@IEEE Transactions on,
Enabling Technologies uantumEngineering

Received 15 September 2022; revised 11 January 2023; accepted 18 January 2023; date of publication 23 January 2023;
date of current version 20 February 2023.

Digital Object Identifier 10.1109/TQE.2023.3238670

Design and Analysis of Digital
Communication Within an SoC-Based
Control System for Trapped-lon
Quantum Computing

NAFIS IRTHA'®© (Member, IEEE), JIM PLUSQUELLIC! (Member, IEEE),
EIRINI ELENI TSIROPOULOU'© (Senior Member, IEEE), JOSHUA GOLDBERG?2,
DANIEL LOBSER2, AND DANIEL STICK2® (Member, IEEE)

! Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87131 USA
2Sandia National Laboratories, Albuquerque, NM 87123 USA

Corresponding author: Nafis Irtija (e-mail: nafis@unm.edu)

This work was supported in part by Quantum Systems Accelerator (U.S. Department of Energy (DOE), Office of Science, National
Quantum Information Science Research Centers), in part by Quantum Systems through Entangled Science and Engineering through
National Science Foundation Quantum Leap Challenge Institutes under Grant OMA-2016244, and in part by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research Quantum Testbed Program.

ABSTRACT Electronic control systems used for quantum computing have become increasingly complex as
multiple qubit technologies employ larger numbers of qubits with higher fidelity target. Whereas the control
systems for different technologies share some similarities, parameters, such as pulse duration, throughput,
real-time feedback, and latency requirements, vary widely depending on the qubit type. In this article, we
evaluate the performance of modern system-on-chip (SoC) architectures in meeting the control demands
associated with performing quantum gates on trapped-ion qubits, particularly focusing on communication
within the SoC. A principal focus of this article is the data transfer latency and throughput of several high-
speed on-chip mechanisms on Xilinx multiprocessor SoCs, including those that utilize direct memory access
(DMA). They are measured and evaluated to determine an upper bound on the time required to reconfigure a
gate parameter. Worst-case and average-case bandwidth requirements for a custom gate sequencer core are
compared with the experimental results. The lowest variability, highest throughput data-transfer mechanism
is DMA between the real-time processing unit (RPU) and the programmable logic, where bandwidths up
to 19.2 GB/s are possible. For context, this enables the reconfiguration of qubit gates in less than 2 us,
comparable to the fastest gate time. Though this article focuses on trapped-ion control systems, the gate
abstraction scheme and measured communication rates are applicable to a broad range of quantum computing
technologies.

INDEX TERMS Quantum computing, qubits, system-on-chip (SoC)-based field-programmable gate arrays
(FPGA) control system, trapped ion.

I. INTRODUCTION

The most common way of performing quantum gates [1]in a
trapped-ion quantum computer (TIQC) uses modulated laser
pulses that interact with the atomic energy levels of the ions.
These pulses are normally generated with radiofrequency
(RF) signals that modulate the frequency, phase, and ampli-
tude of light using acousto-optic modulators (AOMs) [2], [3].
Typical hardware components for generating these RF sig-
nals include arbitrary waveform generators (AWGs), direct-
digital synthesizer (DDS) modules, and field-programmable

VOLUME 4, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

gate arrays (FPGA) that directly drive digital-to-analog con-
verters (DACs) using an AWG-type architecture, soft-core
DDSs, or some combination of the two. Other interaction
mechanisms that involve RF or microwave signals delivered
to ions via antennae or electrodes incorporated directly into
the ion traps can also be used to perform gates, and would
use similar control electronics as those needed for AOMs.
In this article, we describe the digital side of a control
system for generating RF signals that drive quantum gates
in a TIQC [2], focusing on data bandwidth requirements for

5500124

https://orcid.org/0000-0001-7932-6123
https://orcid.org/0000-0003-1322-1876
https://orcid.org/0000-0002-6802-7539
mailto:e-mail: ignorespaces nafis@unm.edu

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

supporting RF operating frequencies, synchronization, phase
coherence, and feedback-based calibration. This latter need
for near real-time feedback provides a context to calculate
communication requirements within the control system. Our
goal is to arbitrarily reconfigure gate parameters based on
preceding measurements within a time period that is on the
order of the fastest gate time (assumed here tobe a 1 us sin-
gle qubit gate). Given a particular parameterization scheme,
this establishes a target communication rate and latency for
different parts within the SoC, i.e., the integrated multicore
microprocessors with high-speed on-chip data buses and
memory mechanisms shared with the programmable fabric.
We categorize control operations into those requiring fixed-
cycle-count time intervals, those that are deadline-based, and
those that have soft real-time constraints for mapping into
the programmable logic (PL) and processing system (PS)
components of the SoC. This requirement may seem overly
stringent, but it has the advantage that it could prevent cor-
related errors that are correctable by control hardware from
jeopardizing error correcting circuits. An example would be
tuning the amplitudes of RF signals that are driving AOMs
to correct for power changes in a laser that supports multiple
qubits.

Our co-design approach expresses complex hardware-
centric features using software-based constructs, for exam-
ple, the data and control signals are constructed by an ap-
plication running on a processor(s) and are transferred to
the control system in the PL using direct memory access
(DMA) by a real-time processor. Beyond the benefit of ab-
stracting away low-level operational details, this approach
also reduces bandwidth requirements across the software—
hardware interface [4], [5]. The objective of our hardware
performance evaluation is to explore a variety of specialized
hardware acceleration features that can be leveraged to
further improve performance across the TIQC hardware—
software interface. This article does not analyze analog errors
associated with the control system, which have an important
effect on gate fidelity and must be addressed when consider-
ing the entire control system [6], [7].

A block diagram illustrating high-level experimental op-
erations with multiple control loops is shown in Fig. 1. The
loops are required to enable sufficient statistics to be gathered
as well as tune gate sequences in subsequent iterations by
feeding back on results obtained from past iterations. All of
these loops operate on a deadline-based schedule with an
upper bound on time constraints, and the effectiveness of
the feedback-driven tuning operations is ultimately limited
by the bandwidth of the hardware—software interface.

Our design is meant to accommodate a wide array of tasks
needed for typical day-to-day operation of a TIQC, includ-
ing the most challenging scenario of running an algorithm
that requires many consecutive operations. In contrast to
classical high-performance computing in which checkpoints
can be used to store intermediate calculations to recover
from unexpected failures [8], quantum computers cannot
classically store intermediate states. In addition, simply to

5500124

Parameter loop (update Xj)

Repetition loop (m) I

Shuttling & Control pulses
cooling State prep {PitXj)}
(~1 ms) (<5 ps) (1...500 pis each)

Periodic calibration

it clie: (fast & slow drifts)

(50...500 ps;

Conditional feedback
(communication + processing <1 ms)
Results stored for

post-processing

FIGURE 1. Typical experimental cycle for a TIQC. A gate sequence
consisting of preparation, a series of n control pulses (where i € {1, n}),
and measurement/state detection, which is repeated m times for
statistics. There are o different parameters that define these individual
pulses (where j € {1, 0}), which are updated in the parameter loop.
Periodic calibration occurs on fast and slow time scales to correct for
drift and other hardware errors. The electronics described here are also
capable of conditional feedback such that pulse parameters can be
modified based on individual or groups of measurements. More
commonly, the results are stored for postprocessing.

preserve those quantum states requires continuous quantum
error correction (QEC) [9] and calibration. Control errors
that occur outside of the electronic control system, such as
fluctuations in laser intensity or external magnetic fields can
be corrected by the control system as long as they are de-
tected, the correction is calculated, and the control parame-
ters for the many affected qubits are updated, all in less time
than it takes for the next gate to be applied within a round
of syndrome extraction. Therefore, in this research, we have
focused considerable effort on measuring the communication
limitations that would bound the reconfiguration time of the
control system. There are other approaches to dealing with
this scenario, such as restarting the algorithm, dynamical
decoupling, or distributing control lines, in such a way as to
not risk highly- correlated errors within a logical qubit, but
these may come at considerable cost and would ideally be
made unnecessary by a sufficiently fast control system.
With typical gate times ranging from 1 us to 1 ms, the
timing requirements for a TIQC control system are signifi-
cantly different than other technologies that have gates that
can be 100 times faster. This relaxes some performance re-
quirements; for instance, the rotation angle applied during
a single qubit gate is proportional to the interaction time of
the pulse, so a 1% angular rotation error for a 1 us gate
can be achieved if there is less than 10 ns error in the gate
duration, posing less stringent absolute timing demands than
technologies with faster gates. The conditional feedback de-
scribed previously is another example in which the slower
trapped-ion system relaxes control system requirements.
The Xilinx Zynq UltraScale+ radiofrequency SoC (RF-
SoC) device, embedded within a Xilinx ZCUI111 evalua-
tion board [10], is used as the experimental platform in
our evaluation. The digital components integrated onto this
device include multiple CPUs, shared memory, and a PL
fabric. The PS and PL each connect to a dedicated 4 GB
bank of DDR4 (DRAM) memory. The PS side includes
an Arm Cortex-A53 64-bit quad-core application process-
ing unit (APU), a Cortex-R5 32-bit dual-core RPU, local

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

caches, and on-chip scratch memory, all interconnected with
a complex Arm Advanced eXtensible Interface (AXI) switch
network to enable interprocessor communication (IPC) and
high-speed communication channels between the PS and PL
sides. The ZCU111 is a mixed-signal device, integrating
dedicated, high-speed analog RF components, in particular,
eight 4 GS/s 12-bit RF analog-to-digital converters (ADCs)
and eight 6.5 GS/s 14-bit RF DACs. The applications that
have driven the marketing and development of the ZCU111
include fifth-generation wireless, next-generation advanced
driver-assisted systems, and Industrial Internet-of-Things,
but many features of the architecture are well suited for quan-
tum computing as well.

We also compare the performance in some cases with a
less expensive ZCU102 MPSoC evaluation board that pos-
sesses a nearly identical digital processing architecture to the
ZCUL111. In particular, the latency and throughput charac-
teristics of both devices are presented for the DMA transfer
mechanisms investigated in this article, as an illustration of
the performance benefit that is attainable when using a faster
DDR, which is a feature of the ZCU111. We envision a
larger, multi-SoC qubit system that can utilize the ZCU102
for system-level coordination and synchronization among a
set of ZCU111 s. Therefore, the performance characteristics
of the ZCU102 are also relevant for quantum computing
systems.

Hardware design and analysis covered in this article in-
cludes the following.

1) The hardware and software control elements of a cus-
tom DDS for a TIQC system are described, along with
an analysis of the worst case and average case through-
put that are required between the PS and PL sides of the
ZCUI111.

2) An analysis of the throughput and latency associated
with a set of four distinct communication mechanisms
within the ZCU boards is presented, as well as an anal-
ysis of the variability associated with these channels.

3) A feasible mapping of TIQC communication channel
requirements and those available within the digital ar-
chitecture of the ZCU boards is presented, and the
tradeoffs and limitations are discussed.

The rest of this article is organized as follows. In, (Sec-
tion II), an overview of the overall TIQC system architecture
and task partitioning (Section III), a detailed description of
the characteristics, functionality, and requirements of gate
sequence generation implemented by custom PL components
of the control system (Section IV), a description of the exper-
imental setup and an analysis of throughput and latency asso-
ciated with four high-speed, on-chip communication mecha-
nisms within the ZCU111 (Section V), and a presentation of
a feasible mapping strategy between ZCU111 communica-
tion mechanisms and the required communication channels
within the TIQC system (Section VI). Finally, Section VII
concludes this article.

