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ABSTRACT Pricing a multiasset derivative is an important problem in financial engineering, both theoreti-
cally and practically. Although it is suitable to numerically solve partial differential equations to calculate the
prices of certain types of derivatives, the computational complexity increases exponentially as the number
of underlying assets increases in some classical methods, such as the finite difference method. Therefore,
there are efforts to reduce the computational complexity by using quantum computation. However, when
solving with naive quantum algorithms, the target derivative price is embedded in the amplitude of one
basis of the quantum state, and so an exponential complexity is required to obtain the solution. To avoid
the bottleneck, our previous study utilizes the fact that the present price of a derivative can be obtained by
its discounted expected value at any future point in time and shows that the quantum algorithm can reduce
the complexity. In this article, to make the algorithm feasible to run on a small quantum computer, we
use variational quantum simulation to solve the Black–Scholes equation and compute the derivative price
from the inner product between the solution and a probability distribution. This avoids the measurement
bottleneck of the naive approach and would provide quantum speedup even in noisy quantum computers. We
also conduct numerical experiments to validate our method. Our method will be an important breakthrough
in derivative pricing using small-scale quantum computers.

INDEX TERMS Derivative pricing, finite difference methods (FDMs), variational quantum computing.

I. INTRODUCTION
Quantum computers actively utilize quantum phenomena to
solve large-scale problems that could not be performed with
the conventional classical computers. In recent years, appli-
cations of quantum computers have been discussed in finan-
cial engineering. Specifically, the applications include port-
folio optimization [1], [2], [3], risk measurement [4], [5], [6],
[7], [8], and derivative pricing [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Comprehensive
reviews of these topics are presented in [23], [24], [25], and
[26].
Among these applications, we consider the pricing

of derivatives. Derivatives are the products that refer to

the prices of underlying assets, such as stocks, bonds,
and currencies, and their payoff depends on the prices
of the assets. For example, a European call option, one
of the simplest derivatives, has a predetermined maturity
T > 0 and strike price K, and its holder gets paid back
max(S(T )− K, 0) for the asset price S(T ) at T . For such
a simple derivative, the theoretical price can be computed
analytically in some models, such as the Black–Scholes (BS)
model [27]. If one wishes to calculate prices for derivatives
with more complex payoffs, numerical calculations are
required [28].
There are many algorithms for numerical calculations. For

the pricing of certain types of derivatives, such as barrier
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options, it is suitable to solve the partial differential equations
(PDEs) called Black–Scholes PDE (BSPDE) [29], [30] by
discretizing them using the finite difference method (FDM).
However, in the case of multiasset derivatives, the number of
grid points increases exponentially with respect to the num-
ber of referenced assets, making price calculation difficult.
When the number of assets is d and the number of grid points
is ngr for one asset, the total number of grid points is ndgr.

If we take ngr in proportion to ε−1/2 to achieve the error
level ε (see Lemma II.1 in [31]), classical FDM requires the
computational complexity of O((1/ε)O(d) ) in terms of time
and space.1,2

To overcome this difficulty, several methods [13], [14],
[15], [22] have been proposed to efficiently solve the BSPDE
using quantum computers. However, when solving the dis-
cretized BSPDE with these quantum algorithms, the target
derivative price is embedded in the amplitude of one basis of
the resulting quantum state, so it requires exponentially large
computational complexity to extract it as classical informa-
tion. Miyamoto and Kubo [31] have shown that the complex-
ity can be substantially reduced using the fact that the present
derivative price can be calculated as the expected value of the
discounted derivative price at a future point in time. They
calculate the inner product of the state in which the future
derivative prices are embedded and the state in which the
probability distribution is embedded using the quantum am-
plitude estimation (QAE) [37]. Instead of retrieving one of
the amplitudes of the output state of the quantum algorithm,
the present price of the derivative can be efficiently calcu-
lated since all of the amplitudes can be used. In fact, the
complexity of the method proposed in [31] does not have
a factor, such as (1/ε)O(d), but has only poly(1/ε, d). This
means that their method has substantial speedup compared
with the classical FDM. Furthermore, their method achieves
exponential reduction of space complexity since function
values on (1/ε)O(d) grid points can be encoded in amplitudes
of a O(d log(1/ε))-qubit state.

However, it should be noted that their method is con-
structed on the quantum ordinary differential equation
(ODE) solver [38] and the QAE, which requires a large-scale
quantum computer with error correction. In addition, it is
assumed that we are given the oracle that generates a quan-
tum state in which the boundary conditions of the BSPDE
are encoded in amplitudes. As the derivatives are currently

1Although the classical Monte Carlo method can avoid this issue, there
would be other issues, such as hitting time errors [32]. Both the classical
Monte Carlo method and the classical PDE approach have been studied for
a long time, and each has its own advantages. We focus only on the FDM
approach in this article, and the comparison between the FDM approach and
the Monte Carlo method is not the subject of our study.

2As listed in [33], there are some classical algorithms, such as adaptive
FDM/FEM [34], spectral method [35], and sparse grid FDM/FEM [36],
that have O(poly((log(1/ε))d )) time complexity and �((log(1/ε))d ) space
complexity under some conditions. While these methods may be able to
calculate option prices faster than regular FDM, a detailed discussion of the
applicability of these methods is not the subject of this study.

dealt with in practice, it is desirable to calculate derivative
prices even with a small-scale quantum computer closer to
realization.
In this article, we propose a variational quantum algo-

rithm for pricing multiasset derivatives. We show that the
SWAP test can be used to avoid the problem of retrieving
the derivative price from the quantum state. This is the way
to exploit the essential feature proposed in [31] with varia-
tional quantum algorithms and, hence, thought to work with
near-term quantum computers. Our algorithm has the fol-
lowing three parts; embedding the probability distribution of
the underlying asset prices into the quantum state, solving
the BSPDE with boundary conditions, and calculating the
inner product. For the first part, we can use the quantum
generative algorithms [39], [40], [41], [42], [43] or vari-
ational quantum simulation (VQS) for the Fokker–Planck
equations [22], [44], [45], [46], [47], which describe the
time evolution of the probability density functions of
the stochastic processes. For the second part, we dis-
cretize the BSPDE using the FDM and solve it using VQS.
For the third part, we evaluate the square of the inner product
of the states, obtained by the first and the second parts of our
method, using the SWAP test [48]. Taking the square root of
the output of the SWAP test and discounting by the interest
rate, we obtain the present price of the derivative. Although
there is no guarantee of overall computational complexity
due to the heuristic nature of the variational algorithm, we
show that the number of measurements of the SWAP test has
no factors, such as (1/ε)O(d), which means that our method
can avoid the bottleneck of retrieving derivative prices from
the quantum state. Since our algorithm requires quantum
circuits with O(d log(1/ε)) qubits and O(poly(d log(1/ε))
few-qubit gates, even a small-scale quantum computer would
be able to perform derivatives pricing with our method. We
perform numerical calculations for a single asset double bar-
rier option and confirm that our method is feasible.
The rest of this article is organized as follows. Section II

is the preliminary section. Our formulations are slightly dif-
ferent from previous studies, such as [22] and [31]. We de-
scribe the detailed formulation in this section. The notations
in this article are listed in Section II-A. We summarize the
related works in Section II-B. In Section II-C, we introduce
derivative pricing using the BSPDE with boundary condi-
tions. We also introduce FDM to discretize the BSPDE and
obtain an ODE in Section II-D. Section II-F gives an in-
troduction to VQS, which is an algorithm for solving the
ODE. Section II-E introduces the fact that the present price
of the derivative can be approximated by the expected value
of the future price. In Section III, we describe the pro-
posed method. We estimate the number of measurements
required by the SWAP test in Section III-A and the whole
time complexity of the proposed method in Section III-B.
We show the feasibility of our method through numerical
simulations in Section IV. Finally, Section V concludes this
article.
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II. PRELIMINARY
A. NOTATION
Here, we introduce the notation used in this article. We
define R+ as a set of all positive real numbers, and for
a positive integer d, Rd+ as a d-times direct product of
R+. For a positive integer n, [n] := {1, 2, . . . , n}. For v =
(v1, v2, . . . , vn)� ∈ Rn, where n is an integer not less than
2, and i ∈ [n], we define v∧i ∈ Rn−1 as a vector, which is
made by removing an element vi from v, that is, v∧i :=
(v1, v2, . . . , vi−1, vi+1, . . . , vn). We define the Euclidean

norm for a vector v as ‖v‖ =
√∑

i v
2
i . For an integer i, we de-

fine |i〉 as one of the computational basis states with a binary
representation of i and for a vector y = (y1, y2, . . . , yn)� ∈
Cd , we denote |y〉 as an unnormalized state where the
elements of y are encoded in the amplitudes, that is, |y〉 :=∑n

i=1 yi|i〉.

