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ABSTRACT It is important for the design of a distributed quantum circuit (DQC) to minimize the com-
munication cost in k-way balanced partitioning. In this article, given an original quantum circuit (QC), a
partitioning number k, the maximum capacity δ inside each partition, and the maximum size tolerance γ
between two partitions, a new k-way (δ, γ )-balanced partitioning problem can be formulated as a k-way
partitioning problem under the capacity constraint δ and the size-tolerance constraint γ , and a fuzzy-based
partitioning algorithm can be proposed to minimize the communication cost in k-way (δ, γ )-balanced
partitioning for a DQC design. First, an edge-weighted connection graph can be constructed from the gates
in a given QC. Furthermore, based on the estimation of the probabilistic connection strength between two
vertices in the connection graph and the initial k-way partitioning result in the connection graph, the fuzzy
memberships on k clusters can be generated in fuzzy k-means graph clustering. Finally, based on the fuzzy
memberships on k clusters in the connection graph, the maximum capacity inside each partition, and the
maximum size tolerance between two partitions, all the vertices in the connection graph can be assigned
onto k partitions to minimize the communication cost in k-way (δ, γ )-balanced partitioning. Compared with
Daei’s recursive Kernighan–Lin-based algorithm in four-way balanced partitioning, the experimental results
show that the proposed fuzzy-based partitioning algorithmwith three size-tolerance constraints γ = 1, γ = 2,
and γ = 3 can use 58.3%, 61.3%, and 64.5% of CPU time to reduce 16.1%, 21.2%, and 24.6% of the
communication cost for the eight tested circuits on the average, respectively. Compared with the modified
partitioning algorithm from Dadkhah’s partitioning algorithm in three-way, four-way, or five-way balanced
partitioning, the experimental results show that the proposed fuzzy-based partitioning algorithm with the
size-tolerance constraint γ = 3 can use 35.0% of CPU time to reduce 11.1% of the communication cost for
the eight tested circuits on the average, respectively.

INDEX TERMS Balanced partitioning, communication cost, distributed quantum circuit (DQC), fuzzy k-
means graph clustering (FKGC).

I. INTRODUCTION
Quantum computing [1] can use the principles of quantum
mechanics to efficiently solve some specific problems by
designing quantum algorithms. It is known that the quan-
tum algorithms can be described by using quantum circuits
(QCs) [2], [3] on an ideal quantum computer. To execute
some large-scale quantum algorithms on a quantum com-
puter, many physical qubits must be required in the QCs. Due
to the technology constraints, the number of the available
quantum bits (qubits) in a fabricated quantum device [4] is
limited. Hence, the existence of these technology constraints
will lead to the emergence of distributed quantum computing.
In the design of a distributed quantum circuit (DQC), a set
of smaller scale quantum devices must be constructed for

large-scale quantum algorithms, and there can be some com-
munication methods among smaller scale quantum devices.
In the concept of using DQC designs, Cleve and Buhrman

[5] first studied the quantum communication among remote
quantum devices. As the input data are distributed among
remote quantum devices, quantum entanglement can be used
for communication. Furthermore, Cirac et al. [6] showed that
the use of maximally entangled states can be advantageous
for a large number of quantum devices using ideal quantum
channels. In addition, Beals et al. [7] also showed that each
QC can be converted into a DQC design in a distributed
quantum system.
For communication in DQC designs, Yepez [8] first pre-

sented a distributed architecture using two communication
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methods. Basically, each qubit can be entangled to any num-
ber of qubits in quantum communication, and all the re-
mote quantum devices can be connected by a set of clas-
sical channels in classical communication. In addition, Lo
[9] examined the cost of the classical communication on
DQC designs. Furthermore, Caleffi et al. [10], [11] stated
that the communication among remote quantum devices can
become faster by using the quantum Internet. In the design of
the quantum Internet, teleportation can be used as the main
strategy for information transmission.
For two-way partitioning in DQC designs, Yimsiriwattana

and Lomonaco [12] first proposed the distributed model of
Shor’s algorithm [13]. In the distributed model, the global
gates can be used to implement the DQC design, and tele-
portation can be used as the communication method. How-
ever, the partitioning of the used qubits cannot be determined
to minimize the number of teleportations in the distributed
model. Furthermore, based on the teleportation for com-
munication, Van Meter et al. [14] proposed the distributed
design of a two-qubit Vedral–Barenco–Ekert (VBE) carry-
ripple adder onto two equal quantum devices. However, the
teleportation cost in the distributed design can still be higher.
Next, Zomorodi-Moghadam et al. [15] proposed a heuristic
algorithm to reduce the communication cost between two
partitions inside a DQC design. By finding the execution
order of two-qubit controlled-not (cnot) gates, the total
number of teleportations between the two partitions can be
reduced to minimize the teleportation cost between two dis-
tributed devices. In addition, Houshmand et al. [16] proposed
an evolutionary algorithm, and Dadkhah et al. [17] proposed
a genetic algorithm to minimize the communication cost be-
tween two partitions inside a DQC design. Recently, based
on the connectivity matrix model of QCs, Ghodsollahee et al.
[18] further proposed a two-phase algorithm to minimize the
communication cost between two partitions inside a DQC
design. However, these proposed algorithms do not consider
the multiple-way partitioning on the minimization of the
communication cost in a DQC design.
In multiple-way partitioning for a DQC design, Andrés-

Martínez and Heunen [19] presented an automated method
to distribute a QC over multiple devices. However, the
minimization of the communication cost does not need
to be considered for multiple partitions in a DQC de-
sign, and the assignment of the global gates in differ-
ent partitions does not need to be further discussed in
the proposed algorithm. Based on the construction of the
bipartite graph for a given QC, Davarzani et al. [20]
proposed a dynamic programming (DP) algorithm to parti-
tion the bipartite graph into some low-capacity QCs. How-
ever, any QC cannot be guaranteed to be presented as a bipar-
tite graph, and the DP algorithm takes more execution time
in multiple-way partitioning. Additionally, Daei et al. [21]
also proposed an iterative Kernighan–Lin-based (KL-based)
algorithm in a DQC design from amonolithic QC. In the pro-
posed algorithm, the communication cost between multiple
partitions inside a DQC design can be minimized. However,

based on the utilization of the KL algorithm, the proposed
recursive KL-based algorithm can only be used on the con-
strained number of partitions in a DQC design. Recently,
based on the reordering result of a QC for the improvement
of the execution time and the construction of a graph mode
for a QC, Dadkhah et al. [22] proposed the genetic algorithm
and the modified tabu-search algorithm to partition the graph
model to obtain a DQC. However, the genetic algorithm and
the modified tabu-search algorithm take more execution time
in multiple-way partitioning.
The contributions of this article can be summarized as

follows.

1) In a DQC design, a new k-way balanced partition-
ing (KBP) problem with two adjustable parameters
on maximum capacity and maximum size tolerance
can be formatted. Given an original QC, a partitioning
number k, the maximum capacity δ inside each par-
tition, and the maximum size tolerance γ among two
partitions, an edge-weighted connection graph can be
constructed from the gates in the given QC for k-way
(δ, γ )-balanced partitioning under the capacity con-
straint δ and the size-tolerance constraint γ .

2) Based on the edge connections in an edge-weighted
connection graph and the given partitioning number
k, the probabilistic connection strength between two
vertices in the connection graph can be estimated.
Furthermore, the initial k-way partitioning result in the
connection graph can be obtained by using a bottom-up
clustering algorithm. Finally, based on the definition
of the clustering distance between two vertices in the
connection graph, the fuzzy memberships on k clus-
ters in the connection graph can be generated in fuzzy
k-means graph clustering (FKGC).