VOLUME 4, 2023

Il. RELATED WORK

Quantum computing experiments that use both custom [11],
[12] and commercial [13], [14] FPGA-based control systems
have been demonstrated over the last decade. FPGA-based
architectures for quantum communication have also been
proposed [15]. While earlier experiments emphasized the
flexibility of generating control pulses, more recent hardware
has focused on scaling and its concomitant challenges. For
example, the work in [16] describes a modular system that
uses PXIe modules for arbitrary waveform generation and
ADC sampling that can support extending the number of con-
trollable qubits while maintaining nanosecond level synchro-
nization. Another example is the Virtex-7 FPGA custom plat-
form proposed in [17] for the control of spin-based qubits that
includes a 1 GS/s AWG, an eight-channel pulse/sequence
generator, a two-channel ADC, and a two-channel time-to-
digital converter.

The need for fast feedback has also driven recent hardware
development. A modular FPGA-based system called QubiC
is proposed in [18] for the measurement and control of su-
perconducting qubit systems that support the execution of
gate-based quantum algorithms. The prototype system is de-
signed to generate RF pulses to control and measure qubits,
and to provide fast feedback control for QEC. It consists of
a Xilinx VC707 FPGA and Abaco Systems FMC120 boards
with ADC and DAC modules for the generation and detection
of intermediate frequency signals, an RF mixing module for
signal conversion and a local oscillator implemented with a
master oscillator driving the inputs of multiple phase-locked
loops.

The system described in [19] and [20] is also designed to
meet the instrumentation requirements of superconducting
qubit systems but shares similar platform characteristics to
the one that we propose. A modular approach is taken in
which the PL side is partitioned into regions called digi-
tal unit cells, each of which is responsible for managing
one qubit. The APU and RPU components of a ZCU111
are used to implement user interface functions and to pro-
vide low-latency run-time configuration and data process-
ing with PL components, respectively. However, the pro-
posed system uses AXI4-Lite memory-mapped register in-
terface to the PL and a 2-to-N Wishbone bus system for
retrieving data, which can limit its data processing and
feedback.

A recently proposed quantum instrumentation control sys-
tem is described in [21]. The system utilizes the ZCU111
RFSoC and is capable of controlling multiple qubits with
direct synthesis of control pulses with carrier frequencies up
to 6 GHz. The PL is configured with a customized module
that can synthesize and digitally upconvert arbitrary pulses,
measure and downconvert incoming signals, as well as react
in real time to feedback. The system utilizes the APU (which
runs Python applications under Linux), a timed-processor
implemented in the PL, and DMA transfers between the
APU and PL, but does not incorporate the RPU. The
authors describe the analog performance and digital latency

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

of the system but do not characterize the performance char-
acteristics of the various communication channels within the
ZCUI111.

Multiple FPGA-based commercial systems have recently
become available and include integration with other key
hardware. For instance, Sinara is a hardware control system
that uses the open-source ARTIQ software for supporting
quantum applications [14]. The ecosystem offers modules
that include AWGs, DDSs, RF generators, and feedback el-
ements, such as proportional-integral-derivative servos, in
addition to carrier cards that use FPGAs to coordinate an
experiment. Liquid Instruments, Quantum Machines, Zurich
Instruments, Keysight, and National Instruments also pro-
vide electronic control hardware that is tailored for quantum
computing.

Several recent research efforts describe throughput char-
acteristics of MPSoCs outside of the context of quantum
computing. An analysis of the throughput and latency of
AXI port configurations for data transfers between memory
subsystems is presented for the ZCU102 and Ultra96 boards
in [22]. AXI bus widths, burst size, memory chip configura-
tion, access patterns, and transaction frequency are taken into
consideration in their analysis. The analysis, however, is pre-
sented for DMA transfers using the APU between PS DDR
and PL block RAM (BRAM), and does not address RPU,
PL DDR, IPC, and general-purpose input/output (GPIO) per-
formance characteristics. A second investigation of memory
performance parameterized by burst and memory stride sizes
within the ZCU102 is presented in [23]. The focus of the
analysis is again on DMA transfers from PS DDR to PL
BRAM.

Ill. ARCHITECTURE

The goal of our work is to define an RFSoC platform con-
figuration that meets the requisite electronic performance
(e.g., timing, phase accuracy, and amplitude stability) for per-
forming high-fidelity quantum gates while supporting flex-
ible gate sequences and the ability to extend the hardware
to control more qubits. To achieve this, we start with the
following high-level design principles.

1) RPU versus APU task division: Assign operations that
require strict deadline-based timing to the RPU and PL
state machines (SM), whereas overall coordination and
tasks with soft real-time-based timing constraints are
assigned to the APU.

2) Multiple processors and DMA for increased paral-
lelism: Control and synchronize RPU operations using
the APU, and leverage an RPU core for meeting hard
real-time deadlines. Maximize hardware parallelism
by fully utilizing AXI interconnect between processing
cores, and for carrying out high-speed gate-sequence-
based data transfers using DMA between the PS/PL
DDRs and PL AXI streaming interfaces.

5500124

3) Leverage modern classical computing paradigms: Use
optimized commercially developed hard-wired pro-
cessing blocks where possible to minimize latency and
maximize bandwidth.

Applications running on the APU provide for a high-level
language abstraction for carrying out soft real-time-based
complex computing tasks, with access to comprehensive
library functions, and Internet-based access and data transfer
mechanisms. Light-weight, real-time bare-metal and FreeR-
TOS applications running on the RPU connect to both the
APU and PL-side components using fast on-chip intercon-
nects for interprocess communication, via Open Asymmetric
Multiprocessor (OpenAMP) and RPMsg, GPIO, and block-
oriented DMA transfer mechanisms.

IV. GATE SEQUENCE GENERATION AND FLOW

The fundamental job of the coherent control system is to
compose RF waveforms that implement sequences of high-
fidelity quantum gates. In their simplest form, these pulses
consist of RF oscillations with a square envelope and de-
fined frequency, phase, and amplitude. Fluctuations in the
calibrated values for these control parameters are a com-
mon source of gate error. These fluctuations can be cate-
gorized into two general regimes: fast shot-to-shot fluctua-
tions with typically «1% relative amplitude, and slow drifts
on timescales ranging from seconds to hours that can lead
to larger relative errors after long run times. Shot-to-shot
fluctuations can be mitigated using dynamical-decoupling
gates [24], such as BB1 or SK1 gates for pulse length errors,
and CORPSE or Q1 gates for off-resonant errors, or combi-
nations of the two (CCCP or B2CORPSE). These gates often
require discrete phase jumps, and in some cases, continuous
amplitude modulation (AM) (e.g., Q1, Q2, S1, and S2). Dy-
namical decoupling schemes for two-qubit entangling gates
can also require techniques, such as continuous frequency
modulation (FM) or combinations of FM and AM. Other
state-of-the-art quantum gate designs and pulse engineering
techniques, such as GRadient Ascent Pulse Engineering, rely
on the simultaneous modulation of all parameters.

Supporting continuous modulation across all parameters
requires large amounts of data, and such techniques are of-
ten implemented using AWGs. AWGs suffer from long load
times and limited circuit depth, due to the sheer number of
points that must be encoded to describe the full waveform.
However, even the more advanced dynamical decoupling
gates require modulation envelopes with spectral compo-
nents, which have relatively low frequencies in comparison
to the baseband RF frequency, at least for trapped ions, and
therefore, more memory-efficient encodings are possible out-
side of AWGs.

We exploit this disparity by implementing a custom ar-
bitrary waveform modulator (AWM), which supports the
advanced modulation of waveform control parameters and
requires only a fraction of the data required by an AWG. Our
AWM consists of two main elements, a custom DDS module,

VOLUME 4, 2023

@IEEE Transactions on

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM uantumeEn gmeermg
Iterator
Start
address Start 216-bit
Unique + End address || MLUT Memory | PLUT Segmented
address Gate | ;qdress address Map | address Pulse |patq of | *e
Switch LUT : —> LuT LUT Switch — :
P GLUT : PLUT . L
: (GLUD) End (MLUT) (PLUT) :
RN address
Spline Engine

FIFOs

FIGURE 2. LUT architecture utilized for representing compressed gate sequences. A more detailed description of how gate sequences are generated is

provided in the Appendix.

RPU APU

!

— Cache Coherent Interconnect
A A

<

<

<R

Switch Core
Switch T

X

—> .
Programmable Logic

A\

I0U

Y

= EMIO v v

v

DDR Controller, PS and PL DDR

FIGURE 3. Zynq MPSOC system architecture showing microprocessors, PL, DDR, and interconnect.

and a gate sequencer. The DDS module implements global-
phase synchronization for automatic phase bookkeeping and
supports specialized features, such as frequency feedforward
corrections and dynamic cross-talk cancellation for shim-
ming out external hardware errors. The gate sequencer mod-
ule is responsible for scheduling waveform parameters that
are fed to the DDS. These parameters are fed using a hierar-
chical set of lookup tables (LUTs) shown in Fig. 2. The gate
LUTSs and memory map LUTs provide memory-efficient ref-
erence to specific sequences of pulse information that com-
prise quantum gates, and are described in the Appendix. This
pulse information is stored at the lowest level in a pulse LUT
with 216-bit spline data that parameterizes the frequency,
amplitude, phase, and timing of the gate. These are the values
that must be collectively updated and communicated when
gates are reconfigured. Based on the amount of information
needed for specifying a gate, we find the communication
speeds measured in the next section to be sufficient for sup-
porting reconfiguration times that are less than 2 us on the
order of the fastest gate time.

V. COMMUNICATION
Having described the gate sequencer LUT architecture and
general division of labor between the APU and RPU, in

VOLUME 4, 2023

this section, we describe the RFSoC (ZCU111) hardware
and experimental results related to communication within the
system. As discussed earlier, the hardware architecture of the
ZCU102 and ZCU111 is very similar with respect to the IPC
mechanisms and AXI interconnect architecture, and there-
fore, only the ZCU111 performance metrics are shown. The
latency and throughput measurements for DMA transfers, on
the other hand, exhibit significant differences as we show in
the following section.

A block diagram of the processing and interconnect com-
ponents within the Zynq UltraScale+ SoC on the ZCU111
(and ZCU102) is shown in Fig. 3. The PS includes a set of
AXI switches that interconnect the five main components of
the SoC system architecture, namely, the dual-core Cortex
R5 RPU, quad-core Arm Cortex A53 APU, PL, DDR, and
IO unit. Xilinx uses the terms full-power-domain (FPD),
low-power-domain (LPD), and programmable-logic-power-
domain (PLPD) to refer to regions on the SoC that have
separate power control mechanisms, with each referring to
the power domains for the APU, RPU, and PL, respectively.
The RPU and APU have access to a DDR4 4-GB 64-bit
PS SDRAM and the 4-GB 64-bit PL DDR4 (the ZCU102
possesses a 512-MB 16-bit PL DDR4 and provides lower
performance, as we discuss in the following).

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

CDMA

HOST MACHINE

®

SMP/Linux

RPMsg/OpenAMP

|APUO| |APU1 | |APU2 | | APU3 | ﬁ

| Baremetal | | RTOS |

I RPUO |

© —

| RPU1 |

e o

Data Control
Register Register

PL IP
ADC

DMA

PL ﬂ

PL DDR

FIGURE 4. Zynq MPSOC communication channels.

The corresponding communication channels within the
system architecture that we evaluate in this article are shown
in Fig. 4. The blue arrows illustrate the data transfer paths
between the APU, RPU, and PL, whereas the black arrows
represent the control signals. Each of the communication
mechanisms support parallel transfer capability of at least
32 bits. While GPIO and EMIO are limited to 32 bits in our
experiments, RPMsg supports 64-bit transfers while DMA
and CDMA are variable and can be expanded up to 1024 bits.
The thickness of the blue arrows and the legend identify the
characteristics of the data transfer paths.

