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ABSTRACT Quantum computing engineering integrates quantum electronic engineering and computer
science required to develop quantum computer hardware and software. In this study, we used four experi-
ments (a single spin experiment, a giant spin experiment, a nanomagnet experiment, and the Stern–Gerlach
experiment) to demonstrate that a single spin was much more energy efficient due to its small size and weak
coupling with the surroundings. We conclude that quantum spintronics, with a single spin as a qubit, is a
near-Landauer-bound computing engineering. This means that it is approaching the theoretical limit on the
minimum amount of energy required to perform a computation, as defined by Landauer’s principle. Our
study is also the first experimental verification of Landauer’s bound on a single spin, which is the smallest
information carrier in size.

INDEX TERMS Adiabatic quantum computer, computing engineering, Landauer’s bound, perturbation
theory, quantum spin electronics (spintronics), quantum spin tunneling, qubit, Stern–Gerlach experiment.

I. INTRODUCTION
The engineering implementation of two-level quantum sys-
tems (qubits) matters in terms of building a working device.
A quantum electronic device stimulates the interaction of
coherent electromagnetic radiation on the quantum level and
the transition between quantum energy levels.
Qubits have served as quantum counterparts to classical

bits since the 1990s. As the unit of a classical computer, a
classical bit can only take either the “0” or “1” state. To de-
scribe a classical bit sharply switching between “0” and “1,”
onemustmake some approximations to the initial Hamilton’s
equation (or its counterpart for an electric system). This is
because, characterized by its position andmomentum, a clas-
sical object can only take a value within a continuous range
and continuously change with time [1].
A quantum state of a qubit with mutually orthogonal

unit vectors |0〉and |1〉 can be written as |ψ〉 = α|0〉 + β|1〉,
where complex numbers α and β satisfy the condition
|α|2 + |β|2 = 1 (|α|2 is the probability of finding the qubit
in |0〉, and |β|2 is the probability of finding the qubit in
|1〉). To find a quantum system in a certain state, we need
some physical quantities (observables). By measuring one
of the observables many times, we will obtain the proba-
bility of finding the system in the corresponding state on
average [1].

FIGURE 1. Charge qubit comprising two quantum dots.

To date, many kinds of qubits have been successfully
fabricated. One kind is charge qubits that use quantum dots
(see Fig. 1). Such a dot is so small that it can contain no more
than one electron at a given time since electrons with the
same electric charge strongly repel each other. By putting
one electron across two neighboring quantum dots, we can
actually obtain a charge qubit. The states |0〉and |1〉 can be
detected by measuring the local electric potential, and the
electron can be moved around by applying a voltage with an
approximate value [2].
If the dot (island) is made of a superconductor, then we

obtain a superconducting charge qubit [see Fig. 2(a)], where
|0〉 and |1〉 represent the presence or absence of a Cooper

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 2100513

https://orcid.org/0000-0003-4378-2172


Engineeringuantum
Transactions onIEEE

Wang: NEAR-LANDAUER-BOUND QUANTUM COMPUTING ENGINEERING USING SINGLE SPINS

FIGURE 2. Superconducting qubit can protect its state from external
noise. (a) Superconducting charge qubit. (b) Superconducting flux
qubit [4].

pair or Bardeen–Cooper–Schrieffer pair of electrons [3],
respectively.
Due to its special property (a superconducting loop can

carry an electric current forever), the usage of a supercon-
ductor in a qubit makes it possible to protect its state from
external noise. By interrupting a superconducting loop with
a Josephson junction [4], we obtain a superconducting flux
qubit (“flux” refers to the magnetic flux, produced by the
current flow), as shown in Fig. 2(b). The states |0〉 and |1〉
represent the counterclockwise current flow and the clock-
wise current flow, respectively.
It is worth mentioning that the electric charge in the above-

mentioned charge qubit consists of one or two electrons [2],
[3], whereas the current flow in the above-mentioned flux
qubit involves (typically) more than two electrons [4]. Nev-
ertheless, these qubits still behave like two-level quantum
systems.

II. SPINTRONICS FOR QUANTUM COMPUTING
In addition to the above-discussed charge and flux qubits in
conventional quantum electronics, another kind of qubit is
the qubit based on spin, which is the angular momentum of
a quantum particle, measured in units of � : L = �s [5]. As
an indispensable and inescapable property, the spin angular
momentum cannot be reduced to zero or anything else. If
a quantum particle as an information carrier is “at rest” or
“anchored” (i.e., its kinetic energy has the minimal value
allowed by Heisenberg’s uncertainty principle [5]), then its
spin is still present and can be manipulated and recorded.
Scalably, the magnetic moment of a macroscopic particle
consists of an integer number of spins. Such a macroscopic

FIGURE 3. Erasure of a spin qubit from the random data (“0” or “1”)
state. A circularly polarized ON-resonant micrometer laser cyclically
pumps the spin qubit to a defined quantum state, followed by spin
reversal induced by either a magnetic field B or Rabi flopping between
the two levels illuminated with light exactly resonant with the transition
occurs at the Rabi frequency.

FIGURE 4. Quantum computer containing seven qubits performed a real
quantum algorithm (factoring the number 15 = 3 × 5).

particle can also be manipulated by an external electro-
magnetic field. Being a quantum observable, spin is quan-
tized such that s can be either an integer or a half-integer:
s = 1

2 ,
3
2 , . . .. In particular, an electron or a neutron has

spin-1/2 and themoment carried by a proton is approximately
2.8 nuclear magneton [5].

If a “resting” electron is trapped or anchored in a potential
well, then its two-spin states can play the role of a qubit.
As shown in Fig. 3, the difference in energy between the
two states “0” (when the magnetic moment is parallel to
the magnetic field B) and “1” (when it is antiparallel) is
�E↑↓ = μBB.
The spin-related magnetic dipole moment of an electron is

μB = 9.2740 × 10−24 J/T (the Bohr magneton [5]), that is,
very small. For a proton, μN = 5.0507 × 10−27 J/T [5], that
is, even smaller. Nevertheless, the weakness of the signal of
each spin does not stop us from using spins as qubits.
One method is to use multiple identical molecules, each

containing several atoms with nuclear spin-1/2 (see Fig. 4)—
e.g., 1H, 13C, or 19F [6]. These spins interact with each
other and can be controlled and measured using the nuclear
magnetic resonance technique. The large number of spins
involved compensates for the weakness of the signal of each
spin.
In 2014, a spin–spin magnetic interaction experiment [7]

was carried out. A circularly polarized on-resonant laser
(with a wavelength ranging from 422 to 1092 nm) cyclically
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FIGURE 5. Magnetic interaction between two outermost ground-state
spin-1/2 valence electrons orbiting around two 88Sr+ ions was measured
[7]. To set the spin quantization axis (along which the angular moment
has well-determined values), an external magnetic field B of
(1.3 × 10−3 ± 1.0 × 10−7) T is applied along the line linking the two
electrons to induce spin rotation [7]. Spin–spin magnetic interaction
induces x rotation (green arc in the Bloch sphere at the bottom) from the
north pole (|↑↓〉), through the fully entangled state
(|χ〉+ = (|↑↓〉 + i|↓↑〉)/