B. RELATED WORK
In this section, we explain the existing algorithms for solv-
ing the BSPDE with quantum computers. Gonzalez-Conde
et al. [15] transform the BSPDE into a Schrödinger equation,
discretize the Hamiltonian by FDM, and solves it by diago-
nalization of discretizedmomentum operator with a quantum
Fourier transformation. Fontanela et al. [13] and Radha [14]
solve the discretized Schrödinger equation by VQS, which
is a variational quantum algorithm for solving ODEs. Also,
Alghassi et al. [22] propose a VQS to directly solve PDEs,
including the BSPDE. In the previous studies mentioned
above, the time complexity required to solve the BSPDE
depends on the grid points only logarithmically. However,
there is still a problem that cannot be overlooked; extract-
ing the calculated result from quantum computers may take
exponentially long time with respect to d as mentioned in
[Appendix E in [22]]. Solving the BSPDE from the maturity
(t = T ) to the present (t = 0) with these quantum algorithms
yields unnormalized state |V (0)〉 whose elements are the
derivative prices on the grid points of underlying asset prices.
Note that, typically, we are interested in only one element of
|V (0)〉, the derivative price on the grid point corresponding
to the present underlying asset prices. However, since |V (0)〉
has O((1/ε)O(d) ) elements, the amplitude corresponding to
V0 in (normalized) |V (0)〉 is exponentially small. There-
fore, the exponential time complexity is required to retrieve
V0 as classical information, and the quantum speedup will
be lost.
Miyamoto and Kubo [31] show the algorithm to overcome

the problem. They prepare the state |p(tter)〉 in which the
probability distribution of underlying asset prices on the
grid points at a certain time tter ∈ [0,T ] is embedded in
the amplitudes. Then, they discretize the BSPDE using
FDM, solve it not to t = 0 but t = tter with quantum ODE
solver, and obtain the state |V (tter)〉. The inner product
of these quantum states, which can be obtained by QAE,
corresponds to the expected value of the derivative price at
tter by E[V (tter)] �

∑
i∈G pi(tter)Vi(tter) = 〈p(tter)|V (tter)〉.

Discounting this expected value by the risk-free interest rate
yields the present price of the derivative [28].
Our algorithm is a variational version of the article pre-

sented in [31]. Instead of using the quantum ODE solver and
QAE, we use VQS and the SWAP test, respectively. This
enables derivatives pricing by BSPDE to be realized on a
small-sized quantum computer.

C. DERIVATIVE PRICING
To evaluate the price of a derivative, we need to model the
dynamics of the prices of the underlying asset. We adopt the
BSmodel [27] inwhich the prices of the underlying assets are
assumed to follow geometric Brownian motions. That is, we
suppose that the prices of d underlying assets at t ∈ [0,T ] are
stochastic processes S(t ) = (S1(t ), S2(t ), . . . , Sd (t ))� ∈ Rd+
that, under the risk-neutral measure, obey stochastic differ-
ential equations

dSi(t ) = rSi(t )dt + σiSi(t )dWi(t ). (1)

Here, r > 0 is the risk-free interest rate and σi > 0 is the
volatility of the ith underlying asset for each i ∈ [d].Wi(t ) are
the Brownian motions that satisfy dWidWj = ρi, jdt, (i, j) ∈
[d]× [d] with the correlation matrix (ρi j )1≤i, j≤d , which sat-
isfies ρi,i = 1 and −1 < ρi, j = ρ j,i < 1 for i 
= j.
We assume that the derivatives are characterized by the

payoff function fpay at the maturity T and the payoff con-
ditions, which must be satisfied in order for the payoff to
arise. More specifically, the payoff condition is the binary
condition ofwhether the underlying asset price processmeets
predetermined criteria during the period, which is formally
regarded as a map taking an asset price path {S(t )}t∈[0,T ] to a
binary. Note that there are derivatives that do not satisfy these
assumptions. For example, American and Bermudan options
cannot be characterized only by the payoff function at ma-
turity and the payoff condition because there are multiple
possible exercise times. Also, look-back options cannot be
characterized only by the payoff function at maturity because
the payoff function depends on the price of the underlying
asset before maturity. However, for example, Asian options,
whose payoff function depends on the price of the underlying
asset prior to maturity, can be converted by introducing an
additional random variable to make the payoff function refer
only to the price of the asset at maturity [29], [30]. We de-
scribe the typical cases of the payoff functions and the payoff
conditions later.
The price of the derivative is obtained as the conditional

expected value of the payoff, conditioned on the price of the
underlying assets, discounted by the risk-free rate [29], [30].
That is, given the underlying asset prices at time t as s =
(s1, . . . , sd )� ∈ Rd+, and the payoff function at maturity T
as fpay(S(T )), the price of the derivative is

V (t, s) = EQ
[
e−r(T−t ) fpay(S(T ))1NB|S(t ) = s

]
(2)

VOLUME 4, 2023 3100717
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where EQ is the expected value under the so-called risk-
neutral measure. Note that S(T ) is a vector of random vari-
ables resulting from the time evolution of (1) from t to T with
the condition S(t ) = s. 1NB is a random variable that takes 1
if the payoff conditions are satisfied or 0 otherwise.
The goal of derivative pricing is to find the present

price of the derivative, that is, V (0, s0), where s0 =
(s1,0, . . . , sd,0)� ∈ Rd+ is the present price of the underlying
assets. To this end, we use the BSPDE, which describes the
time evolution of V (t, s) [29], [30]. That is, the derivative
price V (t, s) is the solution of the BSPDE

∂

∂t
V (t, s)+ 1

2

d∑
i, j=1

σiσ jsis jρi j
∂2

∂si∂s j
V (t, s)

+ r
(

d∑
i=1

si
∂

∂si
V (t, s)−V (t, s)

)
= 0 (3)

on [0,T )× D with the boundary conditions

V (T, s) = fpay(s) (4)

V
(
t, (s1, . . . , si−1, ui, si+1, . . . , sd )�

)
=: VUB

i (t, s∧i), for i ∈ [d] (5)

V
(
t, (s1, . . . , si−1, li, si+1, . . . , sd )�

)
=: VLB

i (t, s∧i) , for i ∈ [d] (6)

where ui and li are the upper and lower bounds of the ith
asset price, respectively, D := (l1, u1)× · · · × (ld, ud ), and
VUB
i and VLB

i are some functions on boundaries of D that
represent the derivative price on the boundaries. Here, we
assume that, according to the payoff function and the payoff
condition, we can predetermine VUB

i and VLB
i as explicit

formulae. Although it is not clear that this is possible for
general payoff functions and payoff conditions, it is in fact
possible in some cases, as we show typical examples in the
following text.

1) If an up and out barrier is set on the ith asset, the payoff
is zero if the asset price Si(t ) exceeds ui at least once
before maturity, and then the boundary condition is

VUB
i (t, s∧i) = 0. (7)

Similarly, if a down and out barrier is set on the ith
asset, the payoff is zero if the asset price falls below li
at least once before maturity, and then, the boundary
condition is

VLB
i (t, s∧i) = 0. (8)

2) Suppose that the payoff at maturity T is given by

fpay(S(T )) = max(a0 +
d∑
i=1

aiSi(T ), 0) (9)

with a0, . . . , ad ∈ R. This is the case with many
derivatives. In this form of payoff function, upper
boundary or lower boundary can be set depending

on the values of a0, . . . , ad . In some cases, if any
of {Si(t )}i∈[d] is sufficiently high or low at some
time t ∈ (0,T ), the payoff at T is highly likely to be
positive. For example, in the case of the basket call
option, that is, a0 < 0, a1, . . . , ad > 0, if S(t ) = s
such that si � −a0/ai for some i ∈ [d], fpay(S(T )) is
likely to be positive. In this situation, the derivative
price is approximately equal to EQ[e−r(T−t )(a0 +∑d

i=1 aiSi(T ))|S(t ) = s] = e−r(T−t )a0 +
∑d

i=1 aisi.
Thus, we can set

VUB
i (t, s∧i)=e−r(T−t )a0+

∑
1≤ j≤d, j 
=i

a js j+aiui (10)

for sufficiently large ui. In some other cases, e.g., when
ai < 0 and a j > 0 for j 
= i, we can set

VLB
i (t, s∧i)=e−r(T−t )a0+

∑
1≤ j≤d, j 
=i

a js j+aili (11)

for sufficiently small li.