3) Based on the fuzzy memberships on k clusters in the
connection graph, the capacity constraint δ inside each
partition, and the size-tolerance constraint γ between
two partitions, all the vertices in the connection graph
can be assigned onto k partitions to minimize the com-
munication cost in k-way (δ, γ )-balanced partitioning
for a DQC design.

The rest of this article is organized as follows. Section II
contains the motivation of the KBP in a DQC design and the
formulation of the k-way (δ, γ )-balanced partitioning prob-
lem under the capacity constraint δ and the size-tolerance
constraint γ in a DQC design. In Section III, based on the
construction of an edge-weighted connection graph, the com-
putation of the probabilistic connection strength between two
vertices in the connection graph, the design of the FKGC, and
the assignment of all the vertices in the connection graph onto
k partitions, a fuzzy-based partitioning algorithm can be pro-
posed to partition an original QC into k quantum subcircuits
while minimizing the communication cost under the capacity
constraint δ and the size-tolerance constraint γ in a DQC
design. In Section IV, the experimental results in the pro-
posed fuzzy-based partitioning algorithm can be listed and
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compared with some published algorithms in k-way (δ, γ )-
balanced partitioning for a DQC design. Finally, Section V
concludes this article.

II. MOTIVATION AND PROBLEM FORMULATION
In quantum computing, it is necessary for the solution of a
larger problem to use more quantum bits (qubits) inside a
QC. Based on the superposition principle in QCs, the state
|ψ〉 of a qubit can be represented by a unit vector in a Hilbert
space labeled as α|0〉+ β |1〉, where |0〉 and |1〉 are the basis of
space and α and β are two complex coefficients establishing
|α|2 + |β |2 = 1.

In general, a QC can consist of some quantum gates con-
nected by a set of quantum wires for moving quantum data.
Basically, a t-qubit quantum gateU can be defined and repre-
sented as a 2t × 2t matrix. By performing a t-qubit quantum
gate U on t quantum states, |ψ1〉, |ψ2〉,…, and |ψ t〉, the
outcome of the quantum gate U can be represented as the
state U(|ψ1〉, |ψ2〉,…,|ψ t〉). In addition, the controlled gate,
controlled-U, with s-controlled qubits and t-qubit quantum
gate U, operating on (s+t)-qubits, can be treated as a (s+t)-
qubit gate. For example, the 1-controlled gate, cnot, with
one controlled qubit, and 1-qubit quantum gate, not, can be
treated as a two-qubit gate.
Due to the limited capacity inside a QC in quantum com-

puting technologies, a DQC design consisting of many small
QCs on remote locations can be connected together to coop-
eratively solve a larger problem using the available capacities
inside all the smaller QCs. In a DQC design, a local gate can
be defined as a quantum gate where all qubits are located
inside the same QC. On the other hand, a global gate can be
defined as a quantum gate where all qubits are located inside
some remote QCs. To implement the functionality of an orig-
inal QC, the remote QCs in a DQC designmust communicate
with each other by sending the necessary qubits’ information
to each other using a quantum channel via teleportation.
Due to the limited capacity inside a small QC, the maxi-

mum capacity inside each small QC must be treated as the
capacity constraint of one partitioned QC in a DQC design.
Basically, the state of the controlled qubits inside some re-
mote QCs must be sent to the operating qubit inside the other
remote QC by communicating the qubits using teleportation.
Since teleportation in a DQC design is a costly operation, the
communication cost must be minimized in the partitioning
process of a DQC design, that is, the number of the global
gatesmust beminimized in the partitioning process of a DQC
design. Additionally, to make use of the computing ability
of the small QCs for a larger problem in a DQC design, the
balance degree of the available partitions must be considered
in a DQC design. Hence, the maximum size difference be-
tween two partitioned QCs in a DQC design must be treated
as the size-tolerance constraint of all the partitions in a DQC
design. Clearly, the smaller the maximum size difference be-
tween two partitioned QCs is, the higher the balance degree
of a DQC design is. However, the communication cost in a

DQC design will become more serious due to the higher bal-
ance degree of a DQC design. Under the acceptable balance
degree of a DQC design, the allowable tolerant difference
between two partitioned QCs in a DQC design can be used
to reduce the communication cost in a DQC design.

A. MOTIVATION
In general, a given circuit can easily be bipartitioned into
two balanced subcircuits in the KL algorithm. Hence, an
original QC in a DQC design can be recursively partitioned
by using the KL-based algorithm. However, the recursive
KL-based algorithm can only partition an original QC into
smaller QCs inside some constrained partitions, that is, the
number of the partitions can be only constrained as 2p in the
recursive KL-based partitioning of a DQC design, where p is
the number of recursions. Hence, it is necessary for a DQC
design to consider the arbitrary partitions in the multiple-way
partitioning of a DQC design.
On the other hand, it is known that the KL-based

algorithm is a two-way balanced partitioning algorithm.
Hence, the recursive KL-based algorithm is a multiple-way
strictly balanced partitioning algorithm, that is, the size dif-
ference between two partitions is not larger than 1 in the
recursive KL-based partitioning. Due to the strict size tol-
erance in the recursive KL-based partitioning, the strict bal-
ance will lead to the larger communication cost in a DQC
design. If the acceptable size tolerance is considered in the
multiple-way balanced partitioning, the communication cost
can be further reduced in a DQC design.

B. PROBLEM FORMULATION
Initially, it is assumed that the communication cost between
one controlled qubit and one operating qubit inside one gate
can be set as 1. Given an original QC with n qubits q1, q2,…,
qn and m gates U1, U2,…, Um, a partitioning number k,
the maximum capacity δ inside a partitioned QC, and the
maximum size tolerance γ among two partitions, the k-way
(δ, γ )-balanced partitioning can be formulated to partition
the original QC into k partitions to minimize the communi-
cation cost among the k partitions with satisfying the capac-
ity constraint δ inside each partition and the size-tolerance
constraint γ between two partitions in a DQC design.
For the specification of an original QCwith eight qubits q1,

q2,…, q8 and 23 gatesU1,U2,…,U23, in Fig. 1(a), it is clear
that the two gates U19 and U22 are 2-controlled gates and the
other gates are 1-controlled gates. If the partitioning number
k is given as 3, the maximum capacity δ is given as 4, and
the maximum size tolerance γ is given as 2, then 1) the set
of eight quantum bits {q1, q2, q3, q4, q5, q6, q7, and q8} can
be partitioned into three partitions, {q1, q2, q5, q6}, {q3, q7},
and {q4, q8} in the three-way (4, 2)-balanced partitioning and
2) the communication cost can be minimized as 10 in the
DQC design. As illustrated in Fig. 1(b), it is clear that the
communication in the three-way (4, 2)-balanced partitioning
can be placed on the nine global gates U1, U2, U6, U7, U11,
U14, U15, U19, and U22.
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FIGURE 1. Balanced partitioning for an original QC with 8 qubits and 23 quantum gates in a DQC design. (a) Original QC with 8 qubits and 23 quantum
gates. (b) Three-way (4, 2)-balanced partitioning in a DQC design. (c) Three-way (3, 1)-balanced partitioning in a DQC design.

Similarly, if the partitioning number k is given as 3, the
maximum capacity δ is given as 3, and the maximum size
tolerance γ is given as 1, then 1) the set of eight quantum
bits {q1, q2, q3, q4, q5, q6, q7, and q8} can be partitioned into
three partitions, {q1, q2, q5}, {q3, q6, q7}, and {q4, q8} in the
three-way (3, 1)-balanced partitioning and 2) the communi-
cation cost can be minimized as 12 in the DQC design. As
illustrated in Fig. 1(c), it is clear that the communications in
the three-way (3, 1)-balanced partitioning can be placed on
the 11 global gates, U1, U2, U3, U6, U7, U11, U14, U15, U8,
U19, and U20.