Communication performance is characterized by two pri-
mary parameters, latency and throughput (the term band-
width is used in reference to the maximum achievable
throughput). Both latency and throughput are subject to vari-
ation because of interfering events, e.g., interrupt processing
by an APU, blocking events within the switches of the inter-
connect, refresh cycle requirements of the DDRs, and others.
It is particularly important to determine both the average
value and variability in these parameters, since a quantum
computer cannot store quantum states at checkpoints while
it pauses for communication, but instead must perform con-
tinuous cycles of quantum error correction. The standard
method of computing average values and variability is to
compute the mean and standard deviation, and (1,2,3)o is
used to get a sense of confidence intervals given o. However,
this assumes that the variability in the communication mech-
anisms can be characterized as Gaussian. In our experiments,
we rarely found instances of Gaussian behavior! and instead

I'The most likely reason for the lack of Gaussian behavior is the discrete
event-driven characteristic of SoC-based microprocessor systems. Gaussian

5500124

report results using nonparameteric statistical metrics, which
include the median, minimum, and maximum values. Char-
acterizing the range of variability is especially important for
quantum computing where processing of feedback is often
time critical.

The communication mechanisms shown in Fig. 4 are sum-
marized as follows, and described in detail in the following:

1) RPMsg between the APU and RPU, labeled with (1)
in the figure;

2) DMA between a bare metal application running on one
of the RPU cores and a streaming AXI interface and
SM in the PL using PL DDR4, labeled 2) through (3)
in the figure;

3) CDMA between the PS and PL. DDR4, controlled by
the APU, labeled () through (5) in the figure;

4) Memory-mapped AXI-Lite GPIO registers and ex-
tended multiplexed input—output interface (EMIO) be-
tween the RPU and PL, labeled (6) in the figure.

The communication channels between the APU, RPU, and
PL require the configuration and compilation of the custom
Linux kernel. Linux is run on top of a symmetric multipro-
cessing configuration that defines the APU hardware archi-
tecture with four cores. The APU and RPU subsystems, on
the other hand, define an asymmetric multiprocessing (AMP)

variations are typically associated with continuous random variables. The
time intervals of events, such as cache misses, AXI-interconnect blocking
events, DDR refresh operations and interrupt service handling are discrete,
i.e., are associated with fixed, nonzero time intervals, making the distribu-
tions even over large numbers of samples asymmetric and nonuniform. This
type of timing behavior justified our use of nonparameteric statistics.

VOLUME 4, 2023

@IEEE Transactions on

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM uantumeEn gineering
system, in which the RPU cores operate as independent pro- APU (A53) RPU (R5) PL state machine
cessor components with respect to the APU. The multiuser, Linux OS bare metal
time-sharing system model, which characterizes the Linux Data Collection App| Timing App
0S8, is not capable of meeting the deadline-based, real-time 2-way oS
system requirements of a quantum computing system. In- S Sl handshake % 2_W
stead, the RPU is utilized for this purpose, and is configured = 12|\ handshake
to run bare metal applications and/or a real-time operating \ 2%
system (RTOS), such as FreeRTOS. DDR shared Llasiter)
| | o
The PL represents a third component that is used for defin- memory
ing highly customized peripherals, which can be utilized for RPMsg (libmetal)

specialized coprocessing tasks. While register-transfer-level
(RTL) or RTL-based design typically involves low-level con-
structs that lack the expressiveness of high-level software
abstractions, it provides an ideal platform for generating cus-
tom peripherals where one has absolute control over timing
characteristics. Therefore, PL can supplement the PS with
features that meet hard, real-time system constraints.

Each of the illustrated communication channels shown in
blue in Fig. 4 utilizes a unique interface mechanism. For
example, the communication channel between the APU and
RPU, labeled as (1) in the figure, makes use of an API
defined by the libmetal and OpenAMP standards [25], and
utilizes on-chip tightly coupled memory (TCM) for code,
stack, heap, etc., and the PS DDR for IPC for data exchange
and synchronization. Similarly, the blue arrows labeled (2)
and (5) capture the sequence of operations that occur during
DMA transfers, whereas the blue arrows labeled (6) shows
the transfer paths between the RPU and PL when memory-
mapped interfaces, including AXI-Lite GPIO registers and
EMIO, are used. The architectural details and measurement
results for each of these transfer mechanisms are presented
in the following sections.

A. EXPERIMENTAL SETUP FOR GPIO AND RPMSG DATA
COLLECTION AND MEASUREMENTS

The Libmetal API provides applications with access to in-
terprocessor interrupts (IPI) and shared memory for instru-
menting communications between two or more processing
units. The OpenAMP framework builds on top of Libmetal
to provide a higher level of abstraction to these communica-
tion services, which are referred to as life cycle management
and IPC. The Libmetal/OpenAMP API defines a communi-
cation mechanism based on remoteproc and RPMsg driver
primitives, which are implemented within the Linux kernel
and RPU bare-metal application. The remoteproc API allows
applications that run on the APU to initialize, start and ter-
minate binary executables on the RPU, whereas the RPMsg
API defines a protocol for IPC.

Xilinx hardware development tools, including Vivado and
Vitis [26], are used to create the architecture shown in Fig. 5
for the AXI-Lite GPIO and EMIO latency and throughput
measurements. The timing process starts with the APU load-
ing a bare-metal application on the RPU. The APU C pro-
gram then initializes the RPMsg communication facility be-
tween the APU and RPU and transfers run-time parameters
to the RPU (not shown). The RPU program receives the

VOLUME 4, 2023

FIGURE 5. Block diagram showing architecture for timing measurements
between the APU, RPU, and PL.

RPU .| LPD - [M_AXI_HPMO_LPD
Switch 1 0x9000_0000
Cache
h
. Coherent PL
nterconnect
,,,,,,,,,,,,, FPD - IM_AXI_HPMx_FPD
=> Through FPD | | Switch 1 0xA000_0000
_ = Through LPD ,

FIGURE 6. Routing network for two AXI-Lite GPIO configurations.

configuration parameters and then enters a loop that reads
and writes two 32-bit memory-mapped registers as a means
of exchanging information with a SM running in the PL. The
SM instantiates a latency and throughput counter that are
used to record the number of PL clock cycles required to
execute a handshake communication protocol between the
RPU and PL.

We investigate two AXI-Lite GPIO configurations that
map to different physical addresses, as shown in Fig. 6.
Surprisingly, the physical address assigned impacts the per-
formance characteristics. The first configuration, labeled
“Through FPD,” memory maps the GPIO just above the up-
per limit of the LPD aperture at 0OxA000_0000 and requires
communication traffic to route through both the LPD and
FPD switches. The LPD aperture is defined as a 512-MB
region between 0x8000_0000 and Ox9FFF_FFFF in the RF-
SoC and MPSoC architectures. The second configuration,
labeled “Through LPD,” maps the GPIO into a small region
of the LPD physical address aperture at 0x9000_0000. The
RPU communication traffic in this case routes to and from
the PL using only the LPD switch. The additional routing
in the first configuration increases latency and decreases
throughput.

The primary consideration here for quantum systems is the
limited size of the memory region directly accessible by the
RPU in the RFSoC and MPSoC system architectures, namely
the 512-MB LPD region. The primary data transfer mecha-
nism between the RPU and the PL is DMA, which also needs
to utilize this memory region. Moreover, a custom Linux ker-
nel is built to map a portion of the PL DDR address space into
this region as a means of fully utilizing the capabilities and

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

1084
L 102
<
>
Q
o
3 100 MHz
101 3 200 MHz
[333 MHz

220 240 260 280 300 320 340 360
Latency (ns)

FIGURE 7. Histogram showing ZCU111 AXI-Lite GPIO latency results for
transfers between the RPU and PL using data collected from 1000
individual trials under the “Through FPD” configuration shown in Fig. 6.
Latency results are plotted for test cases with the PL clock frequency set
to 100, 200, and 333 MHz.

capacities of the two DDR memories. Therefore, a tradeoff
exists between maximizing DMA transfer buffer size and
achieving the best AXI-Lite GPIO performance. EMIO rep-
resents a nearly equivalent alternative to AXI-Lite GPIO with
regard to performance, but avoids the limited LPD address
space problem, as we discuss in the next section.

B. GPIO EXPERIMENTAL RESULTS

The RPU AXI-Lite GPIO interface is tested at three different
PL frequencies, including 100, 200, and 333 MHz (the max-
imum allowed). Latency is measured as the average transfer
delay of handshake operations between the RPU and PL
SM. Handshaking is implemented by toggling two control
bits in the RPU-to-PL and PL-to-RPU GPIO registers. The
latency counter in the PL measures the round trip delay, and
then divides by 2 to obtain the one-way transfer latency. The
expression for latency is N,/ (2 fcx), with N, representing the
value of the counter in the PL and fx the PL clock frequency.
The SM starts the counter in the same clock as the PL-to-
RPU assertion and stops it once it receives the RPU-to-PL
acknowledgement. Note that this assumes the latency of the
interconnect is symmetrical between the RPU and PL.

The counter value is then transferred to the RPU, which
sends the value via RPMsg to the APU. The APU converts
the count to nanoseconds and gathers statistics from mul-
tiple trials. The throughput measurement begins the same
way but continues through multiple handshake exchanges, as
specified by the run-time parameters. Moreover, a complete
two-way handshake includes two additional busy waits for
the GPIO control bits to return to zero. The count values
after multiple exchanges are (NpN;Ng fox)/N. B/s. Here,
Np represents the number of bytes per handshake (4 for the
32-bit GPIO registers), N; is the number of iterations (90 in
our experiments), and Ny is the number of handshakes per
iteration (4).

Histograms showing the latency and throughput results
from 1000 trials under the “Through FPD” configuration

5500124

I 100 MHz [E3 200 MHz [333 MHz
10° .

102 :
10!]
100 —

,7%’ 77) 7’783 6‘5)0
Throughput (MB/s)

Counts

FIGURE 8. Throughput histogram for AXI-Lite GPI1O for the “Through
FPD"” configuration (companion graph to Fig. 7).

108,
EE 100 MHz
0 200 MHz
102 [0 333 MHz
2}
c
=
Q
)
1075
1004 H

120 140 160 180 200 220 240 260
Latency (ns)

FIGURE 9. Histogram showing ZCU111 AXI-Lite GPIO latency between
the RPU and PL using data collected from 1000 individual trials under
the “Through LPD” configuration shown in Fig. 6.

shown in Fig. 6 are plotted in Figs. 7 and 8, respectively, for
three PL fx frequencies, 100, 200, and 333 MHz. The y data
is plotted on a log;,-based scale to enable better visibility
of the smaller bin sizes, which portray the variability in the
measurements. The median latencies are given as 350, 253,
and 210 ns and for throughput as 11.8, 16.6, and 20.2 MB/s,
respectively. A second set of histograms are shown for the
second AXI-Lite GPIO configuration in Figs. 9 and 10, with
median latencies given by 250, 163, and 126 ns and median
throughputs given by 20.7, 32.6, and 41.9 MB/s, respectively.
The variation around the median value is less than 15 ns for
latency and less than 0.05 MHz for throughput, indicating
that GPIO communication is relatively invariant. Note that
the GPIO timing measurements are made in a no-load test
environment, i.e., the APU is not generating traffic on the
AXI interconnect, and therefore, these results reflect a best
case scenario.