√
2) and toward the south pole (|↓↑〉). A

(controlled) magnetic field gradient ∇B induces z rotations (red arc in
the Bloch sphere) so that B also facilitates the parity observable
measurements (to measure the spin–spin magnetic interaction, although
it does not depend on B at all) on the equatorial plane after performing
a collective π/2 spin rotation (green arc). The physical observable (the
projection of the final Bloch vector on the x-axis) is first-order sensitive
to the spin–spin interaction strength and the experimental time
(TBell = 67 s). A redraw courtesy of S. Kotler (the Hebrew University of
Jerusalem).

pumped two electrons bound within two ions across a sepa-
ration (d = 2.18−2.76 μm) to a well-defined quantum state
|↑↓〉 or |↓↑〉. The measured magnetic interaction was ex-
tremely weak [Bspin−spin = μ0

4π
2μB
d3

= (0.88−1.79) × 10−13

T,where μ0 = 4π × 10−7T · m/A is the vacuum permeabil-
ity constant], six orders of magnitude smaller than magnetic
noise (typically 0.1μT). As shown in Fig. 5, the two ions
were entangled to protect the two (entangled) spins against
errors (decoherence processes). Relevant to our study here, a
single spin can be reliably switched with a typical detection
fidelity of 98% [7].

Due to the spin–orbit coupling, an equivalent (weak) mag-
netic field acts on each electron in its rest frame (top right),
i.e., bound electrons rather than free electrons are being used
here. As the smallest magnet (the Bohr magneton), a spin
(1 μB) applies a tiny magnetic field to another spin.
The two-spin Hamiltonian in the above-mentioned spin–

spin experiment can be written as

H = 0.5�
(
ωA,1σz,1 + ωA,2σz,2

)︸ ︷︷ ︸
Zeeman shift due to B (MHz)

+2�ζσz,1σz,2 − �ζ
(
σx,1σx,2 + σy,1σy,2

)︸ ︷︷ ︸
Spin−spin magnetic interaction (mHz)

. (1)

Here, σ j,i is the j ∈ {x, y, z} Pauli spin operator of the
ith spin; ωA,i = 2μBBi/2�, where Bi is the aforementioned
external magnetic field, including the magnetic noise fluc-
tuation at kilohertz. The spin–spin interaction strength is
ζ = μ0μ

2
B/4π�d

3. As illustrated in the two spins’ energy
diagram in Fig. 5 (middle), the first term on the right-hand
side of (1) describes the Zeeman shift of the spins’ energy
due to the external magnetic field B, which is equivalent
to megahertz in the spin Larmor frequency ωA,i (i = 1, 2)
[7] that characterizes the precession of a transverse mag-
netization about a static magnetic field. As also illustrated
in Fig. 5 (middle), the second and third terms describe the
weak, millihertz-scale spin–spin magnetic interaction that is
insusceptible to spatially homogeneous magnetic noise [7].
In this study, it is the first term (megahertz) that was our focus
since its contribution to energy consumption is nine orders of
magnitude larger than the second and third terms due to the
spin–spin magnetic interaction (millihertz).
To introduce modulation in this spin–spin experiment [7],

a spin rotation can be performed by pulsing a resonant oscil-
lating magnetic field, perpendicular to the spin quantization
axis, resulting in a Rabi frequency fRabi of 65.8 kHz, as
illustrated in Fig. 3 [7].

According to our calculations in this article, this work
is the first experimental validation of Landauer’s bound on
a single spin that is the smallest among various informa-
tion carriers. Although this experiment was designed for the
spin–spin magnetic interaction measurement, it equivalently
incorporates the total work involved in a complete erasure
protocol for a single spin.
In 2016, an energy dissipation of 4.2 zJ was measured

in a single-domain nanomagnet (comprising more than 104

spins) [8] (see Fig. 6). The energy dissipation was calculated
by the following equation:

∫M · dH = ∫ {(Mx × dHx) + (
My × dHy

)}
= ∫Mx × dHx + ∫My × dHy

= AreaMx−Hx loop + AreaMy−Hy loop. (2)

In 2018, a giant spin reversal experiment [8] was reported,
in which each nanomagnetic bit was composed of eight
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FIGURE 6. Experimental nanomagnet bit (comprising 104 spins) [8]. The
magneto-optic Kerr microscopy was used to measure the energy
dissipation. Bx = 20 mT is applied along the hard axis to remove the
uniaxial anisotropy barrier (no tunneling effect in this classical binary
system), whereas By = 20 mT is applied along the easy axis to flip it to
the erasure state (“1”) at 3t. A redraw courtesy of J. Bokor (University of
California Berkeley).

FIGURE 7. Giant spin Sz = ±10(20 μB ) reversal experiment was reported
[8]. Here, x, y, and z are defined as the hard, medium, and easy magnetic
axes, respectively. The (strong) magnetic anisotropy related to the local
structure is illustrated (top right). The four-step sequence of magnetic
fields Hy (blue) and Hz (red) induces the erasure process (bottom left): In
step 1, the magnetic field μ0Hy is ramped up to 2 T; in step 2, when μ0Hy
is at its maximum, μ0Hz is ramped up to 0.2 T to erase all molecular
spins to the “up” state; in steps 3 and 4, both μ0Hy and μ0Hz return to
zero, completing the whole erasure process. A stepped hysteresis loop
along the easy axis (bottom right). The transverse magnetic field Hy
lowers the barrier, playing an assisting role. Although |Hz| � |Hy |, it is
the horizontal magnetic field Hz that contributes mainly to the total work
of switching the giant spin via quantum spin tunneling. A redraw
courtesy of R. Gaudenzi (Max-Planck Institute).

spin- 52 Fe3+ ions. These ions are coupled to each other by
antiferromagnetic interactions (the spins of the ions Fe1, Fe2,
Fe5, Fe6, Fe7, Fe8 are up and the spins of the Fe3 and Fe4 ions
are down). A collective (20 μB) giant spin is then formed.
With aligned magnetic axes, arrays of these molecular mag-
nets can be packed into a single crystal (see Fig. 7, top left).
The Hamiltonian of this giant spin is

