quantum machine. (a) Probability of getting
the second principal eigenvalue. (b) Probability of getting the minimum eigenvalue.

TABLE 3. Parameters on IBM Simulator

In comparison with the classical TMRA approach, we have
seen that the error probability Pe due to missed detecting
objects for the proposed algorithm is improved for the DoA
estimation of multiple objects.

E. SIMULATION OF THE PROPOSED ALGORITHM ON IBM
QUANTUM SIMULATOR
We have simulated a small-scale experiment for the eigen-
value estimation of a Toeplitz matrix (TN with N = 16 gen-
erated using Table 2) on an IBM real-time quantum simulator
platform with QISKIT script. Here, we are using a normal-
ized Hermitian Toeplitz matrix and the highest eigenvalue
is 1 (see Fig. 9). Hence, we are computing the second prin-
cipal eigenvalue and the minimum eigenvalue (which are
double numbers) to see the precision in the estimated eigen-
values. In Table 3, we have given the parameters for the quan-
tum simulation on an IBM quantum computer as follows.
The circuit implementation for both applications is given in
Fig. 12. Here, we have used six control qubits, one target
quantum register, and six classical register, and we have per-
formed the simulation 105 times to get the histogram. We
kept our measurement bases with 6-bit binary representation
and obtained our result up to 4-b precision. The histogram
of eigenstate probability for the second principal eigenvalue

is shown in Fig. 11(a), and the histogram corresponding to
the minimum eigenvalue state is shown in Fig. 11(b). We
have run the experiment on an IBM real-time Statevector
quantum machine for 105 times and counted the number of
repetitions of every computational basis to get the probability
of occurrence. The estimated eigenvalue corresponds to the
measurement basis is the one that has the highest probability
of occurrence, given by

λ̂ = min
‖φ‖2=1

TN‖φ‖2

= Ndec

2nq
(86)

where Ndec denotes the decimal value of the binary string
of the measurement basis (having the highest probability)
and nq is the number of ancillary qubits (here, nq = 6).
With the above (see Table 3) parameters and simulation
environment, we have obtained that the second estimated
eigenvalue is 0.5781 and the estimated minimum eigen-
value is 0.0469. The estimated eigenvalues are relatively
closer to the true eigenvalues (which are 0.5748, and 0.0187
respectively). However, with more qubit and quantum re-
sources, the error can be further minimized and the full ex-
periment (computation of the eigenvalue spectrum) may be
performed.

VIII. DATA AVAILABILITY FOR THE IMPLEMENTATION
OF THE ALGORITHM ON IBM QUANTUM QISKIT
The QEE circuit is implemented on an IBM quantum ma-
chine, as shown in Fig. 12. Here, we have used six quan-
tum registers as control registers, one quantum register for
eigenstate initialization, and six classical registers to store
the result. We have made an open-access QISKIT script for
this simulation as available on [60].
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FIGURE 12. Quantum circuit implemented on an IBM quantum machine for the eigenvalue estimation of a Toeplitz matrix. (a) Quantum circuit
implemented on an IBM “Statevector” quantum simulator for finding the second principal eigenvalue. (b) Quantum circuit implemented on an IBM
“Statevector” quantum simulator for finding the minimum eigenvalue.

IX. CONCLUSION
In this article, we have proposed a Toeplitz-structured
quantum Hamiltonian simulation framework having a sig-
nificant gate-operation complexity advantage for spec-
trum estimation problems. We have proposed two algo-
rithms, viz., one using a proposed quantum Jordan-gate-
based Hamiltonian simulation, and another using a circu-
lant approximation-based QFT approach. The proposed al-
gorithms can help simulate many classical signal processing
applications faster where Toeplitz and circulant matrices are
relevant. We have devised the bound on the error considering
large-dimensional systems with practical assumptions. An
application of the proposed framework is shown for TMRA
in array signal processing. Looking forward, the proposed
low-complex algorithms for structured Hamiltonian are
promising avenues to explore shortly for many large-scale
applications.
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