III. BALANCED PARTITIONING UNDER CAPACITY AND
SIZE-TOLERANCE CONSTRAINTS IN DQCS
Given an original QCwith n qubits andm gates, a partitioning
number k, the maximum capacity δ inside each partition, and
themaximum size tolerance γ among two partitions, a fuzzy-
based partitioning algorithm can be proposed tominimize the
communication cost in k-way (δ, γ )-balanced partitioning

under the capacity constraint δ and the size-tolerance con-
straint γ , and the design flow of the proposed algorithm is
shown in Fig. 2.

In the proposed algorithm, the process of partitioning an
original QC into k partitions in k-way (δ, γ )-balanced par-
titioning can be divided into three sequential steps: con-
struction of edge-weighted connection graph, generation of
fuzzy matrix in FKGC, and vertex assignment in k-way (δ,
γ )-balanced partitioning.
For the construction of an edge-weighted connection

graph, based on the communication relation inside the gates
in a given QC, an edge-weighted connection graph can be
constructed. For the generation of a fuzzy matrix in FKGC,
first, based on the partitioning number k and the edge con-
nections in the connection graph, the connection strength be-
tween two vertices in the connection graph can be estimated.
Furthermore, based on the edge connections in the connec-
tion graph, the initial k-way partitioning in the connection
graph can be constructed by using a bottom-up clustering
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FIGURE 2. Design flow of the proposed partitioning algorithm in k-way
(δ, γ)-balanced partitioning.

algorithm. Finally, based on the definition of the clustering
distance between two vertices in the connection graph, the
fuzzy memberships on k clusters can be generated in FKGC.
For the vertex assignment in k-way (δ, γ )-balanced partition-
ing, based on the maximum capacity δ inside each partition,
the maximum size tolerance γ between two partitions, and
the fuzzy memberships on k clusters, the vertices in the con-
nection graph can be assigned onto k partitions under the
capacity constraint δ and the size-tolerance constraint γ .

A. CONSTRUCTION OF EDGE-WEIGHTED CONNECTION
GRAPH
Given an original QC with n qubits q1, q2,…, qn and m gates
U1, U2,…, Um, initially, it is assumed that there is only one
operating qubit inside each gate in a given QC. Basically,
the communication relation can be defined as the relation
between a controlled qubit and its operating qubit inside one
gate. It is known that the communication between two qubits
is permitted to be bidirectional in a DQC design. Hence, any
edge in a connection graph is undirected. In the assignment
of a graph edge, the communication cost between two qubits
inside a global gate can be set as 1. In contrast, the commu-
nication cost between two qubits inside a local gate can be
set as 0. Based on any available qubit in a given QC as one
vertex and the communication relation between 1-controlled
qubit and its operating qubit inside one gate in a given QC

FIGURE 3. Construction of an undirected edge-weighted connection
graph for a given QC with 8 qubits and 23 gates.

as one undirected edge, an undirected edge-weighted con-
nection graph Gc(Vc, Ec) can be constructed as follows: a
vertex vj inVc represents one available qubit qj, 1≤ j≤ n, and
an undirected edge ej,l in Ec represents the communication
relation between 1-controlled qubit qj and its operating qubit
ql inside one gateUi, 1≤ i≤m, 1≤ j, l≤ n, j� l. In addition,
the weight of the undirected edge ej,l in Ec represents the
number of gates with the communication relation between
the two qubits qj and ql.
Refer to the given QC with eight qubits q1, q2,…, q8 and

23 gates U1, U2,…, U23, in Fig. 1(a), based on the eight
qubits in the QC as 8 vertices and the 16 communication
relations inside 23 gates in the QC as 16 undirected edges,
an undirected edge-weighted connection graph Gc(Vc, Ec)
can be constructed, where Vc={v1, v2, v3, v4, v5, v6, v7, v8
} and Ec={e1,2, e1,3, e1,5, e1,6, e1,8, e2,4, e2,5, e2,6, e3,4,
e3,7, e4,5, e4,6, e4,8, e5,7, e6,7, e7,8}, as illustrated in Fig. 3.
In addition, the weights of the 16 undirected edges can be
set as w(e1,2) = 1, w(e1,3) = 2, w(e1,5) = 2, w(e1,6) = 2,
w(e1,8) = 1, w(e2,4) = 1, w(e2,5) = 2, w(e2,6) = 1,
w(e3,4) = 1, w(e3,7) = 4, w(e4,5) = 1, w(e4,6) = 1,
w(e4,8) = 3, w(e5,7) = 1, w(e6,7) = 1, and w(e7,8) = 1,
respectively.

B. GENERATION OF FUZZY MATRIX IN FKGC
To our knowledge, FKGC on fuzzy c-means clustering has
been used for graph bisection and two-way circuit partition-
ing [23], [24], k-way circuit partitioning [25], partitioning-
based placement [26], and layer-aware via minimization
[27]. However, the fuzzy matrix in FKGC seriously depends
on the definition of the clustering distance between two ver-
tices in a corresponding graph. Due to the definition of the
clustering distances in different applications, it is clear that
the FKGC in circuit partitioning [23], [24], [25], placement
[26], or layer-aware via minimization [27] cannot be directly
used in multiple-way balanced partitioning. Hence, it is nec-
essary for the development of multiple-way balanced par-
titioning in a DQC design to define the accurate clustering
distance in FKGC.
For FKGC in multiple-way balanced partitioning, it is

known that the construction of an initial k-way partitioning in
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the connection graph, the definition of the clustering distance
between two vertices in the connection graph, the formula-
tion of one error function, and the selection of an acceptable
error εmust be considered. To generate the final fuzzymatrix
of a given connection graph in FKGC, the generation process
can be further divided into three sequential steps: estimation
of probabilistic connection strength, initial k-way partition-
ing via bottom-up clustering, and FKGC via probabilistic
connection strength.

1) ESTIMATION OF PROBABILISTIC CONNECTION
STRENGTH
Given an edge-weighted connection graph Gc, there may be
some connection paths between any pair of two vertices vi
and vj. If the vertices vi and vj are divided into two different
groups, all the connection paths of the vertices vi and vj must
be fully cut. If one edge on any connection path between the
vertices vi and vj is cut, the weight sum of all the cut edges
between the vertices vi and vj can be treated as the connection
strength of the vertices vi and vj for the cut edges. Since one
cut edge on any connection path between the vertices vi and
vj is randomly selected, all the connection strengths of the
vertices vi and vj can be obtained for all the possible cut
edges. To measure the connection strength of the vertices vi
and vj, the concept of the probabilistic connection strength of
the vertices vi and vj can be introduced by using the uniform
distribution in probability theory. Hence, the estimation of
the probabilistic connection strength between two vertices in
the connection graph can be divided into two following steps:
extraction of estimation paths and computation of probabilis-
tic connection strength.
For the extraction of the estimation paths in an edge-

weighted connection graph, given any pair of two vertices vi
and vj in an edge-weighted connection graphGc, one iterative
extraction process can be proposed to find a feasible set of
estimation paths between the vertices vi and vj in the graph
Gc. In the iterative extraction process, first, the maximum-
weight shortest path pi, j1 between the vertices vi and vj can be
found and extracted from the graphGc as an estimation path.
Basically, the vertices, excluding the vertices vi and vj, on the
path pi, j1 can be defined as a set of extracted vertices on the

path pi, j1 . After extracting the path pi, j1 , the extracted vertices

and edges on the path pi, j1 and the edges connecting to the
extracted vertices must be further deleted from the graph
Gc, and the iterative extraction process can continue for the
extraction of the next estimation path pi, j2 in the remaining
graph Gc. Until there is no path between the vertices vi and
vj in the remaining graph Gc, the iterative extraction process
will stop. As a result, a set of estimation paths between the
vertices vi and vj can be extracted for the computation of the
probabilistic partitioning cut between the vertices vi and vj in
the graph Gc.
Refer to the two vertices v1 and v6 in the connection graph

Gc, in Fig. 3, first, the maximum-weight shortest path p1,61 ,
including the edge e1,6, can be extracted from the graph Gc.

