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ABSTRACT Categorical data play an important part in machine learning research and appears in a
variety of applications. Models that can express large classes of real-valued functions on the Boolean
cube are useful for problems involving discrete-valued data types, including those which are not Boolean.
To this date, the commonly used schemes for embedding classical data into variational quantum ma-
chine learning models encode continuous values. Here, we investigate quantum embeddings for en-
coding Boolean-valued data into parameterized quantum circuits used for machine learning tasks. We
narrow down representability conditions for functions on the n-dimensional Boolean cube with re-
spect to previously known results, using two quantum embeddings: a phase embedding and an em-
bedding based on quantum random access codes. We show that for any real-valued function on the
n-dimensional Boolean cube, there exists a variational linear quantum model based on a phase embedding
using n qubits that can represent it and an ensemble of such models using d < n qubits that can express any
function with degree at most d. Additionally, we prove that variational linear quantum models that use the
quantum random access code embedding can express functions on the Boolean cube with degree d < [n/3]
using [n/3] qubits, and that an ensemble of such models can represent any function on the Boolean cube
with degree d < [n/3]. Furthermore, we discuss the potential benefits of each embedding and the impact
of serial repetitions. Finally, we demonstrate the use of the embeddings presented by performing numerical
simulations and experiments on IBM quantum processors using the Qiskit machine learning framework.

INDEX TERMS Boolean cube, expressivity, Fourier analysis, quantum machine learning, variational quan-
tum algorithms.

I. INTRODUCTION

Machine learning problems involving categorical data are
prevalent across many domains. The range of a categorical
variable lies in a finite set, and each element in this set can
be associated with an integer. Thus, one can map a sin-
gle categorical variable to multiple binary variables. If our
goal is to perform supervised learning, then this converts
the problem into learning a real-valued function on the n-
dimensional Boolean (hyper)cube B" = {0, 1}". This implies
that models that can express large classes of functions on the
Boolean cube are useful for problems involving categorical
data. In this article, we consider using variational quantum
machine learning (VQML) [1] to fit real-valued functions
of multiple binary variables. Thus, such models can be ap-
plied to regression or classification tasks. Beyond machine
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learning, variational quantum algorithms [2] have been
applied to chemistry [3], [4], [5], combinatorial optimiza-
tion [6], [7], quantum linear systems [8], [9], and the simula-
tion of quantum dynamics [10], [11]. When applied to super-
vised learning, VQML consists of using parameterized quan-
tum circuits (PQCs) built from two types of circuit blocks:
embedding blocks, which encode the inputs into a quantum
system, and trainable blocks, where learnable parameters are
adjusted in order to optimize the output results. There are
various methods for optimizing the learnable parameters in a
hybrid classical-quantum iterative manner, including analyt-
ical gradients [12], [13], [14], [15], [16]. This paradigm has
been used to construct various analogues to classical machine
learning models applicable to supervised learning tasks [17],
[18], [19], [20], [21], [22], [23].
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As an example of the potential applicability of VQML, it
has been observed that these models can be used to solve
a variety of financial problems, such as fraud detection and
creditworthiness determination [24], [25], [26]. There has
been an active line of studies to characterize the expressiv-
ity [27], [28], [29], the generalizability [30], [31], [32], [33],
[34], [35], [36], [371, [38], and the trainability [39], [40], [41]
of VQML models. However, the specific case of quantum
models with discrete-valued inputs has not been investigated
as extensively [42], [43].

A recent study by Schuld et al. [44] showed that the output,
when it is represented by the expected value of an observable,
of a VQML model can be expressed as a partial sum of
a multidimensional Fourier series. The connection between
VQML models and Fourier series was also observed in [45].
Recently, Caro et al. [35] derived generalization bounds for
such models. The range of attainable frequencies is related to
the quantum embedding used, and this range can be broad-
ened by repeating the embedding sequentially, a process
called data reuploading [46], or by introducing additional
sets of qubits and repeating the embedding in parallel for
each set. The observable and trainable blocks control the
coefficients of the Fourier basis elements in the partial sum.
Since every function in Ly ([0, 2r]") can be represented by
the limit of a Fourier series [47], VQML models can approx-
imate any function in this space to arbitrarily small error, in
L, norm, by using an embedding scheme that produces the
required Fourier spectrum. This also assumes that the observ-
able and trainable blocks can fit the Fourier coefficients to
the desired error, which Schuld et al. assumed when deriving
their results. Along similar lines, Goto et al. [48] demon-
strated that models built from a linear combination of basis
functions derived from quantum-enhanced feature spaces are
universal for continuous functions. Similar to Schuld et al.,
the embeddings that Goto et al. used consisted of serial and
parallel repetitions of simple encoding schemes. We show
that variational linear quantum models, which do not make
use of serial or parallel repetitions of a quantum embedding,
are sufficient for representing functions on the Boolean cube.
Variational linear quantum models use PQCs that consist
of one embedding block and one trainable block. For two
quantum embeddings, we use Fourier analysis to derive the
classes of real-valued functions on the Boolean cube that can
be represented by variational linear quantum models. The
number of qubits used only depends on the dimension of the
input.

In this article, we explore two research directions.

1) First, we consider a phase embedding, which encodes
each input bit into the relative phase of a single-qubit
state, i.e., the number of qubits used equals the number
of input bits. We show that any real-valued function
on the Boolean cube, B”, can be represented by a
variational linear quantum model that uses the phase
embedding and that a classical ensemble, formed by
summing the outputs of multiple models each using d
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qubits, can express any function with degree < d. The
degree of a function on B” is the maximal Hamming
weight over all s € B", where the Fourier transform is
nonzero.

2) Then, we further consider a quantum random access
codes (QRACs) embedding—a quantum embedding
that makes use of QRACs [49], [50]. This embed-
ding was introduced by Yano et al. [43] for encoding
categorical data into variational quantum classifiers.
We investigate the classes of functions expressible by
variational linear quantum models using this embed-
ding. Specifically, we show that any function of degree
d < [n/3] can be represented by a classical ensemble
formed by summing the outputs of multiple QRAC-
embedding-based variational linear quantum models
each using [n/37 qubits.

We note that the above results imply that for functions with
degree < [n/37, an ensemble of phase embedding models
requires only [n/3] qubits, which is the same number of
qubits used with the QRAC embedding. However, it can still
be beneficial to use the QRAC embedding in certain cases as
discussed later.

Juntas form an important class of functions on Boolean
domains. A k-junta is a function, Boolean or real-valued,
that depends on at most k out of the n input bits. These
functions are useful in computational learning theory [51]
for modeling learning tasks where the data can be explained
using a subset of the available features [52]. Such scenar-
ios typically occur when applying supervised learning to
real-world datasets [53]. There has been a lot of progress in
developing quantum computational learning theory [54]. For
example, there exist algorithms in the query model [55] for
both learning and testing k-juntas [56], [57], [58], [59], some
of which make use of both quantum and classical queries. By
definition, if kK < [n/3], then the degree of the junta is guar-
anteed to be at most [r/37, so the junta can be represented
by an ensemble of linear quantum models that use the QRAC
or phase embedding.

With regards to classical neural networks, there has
been recent work investigating the learnability of parity
functions [60] and real-valued functions on the Boolean
cube [61]. There are also neural networks for lattice regres-
sion [62] and the recent hierarchical lattice layer [63] for par-
tially monotone regression. We perform experiments on sim-
ulators and on IBM Quantum hardware to study the expres-
siveness of variational linear quantum models for low-degree
functions. These experiments demonstrate the efficacy of the
phase and QRAC embeddings for representing functions on
the Boolean cube.

A. MAIN RESULTS

Summarizing, we list here the main contributions of this
article.