H = −DaniS
2
z + Eani

(
S2x − S2y

)
− 2μBS · B (3)

in which the first two terms account for the magnetic
anisotropy energy involving the two anisotropy constants
(Dani/kB = −0.294 K and Eani/kB = 0.046 k), and the third
(Zeeman) term accounts for the interaction between the total
spin S and a magnetic field B [9]. An effective energy barrier
was accordingly created, separating the Sz = ±10 ground
eigenstates that encode the “↑” and “↓” bit states.
In this giant spin reversal experiment, two external mag-

netic fields (Hy, Hz) provide external control over the poten-
tial energy landscape. μ0Hy = (0−2) T is applied along the
medium axis, allowing one to tune the height of the potential
energy barrier without breaking the degeneracy between “↑”
and “↓.” This transverse magnetic field promotes quantum
mixing of the “↑” and “↓” spin orientations in this quantum
system [8]. The giant spin can then tunnel through the bar-
rier via progressively lower-lying energy levels, thus leading
to spin reversal. In contrast, the other magnetic field μ0Hz
= (0–0.2) T, parallel to the easy axis, favors either of the
two eigenstates Sz = ±10 (i.e., by increasing the “↑” or “↓”
polarization it selects), thereby adjusting the energy bias ε
(energy difference) between the two states.
It is worth highlighting here that, compared to the weak

magnetic interaction (∼10−13 T) in the previous spin–spin
experiment [7], the strength (∼0.1 T) of the horizontal mag-
netic fieldμ0Hz required to flip this (20μB) giant spin is large
to overcome the strong magnetic anisotropy in the crystal
lattice structure (see details in Section IV).
Fig. 7 illustrates spin relaxation combining tunneling. An

energy gap � that equals the tunneling bias ε (to be de-
fined in Fig. 8) needs to be overcome to trigger the quantum
spin tunneling for Em=−S+1 = Em′=S. The above-mentioned
process may take a long relaxation time (>100 s), which can
be improved by increasing Hy to lower the energy level [8].

There are two sides to everything. One problemwith using
multiple spins is their “bulk” feature (all spins have to be
controlled and measured at once) [1]. Another problem is
that the strong coupling required to form a collective spin
may result in disruption (from the environment) of the fragile
quantum correlations essential for qubits [1]. A third problem
is that some systems, such asmolecular nanomagnets, exhibit
a strong magnetic anisotropy that requires strong magnetic
fields to drive them.

III. SPIN QUBIT HAMILTONIAN AND
SCHRÖDINGER EQUATION
The (time-independent) Hamiltonian of a spin qubit can
be written in the Hermitian form with a special kind of
symmetry (its diagonal elements being real and off-diagonal
elements being complex conjugates) [1], [5] as follows:

Ĥ = −1

2

(
ε �

� −ε
)

(4)

where ε is the bias (see Fig. 8), and � is the tunneling
splitting (see Fig. 9).
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FIGURE 8. Two-well potential is used in both classical computing and
quantum computing. If the ball is small enough and the barrier is narrow
enough, then the ball can tunnel through the hill with no need to climb
it. (a) Classical computing. (b) Quantum computing.

FIGURE 9. Energies and wave functions of the ground and excited spin
qubit states. Quantum beats can be seen when ε = 0 (to be further
elaborated in Fig. 12).

Consider a ball that is rolling on an uneven surface [see
Fig. 8(a)] and will eventually settle in one of the local min-
ima, with the minimum potential energy Emin = mhmin (m
denotes the mass of the ball, and h denotes the height of
the ball). If two such minima are separated by a hill (an
energy barrier), forming a two-well potential, then we can

consider one of the two wells as “0” and the other as “1.”
That is, the ball is our information carrier in a classical
information system and its position is encoded as a binary
bit of information. We may also assume that friction even-
tually stops the ball such that we can neglect its kinetic
energy in this case (for a similar reason, we should use
bound rather than free electrons while implementing quan-
tum computing in spintronics). As shown in Fig. 8(a), we
can also create an energy difference ε between the two states:
ε = E1 − E0.

Once the ball is in “0,” it will stay there forever, even if
E1 < E0. To force the ball to move from “0” to “1,” we have
to push it over the hill (that is, Landauer’s bound [10] in a
classical information system; see the details in Section IV)
by providing sufficient kinetic energy.
If the setup in Fig. 8(a) is used for quantum computing

(the ball is small enough and the barrier is narrow enough),
then the ball can tunnel through the barrier with a rate �,
as shown in Fig. 8(b) [it can be considered as the quantum
analog of Fig. 8(a)]. Approximately, this tunneling process
does not require any extra energy and resembles teleportation
[1].

The spin qubit Hamiltonian in the Schrödinger equation is

i�
d

dt

(
α

β

)
= −1

2

(
ε �

� −ε

)(
α

β

)
=
( − 1

2εα − 1
2�β

− 1
2�α − 1

2εβ

)
(5)

where the “energy”� ∼ �� (the frequency times the Planck
constant yields the energy) is the tunneling matrix element
of the Hamiltonian [1].

This matrix equation is decomposed into a set of two equa-
tions: one corresponds to the first row, and the other to the
second row. If the qubit is not biased (ε = 0), then we obtain

i�
dα

dt
= −1

2
�β i�

dβ

dt
= −1

2
�α (6)

dα

dt
= i�

2�
β

dβ

dt
= i�

2�
α. (7)

Let us start from the state |0〉 (α = 1, β = 0). We obtain
dα
dt = 0 and dβ

dt = i�
2� , whichmeans that the chance of finding

our system in state |1〉 changes at a rate � ∼ �
�
.

For a qubit, a solution (an energy eigenstate) in the form of
|E〉 = ( α

β
) exp

(− iEt
�

)
satisfies the stationary Schrödinger

equation

−1

2

(
ε �

� −ε
)(

α

β

)
= E

(
α

β

)
(8)

where E is a definite energy [1].
These two equations for two unknown quantities can be

resolved only if

E = ±1

2

√
ε2 +�2 (9)

in which the lower sign corresponds to the energy Eg of the
ground state |g〉 and the upper sign to the energy Ee of the
excited state |e〉, as shown in Fig. 9.
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From the above-mentioned equations, we obtain that∣∣g (∞) =
(
1
0

)
and |e (∞) =

(
0
1

)
,when ε → ∞

∣∣g (−∞) =
(
0
1

)
and

∣∣g (−∞) =
(
1
0

)
,when ε →−∞

∣∣g (0) = 1√
2

[(
1
0

)
+
(
0
1

)]

|e (0) = 1√
2

[(
1
0

)
−
(
0
1

)]
, when ε = 0.

The above-mentioned relations imply that a large bias ε
(when the two wells are far apart) results in the state of the
system being in either of the twowells [1], as shown in Fig. 9.