FIGURE 4. Extraction of estimation paths in an edge-weighted
connection graph. (a) Extraction of one direct path and three indirect
paths between two vertices v1 and v6. (b) Extraction of four indirect
paths between two vertices v2 and v7.

After extracting the path p1,61 , the edge e1,6 must be deleted
from the graphGc. Furthermore, the maximum-weight short-
est path p1,62 , including the two edges e1,2 and e2,6, can be
extracted from the remaining graph Gc. After extracting the
path p1,62 , the vertex v2, the two edges e1,2 and e2,6, and the
two edges e2,4 and e2,5, connecting to the vertex v2, must be
deleted from the remaining graph Gc. Next, the maximum-
weight shortest path p1,63 , including the three edges e1,3, e3,7,
and e6,7, can be extracted from the remaining graph Gc.
After extracting the path p1,63 , the two vertices v3 and v7,
the three edges e1,3, e3,7, and e6,7, the edge e3,4 connecting
to the vertex v3, and the two edges e5,7 and e7,8 connecting to
the vertex v7 must be deleted from the remaining graph Gc.
Finally, the maximum-weight shortest path p1,64 , including
the three edges e1,8, e4,6, and e4,8, can be extracted from the
remaining graph Gc. After extracting the path p1,64 , the two
vertices v4 and v8, the three edges e1,8, e4,6, and e4,8, and
the edge e4,5 connecting to the vertex v4 must be deleted
from the remaining graph Gc. As a result, the four estima-
tion paths p1,61 , p1,62 , p1,63 , and p1,64 between the vertices v1
and v6 can be extracted from the graph Gc, as illustrated in
Fig. 4(a).

Similarly, refer to the two vertices v2 and v7 in the connec-
tion graph Gc, in Fig. 3, first, the maximum-weight shortest
path p2,71 , including the two edges e2,5 and e5,7, can be ex-

tracted from the graph Gc. After extracting the path p
2,7
1 , the

vertex v5, the two edges e2,5 and e5,7, and the two edges e1,5
and e4,5 connecting to the vertex v5 must be deleted from the
graph Gc. Furthermore, the maximum-weight shortest path
p2,72 , including the two edges e2,6 and e6,7, can be extracted

from the remaining graph Gc. After extracting the path p2,72 ,
the vertex v6, the two edges e2,6 and e6,7, and the two edges
e1,6 and e4,6 connecting to the vertex v6 must be deleted
from the remaining graph Gc. Next, the maximum-weight
shortest path p2,73 , including the three edges e1,2, e1,3, and
e3,7, can be extracted from the remaining graph Gc. After
extracting the path p2,73 , the two vertices v1 and v3, the three
edges e1,2, e1,3, and e3,7, the three edges e1,5, e1,6, and e1,8
connecting to the vertex v1, and the edge e3,4 connecting to
the vertex v3 must be deleted from the remaining graph Gc.
Finally, the maximum-weight shortest path p2,74 , including
the three edges e2,4, e4,8, and e7,8, can be extracted from the
remaining graph Gc. After extracting the path p2,74 , the two
vertices v4 and v8 and the three edges e2,4, e4,8, and e7,8 must
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be deleted from the remaining graph Gc. As a result, the four
estimation paths p2,71 , p2,72 , p2,73 , and p2,74 between the ver-
tices v2 and v7 can be extracted from the graph Gc, as illus-
trated in Fig. 4(b).
For the computation of the probabilistic connection

strength between the vertices vi and vj in an edge-weighted
connection graph Gc given a set of r estimation paths pi, j1 ,

pi, j2 ,…, pi, jr between the vertices vi and vj, it is assumed that

there are nh edges on the hth estimation path pi, jh , and there
are nh weightswh,1,wh,2,…,wh nh on the nh edges, 1≤ h≤ r.
If there is no estimation path between the vertices vi and vj,
the probabilistic partitioning cut ppci,j between the vertices vi
and vj can be set as 0. On the other hand, if the vertex vi is the
same as the vertex vj, the probabilistic partitioning cut ppci,j
between the vertices vi and vj can be set as ∞. Based on the
uniform distribution in probability theory, the probabilistic
partitioning cut ppci,j between the vertices vi and vj on the r
estimation paths pi, j1 , pi, j2 ,…, pi, jr can be further computed
and set as

ppci, j =

r∑
h=1

[
r∏

s=1,s �=h
ns

nh∑
t=1

wh,t

]
r∏

h=1
nh

, if r > 0 and vi �= v j

= 0, if r = 0 and vi �= v j

= ∞, if vi = v j.

As a result, the matrixMPPC representing the probabilistic
partitioning cuts in the graph Gc can be obtained.

It is known that the larger the probabilistic partitioning cut
between two vertices is, the larger the connection strength
between two vertices is. To estimate the probabilistic connec-
tion strength between the vertices vi and vj given the upper
bound of the maximum cut UMC as the weight sum of all the
edges in the graph Gc, the probabilistic connection strength
pcsi,j between the vertices vi and vj in the graph Gc can be
defined as the ration between the probabilistic partitioning
cut between the vertices vi and vj, and the upper bound of
the maximum cut in the graph Gc. If the vertex vi is the same
as the vertex vj, the probabilistic connection strength pcsi,j
between the vertices vi and vj can be set as 1. If the vertex
vi is different from the vertex vj, the probabilistic connection
strength pcsi,j between the vertices vi and vj can be set as
ppci,j/UMC. As a result, the matrix MPCS, representing the
probabilistic connection strength in the graph Gc, can be
obtained.
Refer to the edge-weighted connection graph Gc in Fig. 3,

based on the extraction of the estimation paths between two
vertices in the graph Gc, the matrix MPPC, representing the
probabilistic partitioning cuts in the graph Gc, can be ob-
tained, as illustrated in Fig. 5(a). Based on the edge weights
in the graph Gc, the upper bound of the maximum cut in
the graph Gc can be obtained as 23. Furthermore, based on
the matrix representing the probabilistic partitioning cuts in
the graphGc, the matrixMPCS, representing the probabilistic

FIGURE 5. Estimation of probabilistic connection strength in an
edge-weighted connection graph. (a) Matrix MPPC representing
probabilistic partitioning cuts in an edge-weighted connection graph.
(b) Matrix MPCS representing probabilistic connection strength in an
edge-weighted connection graph.

connection strength in the graph Gc, can be obtained, as
illustrated in Fig. 5(b).

2) INITIAL K-WAY PARTITIONING VIA BOTTOM-UP
CLUSTERING
Given an edge-weighted connection graph Gc (Vc, Ec),
Vc = {v1, v2,…, vn} and a partitioning number k, k-way
graph partitioning (KGP) can be defined by specifying the
vertices in Vc into k subsets v1, v2,…, Vk. Furthermore, the
KGP result can be represented by using k characteristic func-
tions ui: Vc –> {0, 1} for the ith vertex subset Vi, 1 ≤ i ≤ k,
as follows:

ui(v j ) =
{
0, if v j /∈ Vi
1, if v j ∈ Vi.