1) We show that for any function on the Boolean cube B”,
there exists a variational linear quantum model with
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n qubits based on a phase embedding such that the
output of the quantum model agrees with the target
function for all inputs. Additionally, we show that for
any function with degree < d, there exists an ensemble
of variational linear quantum models using the phase
embedding and d qubits such that the output of the
ensemble agrees with the output of the target function
for all inputs.

2) We then present sufficient conditions for variational
linear quantum models using a QRAC embedding to be
able to express the functions of degree d < [n/3] using
[1n/3] qubits. Moreover, we then demonstrate that for
any function of degree d < [n/37 on the Boolean cube
B”", there exists an ensemble of QRAC-based varia-
tional linear quantum models with [n/37 qubits each
such that the output of the ensemble agrees with the
output of the target function for all inputs.

3) We test these two embeddings on low-degree functions
on the Boolean cube via numerical experiments and on
IBM superconducting quantum processors.

We note that the results derived for the phase and QRAC
embeddings were proven under the assumption of universal
trainable gates and arbitrary observables that are diagonal in
the computational basis.

B. ARTICLE ORGANIZATION

The rest of this article is organized as follows. Section II
reviews the Fourier analysis of functions with Boolean inputs
and the use of PQCs for machine learning. Section III intro-
duces embeddings for representing functions on the Boolean
cube with PQCs. Then, we use tools from Fourier analysis
to study the expressivity of VQML models that make use of
these embeddings. In Section IV, we apply variational quan-
tum models, using either the phase or QRAC embeddings,
to supervised learning problems involving low-degree func-
tions on the Boolean cube. These experiments were run in
simulation and on IBM Quantum hardware. Finally, Section
V concludes this article. The appendices contain further com-
putational elaborations of the topics discussed in the main
text.

Il. PRELIMINARIES

This section introduces the concepts necessary to understand
the novel contributions of this article. Particularly, it focuses
on the Fourier analysis on the Boolean cube and gives an
overview of the state-of-the-art of VQML.

A. FOURIER ANALYSIS ON THE BOOLEAN CUBE

First, we briefly review the Fourier analysis of real-valued
functions with Boolean inputs. This short review is based
on the introduction by de Wolf [64]. We consider the
2"-dimensional real vector space G := {f : B" — R}. This

VOLUME 4, 2023

space can be equipped with the following inner product:

1

<fvg> :=§

> b)) Vf.g €. (1)

beB”

To every tuple s € B", we associate a function xs : B" —
{£1} that is defined as follows:

xsb) = [] (Db = (=1)? )
iisi=1
where s - b is given by the scalar product
n
s b= Zsl-b,». 3)
i=1
The function y; depends on the parity of a subset, indicated
by s, of the input bits.

With respect to the inner product defined in (1), the set
containing all xs forms an orthonormal basis for G, called
the Fourier basis. The Fourier transform of a given f € G,
denoted by f, is defined as follows:

~ 1
F&)=f, 060 =57 D f®)xsb) Vs € B (4)

beB”

Because the set of all y; forms an orthonormal basis, it holds
that any f can be expressed as follows:

f®) =" F()xs(b) ©)

seB”

where the value f(s) is the Fourier coefficient associated with
xs and the set of all f(s) is called the Fourier spectrum of f.
The degree of f is the maximal Hamming weight over all
s € B”" such that f(s) # 0.

In Section I, we introduced a k-junta as a function on
B" whose output only depends on k of the n input vari-
ables by, by, . .., b,. For a given k-junta, suppose C C [n] :=
{1, ..., n} contains the k indices corresponding to the input
variables that the junta depends on. It can be easily shown
that the Fourier transform of a k-junta can only be nonzero
on elements from the set

{seB"|Vienl:si=1=i€eC(}. 6)

Thus, the degree of the junta is bounded by |C| = k, so when
k < n, a k-junta is guaranteed to also be a low-degree func-
tion. In the following sections, we will use these definitions to
analyze the classes of functions on B” that can be expressed
by VQML models.

B. VARIATIONAL QUANTUM MACHINE LEARNING

This section reviews relevant concepts of VQML [1]. Be-
fore moving to functions defined on the Boolean cube, we
consider the task of fitting a real-valued function that is de-
fined on an arbitrary set A C R". For a continuous-valued
range, this task is called regression, and for a discrete-valued
range, it is called classification. The input datax € A, stored
on a classical memory, can be embedded into a quantum
state by utilizing an m-qubit parameterized-unitary operator
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U (x), which is a unitary-operator-valued function of the n-
dimensional vectors in 4. The operator U is called a quantum
embedding.

Let us consider a parameter-independent Hermitian
observable D, defined to be diagonal with respect to the
computational basis, and thus

D e spang {I, Z}®™. @)

We further define a parameterized observable Oy with varia-
tional parameters 6 as follows:

0y .= W'(6)DW (0) 8)

where W(#) is a unitary operator implemented by a PQC.
The VQML model that we focus on in this work is the
variational linear quantum model

Jo(x) := Tr[Opp(x)] (C))

where p(x) := U(x)|0m)(0m|UT(x) is the state of the system
after the action of the unitary U (x) and Tr is the trace opera-
tor. Essentially, fp(x) maps x to a real number by taking the
expectation of Oy with respect to p(x). This model is also
called a quantum neural network [30], and in the context of
classification, it has been called the explicit linear quantum
classifier [65] or variational quantum classifier [19]. Since
the expectation of an observable is continuous valued, for
classification, some postprocessing of the output is required
to map it to the finite set of possible classes.

We can implement the parameterized measurement by
evolving p(x) by the parameterized-unitary operator W(6)
and then measuring D. We relate this sequence of operations
to (9) as follows:

Tr[DW (8)p(x)W (6)]
= Tr[W'(0)DW (0)p(x)] = Tt[Ogp(x)]  (10)

where we used the cyclic property of the trace.

The model in (9) is linear in the sense of being a quantum
analog to the linear models [66] of classical machine learn-
ing [19], [67]. Explicitly, a linear model in classical machine
learning is of the form

h(x) = (w, p(x)) (11

where ¢ : A — F is called a feature map, and F is the
associated feature space. In addition, w € F is fixed for all
inputsx € A, but it is chosen to minimize some cost function
by using an optimization procedure. For the model defined
in (9), ¢(x) = p(x) maps x into a quantum feature space,
which contains 2™ x 2™ density matrices representing quan-
tum states called feature states. In addition, the observable
Oy represents a @-parameterized family of w’s. In this case,
each w in the family is a Hermitian matrix. The inner product
in (11) is now the Hilbert—Schmidt inner product. Finally,
a VQML model that interleaves embedding and trainable
layers, which by (9) implies it is not a linear model, is known
in the literature as a data reuploading model [46].
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The expressivity of both classical and quantum linear
models solely depends on the feature map used to encode x,
as both w and Oy only define linear functions in the feature
space. The feature maps can be used to make / or fp nonlinear
as functions on the domain .A. In supervised learning, the
goal is to minimize the regularized empirical risk

1

7 2 eIk (12)

x,neT

over the labeled training set

T i={&xy1), ..., (¥} (13)

where each x; € A and each y; € R. The functions ¢ and J
are called the loss and regularizer, respectively.

Classically, when ¢ (x) is difficult to compute explicitly or
to operate on, we instead utilize kernel methods. The kernel
function induced by the feature map ¢ is defined as follows:

k(xi, xj) == (p(xi), p(x)) F. (14)

Kernel methods consider £, in (11), as a function in the
reproducing-kernel Hilbert space (RKHS) generated by k.
This kernel trick is effective when the functional form of &k
is easier to evaluate than it is to explicitly compute the inner
product between ¢ (x;) and ¢ (x;), as done in (14). A common
classical example is the Gaussian kernel, which efficiently
computes inner products in an infinite-dimensional feature
space [66]. Suppose J(h) := z(||A|lx), where z : [0, c0) — R
is strictly increasing, and ||| is the norm of % in the RKHS.
Then, according to the representer theorem [68], any mini-
mizer A, of the regularized empirical risk (12) lies in the
RKHS and is of the form

hnin@) = Y orek(x, X))
()T

= ) ax(d@). o))z (15)
(x, )T

If ¢ is convex and J(h) = ,8||h||%, where 8 > 0, then the
ay’s can be found by solving a convex optimization problem
called the kernel ridge regression. This requires computing
the kernel matrix K, with entries K; ; = k(x;, x ;). In addition,
Kisa|T| x |T| real-valued symmetric matrix.