The time spent by the RPU to execute the instructions
involving the handshake, and the time spent to transmit data
across the AXI-Lite interconnect plus the time required for

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

B 100 MHz [ET 200 MHz @I 333 MHz
104 . / F
1084 M '
Q0
S 102 »
@]
O
10" »
e Tl e« <)
0~50 4 2%) <?6‘0 000 4 &5 4 6’56,
Throughput (MB/s)

FIGURE 10. Throughput histogram for AXI-Lite GPIO for the “Through
LPD” configuration (companion graph to Fig. 9).

the PL to consume it, can be calculated from the throughput
results. The following simultaneous equations are derived
using the median throughput results of the “Through LPD”
experiments. In (1), the throughput with the PL configured
to run at 333 MHz is converted into the amount of time
required to carry out one transfer of 4 B. The transaction
times in (2) and 3 are computed in a similar fashion. Assum-
ing the RPU execution time component fgpy remains con-
stant in all three experiments, and the AXI-Lite interconnect
and PL time components scale linearly with frequency, e.g.,
tpr200 = 1.665 tpr 333, two of the following three equations
can be solved for the two unknowns, and the third equation
can be used to validate the results:

trpy + fpL333 = 95.6 118 ey
trpu + 1.665 tpr 333 = 122.7 ns)
trpu + 3.33 fpr333 = 193.2 ns. 3)

The values obtained for fgrpy and fpp333 are 54.7 and
40.9 ns, respectively. An estimate of the error can be com-
puted by subtracting the left-hand side from the right-hand
side of (3), which yields a value of 2.3 ns. Therefore, the
RPU runs for 27 clock cycles while the AXI-Lite/PL runs
for 14 clock cycles during each transfer operation, with the
uncertainty in the estimates equal to only one RPU clock
cycle.

EMIO does not utilize the AXI-Lite protocol and is instead
structured as a direct multiplexer-based connection network
between the RPU and the PL. The RFSoC and MPSoC pro-
vide up to 95 configurable single-bit channels that can be
used for data transmission in either direction. In our exper-
iments, we configure two 32-bit channels in a fashion iden-
tical to the AXI-Lite GPIO, and make latency and through-
put measurements using the handshake protocol described
earlier. EMIO is limited to a maximum clock frequency of
100 MHz, but the PL frequency can be increased to 500 MHz,
which represents the configuration used in our experiments.

VOLUME 4, 2023

This particular clock frequency combination also enables
latency and throughput to be measured using a one-way
transfer mechanism. In the one-way experiments, the C code
for the RPU simply toggles a control bit in a tight loop and
does not wait for an acknowledgement from the PL. The PL,
running at five times the EMIO frequency, oversamples the
EMIO control bit to determine the rate at which the bit is
toggled by the RPU. Surprisingly, the results from this one-
way experiment show that throughput is not symmetric, with
RPU-to-PL exhibiting higher throughput than the throughput
computed using the two-way handshake configuration where
the RPU waits for a PL-to-RPU acknowledgement before
executing the next toggle operation.

Although histograms for the EMIO results are not shown,
the median latency and throughput measured for the one-way
experiments are 90 ns and 44.4 MB/s, whereas for the two-
way transfer experiments, the round trip latency degrades
to 370 ns with an average throughput of 20.6 MB/s. This
implies that PL-to-RPU latency and throughput are 280 ns
and 14.29 MB/s, respectively. The minimum and maximum
latencies for RPU-to-PL transfers are 90 and 105 ns, respec-
tively, whereas the minimum and maximum throughputs are
38.1 and 44.4 MB/s, respectively. For PL-to-RPU transfers,
the values are 280 and 290 ns and 13.8 and 14.29 MB/s,
respectively. Given the proprietary nature of the EMIO com-
munication channel, it is difficult to speculate on the reason
for the observed asymmetric behavior.

Overall, the AXI-lite GPIO and EMIO communication
mechanisms exhibit low levels of variability, in comparison
with several of the other communication mechanisms de-
scribed in the following sections. This characteristic makes
these GPIO-based communication mechanisms attractive for
implementing control functions in TIQC systems that have
low-latency, real-time constraints.

C. RPMSG EXPERIMENTAL RESULTS
The latency and throughput of messages sent between the
APU and the RPU via RPMsg are reported in this section.
A flow diagram that illustrates the process used to make
timing measurements is shown in Fig. 11. The APU and RPU
both execute a custom timing application under Linux and
on bare metal, respectively. Note that the Linux device tree
must be configured with elements that support the RPMsg
protocol, e.g., shared memory and IPI. Xilinx-provided Vitis
software examples are used to create the APU and RPU ap-
plications, with a linker script that places the RPU code and
data segments into TCMs, and shared APU-RPU memory in
PS DDR.

The RPU application, once started by the APU, allocates
a block of shared memory and sets up the IPI (not shown). It
then loops, carrying out the following sequence of operations
beginning with initializing a synchronization (semaphore
protected) variable sync to 1. The RPU then enters a sleep
state and waits on an interrupt from the APU. The APU appli-
cation is then run, which also initializes its own sync variable
and starts the APU-to-RPU (AToR) timer. The APU then

5500124

@IEEE Transactions on

uantum Engineering Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM
APU (AS3) RPU (R5) 8 bytes B 512bytes [2048 bytes
Linux OS bare metal [128bytes [1024 bytes [4095 bytes
Timing App APU-to-RPU Timing App B 256 bytes
Setp
Start AToR RPMsg (libmetal) sleep if L
Timer DDR sync =1) |
4’. shared 10%4 |
Write || | » memory ISR: sync «
Payload v —P| = 0, awake S
v \\ [@]
Gen P || Read |/ © o'/
interrupt interrupt 7| payload
v ¥
Read AToR ||| Stop AToR
Timer || I 1
Timer 1094 ‘ , nn
25 50 75 100 125 150 175
APU-to-RPU RPU-to-APU Transfer Time (us)

100MHz

(AToR) Timer (RToA) Timer

FIGURE 11. Flow diagram of RPMsg experiment for timing data transfers
from APU to RPU. The sequence of operations for measuring throughput
from the RPU to APU is identical but reversed.

writes a payload to the shared memory block in the PS DDR
and sends an IPI to the RPU. The RPU’s interrupt service
routine awakens the RPU application, sets the sync variable
to 0, and then reads the payload from shared memory. Once
the read operation completes, it stops the AToR timer. Al-
though not shown in Fig. 11, the exact same sequence occurs
in reverse using a second RPU-to-APU timer with the RPU
writing a payload to shared memory and the APU performing
aread out. The APU’s timing application reads the values of
the two timers and stores the values in an array and later to a
file for postprocessing.

The timing application algorithm is repeated using
100000 iterations for each payload size from 8 to 4096
bytes, with each payload size in the sequence larger than
the previous payload by a power of two. The values stored
in the arrays are the count values read from the two TTCs,
which run at 100 MHz in the PL. Therefore, each count
increment represents a time interval of 10 ns. Note that unlike
the GPIO measurement scheme, where it was possible to
measure latency independent of throughput, it is not possible
to determine when the first word of the payload is written to
DDR for RPMsg. Given the data bus width of the PS DDR
is 8 B, we use the 8-B payload for the latency measurement.

Histograms showing the transfer times (TT) associated
with the first 1000 trials for a subset of the payload sizes
are plotted in Figs. 12 and 13 for APU-to-RPU and RPU-to-
APU transfer operations, respectively. A key objective, here,
is to portray the asymmetry that exists in the variability of
the throughputs for equal-sized payloads in both directions,
which is captured well using only subsets of the data. The
conversion from TTC counts to TT is given by TTrpmsg =
TTCcnt/ feik- Median TT vary between 2.2 and 126 us for
APU-to-RPU transfers, and 29 to 160 us for RPU-to-APU
transfers.

5500124

FIGURE 12. Histogram depicting RPMsg TT in microseconds for transfers
from the APU to the RPU on the ZCU111. The y data is plotted on a
log,,-based scale to better emphasize variability in the measurements.

I 8bytes I 512 bytes I 2048 bytes
[0 128bytes [1024 bytes [0 4095 bytes
[256 bytes
103] gp .
1 02]
(%]
A
c
>
o
(@)
1 01]
0 |
10 Ii H

0 20 40 60 80 100 120 140
Transfer Time (us)

FIGURE 13. Histogram depicting RPMsg TT in microseconds for transfers
from the RPU to the APU on the ZCU111.

RPMsg throughput is plotted in Fig. 14, with a maximum
rate of 32 MB/s. The RPU-to-APU requires larger payload
sizes (not shown) to achieve this throughput rate. Given the
high levels of variability in latency and throughput of the
RPMsg data transfer mechanism, the qubit control system
will utilize RPMsg only for nonreal-time operations, e.g.,
periodic status messages reporting data transfer statistics,
debug, and error information. In contrast, the much smaller
levels of variability associated with the GPIO, EMIO, and
DMA transfer mechanisms are better suited for qubit data
transfer operations that have hard, real-time constraints.

D. DMA: PL DDR TO PL STREAMING

The ZCU102 and ZCU111 support several types of DMA
transfer mechanisms. The primary datapath within the qubit
system that requires high-speed, block-level transfers is be-
tween the PL-side DDR and a streaming interface in the

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

35 RPMsg APU < RPU Throughput RPU (R5) PL state machine
APU-to-RPU Median, Min and Max
bare metal
301 Timine A } Wait start, Gen. intr.
iming App
!
.25 — RPMsg confi l
%’ g g Inc MM2S counter
S 201 AXI slave stream
g 15/ Config DMA get data, store BRAM
g enable intr. l
g
2 10 l Check MM2S
= Setup PL GPIO done intr.
51 enable PL intr. o l
~
01 transfer SM params. 3 Inc S2MM counter
i AXI master stream
51— Loop <
0 1024 2048 3072 4096 send BRAM data
. Start PL SM
Payload Size (bytes)
Load DMA mem. -
Wait intr() Stop AToR Timer

FIGURE 14. RPMsg throughput on the ZCU111 showing the median, min,
and max throughput characteristics using measurements from 100 000
trials for transfers in both directions, i.e., from APU to RPU (blue) and
from RPU to APU (brown).

PL (labeled 2) through) in Fig. 4). A high-bandwidth
mechanism to provide updates to gate sequences is critical
to tuning and optimizing gate execution, as discussed in pre-
vious sections. The hard real-time capabilities of the RPU are
needed for meeting gate-sequence data transfer requirements
and for providing low variability in the response times across
multiple, sequential DMA transfers.

A flow diagram of the test procedure is shown in Fig. 15.
Similar to the GPIO experimental setup, the architecture in-
cludes an APU, RPU, and a PL SM component, with the
APU providing data fetching, analysis, and storage func-
tions only. The RPU performs a sequence of initialization
operations related to RPMsg, DMA, and GPIO, including
enabling interrupts for the memory-map-to-stream (MM2S)
and stream-to-memory-map (S2MM) DMA engine compo-
nents, and PL interrupts. The RPU transfers parameters to the
PL SM, including payload size and parameters for control-
ling auto-generated interrupts. The autogenerated interrupts
are utilized by the measurement system to enable multiple
trials to be run back-to-back.

The RPU carries out multiple, repeated trials for the APU-
specified payload size, annotated as Loop in Fig. 15. In
each iteration, the RPU starts the PL SM and blocks wait-
ing for a PL interrupt. The PL SM sends an interrupt to
the RPU to start the DMA MM2S transfer operation and
simultaneously starts incrementing counters used to deter-
mine latency and throughput. The PL. SM implements the
AXI slave streaming protocol (AXIS) to receive the DMA
burst transfers from the RPU. The latency counter runs until
the first AXI tvalid assertion occurs, whereas the through-
put counter runs until the DMA engine generates a MM2S
interrupt done signal. The DMA data block received by the
PL SM through the AXIS interface is stored in PL BRAM.
The data block is transferred back to the RPU and validated
against the original data during the reverse S2MM DMA
operation.