Note that the boundary conditions listed here do not cover
all possible cases. Also note that (10) and (11) are different
cases and need not be simultaneously satisfied.

D. FDM FOR THE BSPDE
Consider solving (3) using the FDM. In the FDM, we dis-
cretize the PDE with respect to the underlying asset prices
and obtain the ODE. Then, we can use a numerical solver
for ODEs, such as the Euler method and Runge–Kutta
method [49]. Note that the BSPDE is often simplified by log
transforming the asset prices as in [31]. However, it is more
convenient not to perform a log transformation to solve the
BSPDE by VQS. This is because our formulation presented
in Section III can only handle linear boundary conditions
with respect to si, as shown in Appendix B, but a logarithmic
transformation will result in the terms, such as esi . Thus, we
do not perform the log transformation in this work.
First, the value range, excluding the boundary of each

underlying asset price si, is split into ngr grids. That is, we
take

x(k) =
(
x(k1)1 , . . . , x(kd )d

)�
(12)

x(ki )i := li + (ki + 1) hi (13)

k =
d∑
i=1

nd−igr ki + 1 (14)

ki := 0, . . . , ngr − 1 (15)

hi := ui − li
ngr + 1

(16)

for i ∈ [d]. By this discretization, we approximate V (t, s) by
a vector

V (t ) :=
(
V (t, x(1)),V (t, x(2)), . . . ,V

(
t, x(Ngr )

))�
(17)
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where Ngr = ndgr. We also replace the differentials by differ-
ences as follows:

∂V (t, x(k) )
∂si

→ V (t, x(k) + hiei)−V (t, x(k) − hiei)
2hi

(18)

∂2V (t, x(k) )

∂s2i
→ 1

h2i

(
V (t, x(k) + hiei)+V

(
t, x(k) − hiei

)
−2V (t, x(k) )

)
(19)

∂2V (t, x(k) )
∂si∂s j

→ 1

4hih j

(
V
(
t, x(k) + hiei + h je j

)
+V
(
t, x(k) − hiei − h je j

)
−V
(
t, x(k) + hiei − h je j

)
−V
(
t, x(k) − hiei + h je j

))
(20)

where

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i

)�, i ∈ [d]

is a unit vector of the i-direction.We define τ := T − t for the
convenience of the later notation. Introducing V̄ (τ, x(i) ) :=
V (T − τ, x(i) ), i ∈ [d] and V̄ (τ ) := (V̄ (τ, x(1)), V̄ (τ, x(2)),
. . . , V̄ (τ, x(Ngr ) ))�, we eventually obtain the ODE

d

dτ
V̄ (τ ) = FV̄ (τ )+C(τ ) (21)

and initial condition

V̄ (0) =
(
fpay(x(1)), . . . , fpay

(
x(Ngr )

))�
. (22)

Here, F is an Ngr × Ngr real matrix

F := F1st + F2nd − rI⊗d (23)

F2nd :=
d∑
i=1

σ 2
i

2h2i
I⊗i−1 ⊗ D2nd

xi
⊗ I⊗d−i+

d−1∑
i=1

d∑
j=i+1

σiσ jρi j

4hih j

× I⊗i−1 ⊗ D1st
xi ⊗ I⊗ j−i−1 ⊗ D1st

x j ⊗ I⊗d− j (24)

F1st := r
d∑
i=1

1

2hi
I⊗i−1 ⊗ D1st

xi
⊗ I⊗d−i (25)

where I is an ngr × ngr identity matrix, andD1st
xi

and D2nd
xi

are
the ngr × ngr real matrices. C(τ ) is a vector corresponding
to the boundary conditions. The elements of the D1st

xi
,D2nd

xi
,

and C(τ ) are shown in Appendix A. ngr has to be propor-
tional toO(ε−1/2) to obtain the present price of the derivative
within the accuracy ε [31]. Then, the dimension of V̄ (τ ) is
O((1/ε)d/2). Thus, it becomes difficult to solve the BSPDE
discretized by FDM using the classical algorithm when mul-
tiple assets need to be considered.

E. APPROXIMATION OF THE PRESENT DERIVATIVE PRICE
BY THE EXPECTED VALUE OF THE DERIVATIVE PRICE AT
THE FUTURE TIME
As shown in [31], we can evaluate the present price of the
derivative by the expected value of the price at a future
time tter. Here, we briefly review the method. To calculate
the present value of the derivative, recalling the fact that
the derivative price is a martingale [29], [30], we evaluate
V (0, s0) as

V (0, s0) = e−rtter
∫
Rd+

dsp(tter, s)pNB(tter, s)V (tter, s) (26)

where tter is any value in [0,T ], p(t, s) is the probability
density function of S(t ), pNB(t, s) is the probability that no
event that leads to extinction of the payoff (hereafter, the
out event) happens by t given S(tter) = s, and V (tter, s) is
the derivative price at tter when S(tter) = s and no out event
happens by tter.
Some caresmust be taken to utilize (26). First, althoughwe

can obtain the solution of (3) only within the boundaries, (26)
contains the information of the events outside the boundaries.
Second, it is difficult to calculate pNB(tter, s) explicitly in the
multiasset case. The first problem can be neglected for small
tter since the distribution of S(tter) outside the boundary is
negligible in this case, and so is the contribution from the
outside of D in (26). The second problem is also solved by
using sufficiently small tter; in this case, the probability that
the underlying asset prices reach any boundaries is negligi-
ble, and thus, pNB(tter, s) is nearly equal to 1 sincewe are now
assuming that the payoff will be paid as far as the underlying
asset prices stay in the boundaries. Therefore, for such tter,
we can evaluate V (0, s0) as

V (0, s0) � e−rtter
∫
D
dsp(tter, s)V (tter, s). (27)

When we use a quantum algorithm to calculate (26)
by
∫
D dsp(tter, s)V (tter, s) � 〈p(tter)|V (tter)〉, the overlap be-

tween |p(tter)〉 and |V (tter)〉 should be as large as possible
since the number of measurements for the evaluation of the
inner product decreases as the overlap becomes large (see
Section III-A for details). As the probability density function
p(t, s) broadens over time, taking a large tter results in a large
overlap. Thus, we want to take tter as large as possible from
this viewpoint.
Taking into account this tradeoff, we set tter as large as

possible to the extent that (26) is well approximated with
(27). As a conclusion, for sufficiently small ε, we may set

tter

= min

⎧⎪⎨
⎪⎩

2
(
log
(
u1
s1,0

))2
25σ 2

1 log
(
2Ãd(d+1)

ε

) , . . . , 2
(
log
(
ud
sd,0

))2
25σ 2

d log
(
2Ãd(d+1)

ε

)
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2
(
log
(
s1,0
l1

))2
25σ 2

1 log
(
2Ãd(d+1)

ε

) , . . . , 2
(
log
(
sd,0
ld

))2
25σ 2

d log
(
2Ãd(d+1)

ε

)
⎫⎪⎬
⎪⎭
(28)

for the approximation (27) with O(ε) accuracy. Here, we
assume that there exist positive constants A0,A1, . . . ,Ad
such that fpay satisfies fpay(s) ≤

∑d
i=1 Aisi + A0 for any s ∈

D and define Ã = max{A1√u1s1,0, . . . ,Ad√udsd,0,A0}. For
the full detail, see [31, Sec. IV].

F. VARIATIONAL QUANTUM SIMULATION
In this section, we introduce the VQS, which is a variational
quantum algorithm to solve linear ODEs [44], [45], [46].
Consider solving the following linear ODE:

d

dt
v(t ) = L(t )v(t )+ u(t ), v(0) = v0 (29)

where v(t ) = (v1(t ), . . . , vNv
(t )), v0 = (v0,1, . . . , v0,Nv

),
u(t ) = (u1(t ), . . . , uNv

(t )) ∈ CNv , and L(t ) is an (possibly
non-Hermitian) operator. To simulate the vector v(t ), we
instead simulate an unnormalized quantum state |v(t )〉,
which is the solution of

d

dt
|v(t )〉 = L(t )|v(t )〉 + |u(t )〉, |v(0)〉 = |v0〉. (30)

Here, we make three assumptions. First, L(t ) can be decom-
posed as

L(t ) =
NL∑
k=1

λk(t )U
L
k (t ) (31)

where λk(t ) is real, and UL
k (t ) are quantum gates. Second,

|u(t )〉 can be written as

|u(t )〉 =
Nu∑
l=1

ηl (t )U
u
l (t )|0〉 (32)

where ηl (t ) is real, and Uu
l (t ) are the quantum gates.