The quantum-kernel method, as originally stated [19], uses
the fidelity kernel

ko(xi, x;) := Trlp(x)p(x D1 = [(Wily > (16)

where [V;) = U(x;)|0,,), and U is a quantum embedding.
This kernel computes the Hilbert—Schmidt inner product be-
tween quantum feature states. Liu et al. [69] demonstrated
a quantum speedup using such kernel methods for solv-
ing a discrete-log-inspired supervised learning problem. It
has been observed that generalization can be difficult with
the fidelity kernel; however, there exist heuristics [70], [71]
and hyperparameter optimization techniques [72] to enable
generalization. The kernel defined in (16) is evaluated on
a quantum device for all pairs of training data elements,
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which avoids performing classical operations on the 2"-
dimensional state vectors |/;). The entries of the correspond-
ing kernel matrix are given to a classical computer to find the
ay’s, which involves solving a convex optimization problem.
Alternatively, the training procedure for VQML models does
not consist of computing the kernel. Instead of finding the
ay’s, we optimize the variational parameters 6, which can
be a nonconvex problem. This problem can still be noncon-
vex regardless of whether the loss and regularization func-
tions are convex [73], [74]. Furthermore, the quantum-kernel
method has access to all minimizers %, of the regularized
empirical risk (12), which lie in the RKHS generated by kg.
In contrast, the choices one makes for the PQC W (#) and
the observable D restrict the set of functions that (9) can
represent to a subset of the RKHS, which may not contain
hmin- Even if W (@) can enact arbitrary global unitaries on
m qubits, which requires the number of primitive gates to
be exponential in m, the fact that D is fixed prior to training
still restricts the set of functions that can be learned. These
observations have led the community to consider whether
there is any benefit in using variational linear quantum mod-
els instead of quantum-kernel methods [67].

One potential benefit of variational models is that the
number of circuit runs used to train the model with
parameter-shift methods [12] scales as O(dim(@) x |T). For
quantum-kernel methods, the complexity of computing the
kernel matrix requires O(|7|?) evaluations of ko. Thus, if
the variational optimization of @ converges to an accept-
able empirical risk value quickly enough, and dim(0) < |7,
then the variational model can have an advantage over the
quantum-kernel method. However, the overparameterization
of quantum models, i.e., the case where dim(@) > |7, has
also been investigated [27], [75], [76], [77]. Additionally,
there are forms of regularization applicable to variational lin-
ear quantum models for which there is, currently, no analog
for quantum-kernel methods [65].

Jerbi et al. [78] proved that VQML models, including
data reuploading ones, can be approximately reduced to
variational linear quantum models that use additional ancil-
las and a quantum embedding whose kernel is the identity.
This kernel is classically computable, and furthermore, a
quantum-kernel method using the identity matrix as the ker-
nel would simply overfit the data. The authors performed ex-
periments demonstrating that VQML models, including vari-
ational linear quantum models, can still generalize better than
quantum-kernel methods. This includes cases where regular-
ization J was applied to the quantum-kernel method used.
Thus, it appears that the connection between quantum-kernel
methods and variational linear quantum models through the
RKHS framework is limited. Jerbi et al. [78] noted that the
generalization advantage that VQML models can have is
based on the fact that, as mentioned, Oy restricts the space of
functions that the variational model can represent. Thus, Oy
not being able to realize arbitrary observables may actually
be advantageous and act as additional regularization. Identi-
fying these benefits is important because we will be heavily
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focusing on variational linear quantum models throughout
our work. In Section III, we discuss quantum embeddings
for encoding Boolean inputs, i.e., A := B”", into variational
linear quantum models.

1Il. QUANTUM EMBEDDINGS FOR THE BOOLEAN CUBE
This section presents the main theoretical contributions of
this article. We discuss two quantum embeddings for real-
valued functions on the Boolean cube: the phase embedding
(see Section I1I-A) and the QRAC embedding (see Section I1-
I-B). As mentioned in Section II-B, the nonlinearity in the
input x for models, such as (11), both classical and quantum,
comes from the feature map used. Thus, when analyzing
the expressivity of a variational linear quantum model (9),
we will fix the embedding scheme p(b) and determine the
class of functions on the Boolean cube that the model can
represent. However, when proving theorems, we will assume
W (0) is universal so that it can enact arbitrary global unitaries
on m qubits, which implies that for any m-qubit unitary V,
there exists @ such that W(@) = V. In addition, this means
W (@) may decompose into a number of primitive gates
that is exponential in m. This implies that for any m-qubit
observable M, there exists a setting of the parameters 6 and
a diagonal observable D such that

0y =W (@)DW®) = M. a17)

Based on the assumptions just mentioned, if for g € G :=
{g: B" — R}, we can show the existence of an observ-
able M® such that Vb € B" : Tr[M'® p(b)] = g(b), then
there exists a variational linear quantum model using O;g) =
W (0)D®W (0) such that ¥b € B, one has Tr[O p(b)] =
g(b), for some D® and parameter setting 6. In Theorem 1,
which applies to the phase embedding, we show the existence
of such an observable M® for all functions g on the Boolean
cube. The phase embedding produces an n-qubit product
state for an n-bit input. For the QRAC embedding, the ob-
servable M® exists for a subclass of functions g with degree
< (%]. Unfortunately, the Fourier transform of a function in
this subclass cannot be nonzero on all elements of B” with
Hamming weight < [%7]. The exact conditions are presented
in Theorems 3 and 4. The product state pqg(b) consists of
[51 qubits for an n-bit input vector.

We also present sufficient conditions under which a clas-
sical ensemble of VQML models can express functions on
the Boolean cube. More specifically, we call the summation
of the outputs of multiple variational linear quantum models
a classical ensemble of quantum models, i.e.,

Y Sy ®) (18)
i€eD
where each f, (f), indexed over a set D, uses the same embed-
ding scheme. Prior work has dealt with quantum ensembles,
i.e., superpositions, of models [79], [80], [81], [82]. Our
results on ensembles show the existence of a collection of
observables {M¢)},.p indexed from some set D such that
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Vb € B", one has
D THM S p(¢i(B))] = g(b) (19)

ieD
where each ¢; classically preprocesses the input bits. The
potential impact that classical preprocessing of the input data
can have on VQML models was acknowledged in [19], [42],
[44], and [46]. Because the ensemble is the sum of the outputs
of the multiple linear quantum models, if analytic-gradient
learning is used, then the parameters of the models can be
updated in parallel. For the phase embedding, an ensemble
of (;) models is sufficient to express any function of n input
Boolean variables and degree at most d, see Theorem 2. The
preprocessing functions select subsets of the input variables.
In the case of the QRAC embedding, according to Theo-
rem 5, the class of expressible functions is all of those with
degree < [37] with the preprocessing functions being permu-
tations, i.e., elements of the symmetric group on n elements.

As mentioned earlier, data reuploading models can be
converted into variational linear quantum models [78]. This
can be done approximately by introducing additional quan-
tum registers to encode the gate parameters and additional
controlled-rotation gates. There exist transformations that
are exact, but they require either gate teleportation, which in-
troduces additional classically controlled rotation gates that
are dependent on the input or postselection. However, for the
Boolean cube, we show that the standard variational linear
quantum models are sufficient, and thus, the mentioned trans-
formations are not required. Although repeating the phase
or QRAC embeddings sequentially, even without inserting
trainable gates between repetitions can provide some bene-
fits, see Appendix A.