VOLUME 4, 2023

Start DMA trans.
Wait done, ack intr.

If done, assert tlast

Fetch count

Transfer count

Transfer counts

Linux OS

Data collection App

Get counts

Compute Stats

RPMsg (libmetal)

APU (A53)

FIGURE 15. Flow diagram for DMA transfers between the RPU and an
AXIS interface implemented in a PL SM. The RPU is configured to use PL
DDR for the data transfers.

The S2MM data transfer operation commences immedi-
ately following the MM2S. A third counter is used to deter-
mine the S2MM throughput, which measures the time inter-
val between the completion of the MM2S transfer operation
and the assertion of the S2MM interrupt done signal. The
S2MM DMA channel is notified that the data transfer has
completed with the PL SM asserting the last signal concur-
rent with the transfer of the last data word in the payload. The
RPU busy waits for the DMA MM2S and S2MM channels
to return to an idle state before acknowledging the DMA
interrupts. The PL. SM transfers the three counter values to
the RPU, which forwards them to the APU via RPMsg. This
sequence of operations is repeated for each of the trials as
specified by the APU.

The APU collects the MM2S latency and throughput
and S2MM throughput counter values, and computes the
median—min—-max statistics using the counts from 10 000
separate trials. The results are stored to a file and later trans-
ferred to a host computer. The entire experiment is repeated
using PL bitstreams configured with a clock frequency of
333 MHz for the ZCU111 and 300 MHz for the ZCU102,
and for payload sizes between 4 B and 1 MB, increasing by
powers of two.

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

The ZCU102 and ZCU111 integrate different PL DDR
memories, and therefore, we repeat the above-mentioned
experiment for both and compare the results. The ZCU102
utilizes a 512-MB DDR with a data width of 16 bits, whereas
the ZCU111 utilizes a 4-GB, 64-bit- wide DDR. Therefore,
the performance is expected to be higher for the ZCU111, as
we show in the following.

Latency is explicitly measured for only the MM2S transfer
operation because the PL. SM is able to measure the time
interval between the start of the transfer and the occurrence
of the first assertion of the tvalid signal from the MM2S AXI
interface. On the other hand, only the start event is known
during the S2MM transfer operation, i.e., the PL is not able
to determine when the DMA engine successfully transfers
the first word into the PL DDR. The PL AXIS interface
continuously streams data into the S2MM channel of the
DMA engine, which buffers the data internally. For large
transfers, it eventually introduces pauses in the PL S2MM
AXIS interface because the internal buffer fills up, but the
transfer duration for the first word is always measured by our
SM as just one clock cycle.

Instead, latency for the S2MM is measured using the
throughput counter value with a payload size set to one word,
e.g., a 32-byte payload with the DMA configured with a
width of 256 bits. The latency measurement for MM2S in-
cludes some additional RPU overhead, whereas the S2MM
does not. This occurs because the PL. SM starts the latency
counter one cycle after the interrupt is generated, whereas the
RPU is blocked waiting for this interrupt. The overhead for
the MM2S includes the additional time taken to process the
interrupt and to write the length register of the MM2S DMA
engine, which effectively starts the MM2S DMA engine. On
the other hand, the S2MM is started in advance of the inter-
rupt but blocks until the PL SM reaches the S2MM state. As a
consequence, the S2MM latency is much smaller because the
RPU overhead does not exist. We report both the MM2S and
S2MM latencies recognizing that the true latency is better
estimated using the MM2S measurement because the actions
required to start the DMA engine are needed in any realistic
application scenario.

The median—min—-max statistics for latency and through-
put are computed using equations similar to those given for
GPIO. As an illustration, histograms portraying the MM2S
and S2MM throughput behavior using data from the first
1000 trials are shown in Figs. 16 and 17. The PL logic is
configured to run at 300 MHz on the ZCU102 and 333 MHz
on the ZCU111, which matches the frequency of the PL-side
DDR memories for these devices. The DMA engine is con-
figured with a data bus width of 256 bits and is tasked with
transferring payloads of size 32, 64, and 128 B. The indi-
vidual trials are run back-to-back with approximately 0.5 s
between trials.

Although the RPU provides uninterrupted execution of the
binary program stored in the TCM, the throughput rates are
not constant as one might expect. A periodic decrease occurs
in both the MM2S and S2MM throughputs, which is likely

5500124

[32 bytes [64 bytes [128 bytes

103 ZCU102
B2
C
3
O 104

103 ZCU111
§2)
C
3
O 104

20

Throughput MB/s

FIGURE 16. DMA MM2S throughput for the ZCU111 PL running at
333 MHz and the ZCU102 PL running at 300 MHz for payload sizes of 32,
64, and 128 B, and with the DMA data-bus bit-width set to 256.

[32 bytes

104 ZCU102
10
i \AMLJ_J |

1084 ZCU111

[64 bytes [128 bytes

Counts

Counts

200 400 600 800
Throughput (MB/s)

o

FIGURE 17. DMA S2MM throughput for the ZCU111 and ZCU102 for
payload sizes of 32, 64, and 128 B.

due to stalls within the memory interface generator (MIG) to
carry out periodic refresh operations.

Figs. 18, 19, and 21 plot the median—min—max results
for MM2S latency, and for MM2S and S2MM throughput,
respectively, using data from 10 000 trials. Experimental re-
sults for payloads of size 4 B through 1 MB are super-
imposed. The median values are plotted as curves through
shaded regions delineated by the measured minimum and
maximum values. Note that the median and maximum curves
are often coincident (and are indistinguishable), which indi-
cates that the occurrence of minimum throughput is a rare
event. Figs. 20 and 22 blow up the region for payloads be-
tween 4 and 128 B to better portray throughput for smaller
payload sizes.

The MM2S latency results shown in Fig. 18 for the
ZCU102 and ZCU111 are very similar, with the median and

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

—e— 256 bits
—=— 1024 bits

ZCU102
Latency (us)

ZCUl1l1
Latency (us)

Ll e e N S
N A OO O N A O ®

25 50 7.5 100 12.5 15.0 17.5 20.0
Payload Size (2") (bytes)

FIGURE 18. DMA MM2S latency results for the ZCU111 PL running at
333 MHz and ZCU102 PL running at 300 MHz for payload sizes from 4 B
to 1 MB, and for DMA data-bus bit-widths of 32, 64, 256, and 1024. The
curves defining the medians are color coded and delineated by the
minimum and maximum latency curves shown in red.

—e— 32 bits
—e— 64 bits

—e— 256 bits
—e— 1024 bits

O NWRAWL

ZCU102
Throughput (GB/s)

o= N
N O O

ZCUlll
Throughput (GB/s)

o~

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Payload Size (2") (bytes)

FIGURE 19. DMA MM2S throughput results for the ZCU111 PL running at
333 MHz and ZCU102 PL running at 300 MHz for payload sizes of 4 B to
1 MB, and for DMA data-bus bit-widths of 32, 64, 256, and 1024. The
curves defining the medians pass through shaded regions delineated by
the minimum and maximum latency measurements.

—e— 32 bits
—— 64 bits

—e— 256 bits
—e— 1024 bits

oOrRLrNWR~WL

ZCU102
Throughput (GB/s)

o= N
N O O

ZCUlll
Throughput (GB/s)

o b~

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Payload Size (2") (bytes)

FIGURE 21. DMA S2MM throughput results for ZCU102 and ZCU111, in
the same format as Fig. 18.

VOLUME 4, 2023

—e— 32 bits —=— 64 bits —e— 256 bits

=
5 O 0 O
o O O o

ZCU102
Throughput (MB/s)

N
o o

100
80
60
40
201

ZCU111
Throughput (MB/s)

Payload Size (2") (bytes)

FIGURE 20. Blow up of the DMA MM2S throughput results from the
left-hand side of Fig. 19 emphasizing behavior for smaller payload sizes.

—e— 32 bits —e— 64 bits —e— 256 bits

ZCU102
N A O ©
o O O O
o O O O

o
oo

ZCU111
Throughput (MB/s) Throughput (MB/s)

N B O 0
o O
o o

o
o

o

Payload Size (2") (bytes)

FIGURE 22. Blow up of the DMA MM2S throughput results from the
left-hand side of Fig. 21 emphasizing behavior for smaller payload sizes.

minimum latencies for the ZCU111 only slightly smaller
than the ZCU102. As indicated earlier, the MM2S latencies
include overhead associated with the execution of RPU C
code, whereas the S2MM latencies do not. Although the
S2MM latencies are not shown, they can be computed from
the throughputs given in Fig. 22 using the smallest pay-
loads of 4, 8, and 32 B, corresponding to the DMA data-bus
bit-widths, respectively. The RPU C code execution over-
head is significant with MM2S latencies measured at 1.3 us,
whereas the S2MM latencies are smaller by nearly a factor
of 10 at 136 ns.

The MM2S throughput results shown in Figs. 19 and 21
show similar one-sided performance metrics, with nearly
coincident median and maximum throughput values and
distinct minimum throughput values. The benefits of the
larger and faster DDR within the ZCU111 are most appar-
ent for the largest DMA data-bus bit-widths and payload
sizes. For example, the maximum ZCU102 MM2S through-
put is 4.5 GB/s for bit-widths of 256 and 1024, whereas
the maximum for the ZCU111 increases to 10.5 GB/s and
19.2 GB/s, respectively. The S2MM results are similar except
the throughput for the ZCU111 is maximum at 17.1 MB/s

5500124

@IEEE Transactions on

uantum Englneerlng Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM
APU (A53) Physical Addr. of DDRs [32 bytes [64 bytes [128 bytes
Linux OS & (S8 103 - —
— 0x9000_0000
Timing App 256 MB PL Rsrv.
TTC config. 0x8000_0000
256 MB PS Rsrv. 102] _
Config CDMA 0x7000_0000 4
enable intr. S
(o]
© 1
Loop 10%
Write PS DDR
Start timer
Start DMA _| PL ol
Wait DMA intr. | T~ 10 Ml i A
St (i N~ 0 20 40 60 80 100
Ack interrupt ™ Throughput (MB/s)

PL DDR MIG
CDMA 1P

Read TTC count

FIGURE 23. Flow diagram for CDMA between the PS and PL DDRs.

with the DMA engine configured with a bit-width of 1024,
and it exhibits larger variability. Interestingly, the variation
in the throughput rates approaches O for the largest payload
sizes for any DMA bit-width, which can be leveraged when
TIQC systems require continuous raw gate sequence recon-
figurations.

E. CDMA: PS-DDR TO PL-DDR

A second type of DMA operation investigated in this article
is referred to as central DMA (CDMA), and is annotated
with @) and (5 in Fig. 4. CDMA handles block-level data
transfers between PS and PL DDR memories. The flow di-
agram of the test procedure is shown in Fig. 23. The APU
first configures the Triple Timer Counter (TTC) and CDMA
engine with the PS DDR source and PL. DDR destination
addresses. The loop component carries out multiple repeated
trials of the DMA transfer operation. The first component
of the loop writes random values into the PS DDR memory
region (assigned a physical address of 0x7000_0000 within
the memory map shown on the left). The timing interval
is annotated by the “Start timer” and “Stop timer” labels
in the figure. The CDMA transfer operation is sandwiched
between these statements, which is initiated by writing the
length register within the CDMA controller. The CDMA
engine generates an interrupt to indicate that the transfer has
completed.