As a result, a partitioning matrix can be used to represent
the k characteristic functions for the result of the k partitions
in the graph Gc.
It is known that a better initial KGP result can reduce the

convergence time in FKGC. In FKGC, an initial KGP result
in the graph Gc can be constructed by using one iterative
bottom-up clustering process. Initially, each vertex vj in the
graph Gc can be treated as one partition Pj, 1 ≤ j ≤ n. If the
partition number is larger than k in the graph Gc, the edge
ei,j with the largest weight w(ei,j) in the graph Gc can be
selected and the two partitions Pi and Pj connected by using
the edge ei,j can be merged into one larger partition P(i,j).
After constructing the new partition P(i,j), the graph Gc must
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Algorithm 1: KGPBUC.
Input: An edge-weighted connection graph Gc with n
vertices;
A partitioning number k;
Output: A set of k subgraphs G1, G2,…, Gk for k
partitions;

Set an initial set of n subgraphs for n initial partitions
P1, P2, and Pn, where Pi = {vi}, 1 ≤ i ≤ n;
while (Partition number in Gc is larger than k)
Find one edge ei,j with the largest weight between
two partitions Pi and Pj in Gc;
Merge the two partitions Pi and Pj into one larger
partition P(i,j);
Modify the graph Gc by using the partition P(i,j) as
one new vertex and summing the weights on the
corresponding merged edges;

end while
return A set of k subgraphs G1, G2, …, Gk for k
partitions;

be modified by using the partition P(i,j) and summing the
weights on the corresponding merged edges. Furthermore,
the iterative clustering process will continue for the modified
graph Gc. Until the partition number is equal to k in the
modified graph Gc, the iterative clustering process will stop.
As a result, a partitioning matrixM0 can be used to represent
the result of the k partitions in the graph Gc for the initial
KGP result using in FKGC.
Given an edge-weighted connection graph Gc and a parti-

tioning number k, the KGP result can be obtained by running
the iterative bottom-up clustering algorithm, k-way graph
partitioning via bottom-up clustering (KGPBUC).
Refer to the edge-weighted connection graph Gc in Fig. 3,

if the partitioning number is given as 3, one iterative bottom-
up clustering process can be used to construct three partitions
in the graph Gc. Initially, the eight vertices in the graph
Gc can be set as eight initial partitions. As illustrated in
Fig. 6(a), in the first iteration, the vertices v3 and v7 rep-
resenting the two partitions P3 and P7 can be merged into
one new vertex (v3, v7), representing the merged partition
P(3, 7) in the modified graph Gc. In the second iteration, the
vertices v4 and v8, representing the two partitions P4 and
P8, can be merged into one new vertex (v4, v8), representing
the merged partition P(4, 8), in the modified graph Gc. In the
third iteration, the vertices v1 and (v3, v7), representing the
two partitions P1 and P(3, 7), can be merged into one new
vertex (v1, v3, v7), representing the merged partition P(1, 3, 7)
in the modified graph Gc. In the fourth iteration, the vertices
v6 and (v1, v3, v7), representing the two partitions P6 and
P(1, 3, 7), can be merged into one new vertex (v1, v3, v6, v7),
representing the merged partition P(1, 3, 6, 7) in the modified
graphGc. In the fifth iteration, the vertices (v4, v8) and (v1, v3,
v6, v7), representing the two partitions P(4, 8) and P(1, 3, 6, 7),
can be merged into one new vertex (v1, v3, v4, v6, v7, v8),

FIGURE 6. Construction of three-way graph partitioning in an
edge-weighted connection graph. (a) Three-way graph partitioning via
iterative bottom-up clustering. (b) Partitioning matrix for three-way
graph partitioning result.

representing the merged partition P(1, 3, 4, 6, 7, 8) in the modi-
fied graph Gc. As a result, the eight vertices in the graph Gc
can be partitioned into three partitions {v1, v3, v4, v6, v7, v8},
{v2}, and {v5}, and the partitioning cut can be obtained as
9 in three-way graph partitioning. After completing the it-
erative bottom-up clustering process, the partitioning matrix
M0, representing the result of the three partitions {v1, v3, v4,
v6, v7, v8}, {v2}, and {v5}, in the graph Gc can be used as
an initial partitioning result using in FKGC, as illustrated in
Fig. 6(b).

3) FKGC VIA PROBABILISTIC CONNECTION STRENGTH
Given an edge-weighted connection graphGc, the probabilis-
tic connection strength pcsi,j between two vertices vi and vj,
1 ≤ i, j ≤ n, in the graph Gc can be computed. Clearly, the
probabilistic connection strength pcsi,j between two vertices
vi and vj can further reflect the clustering distance di,j be-
tween two vertices vi and vj in the graph Gc. The larger the
probabilistic connection strength pcsi,j between two vertices
vi and vj in the graphGc is, the shorter the clustering distance
between two vertices vi and vj in the graphGc is. Based on the
probabilistic connection strength pcsi,j between two vertices
vi and vj, the clustering distance di,j between two vertices vi
and vj in the graph Gc can be defined as follows:

di, j =
⎧⎨
⎩

∞, if pcsi, j = 0
1

pcsi, j
, if 0 < pcsi, j < 1

0, if pcsi, j = 1.

Based on the concept of fuzzy c-means clustering on the
geometrical clustering distances, the FKGC in the graph Gc
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on the defined clustering distance di,j between two vertices
vi and vj, 1 ≤ i, j ≤ n, can be designed as follows. Similar to
the definition of the characteristic function for the ith vertex
subset Vi, 1 ≤ i ≤ k, in KGP, the characteristic function can
be defined as a fuzzy function ui: Vc –> [0, 1] for the ith
vertex set Vi, 1 ≤ i ≤ k, in FKGC. In KGP, the restricted
assignment of any vertex in the graph Gc onto one partition
may lead to a nonbalanced partitioning result. In contrast,
each vertex in the graph Gc can be specified by using the
degree of belonging to each partition in FKGC and the con-
cept of using the fuzzymemberships in FKGC can easily lead
to satisfy some specific size constraints. If there are k fuzzy
functions u1, u2,…, uk associated with the vertex setVc in the
graphGc, the partitioning result of each vertex vi in the vertex
set Vc can be represented by using the k fuzzy memberships
u1,i, u2,i,…, uk,i onto k clusters in FKGC. Hence, the main
purpose of partitioning the vertex set Vc in FKGC is to find
the k fuzzy memberships of each vertex in the vertex set Vc
onto k clusters.
Given the vertex set Vc = {v1, v2,…, vn} in the graph Gc,

the k fuzzy functions of the vertices in the vertex set Vc can
be represented by a fuzzy matrixU ∈Mfkm, whereMfkm is all
possible fuzzy matrices in FKGC. In the formulation of one
error function, given the clustering distances di,j between two
vertices vi and vj, 1 ≤ i, j ≤ n, in the graph Gc, the classical
squared-error function [28] can be formulated and used in
FKGC as follows:

J(U, vc,Gc) =
n∑
j=1

k∑
i=1

(ui, j )
2(dc(i), j )

2

subject to
k∑
i=1

ui, j = 1

where vci = vc(i) ∈ Vc, 1 ≤ i ≤ k, is the center of the ith
cluster.
Basically, the objective function J can be treated as a

squared-error criterion and its minimization can further pro-
duce a fuzzy matrix U that is optimal in a least squared
error. To approximately minimize the objective function J,
the objective function J can be minimized on the fuzzy mem-
berships ui,j, 1≤ i≤ k, 1≤ j≤ n, and the centers vci, 1≤ i≤ k,
by using an iterative improvement algorithm. In the iterative
improvement algorithm, based on the optimality analysis of
the fuzzy c-means clustering [29], [30] on the geometrical
clustering distances, the optimization of the objective func-
tion J under some constraints can be obtained by alternately
finding the partial optimization for the modification of the
fuzzy memberships ui,j, 1 ≤ i ≤ k, 1 ≤ j ≤ n, and the opti-
mization for the selection of the k centers vci, 1 ≤ i ≤ k. In
the modification of the fuzzy memberships ui,j, 1 ≤ i ≤ k,
1 ≤ j≤ n, the center vector vc in the function Jmust be fixed
and the necessary condition of the fuzzy matrix M = {ui,j}
can be found by the Lagrange multiplier method to minimize
the function J. In the selection of the k centers vci, 1 ≤ i ≤ k,
the fuzzy matrix M = {ui,j} in the function J must be fixed