In practice, to construct a model that can be efficiently
implemented, we need to select W(#) such that it
decomposes into O(poly(m)) primitive gates and select
D to be a linear combination of O(poly(m)) elements from
{I,Z}®™. Such choices will introduce regularization, as
mentioned in Section II-B, and restrict the class of functions
in the RKHS that can be represented. The goal of variational
optimization will be to find a setting of the parameters, 6,
if it exists such that O;g) = M®. In addition, even if such
a choice of parameters exists, the ability to find 6 through
variational optimization will also depend on the loss function
landscape. The loss landscape for variational models has
been observed to be difficult to navigate in practice when
the PQC used is highly expressive [39], [83]. The goal of
the experiments in Section IV is to demonstrate two cases in
which the optimization is possible.

Finally, we make a comment on the related work of
Thumwanit et al. [42]. The authors showed that Pauli
rotations can be used to encode discrete-valued inputs using
fewer qubits than the total number of input bits by making
use of a classical preprocessing function that maps tuples
of input bits to trainable rotation angles. This introduces
additional trainable parameters that are not present in the
phase and QRAC embeddings. Also, it is not guaranteed
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that there always exists a mapping of multiple input bits
to rotation angles that is sufficient for expressing the target
real-valued function.

A. PHASE EMBEDDING

The phase embedding that we investigate was considered in
Schuld et al. [44] for continuous-valued inputs. They showed
that if the phase embedding is repeated r times sequentially
with trainable blocks in between repetitions or repeated r
times in parallel, then the output of the variational model
is expressible as the rth cubic partial sum [47] of a Fourier
series

Z Col @™ (20)

WeZ":||®|lco<r

where x is the n-dimensional input. The trainable blocks and
observable control the c,’s. These models can arbitrarily
approximate functions in L,([0, 27 ]") if we assume the
freedom to choose arbitrarily deep trainable blocks and an
arbitrary observable, and utilize arbitrarily many repetitions
of the embedding layer. More specifically Ve > 0 and
any function in L([0, 27r]"), there exists a model using
some number r of repetitions of the phase embedding that
approximates that function to error € in Ly norm. In this
section, we show that any function on the Boolean cube can
be represented by a variational linear quantum model, i.e.,
the case where r = 1 that uses the phase embedding.
Let H be the Hadamard operator, and

X0 = )X’ Q1)
i=1

where X is the Pauli-X operator. For b € B”, we define the
following to be the phase-embedding unitary:

Upg () := H®"X®. (22)
Moreover

ppE (D) := Upg(5)]0,)X0,|U 1 (B) (23)

is the associated feature state. The following theorem sum-
marizes the expressiveness of variational linear quantum
models that makes use of this embedding.

Theorem 1: For any g € G, there exists an observable O
such that Vb € B", one has Tr[Oppg(b)] = g(b).

Proof: Suppose O is an observable such that, in the com-
putational basis, its entries are O ; = g(k @ j). Then

Tr[0ppe(b)] = (0, XPHZ"OHEX®)|0,,)

keB" jeB"
=) &&)xsb)
seBn
(since |{(k, j) e B" x B" |k j =s}| =2")
= g(b) (24)
as required. |
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Additionally, O can always be diagonalized: O = VDV
and implemented by a variational linear quantum model with
universal trainable gates, i.e., W(0) = V. The model uses a
measurement D € spang {I, Z}®™. Each diagonal Pauli ten-
sor in the linear combination that represents D can be mea-
sured using separate circuit runs, and the expectation value
is then scaled by the corresponding coefficient of that diag-
onal Pauli tensor. In practice, D is typically chosen to be a
simple and easy to evaluate observable, such as Z®™" instead
of being chosen arbitrarily from spang {I, Z}*™ as done in
the proof of Theorem 1. Regardless, if W (@) can implement
arbitrary unitary operators, the model can only implement
observables that have the same spectrum as D, i.e., ||gllco
remains bounded. We leave as an open question as to whether
interesting classes of functions exist that can be expressed
when the spectrum of Oy is fixed, i.e., fixed D but varying
w().

If we have prior knowledge that the function is a k-junta,
we can potentially reduce the number of qubits that the
trainable portion of the model acts on utilizing a variational
SWAP network. This is discussed in more detail in Appendix
B.

The name “phase embedding” comes from the fact that it
maps the input bits to |£), i.e. X-basis states. Equivalently,
the phase-embedding unitary can be replaced by Z&'H®",
where Z is the Pauli-Z operator. The phase embedding for
continuous inputs, described in [44], was of the form

n

Q) (Rz(x)H) (25)
i=1
where Rz is arotation generated by Z, andx € [0, 2r]". More
specifically, this is the operator Rz(0) := emioL,
The connection to (22) is made by using the restriction of
(25) to the set {0, 7 }", which can be seen to be equal to

n
Q)@ H) =Z2PHe" (26)
i=1
up to a global phase. Based on the proof given above, we

define the Fourier coefficients of a variational linear quantum
model, (9), that uses the phase embedding to be

-~ 1
TOEEDS Z (O j- 27)
keB"  jeB”"
k®j=s

This definition will be used in Section IV to see how well
the model was able to fit the Fourier coefficients of the target
function using supervised learning.

We now present sufficient conditions under which an en-
semble of models utilizing the phase embedding can repre-
sent functions on 7 bits utilizing fewer than n qubits. Let wt(-)
compute the Hamming weight of a binary vector. Addition-
ally, for each d € [n], consider the set

Cog =11, 00y ig) €l | i1 <ip <--- <ig} (28)
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which contains an ordered d-tuple for each subset of [n]
of size d. Thus, it follows that |C, 4| = (;) For each w €
Cn.a, we define a function vy, : B" — B4 such that vy (b) =
(bw,s by, - - byy), i.e., selects a subset of the entries of b
indicated by w.

Theorem 2: For any g € G with degree d € [n], there ex-
ists a collection of observables {O™},cc, , such that Vb €
B", one has Zwec,l,d Tr[O™ ppg (v (b))] = g(b), where
ppe(b) is a d-qubit state.

Proof: Let 1y, : BY — B” be the right inverse of vy, that
sets all entries with indices not in w to zero, i.e., vy o 1p
is the identity function on BY. Let k := (n7 dJrrlwt(sA)) for all
sef{beB"|wtb)<d}. Foreachw € C, 4, let w:={s e
B"|s; = 1 = i € w} and define the function g™ : B¢ — R
as follows:

g(s)
§Wb) =3 == x5O (®)). (29)
sew o
Note that for all g in (29), x5 (7w © Vw (b)) = xs(b) since g™
only depends on the input bits indexed by w. Thus Vb € B”

gb)y= > g™ (vu(d) (30)

weC,,‘d

since g% Xs appears kg times in the sum. By Theorem 1, for

each g(w), there exists an observable O™ such that V&' € B,
Tr[O™ ppp(b')] = g™ (B'). Thus, it follows that Vb € B"

Y THO™ ppr (v (B))] = g(b) 31

weCn,d

as required. |

This proof shows that the upper bound on the number
of models in the ensemble, using the phase embedding, is
(Z) for a degree d function. When training, we can utilize a
validation dataset to determine if the size of the ensemble is
sufficient. However, restricting the size of the ensemble also
acts as a regularizer.