Note that the Linux kernel requires a specialized device-
tree configuration with reserved memory sections for both
the PS and PL DDR memories to prevent Linux from utiliz-
ing these DMA source and destination regions as part of its
virtual memory system. The CDMA engine itself is config-
ured as an IP block in the PL of the ZCUs, and possesses
the same set of configuration parameters as the DMA en-
gine discussed earlier, i.e., input system clock frequency and

5500124

FIGURE 24. Histogram showing results for COMA running on the ZCU111
with the PL clock frequency set to 333 MHz, DMA bit-width set to 256,
and for payload sizes of 32, 64, and 128 B.

—e— 32 bits —=— 64 bits —e— 256 bits

O NWRAWUL

ZCU102
Throughput (GB/s)

O NWRAWU

ZCUl1ll
Throughput (GB/s)

2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Payload Size (2") (bytes)

FIGURE 25. CDMA throughput results for the ZCU111 PL running at
333 MHz and the ZCU102 PL running at 300 MHz for payload sizes from
4 B to 1 MB and for DMA bit-widths of 32, 64, and 256.

DMA data-bus bit-width. Similar to the DMA experiments
described in the previous section, we created a set of bit-
streams with different configurations. In particular, 32-, 64-,
and 256-bit-width versions are created, each with the system
clock frequency set to 300 and 333 MHz for the ZCU102 and
ZCU111, respectively.

The multiuser, multitasking nature of the Linux OS adds
variability to the measurements, when compared with the
RPU, as expected, and the maximum overall throughput is
lower. A histogram showing the throughput results derived
from data collected from 1000 trials, and for small payload
sizes of 32, 64, and 128 B, is shown in Fig. 24. Although
most of the minimum throughputs occur as a fraction of 25%
or less of the median and maximum values, several trials
show significant deviations. The minimum throughputs over
an extended run of 100 000 trials, and for payload sizes from
32 B to 1 MB are shown in Fig. 25. Although the root cause
of the slowdowns is attributable to interrupt service routine

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

calls within the Linux kernel, which occur between the se-
quence of operations carried out during the timing operation,
such behavior is unavoidable within Linux OS environment,
unless all interrupts are disabled during this call sequence or
Linux is replaced with a bare-metal application. The latter
solution will reduce the variability to values similar to those
shown for the RPU (see Fig. 16), but it will also eliminate
convenient access to system services provided by Linux to
user applications.

VI. ANALYSIS OF PERFORMANCE LIMITATIONS

TIQC control system requirements for communication rates
in the DMA core depend on multiple factors, including the
number of bits used to define parameters, the duration and
complexity of pulses, the frequency at which they are up-
dated to reflect calibration measurements, and how often in-
traalgorithm measurements affect future gates. Moreover, the
gate sequences themselves can be represented in raw form
and in a compressed format. Here, we show that communi-
cation rates measured in Section V are sufficient for correct-
ing worst case scenarios where all qubits must be modified
simultaneously.

We start by evaluating a normal operating scenario where
gate parameters are preset. The compressed gate represen-
tation leverages a principle in computer architecture called
temporal locality, where a series of LUTs are preloaded with
data from gate sequences that are likely to be reused in the
near future. The concept is also described in the Appendix in
reference to Fig. 2. In the compressed representation, a gate
is represented by an 11-bit identifier (ID), and up to 20 gate
IDs can be packed into a 256-bit word (with the remaining
36-bits used for metadata).

The bandwidth requirement for streaming predetermined
gate sequences is, therefore, reduced by a factor of 160, from
Opma = 10.656 GB/s (see the following) to &~ 66.6 MB/s.
Although the throughput reduction is significant, it still
exceeds the maximum throughput available for AXI-Lite
GPIO, which was specified earlier to be 41.9 MB/s in ref-
erence to Fig. 10. DMA, however, is sufficient to meet the
bandwidth requirements for both the raw and compressed
gate sequence representations. A more demanding scenario
occurs where a gate parameter must be changed simulta-
neously for all channels prior to the next gate, for instance
when a laser that is used for multiple ions suddenly drops in
power and the modulation signal sent to all affected AOMs
must compensate by changing the amplitude spline param-
eters. Another example is when a prior measurement (such
as error correction or drift control) requires updating subse-
quent gate parameters. There are other approaches to deal-
ing with such rare events, but for simplicity we place the
burden on the pulse generation part of the control system
because it can apply tailored corrections on a per-qubit basis.
Although some pauses are acceptable, we seek to achieve
a response that is on the order of the fastest gate time, as-
sumed here to be 1 ws. While this time is much shorter
than currently achieved in typical experiments, we use it to

VOLUME 4, 2023

analyze the suitability of this control system for larger scale
TIQCs, where reducing latency will be critical. Based on
the direct streaming mode described in Section IV, gates
use a minimum of eight parameters per channel, yielding
a total of 64 parameters that need to be executed in par-
allel at any given time. Each parameter is represented as a
256-bit word that encodes spline coefficient data, regardless
of whether the parameter is modulated or constant. Assuming
the streaming input side of the First-in-First-out (FIFO) is
clocked at 333 MHz (see Fig. 26), this requires a through-
put of Opvu = WousfoMa = 10.656 GB/s. Alternatively, we
can instead cast this into a gate throughput, 65, where the
effective data size is Wg = 64W,ys and 6 = Opma/Ws =
5.203 x 10° gates/s. The shortest gate time which can be
continuously streamed is thus 1/6; = 192.2 ns, neglecting
the time required to compute an update to the parameters
(which could be longer than 1 us).

For the compressed gate mode (using the GLUT described
in the Appendix), an individual gate can be programmed and
sequenced on a single channel with a minimum of 11 words,
eight words for the pulse LUT, one word for the memory
map LUT, one word for the gate LUT, and an additional
word for reading out the gate. In this case, the number of
words, N, = 11, needed for all channels, N., = 8, leads to
W = NehNwWous = 88Whys, and 1/6g = 264.3 ns. This is
particularly relevant for cases where all parameters are up-
dated but then remain constant for many subsequent gates,
e.g., when there is a slow drift in laser power.

Once the initial programming data are sent, the gate can
be read out with a single word per channel. Supposing all
parameters of the gate need to be updated on each execution
of the gate, the subsequent gate calls can be made with nine
words per channel by modifying the data in the pulse LUT
prior to reading out the gate. In most cases, the modified
gate data will be restricted to a single, or perhaps a small
subset of channels. Instead, it is useful to think of the number
of sequencing words needed per channel, S, and the total
number of parameters that need to be updated across all chan-
nels, Pypd. The total number of words that needs to be trans-
ferred on each iteration is then Ny, = SN + Pypa. For back-
to-back execution, with a full update of an eight-parameter
gate, we have N, = 16 and a minimum gate time of 6; I=
48 ns. If only a single parameter is updated for a single
channel, this yields N, =9 and a minimum gate time of
65" =27ns.

However, taking advantage of the ability to pack multiple
gate identifiers in a single transfer can reduce the minimum
gate time to 0 ! = 28.1 ns when updating eight parameters,
and 6 ''=7.1 ns when updating a single parameter. The
direct streaming rate (meaning all parameters are preset and
not updated) is 1.2 ns; however, this is not achievable because
the minimum gate time for continuous operation is limited
by the gate sequencer to 19.5 ns. As an example this limit
applies to the situation where predetermined Trottererized
segments of a gate are reduced to 19.5 ns and locally stored
in the LUTs.

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

re 216
[’D"_D_ 216 clear
256 256 I . e OF Zen| Jrea
#—FIFO |41 #{FIFO add| i pline 40, freq. Spl
333'MHz | odf GateSeq | ;7o 4"C Ty [32 swg 7
409 MHz>512 «HS 3| FIFOArb => N — HS” H D R _E\ sync
Pt [A=
T [
|
Freq. Spline P~ Amp. Spl. 40, amp. Spl
216 216 4, shift ampFBen ® 7 phase Spl
Z Z
7TEFO > 20cu0 freq. FB en hase Spl et
256 HS 36, ul 9. .
AE > . 7T2u2 sync 40, _rotate Spl
b R Splm.e 88,7 u3] PDQ output en Rot. Spl. ’
T Coefficient]-ignc Spline FIFO empty
clear I2d e > Freq. Spl.
En amp B 40, freq. Spl. Amp. Spl.
D> freq. FB 7 see
shunt '!' Phase Spl
Aush 2§ wait Rot. Spl.

FIGURE 26. Gate sequencer block diagram. The DMA-based streaming AXI interface is connected to the upper, left-most 256-bit FIFO input in the
diagram. The cubic spline lightweight interpolation engines for the eight parameters associated with the two independent tones of the DDS core are
shown along the left-hand side, and expanded for the frequency spline within the magenta rectangle.

An alternative limit can be imposed by calculating the
number of parameters, which can be updated when running
1 us gates. For updates interleaved between each gate, the
maximum number of parameters that can be modified is
Joma(1us) — 8 = 325. Similarly, if one wants to update all
32 768 values in the pulse LUTS, this can be achieved if the
programming data is run after 99 sequential 1 us gates. An
example where this is relevant is when many parameters have
to be updated but not necessarily right away.

These limits assume a sufficiently large payload size
such that the programming and sequencing data are densely
packed, as well as predetermined albeit potentially changing
parameters. However, if there are a small number of param-
eters that are not known in advance and need to be updated
before the next sequence, then this may require a small DMA
transfer. For a single parameter, encoded in 32 bytes, latency
dominates the overall throughput, where the minimum trans-
fer rate for a 32-byte payload size is 17.6 MB/s, as shown in
Fig. 20. This corresponds to 1.82 us for the fastest time to
update a single parameter, again neglecting calculation times.
More parameters could be transferred in roughly the same
time by using a larger payload size.

This FIFO clock speed is a maximum rate, so measur-
ing outlier slow communication rates is important for de-
termining the realistic limitations of the system. The curves
from Fig. 19 show that the median (and minimum) DMA
transfer throughput of the ZCU111 with the DMA IP block
configured with a 256-bit width and run at 333 MHz is
~ 10.5 GB/s, which is slightly less than 6pya. However,
with the DMA IP block configured with a larger bit width of
1024, the median (and minimum) throughputis > 19.0 GB/s,
which supports the maximum throughput with additional

5500124

headroom. Given that the typical fastest gate time for a TIQC
is about 1 us (neglecting the short times used for virtual Z
gates), even the 256-bit DMA width would be sufficient.

For the extreme case, where gate sequences reference
pulse information that is completely unique and gate infor-
mation cannot be reused, one may consider using a direct
streaming mode in which the gate sequencer LUTs, dis-
cussed earlier in reference to Fig. 2, are bypassed. In the
limit of the shortest possible gates that can be continuously
streamed, this approach may be preferable to constant re-
programming of the LUTs. Although the LUTSs can be pro-
grammed in a way that effectively treats the gate sequencer
as a deep FIFO, increased FIFO depth is immaterial in situa-
tions where the feed rate matches the consumption rate of the
spline engines, and the additional programming and sequenc-
ing data cut down on the maximum effective throughput.
This scheme is less flexible at correcting gate parameters,
for instance the amplitude, and would instead require a full
recalculation of all points.

Recalculation is typically expensive, owing to the fact
that spline coefficients need to be refitted for continu-
ous modulations (especially when accounting for unavoid-
able nonlinearities in AOM and amplifier response). Op-
erating in a regime where large amounts of unique gate
data need to be regularly regenerated will likely lead to
bottlenecks at the APU, assuming gate data can be re-
calculated on chip, or possibly limited by network trans-
fer if the calculations demand the computing power of an
external server. In these cases, throughput is dominated
by classical algorithmic efficiency, and potentially network
throughput, both of which suffer from larger variability in
timing.