TABLE 1. Symbols and Notations in Iterative Improvement Algorithm
ε-FKGC

and the necessary condition of the center vector vc can be
found by an exhaustive search to minimize the function J.
As a result, a final fuzzy k-means matrix M can be used to
represent the fuzzy membership of the k partitions in the
graph Gc.
Table 1 presents the symbols and notations in the iterative

improvement algorithm ε-FKGC.
Based on the definition of the clustering distance di,j

between two vertices vi and vj, 1 ≤ i, j ≤ n, in the graph
Gc, the KGP matrix M0, representing the k-way partitioning
result of all the vertices in the graphGc as an initial partition-
ing result, the selection of an acceptable error ε, the necessary
condition of the fuzzy matrix M, the center vector vc, and a
ε-approximate fuzzy matrix M in FKGC can be obtained by
using the iterative improvement algorithm ε-FKGC on the
fuzzy matrix M and the cluster centers vc for the objective
function J.
Refer to the matrix MPCS, representing the probabilistic

connection strength in the graph Gc, in Fig. 5(b) and the
KGPmatrixM0 for three-way graph partitioning in Fig. 6(b),
based on the definition of the clustering distance di,j between
two vertices vi and vj, 1≤ i, j≤ n, in the graphGc, the cluster-
ing distance di,j between two vertices vi and vj, 1≤ i, j≤ n, in
the graphGc can be computed. By using the KGPmatrixM0,
as the initial fuzzy matrix and the iterative improvement on
the modification of the fuzzy memberships and the selection
of the three centers in fuzzy 3-means graph clustering, as
illustrated in Fig. 7(a), the final ε-approximate fuzzy matrix
M of the fuzzy 3-means graph clustering can be obtained
after completing the algorithm ε-FKGC with ε= 0.001, as
illustrated in Fig. 7(b).

C. VERTEX ASSIGNMENT IN K-WAY (δ, γ)-BALANCED
PARTITIONING
For the vertex assignment in k-way (δ, γ )-balanced parti-
tioning, based on the fuzzy memberships on the n vertices
inside k clusters in a final fuzzy matrixM= {ui,j}, 1 ≤ i≤ k,
1 ≤ j ≤ n, the maximum capacity δ, and the maximum size
tolerance γ , the vertex assignment in k-way (δ, γ )-balanced
partitioning can be divided into two sequential steps: Initial
assignment and Iterative size modification.
In the initial assignment of all the vertices, the assign-

ment of the n vertices v1, v2,…, and vn in the graph Gc
is based on the largest fuzzy membership ui,j, 1 ≤ i ≤ k,
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Algorithm 2: ε-FKGC.
Input: An edge-weighted connection graph Gc(Vc, Ec);

A matrix of probabilistic connection strength pcsi,j
between two vertices vi and vj, 1 ≤ i, j ≤ n, in Gc;
A partitioning number k;
An acceptable error ε;

Output: A fuzzy matrix M of all the vertices in Gc on k
clusters;

Determine the clustering distance di,j between two
vertices vi and vj based on the probabilistic connection
strength pcsi,j, 1 ≤ i, j ≤ n, in Gc;
Run the KGPBUC for the vertices in Gc and establish
the initial fuzzy matrixM0;
M∗= M0;
do
M = M∗;
Find the centers set vc = (vc1, vc2, …, vck) of the k
clusters using the fuzzy membership ui,j inside M
and the clustering distance di,j as

vci = vc(i),MIN
n∑
j=1

(ui, j )2(dc(i), j )2, vc(i) ∈ Vc;

for j = 1 to n
for i = 1 to k

if vj /∈ {vc1, vc2,…, vck}
Calculate the fuzzy membership u∗

i,j of the
vertex vj on the ith cluster inM∗ using the
centers vc = (vc1, vc2, …, vck) as

u∗
i, j = 1

k∑
p=1

(
dc(i), j
dc(p), j

)2 ;

else
if vj = vci
u∗

i,j = 1;
else
u∗

i,j = 0;
end if

end if
end for

end for
Compare M = {ui,j} and M∗ = {u

∗
i,j};

until |u
∗
i,j − ui,j| < ε , for 1 ≤ i ≤ k, 1 ≤ j ≤ n;

M = M∗;
return A fuzzy matrixM of all the vertices in Gc on k
clusters;

1 ≤ j ≤ n, on the k clusters. If the larger fuzzy membership
of the vertex vj, 1 ≤ j ≤ n, in the graph Gc is the fuzzy
membership ui,j on the ith cluster, 1 ≤ i ≤ k, the vertex vj
can be directly assigned onto the ith cluster. As a result, the
n vertices v1, v2,…, vn in the graph Gc can be partitioned
into the k partitions P1, P2,…, Pk. If the number of vertices
inside each partition satisfies the given capacity constraint
δ and the maximum size difference between two partitions
satisfies the given size-tolerance constraint γ , then the initial

FIGURE 7. Fuzzy 3-means graph clustering in an edge-weighted
connection graph. (a) Iterative improvement on modification of fuzzy
memberships and selection of three centers in fuzzy 3-means graph
clustering. (b) Final fuzzy 3-means matrix.

k-way partitioning result can be obtained as the final k-way
(δ, γ )-balanced partitioning result and the partitioning cut in
k-way (δ, γ )-balanced partitioning can be computed. On the
other hand, if the maximum size inside any partition does
not satisfy the given capacity constraint δ or the maximum
size difference between two partitions does not satisfy the
size-tolerance constraint γ , then the iterative size modifica-
tion must be used for the k partitions P1, P2,…, Pk in the
initial assignment.
In the iterative size modification for the k partitions P1,

P2,…, Pk, the iterative size modification inside the k par-
titions P1, P2,…, Pk is based on the reassignment of the
vertices from some larger partitions to the smallest partition.
Initially, each vertex vj, 1 ≤ j ≤ n, in the graph Gc can
be set as one original vertex inside its partition. In each
iteration, first, the qth partition Pq with the smallest size
can be found from the k partitions P1, P2,…, Pk, and the
original vertices inside the other larger partitions can be
treated as the selected vertices in the modification process.
For any possible selected vertex vj inside the ith partition Pi,
the membership difference of the vertex vj in the modifica-
tion process can be computed and obtained as (ui,j – uq,j).
Furthermore, the selected vertex vj with the smallest mem-
bership difference can be reassigned into the qth partition Pq,
and the selected vertex vj can be set as one assigned vertex
in the modification process. Until the number of vertices
inside each partition satisfies the given capacity constraint
δ and the maximum size difference between two partitions
satisfies the given size-tolerance constraint γ , the iterative
size modification for the k partitions P1, P2,…, Pk will stop.
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Algorithm 3: KBP
Input: A fuzzy matrix M = {ui,j}, 1 ≤ i ≤ k, 1 ≤ j ≤ n,
with fuzzy memberships ui,j on k clusters for an
edge-weighted graph Gc;

Maximum capacity δ inside each partition;
Maximum size tolerance γ among two partitions;