Alternatively, we can make use of repetitions of the em-
bedding to increase the expressivity of a single model that
uses the phase embedding. Consider the following m-qubit
embedding with r data-encoding steps:

r
1_[ Z(Uw]- (b))ij (32)
Jj=1

where {w;} C C,,,, for m < n. Note that we have used the
equivalent representation of the phase embedding, as pre-
sented in (26). The unitary operators Vy,; could be fixed or
trainable. If they are fixed, then the overall model is still a
linear quantum model, i.e., not a data reuploading model,
as all embedding steps come before the trainable compo-
nents. However, we ensure that V,y, = H®". In Appendix A1,
we demonstrate that a model using this embedding can be
expressed as a nontrivial linear combination of all Fourier
basis terms when r = n/m and m divides n. Thus, it can
express degree-n functions on B” with fewer than n qubits.
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In what follows, we discuss a different scheme that en-
codes multiple bits into a single qubit.

B. QRAC EMBEDDING

In this section, we analyze a quantum embedding, first de-
scribed by Yano et al. [43], based on QRACs. However, the
authors did not perform any analysis of the expressivity of
models that make use of it. QRACs have also been used
to encode MaxCut problems solved by variational quantum
optimization algorithms [84]. We develop sufficient condi-
tions for variational linear quantum models using the QRAC
embedding to be able to express functions on the Boolean
cube. Moreover, we show that an ensemble of models each
using this embedding and [r/37 qubits is sufficient to rep-
resent any function on B” with degree d < [n/3]. While
this embedding can only provide a constant-factor saving in
terms of the number of qubits, it could be impactful during
the era of small and noisy quantum hardware provided that
efficient and useful PQCs can be constructed. Like for the
phase embedding in Theorem 2, the qubit reduction pro-
vided by the QRAC embedding comes from a set of classi-
cal preprocessing functions, described in the following text.
We use the (3,1)-QRAC, which is a three-bits-to-one-qubit
probabilistic encoding scheme. It was introduced by Ambai-
nis et al. and first mentioned in [49]. Thus, the number of
(3,1)-QRACS used to encode an n-bit input is [1n/37], which
requires padding with passive variables if the input b is a
tuple whose length is not divisible by 3. Note that this only
increases the input length by at most two more zero bits and
does not change the number of qubits used. Due to this, we
assume, without the loss of generality, » = 0 mod 3.

We start by dividing the input b into n/3 triplets
By, B,, ..., Bz, each of which is an element of B3. The
entries of the ith triplet, B3;, are indexed by the symbols for
Pauli operators: Bi(x) = b3j_», BEY) = b3;_1, and BEZ) = b3;.
In addition, we define Bfﬂ) := 0. For some angles «; and o7,
the ith triplet can be encoded in the following single-qubit
state:

1 . BX
0 (Bi)ayar = 5(11 + (sin(e2) cos(@))(— DB X
+ (sin(ea) sin(@))(— 1B Y

n cos(az)(—l)sz)Z). 33)

The unitary that takes |0)(0] to o (B;)q,,«, can be expressed
as a composition of two rotations

Rz <¢Z (a 1. BY, Bf“)) Ry (¢Y (052, Bl@)) (34)

where

d (o1, B, BY) = (BX(w — o)+ (1 = By ) (~1)°

oy (az, BEZ)) = sz) (mr —an) + (1 - Bi(z)) .
(35)
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Specifically, when a; = 7 and o = 2cos™! ( % + L),
we obtain the (3,1)-QRAC state [85]

o (By) := Uz 1 (BHIOYOIUT | (By)

(X) (Y) (Z)
1 —1)Bi —1)5i —1)5i

2 V3 V3 V3
(36)

where U3 1 (13;) is the operation in (34) for the specific assign-
ments of «; and o, mentioned above. These choices for a
and «p maximize the probability of recovering a single bit
when measuring along one of the three Bloch-sphere axes.
While we will be making use of the state in (36), in our case,
all of the results that follow would still hold if we had utilized
any state with the form presented in (33) and different o
and oy, as long as all coefficients of the Pauli operators are
nonzero. The reason for this is that the proofs that follow only
depend on the relationships between BEX) , BEY) , BEZ) and the
powers of (—1) that appear in the coefficients of the Pauli
terms.

Generalizing to n > 3, we can encode b € B" by using %
qubits in the following product state:

n/3

pee®) = Q) o (B)

i=1

1 n/3 (—I)BEX) (_I)Bi(Y)
= I+ X+ Y
on/3 § ﬁ \/§

(15"
Z]. 37
T (37)

Thus, the QRAC-embedding unitary is

n/3

Uqe®) := QUs.1(B). (38)

i=1
Finally Vimm € N, we define the sets

KR = (s € BY | Vi € [m] : wi((s3i-2, s3i-1, 831)) < 1)
(39)
where wt(-) computes the Hamming weight of a binary vec-
tor. For a fixed m, IC,%E contains all elements, s, of B3 with

v Hamming weight m such that Vi € [n/3], the ith triplet, 3;,

of s has Hamming weight at most one. These sets will play a
role in the results that follow.

The first result of Section III-B is Theorem 3. This result
presents sufficient conditions for a function on the Boolean
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cube to be expressible by variational linear quantum models
that use the QRAC embedding.

Theorem 3 : For any g € G such that g(s) #0 = s €
IC(%QE, there exists an observable O such that Vb € B”, one
has Tr[OpqE(b)] = g(b).

Proof: Let m = n/3. We start by expanding the tensor
product in the definition of the quantum state in (37)

Z xp(b) P (40)

PQE(b) = om3IP[/2
Pe{I X,Y,Z)®m

where |P| is the number of nonidentity Pauli operators in the
simple tensor P and

m P
xeb) == [J=D5". 1)
i=1
Consider @ : {I, X, Y, Z}®" — IC,?,E defined as follows.
Foreachi € [m], the bit triplet (O (P)3;—2, P(P)3i—1, P(P)3;)
has a 1 in the first, second, or third position if and only if P; is
X, Y, or Z, respectively, and it is a triplet of zeroes, otherwise.
We choose O in the following way:

0 = Z

Pe{I XY, Z}®m

2m3IPI2 5 (P))P. (42)

Since @ is a bijection by construction, for each s € IC,%E, we
can associate the Fourier basis element y; with a xp in (40).
It follows that

xp(b)

TlOpe®) = 3 FmsTHOP]
Pe{lX,Y,Z}®m
= ) 2&)xs(b) = g(b) (43)
se}C,%E
as required. |

Similar to Section III-A, we define the Fourier coefficients
of a variational linear quantum model that uses the QRAC
embedding to be

Tr[Og P~ (5)]

o) = = s (44)

As mentioned in Section III-A, this definition will be used
in Section IV to see how well the variational model was able
to fit the Fourier coefficients of the target function. Finally,
similar to the phase-embedding case, O can be diagonalized
into VDV, where D € spang{Il, Z}*”. We again leave as
an open question if interesting classes of functions can be
expressed when the spectrum of Oy is fixed.

Before moving to our next result, we introduce another
concept. With respect to an initial ordering of the input vari-
ables (b1, by, ..., b,) = b, we define the t-permuted model
to be

Tr[Ogpge(t(b))] (45)

where 7 is any element of the symmetric group on n ele-
ments, S,. An element t € S, acts on the tuples b € B" by
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permuting the order of the entries, where t(b) denotes the
permuted tuple. The action of 7 naturally extends to sets, and
so it follows that T maps IC(,,QE to

3

T (IC(%?E) - {t(s) | Vs e K‘%?E} . (46)

Thus, permuting the input bits expands the class of func-
tions expressible by a single VQML model using the QRAC
embedding.

Next, we present Theorem 4 that will be useful for extend-
ing the class of functions we can represent with the QRAC
embedding and applies to t-permuted models.