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

However, this problem is offset by performing gate cal-
culations while quantum circuits are running, and maintain-
ing efficient compressed representations of gates, in which
changes to one parameter will affect multiple gates. Partial
reprogramming of LUTs allows the RPU and PL to coordi-
nate quantum circuits with classical control flow while the
APU is free to generate the next set of gate data, thus max-
imizing the benefits of AMP. Because the APU can in most
cases fully recalculate compressed gate data faster than the
duration of a two-qubit gate (= 200 us) [27], the remaining
transfer overhead is less of a dominating factor in this mode
of operation.

The measured transfer latencies are several orders of mag-
nitude smaller than coherence times in TIQC systems, par-
ticularly for !”!Yb where coherence times typically range
anywhere from 1 to 1000 s, giving a lot of headroom for clas-
sical control flow from the RPU that depends on mid-circuit
measurements. For systems that are relatively stable and cir-
cuits that can leverage redundancy in gate data, the measured
timing characteristics are well within typical requirements
for gate throughput for most applications.

VII. CONCLUSION

We draw the following conclusions regarding the applicable
usage scenarios and limits of the communication mecha-
nisms of a Xilinx Zynq MPSoC and RFSoC within the con-
text of a TIQC system architecture.

1) RPU-driven DMA requires a PL clock frequency of
333 MHz and a width greater than 256 bits, e.g., 512
or 1024 bits, to meet the 10.656 GB/s requirement for
streaming raw, uncompressed, gate sequences.

2) RPU-driven DMA must be used for raw or compressed
gate sequences but can be relaxed for the latter case,
e.g., by using a DMA width of 256-bits and/or lower
PL-side clock frequencies.

3) RPU-driven GPIO can be used to meet soft real-time,
lower bandwidth system requirements for qubit com-
ponents running in the PL. For example, shuttling,
Doppler cooling, state detection, or ion reloading.

4) APU-to-RPU RPMsg throughput is higher and exhibits
lower variability than the corresponding metrics com-
puted for RPU-to-APU transfers, but nonetheless can
only be used to meet low bandwidth soft deadline-
based requirements. For example, we intend to use
RPMsg for the transfer of control and status informa-
tion between the APU and RPU, and for computing
shift deltas for control parameters via a feedback algo-
rithm.

5) APU-driven CDMA transfers between PS and PL
DDRs exhibit high variability under the Linux OS.
However, minimum throughputs approach 5.0 GB/s
for large payload sizes (>1 MB), which enables APU
updates to compressed gate sequences to be transferred
to PL DDR with plenty of headroom to meet data con-
sumption rates for RPU DMA transfers to PL. Note

VOLUME 4, 2023

that the APU will host the pulse compiler for generat-
ing compressed sequence data that needs to be trans-
ferred to PL. DDR for access by the RPU.

6) A hopefully rare worst-case scenario that nonetheless
should be accommodated by the control system occurs
when one or more gate parameters need to be updated
on the fastest timescale of the quantum computer. Lim-
ited by latency, we find that this architecture can update
gates in less than 2 us.

Even with relatively long gate times, the electronic control
system for a TIQC must be designed with communication
throughput in mind in order to achieve near real-time updates
on gate parameters. The design and measurements described
in this article are specific to the MPSoC and RFSoC used here
but can be translated to similar hardware to identify limits
on full channel updates and other performance scenarios for
other qubit technologies. Although the architecture we de-
scribe is most applicable for large-scale quantum computing,
understanding the hardware limitations of electronic control
systems and testing them on current noisy intermediate-scale
quantum (NISQ) systems [28] will motivate theoretical, ex-
perimental, and engineering research to overcome them.

APPENDIX
A. DDS DESIGN
The custom DDS core can generate two RF tones in or-
der to drive Raman transitions and bichromatic two-qubit
Mglmer—Sgrensen gates that are commonly used in TIQC.
These tones are added in the digital domain to sidestep
frequency-dependent phase shifts and amplitude distortion
effects inherent to external RF components (i.e., combiners
and mixers). Inputs include frequency, phase, and amplitude
words for each tone, as well as a number auxiliary inputs,
such as single-bit inputs for triggering phase synchronization
or enabling feedforward corrections. Both DDS tones are
set up in an interleaved configuration to double the effec-
tive sampling rate while maintaining an input frequency of
409.6 MHz, which is below the maximum AXIS clock speed
of 500 MHz and makes use of the RF data converter core’s
8x interpolation filter for using the maximum sampling rate
of 6.5536 GSPS for the ZCU111 DAC outputs.>

The main distinction between the custom DDS design and
a conventional DDS design is the inclusion of three spe-
cialized features: global phase synchronization, frequency
feedforward corrections, and elements used to compensate
for cross-talk errors at the experiment level.

1) GLOBAL-PHASE SYNCHRONIZATION

Global-phase synchronization is a feature that allows reuse of
DDS cores for driving different frequencies, and the ability
to return to a previous frequency and phase as if the DDS had

2Maximizing the sampling rate allows for digital up-conversion of the
input frequencies with the RFDC’s numerically controlled oscillators to
provide the largest allowable range of baseband frequencies.

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

been in a free-running state. Although this can be performed
by calculating the expected phase and either overwriting the
accumulator or adding a phase offset, the distinction here is
that the global phase synchronization is handled automati-
cally. This removes the need for manual bookkeeping and
also avoids any potential issues that may arise in the event of
amissed clock edge or nondeterministic latency. Eliminating
manual bookkeeping requirements also leads to a smaller
data footprint, since gates can be represented as simple prim-
itives that can be reused without having to account for con-
text dependency. The process involves a global counter that
is shared among all DDS cores, and the counter data are
multiplied against the DDS input frequency to calculate the
phase accumulated from some arbitrary point in the past
when the global counter is zero. The resulting phase is passed
to the DDS accumulator, with latencies matched in the data
path such that a trigger can update the accumulator with the
global phase corresponding to the current input frequency.
This allows one to synchronize to the global phase across all
channels, at any point in time, and the resulting phase will be
consistent with a previously synchronized frequency of the
same value. Reproducing the phase simply boils down to an
initial synchronization step with the first application of some
given frequency in a gate sequence. This is possible without
ever flushing out the accumulator, so that a frequency can be
synchronized to its previous phase for as long as the device
is powered and the global counter is not reset.’

2) FREQUENCY FEED-FORWARD CORRECTIONS

Drift in the frequency or repetition rate of the gate laser
is a common error that can be corrected by the electronic
control system. For example, due to drift in the cavity length
of the pulsed laser used for ytterbium qubit operations, the
repetition rate is actively monitored to account for “breath-
ing” in the spectrum from the frequency comb. To track the
resulting frequency shift and accumulated phase in the repe-
tition frequency, we use a scheme similar to [29]. The overall
error between two harmonics in the frequency comb can be
accounted for by adding an offset to the DDS accumulator
output, which is read out of the accumulator of a DDS in
a dedicated frequency feedback module, and subsequently
multiplied by the harmonic separation in the comb that is
nearest to the target transition frequency.

3) CROSSTALK COMPENSATION

Crosstalk-induced errors resulting from optical overlap of
individual addressing beams with nearest- and next-nearest-
neighbor qubits can be accounted for with a cancellation tone
that destructively interferes with the light from a neighboring
beam. Although some schemes (such as those that use a chain
of ions in a single well [2]) are more sensitive to this mech-
anism of crosstalk, similar effects exist for other trapped ion

3This is possible even if the global counter rolls over because of com-
mensurability over a finite set of frequency values limited to 2¥ — 1 for an
N-bit frequency word.

5500124

schemes and qubit technologies. Additional crosstalk errors
can arise from electrical crosstalk driving the AOM trans-
ducers as well as sympathetic vibrations across crystals in a
multichannel AOM. Electrical and acoustic crosstalk require
acoarse delay adjustment to approximate the longer propaga-
tion time. Fine-tuning the delay is approximated by adjusting
the phase, which is achieved by using a complex-valued scal-
ing of the input signals from neighboring channels to give
an overall change in amplitude and phase. To ensure that
optical crosstalk errors are accounted for, the arrival times
of crosstalk signals must be perfectly aligned with the output
of the source DDS. This is accomplished by sharing each
channel’s ideal signal (meaning the codeword description of
the intended signal without crosstalk) with each of its neigh-
bors. Cancellation tones are generated by multiplying the
shared signals by a complex factor that shifts the phase by the
desired amount (typically 7 plus smaller perturbations due to
alignment imperfections) and attenuates it to account for the
pickup ratio. Because these calculations take time, a delay is
added to the offending channel so as to align the cancellation
tones with its ideal signal. The cancellation tones are added
to their own ideal signals. Since every channel can be an
offending channel, all channels delay their actual output.

B. GATE SEQUENCERS

To reduce the amount of information needed to express com-
plex modulations, the data are cast into cubic spline coef-
ficients that are interpolated by lightweight spline engines
in the gate sequencers [30]. Spline coefficients are indepen-
dently specified and interpolated for each waveform param-
eter, where each segment is encoded in 216-bit words with
the form

{M, 7, Us, U, Uy, Up}

where U, are the spline coefficients, t is the duration (or
number of clock cycles) to interpolate, and M is additional
metadata. In order to maintain concurrent operation of all
spline engines, the segments are buffered using FIFOs, which
are fed on timescales of the system clock over the number of
parameters, T¢x/Np, and consumed on timescales given by
T.k /7. The values for T can vary depending on gate durations
and the number of knots used to specify the modulation, but
are often on the order of 10-100, which is larger than the
number of parameters N, = 8. Once the FIFOs have been
populated, spline engines are enabled via a global trigger
to ensure concurrent operation. A block diagram of the gate
sequencer pipelined architecture is shown in Fig. 26.

The eight parameters are frequency, phase, amplitude, and
a “frame rotation,” specified for two independent tones in
the DDS core. Frame rotations are used to represent a third
degree of freedom that is not directly accessible from an
individual addressing beam. Since £ and § dimensions in the
qubit’s Bloch sphere [1] can be accessed via a change in
laser phase, it is possible to virtualize Z rotations by shift-
ing the phase of subsequent gates in a circuit. Although

VOLUME 4, 2023

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

this can be done by precalculating the effective gate se-
quence when Z gates are present, this poses challenges for
circuits that use mid-circuit measurements where Z gates
are conditionally applied. By abstracting these Z operations
with a parameter that tracks the desired frame of the qubit,
we eliminate the need for manual bookkeeping and reduce
the amount of unique gate information needed to encode
a long circuit. Frame rotations are, thus, implemented as a
cumulative phase, where the inputs are applied normally and
added to an accumulator at the end of a pulse so that it is
treated on the same footing as the conventional phase, e.g.,
exp(i(wt + ¢ + ¢frame))4-

To maintain consistency in the firmware design, the data
path is made as uniform as possible for all gates and pa-
rameters. This means that simple square-pulse gates, or any
parameter that is constant for the duration of the gate, are
represented by data for which the higher order spline coeffi-
cients are set to zero. Gates are often repeated multiple times
throughout a circuit; by abstracting away frame rotations,
as well as automating global-phase synchronization, they
can be described with a single representation that is devoid
of any context dependency. In addition, most gates, espe-
cially single-qubit gates, have nearly identical representa-
tions, where differences in rotation axis only affect an overall
phase offset. This leads to a large amount of data redundancy,
which can be locally stored in lookup tables (LUTs) and read
out using a more compact representation.

The LUTs are set up in three separate stages to minimize
the data needed to stream out a fast gate sequence. The hierar-
chy and connectivity relationship among the three LUT types
is shown in Fig. 2. The lowest level “Pulse LUT” (PLUT)
stores the 216-bit spline segment data, which are distilled
down to unique segments shared across all gates on that
output channel. Because the data in the PLUT are unique,
the ordering of data is completely arbitrary. This arbitrary
ordering is reconciled using a second “Memory Map LUT”
(MLUT), which represents noncontiguous and repeated en-
tries of the PLUT by storing PLUT addresses in a linearly
ordered address space of the MLUT. The MLUT allows gates
to be represented as a pair of start and end addresses that can
be stepped through sequentially.