Output: k sets of vertices V1, V2, …, Vk for k partitions
P1, P2,…, Pk, and the partitioning cut in k-way (δ,
γ )-balanced partitioning;

Initialize k sets of vertices, V1 = V2 = … = Vk = ∅;
for j = 1 to n

if (the larger fuzzy membership of the vertex vj is the
fuzzy membership ui,j on the ith cluster) then
Vi = Vi ∪ {vj};

end if
end for
if (the number of vertices inside any partition is larger
than δ or the size difference between any pair of two
partitions is larger than γ ) then

Set each vertex in Gc as one original vertex inside
its partition;
while (the maximum size inside any partition is
larger than δ or the maximum size difference
between two partitions is larger than γ ) then

Find the qth partition Pq with the smallest
size;
Set the original vertices inside the other larger
partitions as the selected vertices;
Find the selected vertex vj with the smallest
membership difference from the partition Pi
to the partition Pq;
Vq = Vq ∪ {vj};
Vj = Vj − {vj};
Set the selected vertex vj as one reassigned
vertex;

end while
end if
Set the k partitions P1, P2 …, Pk as the k-way (δ,
γ )-balanced partitioning result;
Compute the partitioning cut in k-way (δ, γ )-balanced
partitioning;
return k sets of vertices V1, V2, …, Vk for k partitions
P1, P2,…, Pk and the partitioning cut in k-way (δ,
γ )-balanced partitioning;

As a result, the k-way partitioning result can be obtained as
the k-way (δ, γ )-balanced partitioning result and the par-
titioning cut in k-way (δ, γ )-balanced partitioning can be
computed.
Based on the fuzzy memberships ui,j, 1≤ i≤ k, 1≤ j≤ n,

of all the n vertices v1, v2,…, vn on the k clusters in a final
ε-approximate fuzzy matrixM= {ui,j}, 1 ≤ i≤ k, 1≤ j≤ n,
the maximum capacity δ, and the maximum size tolerance γ ,
the k-way (δ, γ )-balanced partitioning result can be obtained
by using the algorithm KBP.

FIGURE 8. Three-way balanced partitioning in an edge-weighted
connection graph for an original QC with 8 qubits and 23 gates.
(a) Three-way (4, 2)-balanced partitioning result. (b) Three-way
(3, 1)-balanced partitioning result.

Refer to the final fuzzy matrixM for fuzzy 3-means graph
clustering in Fig. 7(b), based on the fuzzy memberships of
all the eight vertices v1, v2, v3, v4, v5, v6, v7, and v8 on the
three clusters in the final fuzzy matrix M, the three parti-
tions P1, P2, and P3 of the eight vertices can be obtained as
{v1, v2, v5, v6}, {v3, v7}, and {v4, v8} in the initial as-
signment. If the maximum capacity δ is given as 4 and the
maximum size tolerance γ is given as 2, it is clear that the
3-way partitioning result can satisfy the capacity constraint
δ = 4 and the size-tolerance constraint γ = 2 in 3-way
(4, 2)-balanced partitioning. Based on the three partitions,
P1 = {v1, v2, v5, v6}, P2 = {v3, v7}, and P3 = {v4, v8} of the
eight vertices surrounded by three red regions, as illustrated
in Fig. 8(a), it is clear that a set of eight quantum bits {q1,
q2, q3, q4, q5, q6, q7, and q8} can be partitioned into three
subsets {q1, q2, q5, q6}, {q3, q7}, and {q4, q8}, and the
communication cost in 3-way (4, 2)-balanced partitioning
can be obtained as 10 in the DQC design.
On the other hand, if the maximum capacity δ is given

as 3 and the maximum size tolerance γ is given as 1, the
initial three partitions P1 = {v1, v2, v5, v6}, P2 = {v3, v7},
and P3 = {v4, v8} of the eight vertices cannot satisfy the
capacity constraint δ = 3 and the size-tolerance constraint
γ = 1. Hence, the iterative size modification must be used
for the initial 3-way partitioning result.
In the iterative size modification, the smallest partition P2

can be selected and the four vertices v2, v2, v5, and v6 inside
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the partition P1 can be treated as the selected vertices in the
first iteration. In the iteration, the membership differences of
the four vertices v1, v2, v5, and v6 from the partition P1 to the
partition P2 can be obtained as 1, 0.023, 0.041, and 0.016,
respectively. Hence, the vertex v6 with the smallest mem-
bership difference can be reassigned onto the partition P2,
satisfying the capacity constraint δ=3 and the size-tolerance
constraint γ = 1 in 3-way (3, 1)-balanced partitioning. Based
on the three partitions, P1 = {v1, v2, v5}, P2 = {v3, v6, v7},
and P3 = {v4, v8} of the eight vertices surrounded by three
red regions, as illustrated in Fig. 8(b), it is clear that a set
of eight quantum bits {q1, q2, q3, q4, q5, q6, q7, and q8}
can be partitioned into three subsets {q1, q2, q5}, {q3, q6,
q7}, and {q4, q8}, and the communication cost in 3-way (3,
1)-balanced partitioning can be obtained as 12 in the DQC
design.

D. ANALYSIS OF TIME COMPLEXITY
In k-way (δ, γ )-balanced partitioning, the process of parti-
tioning a given QC into k partitions in a DQC design can
be divided into three sequential steps: construction of edge-
weighted connection graph, generation of fuzzy matrix in
FKGC, and vertex assignment in k-way (δ, γ )-balanced par-
titioning.
For the construction of an edge-weighted connection

graph, based on the communication relation inside each gate
by scanning all the gates in a given QC, the time complex-
ity of constructing an edge-weighted connection graph is
O(n+m), where n is the number of qubits andm is the number
of gates in a given QC.
For the generation of a fuzzy matrix in FKGC, first, the

time complexity of constructing the estimation paths be-
tween two vertices in an edge-weighted connection graph by
using the maximum-weight shortest-path algorithm is O(n4)
and the time complexity of computing the probabilistic con-
nection strength between two vertices in an edge-weighted
connection graph is O(n4). Furthermore, the time complexity
of constructing the initial KGPBUC in the connection graph
is O(n2). Next, based on the matrix representing the proba-
bilistic connection strength in the connection graph, the time
complexity of computing the clustering distance between
two vertices in the connection graph is O(n2). Finally, given a
tolerant error ε on the fuzzymemberships, the ε-approximate
fuzzy matrix M can be obtained by running the algorithm
ε-FKGC. In the iterative improvement of the fuzzy member-
ships in the generation of the ε-approximate fuzzy matrixM,
the number of iterations depends seriously on the number
of vertices n in the connection graph and the tolerant error
ε. Clearly, the more the number of vertices or the smaller
the tolerant error, ε is, the more the number of iterations
is. However, the number of iterations cannot be modeled by
using a formal polynomial function of the two variables n
and ε. Hence, the number of iterations can be modeled and
estimated as a function f(n, ε) of the two variables n and
ε. In each improvement, the time complexity of finding a
new center vector on the k clusters in ε-FKGC is O(n2) and

the time complexity of finding a new ε-approximate fuzzy
matrix in ε-FKGC is O(n2). Clearly, the time complexity of
completing the algorithm ε-FKGC is O(n2f(n, ε)). Hence, the
time complexity of generating a ε-approximate fuzzy matrix
in FKGC is O(n4+n2f(n, ε)).

For the vertex assignment in k-way (δ, γ )-balanced par-
titioning, first, based on the fuzzy memberships in the ε-
approximate fuzzy matrix M, the maximum capacity δ, and
the maximum size tolerance γ , the time complexity of con-
structing k partitions in the initial assignment is O(n). Based
on the assignment result of the k partitions in the initial as-
signment, the maximum capacity δ, and the maximum size
tolerance γ , the time complexity of reassigning some vertices
inside the k partitions in the iterative size modification is
O(n). Hence, the time complexity of completing the vertex
assignment in k-way (δ, γ )-balanced partitioning is O(n).