Theorem 4: For any g € G, if 9t € S, such that Vs €
B”, the condition g(s) #0 = s € r(ngE) is satisfied, then
there exists an observable O such thait Vb € B", one has

Tr[Opqe(T(b))] = g(b).
Proof: The main argument is based on the simple fact that

Vs,b eB", s t(b) = 1(s) - b. (47

Let ® be defined in the proof of Theorem 3, and suppose for
Pc{l,XY,2}®" s = ®(P), and P’ is such that d(P') =
7(®(P)). This P’ exists because @ is bijective. Then, using
(47), it follows that:

xp(T(®) = xp(b) = Xz(5)(b). (48)

If we replace g(®(P))P by g(z(®(P)))P in (42), then the
rest follows by using the same arguments made when proving
Theorem 3. |

The class of functions that can be represented by ensem-
bles of models, (18), using the QRAC embedding is summa-
rized in the following result. The proof makes use of tech-
niques that are similar to those used in proving Theorem 2.

Theorem 5: For any g € G with degree d < [n/3], there
exists a collection of observables {0")} s, such that Vb €
B", one has )~ s Tr[0™ pqe(z(b))] = g(b).

Proof: Let m = 3, by hypothesis, g satisfies

) #£0=s€{beB|wtb) <m). (49)

For any s such that wt(s) < m, let ks be the number of 7 € S,
such thats € r(IC,%E). It can be easily seen that ky # O for all
such s because

UE (/C,%E) - {b e B | wi(b) < m} . (50)

€S,

It is possible that for two different 7, A € S,

(r (IC,Q,,E) N (/C,%E)) \ {0} £ (51)

where 0 is the n-tuple with all zero entries. One reason is
that IC%E has a nontrivial stabilizer group under the action of
S, For example, a permutation that just changes the order of
§3;_2, 83;_1, $3; forsome i € [m] and alls € IC%E is a nontriv-
ial stabilizer. Thus, multiple permuted models can effectively
be identical, i.e., IC,%E can equal t(IC,%E). However, the proof
still works if we do not exclude such cases.
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Next, for every 7 € S,, we define a new function g(*) :
B" — R as follows:

gDy = g%xs(m. (52)
ser(lC,(‘,:E)

By invoking Theorem 4, for each t € S,, there ex-
ists an observable O(") such that Vb € B", one has that
Tr[O(’),oQE(r(b))] = g™ (b). Thus, we will make use of the
following ensemble:

> T [0V p )] = Y ¢ V®).  53)

€S, €S,
Since each Z’% xs(b) appears kg times in the sum in (53), the
result follows. |

Similar to the ensemble of phase-embedding-based mod-
els, we can utilize a validation dataset to determine if the
size of the ensemble is sufficient. In addition, we note that a
model that makes use of U gg may be less susceptible to over-
fitting due to higher order Fourier basis elements not being
accessible. We note that Theorem 2 implies that for any func-
tion with degree d < n/3, there exists an ensemble of (”73)
phase-embedding-based models using n/3 qubits that can
express the function. Since of course n!, i.e., the cardinality
of S,, is larger than (,,73), an ensemble of phase-embedding
models would be more desirable in this case. However, both
sufficient conditions still require factorially many models,
which can become intractable. We leave as an open question
if a smaller ensemble of QRAC-based models is sufficient
for expressing interesting functions with d < n/3.

We note that a single QRAC-embedding-based model still
has some beneficial properties. For example, a single phase-
embedding-based model using m < n qubits can only con-
tain Fourier terms that involve m out of the n input variables,
i.e., is an m-junta. However, a single QRAC-based model can
express functions that are dependent on every input variable.

Finally, a single linear quantum model using multiple con-
secutive QRAC embeddings can express a larger class of
functions than what was mentioned in Theorem 3. Consider
replacing U g by

[[ViUqe®) (54)
k=1

where the V are arbitrary unitary operators that are may or
may not be trainable, and there are r data-encoding steps. In
Appendix A2, we present a concrete example of the unitary
operators in (54) that produces a linear quantum model on
a single qubit whose output is expressible as a nontrivial
linear combination of all Fourier basis elements for B3. This
alternative operator, in the case where V. are not trainable,
could be used in place of U3 | in (38) in the multiqubit case.
However, the degree of freedom that the trainable part of
the model, Oy, has in choosing the coefficients of the yp is
limited when compared with the ensemble approach.
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IV. EXPERIMENTS

We present some experiments, in simulation and on hard-
ware, to demonstrate scenarios in which it is possible
to use the phase/QRAC embeddings in a variational lin-
ear quantum model to fit low-degree functions on the
Boolean cube. All experiments were performed utilizing the
Qiskit [86] machine learning framework. The code for ex-
ecuting the experiments in simulation is available online at
https://doi.org/10.5281/zenodo.7805753. The goal is to show
the expressivity of the models, i.e., demonstrating the theory
in action, rather than assessing their ability to generalize
to unseen data. Thus, we provide the models access to all
of the data to train on. More explicitly, the training set is
T = {(b, g(b)) | Yb € B"} for fitting the target function g :
B" — R. Asdiscussed in Section II-B, the goal of such a su-
pervised learning task is to minimize (12). The loss function
utilized for each experiment below is the square error defined
as follows:

1
t(b. g(b). fo) = 5 (s(b) — fo®))? (55)

where fp is the model and g is the target function. We did
not utilize regularization in any experiment, and thus, the
regularization term, in (12), is zero. In the QRAC-embedding
case, for simplicity, we only make use of a single linear quan-
tum model instead of an ensemble. Employing the notation
from the previous sections, for all experiments, W (0) is an m-
qubit PQC consisting of single-qubit rotation gates, Ry and
R7, and two-qubit-controlled-Z gates using nearest-neighbor
connections. Finally, Oy = W' (6)Z®"W (#). Here, we have
chosen D from Section II-B to be Z®™. Such a selection
of D happens to be sufficient for the functions we consider
in our experiments. As mentioned in Section III-A, this is
not sufficient in general for either embedding. The functions
were chosen this way so that the number of circuit runs on
hardware could be reduced. The goal is to find a parameter
setting for @ such that Qg implements an observable O'®
satisfying the property

Vb € B" : Tr[0® p(b)] = g(b). (56)

For each simulated and experimental result, we display the
functions’ values for different Boolean inputs as well as the
Fourier coefficients of the learned quantum model in order to
show the alignment between the predicted values and the ex-
perimental results. For both embeddings, using the final val-
ues of the parameters obtained at the end of training, we clas-
sically computed the matrix for W (@), which corresponds to
the trainable part of our model. Subsequently, we computed
the matrix for W' (0)Z®"W (0), which equals Oy. The Fourier
coefficients of the linear quantum models were computed
using (27) and (44) and the matrix for Oy. Because the num-
ber of circuits (2 x number of parameters X size of training
set x number of iterations) scales quickly for implementing
optimization with the parameter-shift rule, we utilized the
COBYLA [87] optimizer instead of standard parameter-shift
rules and minibatch learning for both simulation and hard-
ware experiments. The figures that follow later clearly show
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FIGURE 1. Circuits used in experiments to fit real-valued functions on B3. (Top) Phase-embedding circuit. (Bottom) QRAC-embedding circuit.
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FIGURE 2. Simulator and experimental results obtained from using the (a) phase embedding with three qubits and (b) QRAC embedding with one qubit
to fit the function gs with a; = 1/2,a, = —1/10, and a; = 1/4. “Target” represents the exact outputs and Fourier spectrum of gs. Both methods
successfully fit the target function with high accuracy. (a) Phase Embedding. (b) QRAC Embedding.

that both embeddings were able to fit the target function of n
bits, with the QRAC embedding using only one-third of the
qubits compared with the n-qubit phase embedding.

In Fig. 2, we show experiments utilizing both the phase
and QRAC embeddings to fit the function

g3(b) = a1 (=D + ax (=1 + az(—1)*. (57)
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This functional form was chosen because, as shown
in Section III-B, a single variational linear quantum
model using QRAC without permuting the input can
represent at most a degree | function using a single
qubit. The values of the coefficients, a;, were chosen
so that setting D =Z®" would be sufficient to express

83.
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FIGURE 3. Circuits used in experiments to fit real-valued functions on BS.