At zero bias (ε = 0), the energies of the two wells
coincide, but the energy gap between the ground and
excited states is � (the tunneling splitting). The eigen-
states are superpositions of the “↑” and “↓” states |g(0, t )〉
= 1√

2
[|↑〉 + |↓〉]exp ( i�t2�

)
and |e(0, t )〉 = 1√

2
[|↑〉 − |↓〉]

exp
(− i�t

2�

)
.

If the system is in state |↑〉 at t = 0, then it can be written
as

|↑〉 = 1

2
[( |↑〉 + |↓〉) + ( |↑〉 − |↓〉)]

= 1

2

[√
2 |g (0, t = 0)

〉+ √
2 |e (0, t = 0)〉

]
. (10)

To find the state of the system at any later time, we need
to include the time-dependent vectors and obtain

| (t )〉 = 1

2

[√
2 |g (0, t )

〉+ √
2 |e (0, t )〉

]
= 1

2

[
|↑〉
(
e
i�t
2� + e−

i�t
2�

)
+ |↓〉

(
e
i�t
2� − e−

i�t
2�

)]
=
[
|↑〉 cos �t

2�
+ i |↓〉 sin �t

2�

]
. (11)

At time t = π�/�t, the system will be in the |↓〉
state, although we did nothing to it. It will keep os-
cillating between |↑〉 and |↓〉. The probabilities of find-
ing the qubit in states |↑〉 and |↓〉 are P↑(t ) = |α|2 =
〈↑ |(t )|2 = (cos �t2� )

2 = 1
2 (1 + cos �t

�
) and P↓(t ) = |β|2

= 〈|↓ |(t )|2 = (sin �t
2� )

2 = 1
2 (1 − cos �t

�
), respectively.

This leads to a phenomenon called quantum beats [1], [11]
(see Fig. 9) and the period is T = 2π�

�
= h

�
. The above-

mentioned deductions vividly demonstrate that the quantum
dynamics of a spin qubit are largely determined by its en-
ergy time product (Et = �T ) in terms of setting the max-
imum speed at which a spin can modify its energy by a
given amount. Further elaborations will be provided in the
following sections.
On the other hand, the tunneling in the spin-flipping by

a magnetic field is irreversible since the magnetic field only
favors flipping a spin in the opposite direction. This magnetic
field tilts the potential landscape such that ε = 0, as shown

TABLE 1 Energies to Flip a Spin or a (20 μB) Giant Spin With Different
Magnetic Fields (Sorted by Amplitude From Large to Small) in
Comparison to Landauer’s Bound (kBT ln2) [10]

in Fig. 8(b). Thus, a single spin can still be reliably switched
without having the problem that the information carrier in
the destination well “tunnels” back to the original well in the
completed erasure. Such a reliable switch has been experi-
mentally observed in both the spin–spin magnetic interaction
experiment (with a typical detection fidelity of 98%) [7] and
the (20 μB) giant spin reversal experiment [9].

IV. LANDAUER’S BOUND AND QUANTUM
SPIN TUNNELING
If we take the strongest instantaneous magnetic field of 1200
T created in the laboratory [12] as B in Fig. 3, then �E =
μBB ≈ 10−18 J. Table 1 lists the energies to flip a spin with
different magnetic fields in comparison to Landauer’s bound
[10].
In Section II, we mentioned that, in contrast to the weak

external magnetic field B of 1.3 × 10−3 T to erase a single
spin (�E↑↓ = μBB ≈ 1.2 × 10−26 J) in the spin–spin ex-
periment [7], the strength (∼0.1 T) of the horizontal mag-
netic field required to erase the (20 μB) giant spin is ex-
tremely large to overcome the strong magnetic anisotropy in
the crystal lattice structure [8]. As another comparison, the
equivalent magnetic field (due to the spin–orbit coupling, as
shown in Fig. 5) acting on the outermost electron orbiting
around an 88Sr+ ion in the rest frame of this electron is only
Z4

n3
≈ 10−7 T [5], as listed in Table 1.
We take an average value for Bz = μ0Hz = 0.1T in the

giant spin experiment because, at the end of Step 2 when
μ0Hz is ramped up from 0 to 0.2 T (see Fig. 7, bottom left),
the giant spins are already oriented to the “up” configuration
[9] (i.e., the erasure is already completed at this point).
In Section III, we mentioned that the tunneling process

approximately does not require any extra energy. However, it
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FIGURE 10. For a bit of position-encoded classical information, the
designated erasure state (“0”) is reached from the random data state via
the free state by removing the partition. The erasure dissipates the heat
of kBT ln2 (Landauer’s bound [10]) by pushing it toward R and exerting
the work: W = ∫0.5

1 Fd (1 − x) = ∫0.5
1 PAd (1 − x) = − ∫0.5

1
PAx

x dx =
− ∫0.5

1
kBT

x dx = kBT ln 2. If it is a bit of orientation-encoded classical
information, then we still need to input a certain amount of energy
above Landauer’s bound to reach the designated erasure state from the
random data state [8] since the orientation fluctuates and may take an
arbitrary direction due to thermal agitation [17].

TABLE 2 Experiments of Landauer’s Bound [10] on Various Information
Carriers (Sorted by the Size of the Information Carrier From Large to
Small, Except for the Bacterial Ion Channels [23])

is only theoretically possible to use zero or arbitrarily small
energy to flip a spin via tunneling, whereas, in practice, this
energy must have a lower bound that is Landauer’s bound [to
be elaborated in (17), in which a tunneling bias is present]. As
listed in Table 1, the smallest amount of the energy of erasing
an information bit is 1.2 × 10−26 J with a single spin, which
is already close to Landauer’s bound. This is analogous to
the world record of the lowest temperature (3.8 × 10−11 K)
[18], although in theory one can get as close as possible to
absolute zero.
The so-called Landauer’s bound was proposed by Lan-

dauer [10], who argued that information is physical and that
the erasure of a bit of classical information requires a min-
imum energy amounting to �E = kBT ln 2, where kB is the
Boltzmann constant and T is the temperature. Profoundly,
Landauer’s bound (see Fig. 10) is accepted as one of the
fundamental limits in physics and computer science [19].
Since 2012, Landauer’s bound has been experimentally

verified for various information carriers, including a single
silica glass bead [20], a fluorescent particle [21], a single-
domain nanomagnet [8], a single atom [23], a giant spin [9],
and bacterial ion channels [23], as summarized in Table 2.
Specifically, the sizes of various information carriers and

the experimental temperatures are listed in Table 2. Nor-
mally, quantum effects are observed at low temperatures and
small sizes. For example, when the size of amagnetic particle
decreases, it may be possible to invert the magnetization

through the quantum tunneling effect [8]. This effect should
appear at low temperatures (when the spin is in its ground
state), where it provides an efficient path for magnetic relax-
ation only if the wave function of the left well overlaps with
that of the right well.
Noticeably, as listed in Table 1, the strength (∼0.1 T) of

the horizontal magnetic field required to overcome the strong
magnetic anisotropy in the giant spin reversal experiment [9]
is 100× the external magnetic field (∼10−3 T) in the single
spin experiment [7]. The detailed calculation follows.