To sum up, the time complexity of completing the parti-
tioning process in k-way (δ, γ )-balanced partitioning under
capacity constraint δ and the size-tolerance constraint γ is
O(m+n4+n2f(n, ε)), where m is the number of gates and n is
the number of qubits in a given QC.

IV. EXPERIMENTAL RESULTS
For k-way (δ, γ )-balanced partitioning in a DQC design,
the proposed fuzzy-based partitioning algorithm has been
implemented by using standard C++ language, compiled by
gcc4.2.4 and run on an Intel Core i7-7700HQCPU 3.80 GHz
machine with 16 GB memory. In the experiments, eight
tested circuits, Circuit01, Circuit02, Circuit03, Circuit04,
Circuit05, Circuit06, Circuit07, and Circuit08, can be gener-
ated from the combination of some reversible circuits in the
online resource, Revlib [31]. It is clear that the smaller the
tolerant error ε in FKGC is, the higher the identification de-
gree of the fuzzymemberships inside the final ε-approximate
fuzzy matrix is and the more the running time in KBP is. To
have the reasonable running time in KBP, the tolerant error ε
in FKGC can be set as 0.001.
Basically, the convergence time on the generation of

a final ε-approximate fuzzy matrix in FKGC seriously
depends on the used initial fuzzy matrix. It is known
that a better initial fuzzy matrix can lead to a better
ε-approximate fuzzy matrix in FKGC. Because one
edge with the largest weight is randomly selected in
the construction of an initial partitioning result, the
ε-approximate fuzzy matrix may not be unique. Hence,
a set of ε-approximate fuzzy matrices in FKGC can be
obtained by using a set of initial partitioning results. In the
article, ten initial partitioning results can be used to find ten
ε-approximate fuzzy matrices in FKGC and the
ε-approximate fuzzy matrix with the least running time
can be treated as the final fuzzy matrix in FKGC for any
tested circuit.
To compare the communication cost in k-way (δ, γ )-

balanced partitioning for a DQC design, Daei’s recur-
sive KL-based algorithm [21], and a modified partitioning
algorithm, the combination of the genetic algorithm and the
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TABLE 2. Experimental Results on CPU Time for the Fuzzy-Based Partitioning Algorithm Using Random Initial Partitioning or Our Proposed Initial
Partitioning in KBP

modified tuba-search algorithm from Dadkhah’s partitioning
algorithm [22] with the capacity constraint inside a partition
as 
n/k� + 1 or 
n/k� + 2 and the size-tolerance constraint
between two partitions as 3 can also be implemented for the
eight tested circuits. Because of the bipartitioning feature
in the KL-based algorithm, the value k (k = 2p) must be
restricted in Daei’s recursive KL-based algorithm in k-way
(δ, γ )-balanced partitioning, where p is the number of re-
cursions. In Tables 2 and 3, “#qubits” denotes the number
of qubits in a tested circuit, “#gates” denotes the number of
gates in a tested circuit, “k” denotes the partitioning number
in a tested circuit, “δ” denotes the maximum capacity inside
each partition in KBP, “γ ” denotes the maximum size tol-
erance between two partitions in KBP, “#CC” denotes the
communication cost in KBP for a tested circuit, and “CPU
Time” denotes the execution time for a tested circuit.
It is known that a good initial partitioning result can

shorten the convergence time of a fuzzy matrix in FKGC. To
measure the performance of our proposed initial partitioning
result in k-way (δ, γ )-balanced partitioning, the fuzzy-based
partitioning algorithm using a random initial partitioning
result and the fuzzy-based partitioning algorithm using our
proposed initial partitioning result in k-way (δ, γ )-balanced
partitioning can be implemented and compared in the first

experiment. For the eight tested circuits in the first experi-
ment, the experimental results of the fuzzy-based partition-
ing algorithm using a random initial partitioning result and
the fuzzy-based partitioning algorithm using our proposed
initial partitioning result in k-way (δ, γ )-balanced partition-
ing for a DQC design can be obtained and listed in Ta-
ble 2. It is assumed that two different capacity constraints
δ = 
n/k� + 1 and δ = 
n/k� + 2 can be set in the experi-
ment. Compared with the fuzzy-based partitioning algorithm
using a random initial partitioning result with two different
size-tolerance constraints γ = 1 and γ = 2 in 3-way, 4-
way, or 5-way balanced partitioning, the experimental results
show that the fuzzy-based partitioning algorithm using our
proposed initial partitioning result with two different size-
tolerance constraints γ = 1 and γ = 2 can reduce 16.0% and
17.3% of the CPU time to obtain the same communication
cost for the eight tested circuits on the average, respectively.
To measure the communication cost of the fuzzy-based

partitioning algorithm in k-way (δ, γ )-balanced partitioning,
Daei’s recursive KL-based algorithm [21], the modified par-
titioning algorithm from Dadkhah’s partitioning algorithm
[22], and the proposed fuzzy-based partitioning algorithm
in k-way (δ, γ )-balanced partitioning can be implemented
and compared in the second experiment. For the eight tested
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TABLE 3. Experimental Results on Communication Cost for Daei’s Recursive KL-Based Algorithm [21], Modified Partitioning Algorithm From Dadkhah’s
Partitioning Algorithm [22], and the Proposed Fuzzy-Based Partitioning Algorithm in KBP

circuits in the second experiment, the experimental results of
Daei’s recursive KL-based algorithm [21], the modified par-
titioning algorithm from Dadkhah’s partitioning algorithm
[22], and the proposed fuzzy-based partitioning algorithm
in k-way (δ, γ )-balanced partitioning can be obtained and
listed in Table 3. It is assumed that two different capacity
constraints δ = 
n/k� + 1 and δ = 
n/k� + 2 can be set in
the experiment. Compared with Daei’s recursive KL-based
algorithm [21] in 4-way balanced partitioning, the experi-
mental results show that the proposed fuzzy-based partition-
ing algorithm with three different size-tolerance constraints
γ = 1, γ = 2, and γ = 3 can use 58.3%, 61.3%, and
64.5% of CPU time to reduce 16.1%, 21.2%, and 24.6% of
the communication cost for the eight tested circuits on the
average, respectively. Compared with the modified partition-
ing algorithm from Dadkhah’s partitioning algorithm [22] in
3-way, 4-way, or 5-way balanced partitioning, the experi-
mental results show that the proposed fuzzy-based partition-
ing algorithmwith the size-tolerance constraint γ = 3 can use
35.0% of CPU time to reduce 11.1% of the communication
cost for the eight tested circuits on the average, respectively.

V. CONCLUSION
Given a large QC in a DQC design, first, an edge-weighted
connection graph can be constructed from the gates in the
given QC. Furthermore, based on the edge connections in the

connection graph, a given partitioning number k and a tol-
erant error ε , the probabilistic connection strength between
two vertices in the connection graph can be estimated and the
initial KGP result via bottom-up clustering can be obtained.
Based on the definition of the clustering distance between
two vertices in the connection graph, the ε-approximate
fuzzy matrix in FKGC can be obtained. Finally, given the
maximum capacity δ inside each partition and the maximum
size tolerance γ between two partitions, all the vertices in
the connection graph can be assigned onto k partitions to
minimize the communication cost in k-way (δ, γ )-balanced
partitioning for a DQC design.
In future works, the communication cost between two

qubits must be discussed and analyzed according to the char-
acterization of the utilized gates in aDQCdesign. In addition,
the noise effect during the execution of quantum gates can be
further considered in a DQC design.
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