Three qubits were used in the phase-embedding case and
one qubit was used in the QRAC-embedding case. The
circuits that we used are displayed in Fig. 1. For the hard-
ware experiments, we applied readout-error mitigation and
dynamic decoupling [88] implemented within Qiskit. Sim-
ulation was performed utilizing the state vector simulator.
The hardware experiments were performed on the 16-qubit
ibmq_guadalupe device. The phase-embedding circuit used
qubits 5, 8, and 9 and 300 iterations of the COBYLA
optimizer, and the QRAC-embedding circuit used qubit 8
and 150 iterations of the COBYLA optimizer. We executed
10000 shots for each experiment so that the readout-error
mitigation could be applied.

Similar to the experiments shown above for the function
g3(b) with 3-bit inputs, in Fig. 4, we present experimental
results for learning the following function that depends on
6-bit inputs:

g6(b) = dy (—1)P1 TP 4 dy(—1)b1HPs
+ d3 (=120 L gy (—1)bths . (58)

The functional form of gg was chosen for similar reason
that g3 was chosen in the previous experiment. A varia-
tional linear quantum model using QRAC on two qubits
without permuting the input can express at most degree 2
functions. The coefficients were again chosen so that Z®"
would be sufficient as an observable. The circuits used are
presented in Fig. 3. Here, six qubits were used for the
phase-embedding case, while two qubits were used for the
QRAC-embedding case. Simulation was performed utiliz-
ing the state vector simulator. The hardware experiment for
the QRAC-embedding case was performed on the seven-
qubit ibmg_casablanca device. The circuit used qubits 1
and 2 and 200 iterations of the COBYLA optimizer. Again,
10000 shots were executed for each experiment so that
the readout-error mitigation could be applied. In this ex-
periment, we again observed close agreements between
the predictions based on the theory and the experimental
results.
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(Top) Phase-embedding circuit. (Bottom) QRAC-embedding circuit.

V. CONCLUSION

We summarize the results obtained here and give a few
remarks on the implications of our findings. First, we
have used Fourier analysis to provide sufficient conditions
for a function on the Boolean cube to be expressible
via variational linear quantum models or ensembles of
variational linear quantum models utilizing the phase and
QRAC embeddings. We showed that, for any function on
the Boolean cube, there exists a variational linear quantum
model based on the phase embedding that can represent
it (Theorem 1) and an ensemble of such models that can
represent any degree d function with d qubits (Theorem 2).
These result narrows down sufficiency conditions for the
representability of functions on the Boolean cube. Previously
known results were proven for functions in L,([0, 27]"),
where representability sufficiency was achieved outside of
the linear model framework. This was done by showing that
repeating the phase embedding r times sequentially (data
reuploading) or in parallel approximates the rth cubic partial
sum of a function’s Fourier series (20).

We then showed, via Theorems 3 and 4, that a single
linear quantum model using the QRAC embedding can ex-
press low-degree functions on B”, if the function satis-
fies the property that the Fourier coefficent of yg being
nonzero implies that s € ICH , or in r(ngE) if we per-

mute the input by t € §,. Finally, we demonstrated that
the ensembles of linear quantum models that use QRACs
can represent functions on the Boolean cube with degree
d < [n/3] (Theorem 5). The variational linear quantum
models presented for learning functions on the Boolean
cube can easily be applied to problems involving other dis-
crete domains by converting integer representations to bi-
nary. Machine learning problems involving discrete-valued
inputs appear frequently in industrial settings. For exam-
ple, categorical features are known to be essential for
machine learning tasks in financial [89] and healthcare
applications [90].

The results presented can be expanded in different direc-
tions. Future research can benchmark model ensembles that
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FIGURE 4. Simulator and experimental results obtained from using the (a) phase embedding with six qubits and (b) QRAC embedding with two qubits

to fit the function g¢ with d; =d, =

—1/5and d5 = d; = 1/10. “Target” represents the exact outputs and Fourier spectrum of ge. Both methods

successfully fit the target function with high accuracy. (a) Phase Embedding. (b) QRAC Embedding.

use the phase or QRAC embeddings. It would be interesting
to further study the impact of classical preprocessing on
VQML models, which we showed to be beneficial for both
embeddings. Potentially, similar expressivity theorems,
such as those in Section III, can be demonstrated for linear
quantum models that operate on discrete domains beyond
the Boolean cube. For example, quantum computation is
already known to provide significant computational
speedups for problems involving finite Abelian groups [91].

Furthermore, subsequent work could also compare the ex-
pressivities of classical neural networks to VQML models.
One could obtain an upper bound on the required size of the
neural network using the fact that an arbitrary real-valued
function on the Boolean cube is a linear combination of
parities. It is folklore that a single hidden layer of size two
suffices to express XOR on two input bits. Thus, if one uses
a divide-and-conquer approach, then a d-bit parity can be
expressed with 21log(d) hidden layers of width at most d.
These form a binary tree with each layer repeated, and thus
uses O(d) neurons. To express an arbitrary function, the
widest hidden layer would be at most the input width times
the number of nonzero Fourier coefficients.
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This appears to be comparable to VQML case. For a func-
tion with an exponentially large set of nonzero Fourier coef-
ficients, the neural network may require exponentially many
neurons. In this case, VQML may require a diagonal ob-
servable that decomposes into exponentially many elements
of spang {I, Z}®" and require an exponentially deep PQC.
However, the Fourier space representation of the function
may not be the most computationally efficient form, and thus,
the classical neural network could use fewer resources. Nev-
ertheless, we note that uniquely in quantum, one can have a
trivial learner from Fourier sampling that may give quantum
advantage [92] providing access to uniform quantum exam-
ples (see also Appendix A of the article presented in [93]).
We leave a detailed comparison of these models as the topic
of future work.

We performed proof-of-principle numerical experiments
and executed the algorithms on IBM quantum processors.
These experiments demonstrated that it is possible for a
variational linear quantum model using the embeddings pre-
sented to learn sufficient parameters to express low-degree
functions. In future developments, one could study the ability
for such models to generalize to unseen data, i.e., truly learn,
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and quantify the required number of training samples needed
to learn functions, such as low-degree k-juntas. For simplic-
ity, we setup the problem scenarios so that D = Z®" was suf-
ficient for all learning tasks. However, it would be interesting
to experiment with more complicated problems where such
a simple observable does not suffice. Potentially, there exist
interesting classes of functions that can be expressed with a
fixed D that is a linear combination of only polynomially (in
the number of qubits) many Pauli terms. Finally, there might
be cases where we can exploit the structure of the problem
to design efficient PQCs, particularly for near-term quantum
hardware, for learning functions on the Boolean cube.

APPENDIX A

REPEATED PHASE EMBEDDINGS

A. PHASE EMBEDDING

In this appendix, we show that incorporating serial repeti-
tions into the phase embedding increases the expressivity of
a model that uses it. Consider the embedding

.
U ®) = []2"7""v,. (59)
j=1

where V,, = H®"™.