Third, there are some constant αv ∈ C and a quantum
gate Uv such that |v0〉 = αvUv|0〉. In VQS, we approxi-
mate |v(t )〉 by an unnormalized ansatz state |ṽ(θ(t ))〉 :=
θ0(t )R1(θ1(t ))R2(θ2(t )) · · ·RNa (θNa (t ))|v0〉 and determine
parameters θ(t ) = (θ0(t ), θ1(t ), . . . , θNa (t ))

� ∈ RNa+1 by
the variational principle. Here, Rk(θk ) =WkeiθkGk are the
parameterized quantum circuits, Wk are the quantum gates,
and Gk ∈ {X,Y,Z, I}⊗n are the multiqubit Pauli gates with
n-qubit system. By McLachlan’s variational principle [50],
the parameters θ that satisfy (30) are obtained by solving

min
θ

∥∥∥∥ ddt |ṽ(θ(t ))〉 − L(t )|ṽ(θ(t ))〉 − |u(t )〉
∥∥∥∥2 (33)

and then, we obtain the differential equation [44]

Na∑
n=0

Mm,nθ̇n(t ) = Vm (34)

Algorithm 1: Derivative Pricing With Variational Quan-
tum Algorithms.

1: Prepare αpUp such that αpUp|0〉 = |ψp〉 �
∑Ngr

k=1
pk(tter)|k〉 by VQS for Fokker–Planck equation or
quantum generative models.

2: Prepare αVUV such that αVUV |0〉 = |ψV 〉 �
∑Ngr

k=1
fpay(x(k) )|k〉 by quantum generative models.

3: Calculate |ṽ(θ(τter))〉 by performing VQS from τ = 0
to τ = τter.

4: Perform the SWAP test and get an estimation of
|〈ψ p|ṽ(θ(τter))〉|2

5: V0← e−rtter〈ψp|ṽ(θ(τter))〉.

where

Mi, j = Re

(
∂〈ṽ(θ(t ))|
∂θi

∂|ṽ(θ(t ))〉
∂θ j

)
(35)

V j =
NL∑
k=1

λk(t )Re

(
∂〈ṽ(θ(t ))|
∂θ j

UL
k (t )|ṽ(θ(t ))〉

)

+
Nu∑
l=1

ηl (t )Re

(
∂〈ṽ(θ(t ))|
∂θn

Uu
l (t )|0〉

)
. (36)

We can evaluate each term in (35) and (36) by quantum
circuits presented in Appendix D. Then, we solve (34) classi-
cally and obtain θ̇ j(t ). Note that the number of measurements
needed to evaluateMi, j and Vi by the Hadamard test within
the accuracy ε̄ isO(|θ0(t )|2/ε̄2). This is becauseMi, j and Vi
contain the normalization factor θ0(t ) when i > 0 or j > 0
(see Appendix D). We assume that |θ0(t )| is upper bounded
by some constant. In derivative pricing, |θ0(t )|2 is about a
ratio of the sum of the squares of the derivative prices at
time T − t to the sum of the squares of the payoff function at
maturity. Since the derivative price is the expected value of
the payoff function, this assumption is satisfied if the value
range of the payoff function is finite. Starting from t = 0, we
obtain the time evolution of θ(t ) by repeating

θ(t +t )← θ(t )+ θ̇(t )t (37)

where t is an interval in time direction. Consequently, we
obtain |ṽ(θ(t ))〉 that approximates |v(t )〉.

III. PROPOSED METHOD
In this section, we describe the variational quantum algo-
rithm for derivative pricing and the computational complex-
ity of the proposed method. The overall algorithm is shown
in Algorithm 1. We assume that Ngr = 2nd with the n-qubit
system.
First, we set τter = T − tter, where tter is defined in (28). To

perform VQS, we need to represent the operator correspond-
ing to F in (23) and the operator G̃ such that G̃|0〉 = |C〉 =∑Ngr

k=1Ck(τ )|k〉 by a linear combination of quantum gates,
respectively, because of the assumptions (31) and (32). Such
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decomposition can be obtained in a similar way to the articles
presented in [22] and [47] and is shown in Appendix B. F
can be represented as a sum of O(d2n4) unitaries each of
which requires at mostO(n2) gates to be implemented. G̃ for
typical boundary conditions discussed in Section II-D can be
represented by O(d3n2) unitaries, each of which requires at
most O(n2) gates to be implemented.

Second, we prepare the unnormalized state

|ψp〉 := αpUp|0〉
� |p(tter)〉

=
Ngr∑
k=1

pk(tter)|k〉 (38)

where αp ∈ C, andUp is a quantum gate. pk(tter) is a proba-
bility that the underlying asset prices are on x(k) at tter.We can
obtain such αp and Up by solving the Fokker–Planck equa-
tion, which describes the time evolution of the probability
density function, using VQS [22], [47]. Alternatively, they
can also be obtained by quantum generative models [39],
[40], [41], [42], [43] since the probability density function of
the underlying asset price at any t ∈ [0,T ] can be obtained
analytically under the BS model [see (54) in Section III-A].

Third, we prepare αV ∈ C and UV such that αVUV |0〉 =:
|ψV 〉 approximates the initial state of the discretized BSPDE,
that is

|ψV 〉 � |V̄ (0)〉

=
Ngr∑
k=1

fpay
(
x(k)
)
|k〉. (39)

To find such αV andUV , we can use the quantum generative
models [39], [40], [41], [42], [43].

Fourth, we solve the BSPDE from τ = 0 to τter using VQS
and obtain an unnormalized state

|ṽ(θ(τter))〉 � |V̄ (τter)〉 =
Ngr∑
k=1

V̄k

(
τter, x(k)

)
|k〉 (40)

where

|ṽ (θ(τter))〉 := θ0(τter)R1(θ1(τter))R2 (θ2(τter))
· · ·RNa

(
θNa (τter)

) |ψV 〉 (41)

{Rk}k∈[Na] are the parameterized quantum circuits, and
θ(τter) := (θ0(τter), . . . , θNa (τter))

� ∈ RNa+1 are the varia-
tional parameters. Note that θ0(0)R1(θ1(0)) · · ·RNa (θNa (0))
should be an identity operator to satisfy |ṽ(θ(0))〉 � |V̄ (0)〉.
For example, the ansatz, as shown in Fig. 1, in Section IV
with even number of layers can be used as {Rk}k∈[Na] that sat-
isfies this condition with the parameters θ(0) = (0, . . . , 0)�
since RY gates are identity for the parameters, andCZ layers
cancel each other and also become identity.
Finally, we use the SWAP test [48] for two normalized

states Up|0〉,R1(θ1(τter)) · · ·RNa (θNa (τter))UV |0〉 and obtain

FIGURE 1. In a depth-m circuit, CZ and RY gates (enclosed by dashed
lines) are repeated m-times. The circuit has n(m + 1) parameters.

∣∣〈ψp|ṽ(θ(τter))〉
∣∣2 = ∣∣αpαV θ0(τter)∣∣2

×
∣∣∣〈0|U†

pR1(θ1(τter)) · · ·RNa (θNa (τter))UV |0〉
∣∣∣2 . (42)

As discussed in Section II-E, the present price of the deriva-
tive is approximated by the inner product 〈p(tter)|V̄ (τter)〉
discounted by the risk-free rate. We can approximate the
inner product by the square root of the result of the SWAP
test and obtain the present price of the derivative by

V0 � e−rtter〈ψp|ṽ (θ(τter))〉. (43)

For the third and fourth parts, we may take a slightly dif-
ferent approach. That is, we find θ(0) such that

|V̄ (0)〉 � θ0(0)R1(θ1(0))R2(θ2(0)) · · ·RNa (θNa (0))|0〉 (44)

and obtain

|ṽ(θ(τter))〉 = θ0(τter)R1(θ1(τter))R2 (θ2(τter))
· · ·RNa

(
θNa (τter)

) |0〉
� |V̄ (τter )〉 (45)

using VQS. This approach may reduce the number of gates
by eliminatingUV but since the ansatz for the initial state also
serves as the ansatz for VQS, the number of gates required for
the ansatz may become larger. For this reason, it is difficult to
say which approach is better in general, but we adopt the one
in Algorithm 1 for the numerical simulation in Section IV.