As shown in Fig. 7 (top right), it is the horizontal magnetic
fieldHz that contributes mainly to the total work of switching
the giant spin via quantum spin tunneling (in the same way
as how we switch a single spin in Fig. 3). As shown in Fig. 7,
the transverse magnetic field Hy only plays an assisting
role (lowering the barrier) on the switched giant spin via
quantum spin tunneling (although |Hy| � |Hz|). In theory,
a transverse magnetic field is only used to remove the
anisotropy energy barrier (see Figs. 6 and 7) to facilitate a
possible tunnel through the barrier. In practice, according to
the giant spin reversal experiment [9], the measured work
done by Hy was (−6 ± 2) × 10−24J per molecule, much
smaller than the measured work [(1.7 ± 0.3) × 10−23 J per
molecule] done by Hz.
Thus, the work required for the erasure of each (20μB)

giant spin qubit can be estimated by a simple formula

�EN↑↓ = (NμB)Bz

=
(
20 × 9.274 × 10−24 J · T−1

)
× 0.1 T

= 1.855 × 10−23 J. (12)

This estimation based onBz is the same order ofmagnitude
as the experimentally measured total work (1.1 ± 0.3) ×
10−23J [9] and can be adjusted by considering the perturba-
tion brought by By (to be elaborated later).
Similarly, the work required for the erasure of each (104

spins) nanomagnet qubit can be estimated by

�E↑↓ = 104μBBx + 104μBBy ≈ 4.0 × 10−21J (13)

in which Bx = 20 mT is applied along the hard axis to re-
move the uniaxial anisotropy barrier (no tunneling effect in
this classical binary system), whereas By = 20 mT is applied
along the easy axis to flip it to the erasure state (“1”) at 3t.
Note that (13) takes the same form as (2) used in the nano-
magnet experiment [8] in terms of the magnetization being
expressed by the Bohr magneton in a single or collective
spin and the magnetic fields taking their averages over the
corresponding periods. This estimation perfectly matches the
experimentally measured total work (∼ 4 × 10−21J) [8].

Equation (12) indicates that both the moment size N of an
information carrier and the applied magnetic field B matter.
This is important in terms of implementing quantum comput-
ing in spintronics, in which the formula kBT ln 2 introduced
by Landauer [10] may not be directly used for the following
reason.
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Equation (12) provides an analytical formula that is use-
ful in practice to identify the dominant factor(s) in a four-
step erasure process (see Fig. 7, bottom left), in which each
magnetic field has its ramping-up stage, constant (maxi-
mum) stage, and ramping-down stage. Namely, this formula
�EN↑↓ = NμBBz considers only Steps 2–4 with Hz [9], but
it has taken into consideration the contributions in all four
steps in the giant spin reversal experiment (see Fig. 7) and
all contributions (including the external magnetic field to set
the spin quantization axis and facilitate the parity observable
measurements on the equatorial plane after performing a col-
lective π /2 spin rotation, which we ignored in our previous
work [17]) in the single spin experiment (see Fig. 5).
Note that the amplitude of By = (0 ∼ 2) T is ten times

that of Bz = (0−0.2) T, which implies that any hysteresis of
My [measured in Fig. 11(b)] will be “amplified” by a factor
of 10 in terms of subtracting MyBy from MzBz [measured in
Fig. 11(a)] to obtain the net work. For this reason, although
the measured work [(−6 ± 2) × 10−24J] done by Hy was
namely 35% of the measured work [(1.7 ± 0.3) × 10−23 J]
done by Hz [9], the actual “noise” level is only 3.5%
compared to the original signal level, which is not
uncommon.
Nevertheless, the concerned Hy contribution to the total

work in a complete cycle to erase the giant spin can still be
estimated by following the high-order perturbation theory
in the form of (the spin Hamiltonian H = H0 + δH) [25].
Having rewritten (3) as H = (−DaniS2z − 2μBSz · Bz) +
(EaniS2y − 2μBSy · By) = H0 + δH, we found that if a trans-
verse magnetic field (By = 0) is introduced, then S2y = 0,
resulting in the nonzero perturbation Hamiltonian (δH =
EaniS2y − 2μBSy · By) (negatively) contributing to
the total work, together with the major contributor
(H0 = −DaniS2z − 2μBSz · Bz), although Eani/kB =
0.046 K � |Dani/kB = −0.284 K| [25]. The relative
strength of this perturbation δH to the “unperturbed”
Hamiltonian (H0 that commutes with Sz only) should be
described as (14), shown at the bottom of the page, in which
the lower bound is close to 35% calculated above based
on the experimental measurements [9] and will be used to
adjust the calculated work.
According to our calculations, the work done by Bz is

1.9 × 10−23 J, which is close to the measured work (see
Fig. 11): W2,4 =W4 −W2 = (1.7 ± 0.3) × 10−23 J; the
work done by By is 30% × 1.9 × 10−23 J = 5.7 × 10−24 J,

which is close to the measured work (see Fig. 11): W1,3 =
W3 −W1 = (−6 ± 2) × 10−24 J. Using the same subtraction
formula used in the giant spin measurements [9], the
total work is 1.9 × 10−23 J − 5.7 × 10−24 J =
1.3 × 10−23 J, which is close to the measured work:
W = |W2,4| − |W1,3| = (1.1 ± 0.3) × 10−23 J (see Fig. 11)
[9]. In the above-mentioned calculations, the subtraction
was fairly performed since |W1,3| actually came from |W2,4|
due to the bias effect of small Bz in Step 3 [see Fig. 11(b)],
i.e., the nonzero area |W1,3|was originated by Bz (otherwise,
it is zero in theory). This bias effect is similar to what was
demonstrated in Fig. 7, in which it is By that assists the
reversal by Bz in terms of lowering the energy barrier.
As summarized in Table 3, (12) yields 1.2 × 10−26 J for