(0ul @™ BYOULE" )10,)

¥
r r
— <0m 1_[ Z(ij (b))vw/ 0 1_[ Z(VWj (b))ij Om>
j=l1

j=1
= <+n ’Z(”"’I Oyt 70w ®) .y 700 g7 ®)

VWr cee Z(sz (b))VwZZ(U"’l (b))‘ +n>
_ L > [(_1)2 v, (b)) (V-(:—w) )
" 2:r
2 ), (k) e(Bm)*r Mr:r

Oyrvkr (V(w)z:r)(k)lzr(_ 1 )Z’ e (b)(k)r]

- ¥

0, (k) €(B™)*"

W(.V)t (k)t(_l)Z' v, (0)-() & k), (60)

where

YV wy )@, = Vw ko k- Vs iy &y (61)

and

1 T
W(y)h(k)t = 2_m (V(w)Z:r)(y)ll Oyhkr (V(w)Z:r)(k)l:, . (62)

Suppose that m = n/r and that each vy partitions the n
inputs’ bits into r-tuples of size m. Then, it follows that the
above reduces to

YW1 =" Woxs(b) (63)

seB” seB”
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where

Ws = Z

O, (k) € (B
Oy © k) =s

W, ), (64)

Note that the set

{0 ® (k) = i1 @ ki1, yi2 @ kias .
s Yrm @ Kpm)|
). (k) € (B™)*"} (65)

contains all elements of B". Thus, it is possible for the Fourier
spectrum of this model to have support on any of the Fourier
basis elements, which implies an increase in expressivity.

’ylm@klmv
LY @k,

B. QRAC EMBEDDING

In this appendix, we present an example that shows that
using multiple consecutive QRAC embeddings does en-
rich the class of functions that a single linear quantum
model using this embedding can represent. Let R,(0) =

e13mX4mY+nD) \where n ¢ R3 and n]l» = 1. We will con-
sider replacing U3 | by

Uz =Us 1Ry (7)U3 (66)
where n = \/%(1, 1, 1). Then
foB) = T[0T 1 (6)(0) (01T | (B)]
= a1 Tr[0p] + (az + az(— )P HP2H0s 4 gy (—1)P1 02
+ as(— 1P 4 gg(— 1)
+ a7(—1)723)Tr[0pX]
+ (as +as(=1) + ago(=1)"1 "
T ayy (=1)brtbats
+ap (=1
+ar3(= 1" +ary (=1 Tr{04Y]
+ (@15 + a16(=1)"1 4 ayg (— P2

+aig(—=1)"" + aig(—=1)?)Tr[0pZ] (67)

where a; are fixed, but we have abstracted them out because
our focus is on the number of Fourier basis terms, (—1)*?.
This model is a linear combination of all Fourier basis ele-
ments for functions on B3. The trainable component of the
model determines the values for Tr[OQyP], where P is a Pauli
operator. For a given Pauli operator, this value is shared by
more than one Fourier basis element.

For obtaining the expansion above, it is helpful to express
the Rz and Ry rotations involved in U3 | in terms of by, by, b3
as follows:

Ry(gz(b1. b2)) = y:-(b) (<71 = Di(-1)Z)
(b)) (c@]l - cf)i(—l)”zz) (68)
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Ry(@y(b3)) = 7:.(b3) (1 = V)

v (by) (CQ()H — >iY) (69)
where
@_V2EV2 v 1]
Ci = —— Ci = - :l: ——— (70)
2 2 23
as well as
14 (=1
y+(b) = — (71)

The functions ¢7 and ¢y are defined in Section III-B with

=2 —2cos ! [ 14+ L (72)
= ar = 2cos > t354)

This formulation introduces dependence on terms of the form
(—1)*? when expanding the expectation.

APPENDIX B

USING VARIATIONAL SWAP NETWORKS IN THE

PHASE EMBEDDING

When using the phase embedding, after loading the input bits
onto a register with X gates, we can apply a layer of varia-

tional SWAP gates, i.e., e_igSWAP, with learnable parameters
B. The layer consists of one variational SWAP between every
pair of qubits, i.e., (}) = “-! gates. This allows for testing
multiple combinations of the k out of n input bits in superpo-
sition. Specifically, setting all 8’s to 7 /2 produces a uniform
superposition containing all possible subsets of k bits that
can be swapped into the first k£ bits. One motivation behind
adding the SWAP network is due to the following lemma.

Lemma 1: Consider the input to the phase embedding,
where the bits are loaded onto a computational basis state.
Suppose the parameterized observable Oy and the layer of
Hadamards act only on the first k£ of the n-qubits and, thus,
the output of the model only depends on by, ..., by. For any
fixed layout of all-to-all variational SWAP network inserted
after loading the input bits, and any subset B of k of the input
bits, there exists a setting of the variational parameters such
that the model depends only on 5.

Proof: We can find a bijective mapping between the k
relevant bits and the first k qubits, potentially acting as the
identity on some qubits. This map can be expressed as a
product of transpositions of the n input elements that do not
act on the same qubit. Thus, any all-to-all variational SWAP
network can implement this map by enabling/disabling the
relevant SWAPs. |

As a proxy for variational SWAPs, one could use the
particle-preserving XY gate [7]. The benefit of a variational
SWAP network in practice would require further experimen-
tation. For QRAC, it appears that we would need to encode
the n input bits into an additional quantum register destroy-
ing the constant-factor reduction in qubits. Also, the bits-to-
angle mapping for QRAC would need to be implemented
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coherently and the rotation gates are controlled on additional
ancillas.

APPENDIX C

GENERALIZATION BOUNDS

While our focus is on expressivity, we can almost triv-
ially apply one of the generalization bounds obtained by
Caro et al. [35] to obtain one for the phase embedding and
QRAC embedding. The following is the definition of a vari-
ational linear quantum model fy that was presented in Sec-
tion I1-B:

Jo(b) :=Tr[Opp(b)] (73)
where
0,y := W' (0)DW (0). (74)

The operator D is an observable that is diagonal in the com-
putational basis, and W (@) is a parameterized-unitary opera-
tor. The unitary used to prepare the feature state p(b) can be
the phase or QRAC embedding.

Theorem 6: Let ny,me N, and £ : R x R — [0, c] be a
loss function that is B-Lipschitz in the second coordinate.
In addition, consider an arbitrary 6 € (0, 1) and arbitrary
probability measure © on B” x R. Furthermore, suppose fp
is a variational linear quantum model using either the phase
or QRAC embedding, then, with probability > 1 — § over the
choice of an i.i.d training set 7, the model fj satisfies

BlID|l2 + c«/log(1/3)> (75)
VIT]

where R and R are the generalization error and training er-
ror, respectively. Additionally, O suppresses polylogarithmic
factors.

Proof: By (25), the phase embedding can be viewed as a
Pauli encoding with restricted domain. Thus, Corollary 14
result (a) from the article presented in [35] applies, and in
the phase-embedding case, n-encoding gates are used for an
n-dimensional input. Since quantum models based on the
QRAC embedding can be viewed as PQCs with Pauli encod-

ings on a 2T”-dimensional domain defined by ¢7 and ¢y using

23—”-encoding gates, the same bound applies to QRAC-based

models. Since W is unitary, ||Og||> = ||D||2, and so the bound
applies to Oy too. |

R(fp) < Rr(f) + O (

APPENDIX D

EXPERIMENTAL DEVICE PARAMETERS

Here, we report the experimental device parameters for each
of the hardware experiments presented in Section IV (see
Table 1). The experiments to fit functions on B> were car-
ried out on the ibmq_guadalupe device, where qubits 5, 8,
and 9 were used for the phase-embedding experiment and
qubit 8 was used for the QRAC-embedding experiment. The
experiment to fit a function on B® was carried out on the
ibmg_casablanca device using qubits 1 and 2.

3100418



@IEEE Transactions on,
uantumEngineering

Herman et al.: EXPRESSIVITY OF VARIATIONAL QUANTUM MACHINE LEARNING ON THE BOOLEAN CUBE

TABLE 1. Experimental Device Parameters for Each of the Harware
Experiments in Section IV

Parameter 3-bit phase | 3-bit QRAC | 6-bit QRAC
T1 (us) 95 130 104
T2 (us) 87 98 99
single-qubit error | 0.000283 0.000275 0.000501
two-qubit error 0.00673 0.00727 0.0101
readout error 0.017 0.0207 0.0193
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