A. NUMBER OF MEASUREMENTS IN THE SWAP TEST
In this section, we estimate the number of measurements
required for the SWAP test to estimate V0 with accuracy ε.
For simplicity, we consider the case where |ṽ(θ(τter))〉 =
|V̄ (τter)〉 and |ψp〉 = |p(tter)〉. We perform the SWAP test

for two normalized states | p̃〉 and | ˜̄V〉 such that |p(tter)〉 =
α| p̃〉, |V̄ (τter)〉 = β| ˜̄V〉, where

α =

√√√√ Ngr∑
k=1

pk(tter)2 (46)
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β =

√√√√ Ngr∑
k=1

V̄
(
τter, x(k)

)2
. (47)

To obtain the value of the inner product |〈p̃| ˜̄V〉|2 with pre-
cision ε̄, the SWAP test requires O( 1

ε̄2
) measurements [48].

When we have the estimation ˜|〈p̃| ˜̄V〉|2 such that∣∣∣∣∣
∣∣∣〈 p̃| ˜̄V〉∣∣∣2 − ˜∣∣∣〈p̃| ˜̄V〉∣∣∣2

∣∣∣∣∣ < ε̄ (48)

the estimation of the inner product of unnormalized states
˜|〈p(tter)|V̄ (τter)〉|2 satisfies∣∣∣∣∣∣〈p(tter)|V̄ (τter)〉

∣∣2 − ˜∣∣〈p(tter)|V̄ (τter)〉
∣∣2∣∣∣∣ < α2β2ε̄. (49)

Here, we denote ˜|〈p(tter)|V̄ (τter)〉|2 by c for notational sim-
plicity. Then,

√
c can be the estimator of |〈p(tter)|V̄ (τter)〉|.

Since |〈p(tter)|V̄ (τter)〉| = ertterV0 holds, we obtain

∣∣∣∣〈p(tter)|V̄ (τter)〉
∣∣−√c∣∣ < α2β2ε̄∣∣〈p(tter)|V̄ (τter)〉

∣∣+√c
≤ α2β2ε̄

ertterV0
. (50)

Thus, O( α4β4

e2rtterV 2
0 ε

2 ) measurements are required to obtain

|〈p(tter)|V̄ (τter)〉| with precision α2β2ε̄/ertterV0 and, thus,
e−rtter |〈p(tter)|V̄ (τter)〉|, an estimation of V0, with precision
ε := α2β2ε̄/e2rtterV0. Also note that since we can classically
calculate α by the analytical form of p(t, s), and β is calcu-
lated by αV θ0(τter), we can determine the number of mea-
surements before the SWAP test from VQS results.
To estimate the number of measurements of the SWAP

test, we estimate α2β2, which is calculated as

α2β2 =
⎛
⎝ Ngr∑
k=1

pk(tter)
2

⎞
⎠
⎛
⎝ Ngr∑
k=1

V̄
(
τter, x(k)

)2⎞⎠

=
⎛
⎝Ngr∑
k=1

pk(tter)
2

⎞
⎠
⎛
⎝Ngr∑
k=1

fpay(x(k) )2

⎞
⎠∑Ngr

k=1 V̄ (τter, x
(k) )2∑Ngr

k=1 fpay(x(k) )2
.

(51)

Although it is difficult to estimate the factor
∑Ngr

k=1 V̄ (τter,x
(k) )2∑Ngr

k=1 fpay(x(k) )2
in advance, we assume that the factor is bounded by
some constant ζ . This assumption means that the rate
of change in derivative prices over time is suppressed
by a certain constant. Under the assumption, we estimate

(
∑Ngr

k=1 fpay(x
(k) )2)(

∑Ngr
k=1 pk(tter)

2). We assume that fpay(x)
for x ∈ D is upper bounded by some constant B. For ex-
ample, in the case of the basket call option with a0 <

0, a1, . . . , ad > 0

fpay(x) = max

(
a0 +

d∑
i=1

aixi, 0

)

≤ a0 +
d∑
i=1

aixi

≤ a0 +
d∑
i=1

aiui (52)

holds. From this assumption, we obtain

Ngr∑
k=1

fpay(x(k) )2 ≤
Ngr∑
k=1

B2

= NgrB
2. (53)

On the other hand, the probability density function of
the d-dimensional geometric Brownian motion with x(0) =
x0 := (x0,1, . . . , x0,d )� is

p(t, x) = 1

(2πt )d/2
(∏d

i=1 σixi
)√

det ρ

× exp

(
−1

2
(ln x− μ)��−1(ln x− μ)

)
(54)

where

μ =
((

r − σ
2
1

2

)
t + ln x0,1, . . . ,

(
r − σ

2
d

2

)
t + ln x0,d

)�
.

(55)

The square of probability density function is

p(t, x)2 =
⎛
⎝ 1

(2πt )d/2
(∏d

i=1 σixi
)√

det ρ

⎞
⎠2

× exp
(
− (ln x− μ)��−1 (ln x− μ)

)
= γ (t )∏d

i=1 xi

1

(2πt )d/2
(∏d

i=1
σixi
2

)√
det ρ

× exp

(
−1

2
(ln x− μ)�

(
1

2
�

)−1
(ln x− μ)

)

= γ (t )∏d
i=1 xi

ϕ(t, x) (56)

where

γ (t ) = 1

(8πt )d/2
∏d

i=1 σi
(57)

and ϕ(t, x) is a probability density function of some log-
normal distribution. Using the probability distribution func-
tion, the square sum of the discretized density function is
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represented by

Ngr∑
k=1

pk(tter)
2 =

Ngr∑
k=1

(
p
(
tter, x(k)

))2 ( d∏
i=1

hi

)2

=
Ngr∑
k=1

γ (tter)∏d
i=1 x

(ki )
i

ϕ
(
tter, x(k)

)( d∏
i=1

hi

)2

≤ γ (tter)∏d
i=1 li

Ngr∑
k=1

ϕ(tter, x(k) )

(
d∏
i=1

hi

)2

� γ (tter)∏d
i=1 li

d∏
i=1

hi

∫
Rd+
ϕ (tter, x) dx

= γ (tter)∏d
i=1 li

d∏
i=1

hi

� γ (tter)∏d
i=1 li

1

Ngr

d∏
i=1

(ui − li). (58)

From (53) and (58), we obtain

α2β2 � ζB2
1

(8πtter)d/2

d∏
i=1

1

σi

(
ui
li
− 1

)

=: �. (59)

Since tter is lower bounded by

tter

= min

⎧⎪⎨
⎪⎩

2
(
log
(
u1
s1,0

))2
25σ 2

1 log
(
2Ãd(d+1)

ε

) , . . . , 2
(
log
(
ud
sd,0

))2
25σ 2

d log
(
2Ãd(d+1)

ε

)
2
(
log
(
s1,0
l1

))2
25σ 2

1 log
(
2Ãd(d+1)

ε

) , . . . , 2
(
log
(
sd,0
ld

))2
25σ 2

d log
(
2Ãd(d+1)

ε

)
⎫⎪⎬
⎪⎭

≥ 2 (logχmin)2

25σ 2
max

(
log

2Ãd(d + 1)

ε

)−1
(60)

where σmax := maxi∈[d]{σi} and χmin := mini∈[d]{ui/si,0} ∪
{si,0/li}, we obtain

� ≤ ζB2
(

5

4π2

ξmax − 1

logχmin

σmax

σmin

)d (
log

2Ãd(d + 1)

ε

)d/2
(61)

where σmin := mini∈[d]{σi} and ξmax := maxi∈[d]{ui/li}3. We
find that the number of measurements required by the SWAP
test is

NSWAP =
3When ξmax is close to 1, one may find it strange that as � decreases

exponentially with respect to the number of assets d, and then, the number
of measurements also decreases exponentially. We show that such an expo-
nential decrease does not occur by evaluating the lower bound of �. See
Appendix E for details.

ζ 2B4

2e4rtterV 2
0 ε

2

(
5

4π2

ξmax − 1

logχmin

σmin

σmax

)2 d (
log

2Ãd(d+1)
ε

)d
.

(62)

Note thatNSWAP does not have the dependency of the form as
(1/ε)O(d), which means that the proposed method achieves
a significant speedup over classical FDM with respect to
ε and d, when the other parts of the proposed method are
sufficiently efficient.
Here, we consider the limit of tter→ 0. This is the case

with taking the inner product of |V (0)〉 and |p(0)〉. In this
case, the probability density function (54) is a delta function,
which means that the present price of the underlying assets
is x0 with probability 1. Assuming that x0 is on a grid point
with the index k0, pk(0) is 1 for k = k0 and 0 otherwise, and
the sum of the squares of pk(0) is 1. As a result, α2β2 is upper
bounded as follows:

α2β2 ≤ ζNgrB
2. (63)

Thus, the number of the measurement is proportional to
Ngr = ndgr, and the quantum speedup will be lost, as in the
case of retrieving one amplitude of the computational basis
from |V (0)〉 as in [13] and [15].

B. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
METHOD
Here, we discuss the computational complexity of our al-
gorithm. We assume that the number of quantum gates re-
quired for preparing |p(tter)〉 and |V̄ (0)〉 is Np

gate and NVgate,
respectively. We also assume that the number of measure-
ments required to prepare |p(tter)〉 and |V̄ (0)〉 is Np

measure
and NVmeasure, respectively. N

p
gate,N

V
gate,N

p
measure, and NVmeasure

depend on the implementation of the generative models, but
we assume that all of them are O(poly(d log(1/ε))). This
means that we assume that the generative models efficiently
generate the (unnormalized) quantum states. Note that VQS
requires controlled versions of UL

k , U
u
l in (36), or those of

RUv , where R is defined in (105) (see Appendix D). Since
UL
k andUu

l are the terms of the linear combination of F and
G̃, respectively, they are made by O(n2) = O(d2 log(1/ε)2)
gates. Thus, O(poly(d log(1/ε)) gates are required for
the control unitaries of UL

k and Uu
l . Assuming RUv is

made by O(poly(d log(1/ε)) gates, the controlled-RUv gate
requires O(poly(d log(1/ε)) gates. Consequently, quantum
circuits containing O(poly(d log(1/ε)) quantum gates are
required for VQS. We assume that the number of measure-
ments to estimate Mi, j and Vi is NVQS

measure. As defined in
Section II-F, the number of parameters is Na, and then the
number of elements Mi, j and Vi is (Na + 1)2 and Na + 1,
respectively. Assuming that the number of steps for VQS
is Nτ , we obtain that the total number of measurements for
VQS is NVQS

measure(Na + 1)2Nτ . The number of quantum gates
to perform the SWAP test is O(poly(d log(1/ε))) since the
SWAP test requires O(n) = O(d log(1/ε)) quantum gates
in addition to the quantum gates to generate |p(tter)〉 and
|V̄ (τ )〉 [48]. The number of measurements for the SWAP test
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TABLE I Complexities of the Proposed Method

is NSWAP in (62). The summary of the complexities of the
proposed method is shown in Table 1.

Note that, although there remains the exponential de-
pendency with respect to d in NSWAP, the time complex-
ity does not have any factor as (1/ε)O(d), as discussed in
Section III-A. This is the possible advantage of our method
since the complexity of the classical FDM and conven-
tional quantum algorithm has a factor like (1/ε)O(d). Fur-
thermore, since |p(tter)〉 and |V̄ (τ )〉 are the states on registers
with O(logNgr) = O(d log(1/ε)) qubits, our method expo-
nentially reduces space complexity compared with that of
classical FDM, (1/ε)O(d).

IV. NUMERICAL RESULTS
In this section, we validate the proposed method using nu-
merical calculations. This experiment focuses on a single-
asset double knock-out barrier option, which contains both
up and out and down and out conditions4. According to Ku-
nitomo and Ikeda [51], the analytical solution for the single-
asset double-barrier option Ṽ with an upper bound u and a
lower bound l is

Ṽ (t )

= S0

∞∑
n=−∞

{(
un

ln

)c
[N (d1n)−N (d2n)]

−
(
un+1

lnS0

)c
[N (d3n)−N (d4n)]

}
− Ke−rτ

×
∞∑

n=−∞

{(
un

ln

)c−2 [N (d1n−σ√τ)−N (d2n−σ√τ)]

−
(
un+1

lnS0

)c−2 [N (d3n − σ
√
τ )−N (d4n − σ√τ)]

}
(64)

where

d1n =
ln
(
S0
K

( u
l

)2n)− (r + σ 2

2

)
τ

σ
√
τ

(65)

d2n =
ln
(
S0

u2n−1
l2n

)
−
(
r + σ 2

2

)
τ

σ
√
τ

(66)

4Note that, it is also possible to calculate the price of the knock-in barrier
option by the in–out parity once the price of the knock-out barrier option
and the price of the vanilla option are calculated [29], [30]. The price of the
vanilla option can be obtained by solving BSPDE analytically.

d3n =
ln
(
u2n+2
KS0 l2n

)
−
(
r + σ 2

2

)
τ

σ
√
τ

(67)

d4n =
ln
(
S0

u2n+1
l2n

)
−
(
r + σ 2

2

)
τ

σ
√
τ

(68)

c = 2r

σ
+ 1 (69)

and N (·) is the cumulative distribution function of the stan-
dard normal distribution. We compare the results obtained
by the proposed method with the analytical solution. We use
the Euler method for the time evolution of the parameter
(34). The step size for the Euler method isτ = 2.5× 10−5.
The parameters are r = 0.001, σ := σ1 = 0.3,T = 1, S0 =
1, l := l1 = 0.5, u := u1 = 2.0, and K = 1. The ansatz of
VQS for solving the BSmodel is shown in Fig. 1. This ansatz
repeats m parameterized layers consisting of n RY gates and
an entanglement layer consisting of CZ gates. The ansatz
have n(m+ 1) parameters. We do not consider noise and
statistical errors in the simulation of quantum circuits. In
addition, we assume that the initial states |V̄ (0)〉 and |p(t )〉
for all t ∈ [0,T ] are given. For the simulation of quantum
states, we use NumPy [52].

A. PARAMETER DEPENDENCIES OF VQS RESULTS
Before discussing our results, we show the results using the
classical FDM in Fig. 2. The plotted curves are V (0, S0) �
e−rtE[V (t, S)|S(0) = S0] at each t ∈ [0,T ], where V (t, S) is
calculated by classical FDMand the expectation is takenwith
respect to the analytical p(t, s). The error from the analytical
solution increases as t increases for t ≥ tter. This is because,
in the range greater than tter, the probability that the underly-
ing asset price exceeds or falls under the boundary conditions
is higher. As the number of the grid points increases, the
derivative price by FDM gets closer to the analytical solu-
tion at tter. Since S0 = 1 is not on the grid points, the error
increases when the probability distribution approaches the
indicator function with t → 0.
Fig. 3 shows the present price of the derivative calculated

by our proposed method. We perform VQS on the simulator
and obtain |ṽ(θ(τ ))〉, which is an approximation of |V̄ (τ )〉.
Taking the inner product between |ṽ(θ(τ ))〉 and |p(t )〉, which
is calculated by (38) and (54), we obtain the estimation of
the present price of the derivative. In the four qubits case, the
result of VQS is a good approximation to the classical FDM
solutions of 16 grid points. The use of the larger number of
qubits, i.e., the larger ngr, gives us solutions that are closer to
the analytical solution as in the case of the classical FDM. In
the case of six qubits with four layers, the number of param-
eters is 30, which is smaller than the number of grid points of
64, but the solution is somewhat close to the classical FDM.
Due to the computational time requirements, we do not run
simulations of larger sizes. However, we find that the solution
obtained with more layers better approximates the classical
FDM solution.
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FIGURE 2. Estimated price of the single-asset double-barrier option by classical FDM.

FIGURE 3. Estimated price of the single-asset double-barrier option by the proposed method.

B. POSSIBILITY OF INITIAL STATE GENERATION
To solve the terminal value problem of the BSPDE, it
is necessary to prepare the (unnormalized) initial state
|V̄ (0)〉 =∑k fpay(x

(k) )|k〉, which we assumed to be given in
Section IV-A. Here, we show by simulation that, for a
typical fpay, we can approximate the initial state |V̄ (0)〉
using an appropriate ansatz. To show that the initial state
can be approximated by |ν(θ0)〉 = α0R0(θ0)|0〉, where

α0 =
√∑

k fpay(x
(k) )2 and R0(θ0) is the ansatz, as shown in

Fig. 1, we adopt L-BFGS-B to find θ0 such that

max
θ0

|〈V̄ (0)|ν(θ0)〉|2 (70)

with SciPy [53]. For the calculation of the gradient, we use
the parameter shift rule [54]. We choose the parameters as
K = 1, l = 0.5, and u = 2, and the ansatz with six qubits
and six layers. By doing maximization of (70), the value
α−2|〈V̄ (0)|ν(θ0)〉|2, which corresponds to fidelity, should
asymptotically converge to 1. The result for a payoff function
of the single asset call option fpay(x) = max(x− K, 0) is
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shown in Fig. 4. We can see that the ansatz approximates
the payoff function well. Indeed, the result satisfies
|1− α−20 |〈V̄ (0)|ν(θ0)〉|2| ≤ 1.2× 10−5.
Note that this optimization does not correspond to real

physical operations. What we show is that there exists θ0 that
at least approximates |V̄ (0)〉 well, and we leave the efficient
search algorithm for such θ0 to future work.