the single spin [7] flipped by Bz = 1.3 × 10−3 T, which is
close to the theoretical Landauer bound (9.6 × 10−27 J) at
the corresponding experimental temperature of 1 mK, 1.3 ×
10−23J for the giant spin [9] flipped by Bz = 10−1 T with
the assistance of By = 1 T, which is close to the theoretical
Landauer bound (9.6 × 10−24 J) at the corresponding exper-
imental temperature of 1 K, and 4 × 10−21 J for the nano-
magnet [8] flipped by By = 20 × 10−3 T [in the presence of
Bx = 20 × 10−3 T used to remove the uniaxial anisotropy
barrier due to no tunnel through it in this classical binary
system (see Fig. 6, bottom)], which is close to the theoretical
Landauer bound (2.9 × 10−21 J) at the corresponding exper-
imental temperature of 300 K, respectively.
As summarized in Table 3, (12) was experimentally ver-

ified by all three experiments (the single spin experiment
[7], the giant spin experiment [9], and the nanomagnet ex-
periment [8]) to universally quantify the energy required to
erase an orientation-encoded bit, regardless of whether the
information carrier is a single spin, a 20μB giant spin, or a
nanomagnet (containing 104 spins).
Simply speaking, our method in this article is to use

the deduced formula [see (12)], verified by the giant spin
experiment [9] and the nanomagnet experiment [8], to
calculate the energy required to erase a single spin qubit
extracted from the spin–spin experiment [7]. Our result is
1.2 × 10−26 J, which is slightly larger than the corresponding
theoretical Landauer bound (9.6 × 10−27 J). We view such
nonviolation of Landauer’s bound as an experimental
verification in terms of the calculated energy being slightly
larger than the bound, rather than being smaller than it or
dramatically different from it. This is not a coincidence.

δE

E0
=

∣∣∣EaniS2y − 2μBSy · By
∣∣∣∣∣−DaniS2z − 2μBSz · Bz
∣∣

=
∣∣0.046K · 1.38 × 10−23J · K−1(±10)2 − 2 × 9.27 × 10−24J · T−1 (±10) (±1) T

∣∣∣∣0.284K · 1.38 × 10−23J · K−1(±10)2 − 2 × 9.27 × 10−24J · T−1 × (±10) (±0.1) T
∣∣

=
∣∣6.35 × 10−23J ± 1.85 × 10−22J

∣∣∣∣3.92 × 10−22J ± 1.8510−23J
∣∣ ≈ (30 ∼ 66)% (14)
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FIGURE 11. Experimentally measured work versus theoretically
predicted work for the giant spin qubit [9]. (a) According to the
Stoner–Wohlfarth (S–W) model [24], Mz jumps to its maxima of 20μB at
the end of step 2, remains constant maxima during steps 3 and 4, and
returns to zero at the end of step 4 [the real-world hysteresis loop of a
giant spin is shown in Fig. 7 (bottom right)]. The shaded rectangle in red
[�E20

↑↓ = 20μB(Bz = 0.1 T), where Bz = 0.1 T takes the average value of
the full range (0−0.2 T)] corresponds to the net work done onto the
switched giant spin by Bz . The energy gain (represented by the rectangle
in green) in step 4 compensates for all energy costs (represented by the
white area) in step 2. The net work was measured as
W2,4 = W4 − W2 = (1.7 ± 0.3) × 10−23 J. (b) My increases with increasing
By during step 1 and reaches its maxima of 12μB at the end of step 1,
stays there during step 2, and returns to the origin at the end of step 3.
In theory, the area enclosed by the outgoing and returning paths should
be zero since the outgoing path overlaps the returning one according to
the S–W model. However, in practice, the returning path (step 3) is
lowered by Bz [9]. This nonzero area was measured as
W1,3 = W3 − W1 = (−6 ± 2) × 10−24 J. The lever rule is illustrated, in
which any hysteresis of My measured in (b) will be “amplified” by a
factor of 10 in terms of subtracting MyBy from MzBz [measured in (a)] to
obtain the net work. A redraw courtesy of R. Gaudenzi (Max-Planck
Institute). (a) Longitudinal magnetization. (b) Transverse magnetization.

Energy near kBT ln 2 to erase a qubit at the expense
of a long spin relaxation time is theoretically sensible and
experimentally verified [7]. A single spin extracted from the
aforementioned spin–spin magnetic interaction experiment
[7] demonstrates that Landauer’s bound can be quantitatively

approached at an approaching rate of 1×10−26 J
1.2×10−26 J

= 83% via

TABLE 3 Comparison of Three Orientation-Encoded Binary Systems

FIGURE 12. Quantum spin tunneling penetrates the thermal energy
barrier (Landauer’s bound [10]) and provides a “shortcut” for spin
reversal, which is dramatically different from classical information
manipulation (see Fig. 10). The cost of erasing a spin qubit does not
come from “climbing the hill,” but from “tunneling through the hill.”
Quantum mechanics provides a simple answer to the question of
whether it is possible to approach Landauer’s bound in the envisaged
extreme regimes.

quantum spin tunneling (see Fig. 12). The approaching rate
is defined as the rate between Landauer’s bound (at the cor-
responding temperature, at which an information system is
operating) and the consumed energy to erase a bit of informa-
tion in this information system, which describes how much
the energy consumption can approach Landauer’s bound. If
it is 100%, Landauer’s bound is reached.
Table 3 indicates that the single spin system, in which

a spin is weakly bound in an ion, is superior by nature to
the giant spin (molecular nanomagnet) system, in which a
strong anisotropy is present related to the local structure (this
strong anisotropy is caused by crystal electric field from the
surrounding ligands, which is related to the local structure
instead of the lattice). Although both the giant spin and single
spin use quantum spin tunneling, the latter is much more
“agile” than the former in terms of the energy required to flip
it. Note that the “clumsiness” of the giant spin is not only due
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to its “giant” size (20μB) but also due to its strong interaction
(100× the external magnetic field in the spin–spin magnetic
interaction experiment) with the surroundings.
This quantum spin tunneling effect to facilitate the reversal

of a qubit in quantum computing can further be analyzed by
rewriting the giant spin Hamiltonian in (2) as

H = − DaniS
2
z + Eani

(
S2x − S2y

)
− 2μBSx · Bx − 2μBSy · By − 2μBSz · Bz. (15)

If Bx = 0 and By = 0, then the eigenvectors of this Hamil-
tonian are the eigenvectors |m〉 of Sz and the eigenvalues of
this Hamiltonian are, therefore, quantized and equal to

Em = −Danim
2 − 2μBmBz (16)

where s designates the eigenvalues of the spin operator Sz and
m = −Sz, −(Sz − 1), −(Sz − 2), . . . , (Sz − 1), Sz. Thus,
there are (2Sz+1) eigenvectors and (2Sz+1) eigenvalues.
If Bz = 0, then we obtain [�EN↑↓ = (NμB)Bz] in (12) that

can be used to estimate the work required for erasure of each
(20μB) giant spin qubit.
IfBz = 0, then the eigenvectors |m〉 and | − m〉 degenerate,

as shown in Fig. 13(a), in which splitting of the (2S+1)
energy levels can be seen even in the absence of an applied
magnetic field (zero-field splitting, ZFS) [25]. IfBz = 0, then
it is also possible to have degeneracy (Em = Em′ ) of two
eigenvectors |m〉 and |m′〉 for certain values ofHz [25]. As an
example, Fig. 13(b) shows the level in the double well when
Em=−S+1 = Em′=S is satisfied. That is, tunneling is possibly
triggered (with the assistance of an appropriate transverse
field Bx or By) between the lowest (ground) state of the right-
hand well and the first excited state of the left-hand well.
The value of Bz can be calculated from Em=−S+1 = Em′=S

with Dani/kB = −0.294 K [9] as follows:

Em=−S+1 = −DaniS
2 + 2SDani − Dani + 2μBSHz − 2μBHz

Em′=S = −DaniS
2 − 2μBSHz

Bz = −Dani

2μB

=−−0.294 K × 1.380 × 10−23 J · K−1

2 × 9.274 × 10−24J · T−1
≈0.22 T

(17)

which agrees well with the actual strength [(0−0.2) T] of
μ0Hz used in the giant spin reversal experiment [9].
As mentioned above, if an energy gap � equals the

tunneling bias ε (defined in Fig. 8)

ε =
[
−Dani(−9)2 − 2μB (−9)Bz

]
−
[
−Dani(−10)2 − 2μB (−10)Bz

]
= 18 |Dani| = 7.303 × 10−23 J (18)

then tunneling is possibly triggered for Em=−9 = Em′=10.
Fig. 13(b) vividly illustrates spin relaxation combining

tunneling with spin–phonon coupling (a phonon may be

FIGURE 13. Energy levels of a giant spin. (a) ZFS with the
aforementioned quantum beats (represented by three blue double

arrows). (b) Subject to a longitudinal magnetic field (Bz = − Dani
2μB

) that

satisfies Em=−s+1 = Em′=s. With �m=−10 = ε between m = −9 and
m = −10, tunneling (represented by two blue single arrows) is possibly
triggered from the lowest (ground) state of the right-hand well to the
first excited state of the left-hand well. Note that (reversible) quantum
beats cannot be used for qubit erasure that should be irreversible in
terms of the erased information being lost permanently, whereas
(irreversible) quantum spin tunneling can. Also, note that the energy
landscape is a parabola (∝ m2) whose maximum (that is the full
activation energy U [9]) appears at m = 1/2 in (b) since
dEm
dm = −2Danim − 2μB(Bz = − Dani

2μB
) = (−2m + 1)Dani = 0. (a) ZFS.

(b) Subject to a longitudinal magnetic field Bz.

caused by lattice vibration [25]). Spin reversal occurs by
the system absorbing phonon energy in the excitation and
reaching an excited state (represented by an upward arrow
in red/yellow), the spin tunneling to the opposite side of the
potential barrier, the system emitting a phonon (or a few
phonons) in the de-excitation (represented by a downward ar-
row in red/yellow), and eventually reaching the ground state.
As summarized in Table 2, this work is the first experimen-

tal verification of Landauer’s bound on a single spin that is
the smallest in size among various information carriers. Nev-
ertheless, Landauer’s bound has already been significantly
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challenged over the past two decades [26]. In 2000, Shenker
[27] argued that it is plain wrong since logical irreversibility
is unrelated to heat dissipation. In 2003, Bennett [28] sug-
gested that it is a restatement of the second law of thermo-
dynamics. In 2011 and 2019, Norton [29], [30] showed that
the thermal fluctuation selectively neglected in the previous
proofs fatally disrupted the intended operation. Further re-
search is needed to determine whether Landauer’s bound is
merely the consequence of the second law of thermodynam-
ics [31] and whether we have to presume its demise despite
the many mysteries uncovered with it over the past 60 years
[17], [32].
A large cooling facility that is peripheral to the central

quantum processor is needed for today’s few-qubit quantum
computers, in which the fundamental energy given by
�E = μBB merely represents a small part of the overall
energy bill. However, the cooling energy is unlikely to scale
linearly with the increased number of qubits [22]; hence, its
relative proportion will become less dominant in the future.

V. NEAR-LANDAUER-BOUND ADIABATIC
QUANTUM COMPUTER
As listed in Table 3, the above spin-encoded quantum com-
puter may be slow: for the single spin [7], the spin relaxation
time is 134 s, as shown in Fig. 5; for the giant spin [9], the
spin relaxation time τrel follows Arrhenius’s law in the form
of Landauer’s bound (kBT )

τrel = τ0exp

(
U

kBT

)
= 10−8 exp

(
25kB
kB

)
≥ 100 s (19)

where the above-mentioned activation energy U can be
estimated from (16) as U/kB ≈ |−Danim2 − 2μBmBz| =
|−Dani102 − 2μB × 10 × (−Dani

2μB
)| = |−90Dani| ≈ 26.5 K

that is close to the full magnetic anisotropy energy
barrier U/kB = 25 K [9], τ0 ≈ 10−8 s is the attempt
time [9] for the giant spin, and T = 1 K [9]. By
applying a transverse magnetic field μ0Hy = 2 T , an
effectively lower activation energy U/kB = 5 K can
dramatically shorten the giant spin relaxation time
to τrel = τ0exp(

U
kBT

) = 10−8 exp( 5kBkB ) ≈ 10−6 s. The
above-mentioned two estimated time scales (100 s and
10−6 s) agreed with the experimental measurements (71.2 s
and ≤ 10−6 s) [9], which validated both (15) and (18).

Amazingly, a slow operation or slow evolution is good for
adiabatic quantum computing [33], [34], [35]. If the Hamil-
tonian of a quantum computer depends on time, then its
quantum state vector should satisfy the equation

i�
d | (t )〉

dt
= Ĥ (t ) | (t )〉 . (20)

At a given time, the Hamiltonian will have a set of instan-
taneous eigenvectors, such that |Ĥ(t )|n(t )〉 = En(t )|n(t )〉.
For example, its ground state will also be time dependent.
In adiabatic quantum computing, we need to find a (po-

tentially complicated) Hamiltonian whose ground state de-
scribes the solution to our problem of interest. First, we ini-
tialize our system with a simple Hamiltonian to the ground

FIGURE 14. Near-Landauer-bound adiabatic quantum computing with
slow evolution of a spin qubit. If the evolution is too fast, then the qubit
will jump from the ground state to the excited state by mistake.