V. CONCLUSION
In this article, we simulate the BSPDE byVQS and obtain the
state that embeds the solution of the BSPDE |V (tter)〉 at tter,
and utilizing the fact that the derivative price is a martingale,
we calculate the derivative price by the inner product of the
state |V (tter)〉 and the state |p(tter)〉 that embeds the proba-
bility distribution. Although it is difficult to accurately esti-
mate the complexity due to the heuristic nature of variational
quantum computation, at least in the numerical simulation,
we confirm that the proposed method can be performed for
the one-asset double-barrier option and that the derivative
price can be obtained with better accuracy by increasing the
number of qubits and the number of layers of ansatz. We
see that the computational complexity is obtained by Table 1
under certain assumptions, and the complexity with respect
to ε is O(1/ε2(log(1/ε))d ). This means that there would be
a significant improvement compared with the classical FDM
and conventional quantum algorithms whose complexity has
factors, such as (1/ε)O(d). Furthermore, we show that an
oracle that generates an initial state with embedded payoff
functions for typical payoff functions could be represented
using an appropriate ansatz.
In this article, we simply assumed that the initial state

of the BSPDE and the state with embedded probability
distribution are effectively generated by some variational
quantum algorithms. We will confirm this point in future
work.

APPENDIX A
ELEMENTS OF THE MATRIX AND THE VECTOR OF THE
FDM FOR THE BSPDE
Here, we show the concrete elements of D1st

xi
in (25), (24),

D2nd
xi

in (24), andC in (21). D1st
xi

and D2nd
xi

are written by (71)
and (72), shown at the bottom of this page.C(τ ) corresponds
to the boundary conditions, and its elements Ck(τ ) are

Ck(τ ) =
d∑
i=1

σ 2
i

2h2i

[
(li + hi)2δki,0V̄LB

i (τ, x(k)∧i )

+(li + ngrhi)2δki,ngr−1V̄UB
i (τ, x(k)∧i )

]

+
d−1∑
i=1

d∑
j=i+1

σiσ jρi j

4hih j

×
[
−(li + hi)(l j + (k j + 1)h j )δki,0V̄

LB
i (τ, x(k)∧i )

− (li + (ki + 1)hi)(l j + h j )δk j,0V̄LB
j (τ, x(k)∧ j )

+ (li + ngrhi)(l j + (k j + 1)h j )δki,ngr−1V̄
UB
i (τ, x(k)∧i )

+(li + (ki + 1)hi)(l j + ngrh j )δk j,ngr−1V̄UB
j (τ, x(k)∧ j )

]

+ r
d∑
i=1

1

2hi

[
(li + ngrhi)δki,ngr−1V̄UB

i (τ, x(k)∧i )

−(li + hi)δki,0V̄LB
i (τ, x(k)∧i )

]
(73)

where V̄UB
i (τ, x(k)∧i ) = VUB

i (τ, x(k)∧i ) and V̄LB
i (τ, x(k)∧i ) =

VLB
i (τ, x(k)∧i ).

D1st
xi
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x(1)i

−x(0)i 0 x(2)i

−x(1)i 0 x(3)i
. . .

. . .
. . .

−x(ngr−3)i 0 x
(ngr−1)
i

−x(ngr−2)i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(71)

D2nd
xi
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
(
x(0)i

)2 (
x(1)i

)2
(
x(0)i

)2 −2
(
x(1)i

)2 (
x(2)i

)2
(
x(1)i

)2 −2
(
x(2)i

)2 (
x(3)i

)2
. . .

. . .
. . .(

x
(ngr−3)
i

)2 −2
(
x
(ngr−2)
i

)2 (
x
(ngr−1)
i

)2
(
x
(ngr−2)
i

)2 −2
(
x
(ngr−1)
i

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(72)

3100717 VOLUME 4, 2023



Kubo et al.: PRICING MULTIASSET DERIVATIVES BY VARIATIONAL QUANTUM ALGORITHMS Engineeringuantum
Transactions onIEEE

FIGURE 4. Target initial condition for single asset (solid line) and the initial state obtained by fidelity maximization (circle dots). Parameters are
fpay(x) = max(x − K, 0) and K = 1. The value corresponding to fidelity satisfies |1 − α−2

0 |〈V̄ (0)|u(θ0)〉|2| ≤ 1.2 × 10−5.

APPENDIX B
DECOMPOSITION OF MATRICES
As discussed in Section III, we need to express F and |C(τ )〉
in terms of linear combination of quantum gates to per-
form the VQS for the BSPDE. Here, we show that such
decomposition is possible. The decomposition of F is based
on the way, as shown in [22] and [47]. We also obtain a
linear combination of quantum gates that generates |C(τ )〉
by slightly modifying the decomposition of F . For simplic-
ity, we assume Ngr = 2nd where n is the number of qubits.
D1st
xi
andD2nd

xi
in (25) and (24) are decomposed as follows:

D1st
xi
= liD

1st + hi
(
Dec(n)(J(n)+ 2I⊗n)

−Inc(n) (J(n)+ I⊗n)) (74)

D2nd
xi
= l2i D2nd+2lihi

(
Dec(n)− 2I⊗n+Inc(n)) (J(n)+ I)

+ h2i
(
Dec(n)− 2I⊗n + Inc(n)

)
(J(n)+ I)2. (75)

Here, we define

D1st := −Inc(n)+ Dec(n) (76)

D2nd := Inc(n)+ Dec(n)− 2I⊗n (77)

J(n) :=
2n−1∑
i=0

i|i〉〈i| = 2n − 1

2
I⊗n −

n∑
i=1

2n−i−1Zi (78)

Inc(n) :=
2n−2∑
i=0
|i+ 1〉〈i| (79)

Dec(n) :=
2n−1∑
i=1
|i− 1〉〈i| (80)

where Zi := I⊗i−1 ⊗ Z ⊗ I⊗n−i. Inc(n)andDec(n) are con-
structed by the following operators:

CycInc(n) :=
2n−1∑
i=0
|i+ 1〉 〈i| (81)

CycDec(n) :=
2n−1∑
i=1
|i− 1〉 〈i| (82)

where we define | − 1〉 := |2n − 1〉, |2n〉 := |0〉. CycInc(n)
and CycDec(n) can be decomposed into a product of O(n)
Toffoli, cnot, and X gates with O(n) ancilla qubits [55].
With these circuits, we obtain

Inc(n) = 1

2
CycInc(n)(Cn−1Z + I⊗n) (83)

Dec(n) = 1

2
(Cn−1Z + I⊗n)CycDec(n). (84)

Cn−1Z :=∑2n−2
i=0 |i〉〈i| − |2n − 1〉〈2n − 1| is an n-qubit con-

trol Z gate and can be implemented as a product of O(n2)
Toffoli, cnot, and single-qubit gates [56]. We can express
D1st
xi

andD2nd
xi

as the sums ofO(n2) unitary operators, each of
which is a product of O(n2) few-qubit gates. Then, the first
term of (24) is a sum of O(dn2) operators, each of which
is made by O(n2) few-qubit gates. The second term is the
sum of O(d2n4) unitary operators each of which is made
by O(n2) few-qubit gates. From (24) and (25), we see that
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F can eventually be expressed as a sum of O(d2n4) unitary
operators each of which is made by O(n2) few-qubit gates.
It is also necessary to construct a linear combination of

unitary operators that outputs the quantum state |C(τ )〉 =∑Ngr
k=1Ck(τ )|k〉. Here, we consider specific cases where

fpay(S(T )) = max(a0 +
∑d

i=1 a jS j(T ), 0), and some assets
have knock-out conditions. These are the cases where the
typical boundary conditions introduced in Section II-C are
compounded. In these cases, we can write

|C(τ )〉 = G̃|0〉 = 2nd/2G(τ )H⊗nd |0〉 (85)

where

G(τ )

=
d∑
i=1

σ 2
i

2hi

[
(li + hi)2 G(0)

i BLBi (τ )δUBi

+ (li + ngrhi)2 G(ngr−1)
i BUBi (τ )δUBi

]

+
d−1∑
i=1

d∑
j=i+1

σiσ jρi j

4hih j

×
[
−(li + hi)(l jI⊗dn + h jJj(n))G(0)

i BLBi (τ )δLBi

− (liI
⊗dn + hiJi(n))(l j + h j )G(0)

j B
LB
j (τ )δLBi

+ (li + ngrhi)(l jI⊗dn + h jJj(n))G(ngr−1)
i BUBi (τ )δUBi

+ (liI
⊗dn + hiJi(n))(l j + ngrh j )G(ngr−1)

j BUBj (τ )δUBi
]

+ r
d∑
i=1

1

2hi

[
(li + ngrhi)G(ngr−1)

i BUBi (τ )δLBi

− (li + hi)G(0)
i BLBi (τ )δLBi

]
(86)

where

δUBi =
{
0 up and out barrier is set the ith asset
1 otherwise

(87)

δLBi =
{
0 down and out barrier is set to the ith asset
1 otherwise

(88)

and

G(0)
i = I⊗n(i−1) ⊗ |0〉〈0|⊗n ⊗ In(d−i) (89)

G
(ngr−1)
i = I⊗n(i−1) ⊗ |1〉〈1|⊗n ⊗ In(d−i) (90)

BUBi (τ ) = e−rτa0I⊗nd +
∑

1≤ j≤d, j 
=i
a j
(
l jI
⊗nd + h jJj(n)

)
x+ aiuiI⊗nd (91)

BLBi (τ ) = e−rτa0I⊗nd +
∑

1≤ j≤d, j 
=i
a j
(
l jI
⊗nd + h jJj(n)

)
+ ailiI⊗nd (92)

Ji(n) = I⊗n(i−1) ⊗ (J(n)+ I⊗n)⊗ I⊗n(d−i) (93)

where |0〉〈0|⊗n = 1
2 (I
⊗n − X⊗n ·CnZ · X⊗n) and |1〉〈1|⊗n =

1
2 (I
⊗n +Cn−1Z). G(0)

i and G
(ngr )
i are expressed as a sum of

O(1) unitary operator each of which is made by O(n2) few-
qubit gates. BUBi and BLBi are expressed as a sum of O(dn)
unitary operators, each of which is made by O(n) few-qubit
gates. Thus, G(τ ) is a sum of O(d2 × n× dn) = O(d3n2)
unitary operators, each of which is made by O(n2) few-qubit
gates.

APPENDIX C
VARIATIONAL PRINCIPLE FOR VQS
Here, we derive (34) from a variational principle. The square
of the difference between both sides of (30) is∥∥∥∥ ddt |ṽ(θ(t ))〉 − L(t )|ṽ(θ(t ))〉 − |u(t )〉

∥∥∥∥2

=
∥∥∥∥ ddt |ṽ(θ(t ))〉 − L(t )|ṽ(θ(t ))〉

∥∥∥∥2

− 2Re

[
〈u(t )|

(
d

dt
|ṽ(θ(t ))〉−L(t )|ṽ(θ(t ))〉

)]
+‖|u(t )〉‖2

=
∥∥∥∥ ddt |ṽ(θ(t ))〉

∥∥∥∥2 − 2Re

[
〈ṽ(θ(t ))|L(t ) d

dt
|ṽ(θ(t ))〉

]
+ ‖L(t )|ṽ(θ(t ))〉‖2

− 2�
[
〈u(t )|

(
d

dt
|ṽ(θ(t ))〉−L(t )|ṽ(θ(t ))〉

)]
+‖|u(t )〉‖2

= 2�
∑
j,k

d〈ṽ(θ j(t ))|
dθ j(t )

d|ṽ(θk(t ))〉
dθk(t )

θ̇ j θ̇k

− 2�
[
d〈ṽ(θ(t ))|
dθ j(t )

L(t )|ṽ(θ(t ))〉 + d〈ṽ(θ(t ))|
dθ j(t )

|u(t )〉
]
θ̇ j

+2� [〈u(t )|L(t )|ṽ(θ(t ))〉]+‖L(t )|ṽ(θ(t ))〉‖2+‖|u(t )〉‖2 .
(94)

Then, the first-order variation of the R.H.S. of (94) is

δ

∥∥∥∥ ddt |ṽ(θ(t ))〉 − L(t )|ṽ(θ(t ))〉 − |u(t )〉
∥∥∥∥2

= 2�
∑
j,k

d〈ṽ(θ j(t ))|
dθ j(t )

d|ṽ(θk(t ))〉
dθk(t )

θ̇ jδθ̇k

− 2�
[
d〈ṽ(θ(t ))|
dθ j(t )

L(t )|ṽ(θ(t ))〉+ d〈ṽ(θ(t ))|
dθ j(t )

|u(t )〉
]
δθ̇ j.

(95)

Thus, we obtain (34).

APPENDIX D
QUANTUM CIRCUITS TO EVALUATE Mi, j AND Vi

Here, we show the quantum circuits to evaluateMi, j and V j.
Without the loss of generality, we can set i ≤ j. The terms in
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FIGURE 5. Quantum circuits for evaluating (a) (98), (b) (99), (c) (101), (d) (101), and (e) (103) and (104). R is R1 · · · Ri−1GiRi · · · RNa for (101) and
R1 · · · Ri−1GiRi · · · RNa for (102), respectively [44].

(35) and (36) are written by (96)–(102), shown at the bottom
of the page.
We can evaluate these terms using quantum circuits, as

depicted in Fig. 5. Note that, although the quantum circuit
evaluating (103) and (104) contains the control-RUv gate,
where

R = R1 · · ·Ri−1GiRi · · ·RNa (103)

for (103) and R1 · · ·Ri−1GiRi · · ·RNa for (104), respectively,
in the case where all boundary conditions are knock-out bar-
riers, that is, in the case of |C(t )〉 = 0, we do not need to
evaluate (101) and (102).

APPENDIX E
LOWER BOUND OF �

Here, we evaluate the lower bound of � and show that the �
does not decrease exponentially with respect to the number

�
(
∂〈ṽ(θ(t ))|
∂θi

∂|ṽ(θ(t ))〉
∂θ j

)
=

⎧⎪⎪⎨
⎪⎪⎩
θ0(t )2�

(
〈v0|R†1 · · ·R†i−1G†

i R
†
i · · ·R†j−1GjR j−1 · · ·R1|v0〉

)
0 < i ≤ j ≤ Na (96)

θ0(t )�
(
〈v0|R†1 · · ·R†j−1G†

jR j−1 · · ·R1|v0〉
)

0 = i < j ≤ Na (97)

1 i = j = 0 (98)

�
(
∂〈ṽ(θ(t ))|
∂θi

UL
k |ṽ(θ(t )〉

)
=
⎧⎨
⎩θ0(t )�

(
〈v0|R†1 · · ·R†i−1G†

i R
†
i · · ·R†NaUL

k RNa · · ·R1|v0〉
)

i 
= 0 (99)

�
(
〈v0|R†1 · · ·R†NaUL

k RNa · · ·R1|v0〉
)

i = 0 (100)

�
(
∂〈ṽ(θ(t ))|
∂θm

Uu
l |0〉
)
=
⎧⎨
⎩θ0(t )�

(
〈v0|R†1 · · ·R†i−1G†

i R
†
i · · ·R†NaUu

l |0〉
)

i 
= 0 (101)

�
(
〈v0|R†1 · · ·R†NaUu

l |0〉
)

i = 0. (102)
.

VOLUME 4, 2023 3100717



Engineeringuantum
Transactions onIEEE

Kubo et al.: PRICING MULTIASSET DERIVATIVES BY VARIATIONAL QUANTUM ALGORITHMS

of assets d. Using the inequality

min(a2, b2) ≤ 1

4
(a+ b)2 (104)

for a, b ∈ R+, we obtain

tter ≤ min

⎧⎪⎨
⎪⎩

2
(
log ui

si,0

)2
25σ 2

i log
2Ãd(d+1)

ε

,
2
(
log si,0

li

)2
25σ 2

i log
2Ãd(d+1)

ε

⎫⎪⎬
⎪⎭

≤
(
log ui

li

)2
50σ 2

i log
2Ãd(d+1)

ε

(105)

for i ∈ [d]. From (57) and (105), � is evaluated by

� ≥ ζB2
(
25

4π
log

2Ãd(d + 1)

ε

)d/2 d∏
i=1

ui
li
− 1

log ui
li

. (106)

As easily verified by elementary analysis, for any z > 1

z− 1

log z
≥ 1 (107)

holds, and then, we obtain

� ≥ ζB2
(
25

4π
log

2Ãd(d + 1)

ε

)d/2
. (108)

Thus, we can see that� does not decrease exponentially with
respect to d.
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