state (i.e., |(0)〉 = |g(0)〉). Next, we let the simple Hamil-
tonian evolve to the desired complicated Hamiltonian in an
adiabatic way [the ground state of our system is always sep-
arated from the excited states by a finite energy gap (i.e.,
E1(t ) − E0(t ) > 0)]. By the adiabatic theorem [1], if the
Hamiltonian evolves slowly enough to avoid the metastable
states (none of which is close to our solution), then our
system remains in the ground state (i.e., |(t )〉 = |0(t )〉),
and the final state of our system encodes the solution to our
problem in one go (evolution).
The adiabatic evolution in the case of a single spin

qubit can be explained as follows. The time-dependent
Hamiltonian

Ĥ (t ) = −1

2

(
ε (t ) �

� −ε (t )
)

(21)

depends on time through the bias ε. Its ground state is
|g(−∞)〉 = ( 01 ) (i.e., in the |↓〉 potential well) when ε =
−∞ and |g(∞)〉 = ( 10 ) (|↑〉 potential well) when ε = ∞.
As shown in Fig. 14, if the qubit is initially in the ground

state and the bias then slowly changes from minus to plus
infinity, then the qubit will have time to tunnel from the |↓〉
to |↑〉 potential well, and will end up in the ground state. If
the evolution is too fast by rapidly changing the bias, then the
qubit will remain trapped in the |↓〉 potential well, that is, in
the excited state. This “trapping” is a major source of error
in adiabatic quantum computing [1], [33], [34], [35].

The near-Landauer-bound adiabatic quantum computer
has some obvious advantages: any quantum program can be
run on it; the quantum gates can be replaced by qubit–qubit
interactions; there is no need to precisely manipulate the
states of qubits; and the ground state is the lowest energy state
[1]. Therefore, as long as we run the system slowly and keep
the ambient temperature lower than the energy gap between
the excited state and the ground state, we can suppress the
noise coming from the outside and preserve the required
quantum coherence for a long time.

VI. CONCLUSION AND DISCUSSIONS
The question of whether it is possible to approach the clas-
sical Landauer bound in the era of quantum computing is
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an important one. Landauer’s principle states that there is a
minimum amount of energy required to perform a computa-
tion, and this limit has been a fundamental constraint on the
efficiency of classical computing.
In the context of quantum computing, the situation is more

complicated because quantum systems behave differently
from classical systems. Quantum computers use quantum
bits, or qubits, which can exist in a superposition of states
and can be entangled with other qubits. This allows quan-
tum computers to perform certain computations much more
efficiently than classical computers.
However, the question of whether quantum computing can

approach the Landauer bound is still an open one. Some
researchers have suggested that the principles of quantum
mechanics may allow for more efficient computation than
classical computing, and that the Landauer bound may not
apply in the same way. Others have suggested that there may
be fundamental limits to the efficiency of quantum comput-
ing that are analogous to the Landauer bound.
Overall, it is an open and active area of research to ex-

plore the fundamental limits of quantum computing and to
determine whether it is possible to approach the classical
Landauer bound in this fundamentally different computing
paradigm.
In this study, we presented that quantum spintronics us-

ing single spin qubits may represent a novel energy-efficient
near-Landauer bound computing technology. We found that
although both a single spin and a giant spin use quantum spin
tunneling, the single spin is much more “agile” than the giant
spin (whose “clumsiness” is not only due to its “giant” size
but also due to its strong coupling with the surroundings) in
terms of the former consuming only 1/1000 of the energy
of erasing the latter. Overall, our study contributes to our un-
derstanding of the fundamental limits of quantum computing
and the potential of quantum spintronics to provide a more
energy-efficient computing paradigm.
In the (20 μB) giant spin reversal experiment [9], the hori-

zontal magnetic field required to flip the giant spin is large
to overcome the strong magnetic anisotropy in the crystal
lattice structure. The equivalent anisotropy field Hk can be
estimated by

μ0Hk = |Dani| s2
Ms (μB)

= 0.294 K × 102 × 1.380 × 10−23 J · K−1

20 × 9.274 × 10−24J · T−1
≈ 2.2 T

(22)

where the numerator is based on (16) with Hz = 0, and the
denominator accounts for the magnetic moment (J · T−1)
[9], [25], [36], [37]. This strong anisotropy field of 2.2 T
establishes an upper limit to the coercivity Hc, as shown in
Fig. 6 (middle right). In practice, we have μ0Hc ≈ 0.1 T �
μ0Hk ≈ 2.2 T (Brown’s paradox [38]) or Hc = αHk, in
which α � 1 is called the Kronmüller factor [39], [40].
In fact, there are many magnetic materials with isotropic

magnetic interactions (Heisenberg exchange interactions)

FIGURE 15. Is the Stern–Gerlach experiment the first demonstration of
Landauer’s principle? Silver atoms travel through an inhomogeneous
magnetic field, being deflected up or down depending on their spin
orientation. The screen reveals two discrete traces. The magnetic field
has treble roles to play [45]: B sets the spin quantization axis and
provides a torque on the spins for a potential reversal if the thermal
agitation (in the form of Landauer’s bound) mentioned in Fig. 10 is
overcome, whereas δB provides a net force on the spins to deflect the
atoms’ trajectory. Historically, this experiment convinced physicists of
spin quantization in all atomic-scale systems.

[41]. Hopefully, there will be more and more research groups
that will get closer and closer to Landauer’s bound without
using a strong magnetic field to erase a spin qubit in their
experiments in the future.
According to Koomey’s law [42]. [43], Landauer’s bound

limits irreversible operations, such that the increase in the
computing power efficiency (the number of computations per
joule of energy dissipated), will come to a halt around 2050.
As summarized in Table 3, our current calculations were

supported by at least three independent experiments within
a reasonable tolerance. Furthermore, we even found that
even the famous Stern–Gerlach experiment [44] may be the
first demonstration of Landauer’s principle, as illustrated in
Fig. 15.

We can use (12) to calculate the erasure energy as:
�EN=1

↑↓ = (1μB)(Bz = 0.1 T) ≈ 10−23 J · T−1 × 0.1 T =
10−24 J � kB(T = 400 K) ln 2 = 1.38 × 10−23J · T−1 ×
400 K × 0.69 ≈ 4 × 10−21 J. This is why Stern and Gerlach
still observed two discrete traces of the quantized spins
on screen [44]. If they had increased the strength of the

magnetic field Bz from 0.1 T to 4×10−21 J
10−23 J·T−1 = 400 T, they

would have seen the collapse of the two traces to one only
owing to the flip of the quantized spins. As mentioned in
Fig. 10, for a bit of orientation-encoded information, we
need to input a certain amount of energy above Landauer’s
bound to reach the designated erasure state from the random
data state since the orientation fluctuates and may take an
arbitrary direction due to thermal agitation.
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