One more layer of compression is used to store gates in a
“Gate LUT” (GLUT), where gates are given a unique GLUT
address, and the resulting data is a concatenated word con-
taining the start and end addresses in the MLUT. Gate iden-
tifiers are densely packed into single 256-bit input words,

4Appending at the end of the pulsed allows for special cases such as
adjusting the qubit frame associated with AC Stark shifts during an ORE-
correcting pulse such that the qubit frame is only adjusted for subsequent
gates [27]. In addition, splines can be used in which only the final value
should be accumulated. The use of spline-modulated frame rotations is
quite useful in that they can be calculated from the integral of the AM and
scaled (or for nonlinear effects, conformally mapped) to track the AC Stark
shift during a pulse. This can greatly simplify global phase synchronization,
accounting for amplitude-dependent frequency shifts, and calibration since
the scale factor can be determined from the overall phase shift accrued by
the qubit.

VOLUME 4, 2023

which contain additional metadata for routing, the number of
gates contained in the word, and data which indicates that the
word contains gates for reading out of the LUTs. The word
are consumed in 11-bit segments, and passed to the GLUT.
The output of the GLUT is passed into an iterator module
that steps through the start and end addresses. Addresses
from each iteration are passed to the MLUT, whose output is
connected directly to the PLUT. Raw segment data coming
out of the PLUT are then routed to the appropriate spline
engine FIFOs using the segments’ metadata.

Because circuits can require large numbers of gates (on
the order of 10* for NISQ devices and many orders of mag-
nitude more for demanding simulations [31]), this type of
compressed representation offers significant gains in data
throughput. Even the most simple of gate representations re-
quires 2 kb of data to feed all the FIFOs and maintain constant
FIFO filling for concurrent operation. However, reducing the
representation of this gate to 11 bits only requires two extra
programming words (in which MLUT and GLUT data can be
packed into single 256-bit transfers) and a streaming word.
The upfront cost for encoding a single gate is immediately
accounted for with the second application of the gate, as well
as in cases where most of the gate data are shared. Moreover,
a large portion of circuits is run repeatedly to accumulate
statistics on the measurement outcomes, particularly for cal-
ibration routines that comprise the majority of experimental
runs on NISQ devices. The compression scheme used by the
LUTs has a clear advantage for reducing bandwidth require-
ments for sequencing large numbers of circuits with tens to
hundreds of averages. These gains are twofold when account-
ing for memory representations of the sequence data alone,
which is imperative for successful interoperability between
the PL, APU, and RPU when running classically conditioned
sequences.

The gate sequencer LUTs are essential for generating a
seamless architecture that supports deterministic timing and
hybrid algorithms. Compiling the compressed gate sequence
data creates a tradeoff between data size reduction and clas-
sical algorithmic complexity. Performing the compilation on
an external server adds latency to the experimental cycle.
This can have greater impact on high-level feedback algo-
rithms that execute classically conditioned sequences, or al-
gorithms that actively mutate gate definitions to shim out
slow drift in calibration parameters, a feature that becomes
increasingly vital as the number of qubits, and thus the num-
ber of calibrated parameters, grows. Offloading the pulse
compiler used for generating compressed sequence data to
the SoC can offer a tighter feedback loop for these types
of high-level feedback. This approach also comes with the
benefit that the classical resources required for compilation
are predominantly fixed to the number of RF channels on
the board, creating a distributed architecture with scalability
built in. However, it requires a compiler that is fast enough
that it can either outpace the average duration of a typical
experimental sequence, or offer comparable performance to
an external server when accounting for network latency.

5500124

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

The classical computing power and memory constraints
of the APU and RPU become relevant in the context of the
LUTs used to encode pulses. Because the LUTs themselves
are implemented using half of the available Ultra RAM
(URAM) primitives on the device—the URAM blocks are
288 kb, making up 2.8125 MB of the total on-chip stor-
age when accounting for the 80 available blocks—the to-
tal storage size outweighs the 256 kB space allotted to the
RPU’s TCMs. This poses additional challenges since a com-
plete software representation of the gate data is necessary in
certain situations. For example, gate sequences with large
amounts of unique data can exceed the allotted memory in
URAM, requiring dynamic reprogramming mid-circuit. An-
other requirement is an abstracted software representation for
gate data that can be used to correctly mutate definitions at
the appropriate memory locations to minimize reprogram-
ming time. Our approach employs the APU as a math co-
processor, with responsibilities that focus on compiling the
compressed pulse representations and programming the gate
sequencer LUTs. The sequence data, and any partial repro-
gramming data, are specified by the APU and written to a
memory-mapped regions of DDR RAM. The RPU sched-
ules certain operations used for qubit state preparation and
measurement, other time-critical classical operations, such
as shuttling ions, and initiating DMA transfers to burst the
relevant data to the gate sequencers for particular subcircuits.
Any operations that require callbacks to the APU are com-
municated via RPMsg, and the APU can optionally pass the
callback to an external server if no local definition for the call
exists. Because the APU can in principle break timing deter-
minism, the APU provides appropriate handshaking signals
to indicate that the new sequences are ready. However, the
APU latency can be offset by the state preparation stage of
an experimental sequence, which typically runs on the order
of 1 ms.

Pipelining recompilation results with a fixed delay will add
latency to the feedback loop, but can be used to maintain
experimental duty cycle. This option is fairly natural, since
single-shot calibration measurements can be interleaved with
normal experimental circuits, effectively increasing the time
between experiments and allowing the compiler to update pa-
rameters before the next single-shot calibration. To this end,
the single-shot calibration measurements will typically result
in small but predictable deltas (shifts) in a control parameter
and, thus, a variation in the resulting gate data. Designing a
feedback algorithm that precomputes the possible deltas will
allow the APU to have the appropriate data on hand as it is
needed and, as a parameter drifts, computing new deltas well
before they are needed.

On the other hand, certain high-level algorithms, such as
variational quantum eigensolvers or quantum approximate
optimization algorithms (QAOA), often require more pow-
erful computing resources. These algorithms are in most
cases either impossible or unreasonable to run on chip, but
may be desired despite the increased latency and lack of
timing determinism between shots. However, nearly all of

5500124

these high-level feedback routines will guarantee determin-
istic timing between state preparation and measurement,
since the algorithms mentioned rely on results from a com-
plete measurement of all qubits, in which case coherence
times are no longer a bottleneck. The potential for high-level
feedback within a given circuit may be possible, but only
in cases where outcomes are precalculated to a reasonable
depth or coherence times are sufficiently long. Regardless,
one can maintain determinism by providing sufficiently long
timeouts in which the RPU may still be able to perform
other tasks and prepare certain register values and verify
that a response has been received before the full timeout
elapses, subsequently resuming the algorithm. This architec-
ture features the benefits of the PL, RPU, APU, and external
control computers, with flexible and optional tradeoffs in
latency.

C. TOOLCHAIN FOR PERFORMANCE MEASUREMENTS

In this section, we outline the process we follow to cre-
ate the experimental designs (the toolchain) from which
the latency and throughput measurements are made. The
process for each design involves a diversified sequence of
steps, from creating and configuring IP blocks in a block
diagram and writing VHDL descriptions of SM to Linux
kernel building and device-tree configuration, through appli-
cation coding and compilation. Open source APIs, includ-
ing Libmetal and OpenAMP, are utilized across the tool

chain.

We use the tool chain applications provided by Xilinx,
including Vivado for synthesizing VHDL designs and for
creating the block diagrams and programming bitstreams,
Petalinux for configuring and building the embedded Linux
kernel and device-tree components for the APU, and Vitis
for creating the application binaries that run on the APU
and RPU. A tool chain flow diagram is presented in Fig. 27,
where the steps for each of the Xilinx tool chain components
are given in separate columns. In particular, the leftmost
column shows the steps associated with using Petalinux,
the next column illustrates the process flow used within the
Vivado tool suite, whereas the last two columns show the
steps followed within the Vitis embedded system application
environment. Distinct process flows exist for building Linux
application and bare metal applications.

Interdependencies between the tool chain components ex-
ist and are illustrated as red arrows in the diagram, where
the output of a tool chain component is used as input to
another. As shown in the figure, the hardware description file
produced by the Vivado tool suite is used in the other tool
flow components, and therefore defines a core component of
any experimental design. Also, the Linux application design
flow requires the kernel built by the Petalinux tools. The tool
flow illustrated is not specific to our experimental designs,
but rather represents a generic tool flow for any design and
development board.

VOLUME 4, 2023

@IEEE Transactions on

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM uantumeEn gineering
Basic Workflow Using Libmetal/OpenAMP
’ Install the dependencies ‘ ‘ Create a Vivado project ‘

| Create Vitis Platform Project | Create Vitis Application Project
|

’ Install Petalinux ‘ ‘ Add Zynq Processing Unit ‘

|
l |L) New Platform from .xsa file

| Import the Hardware

v

’Creater Petalinux Project‘ ‘ Run Block Automation ‘
v

Select Linux as OS, Select Cortex R5 as Processor

’ Add the Hardware }(— ‘ Create VHDL Wrapper ‘

v v

Edit the device tree: Synthesis, Implementation,

Add Shared Memory Device Generate Bitstream
Add Interprocessor Interrupt

Add Triple Time Counter

-|Export The Hardware (.xsa ﬁIe)I'-

Remove one UART

v

Configure the kernel
Enable ZynqMP_r5 remoteproc support

v

Configure the root filesystem
Enable OpenAMP Demos
Enable libsysfs
Include libmetal and libmetal Demos
Enable packagegroup-petalinux-openamp

—

Configure Settings
Set rootfs to SD

v

’ Build the linux kernel ‘

| Buid the SDK

Generate the Boot files ‘

v

Create SD card with
Boot files and
persistent memory

FIGURE 27. Linux kernel and OpenAMP application building process flow.

D. IMPLEMENTATION DETAILS FOR DMA: PL DDR TO PL
STREAMING

An algorithmic state machine diagram (ASMD) for the PL
SM is given in Fig. 28. The AXI master and slave signals
are controlled according to the rules of the AXI4 protocol,
where assertions by the DMA engine of s_axis_valid and
m_axis_ready are acknowledged in the same clock cycle
by assertions of the PL SM AXI signals s_axis_ready and
m_axis_valid (note that s_axis_ready is held permanently at
1 to facilitate the maximum transfer rate). Data in and out
of the PL BRAM take place in one clock cycle, again facili-
tating the maximum transfer rate. The counters for through-
put are stopped on reception of the DMA MM?2S_intr and
S2MM_intr signaling events.

VOLUME 4, 2023

Cortex A53 as Processor ¢
v Select Libmetal AMP demo
| Add the SDK under rootfs ¢
¢ Edit IPI configuration in common.h
Build the Project Build .elf file

v

Put .elf file under /lib/firmware/

Create Vitis Application Project
using the created Platform

v

Create empty Linux application

v

Add files from OpenAMP git repo

v

Add metal library to linker

v

Edit IPI configuration in common.h

I—

v

Build the Application

E. LIST OF ABBREVIATIONS

SoC System on a chip.

DMA Direct memory access.

CDMA Central direct memory access.
MPSoC Multiprocessor system on chip.
RFSoC Radiofrequency system on chip.
PL Programmable logic.

PS Processing system.

APU Application processing unit.
RPU Real-time processing unit.
TIQC Trapped-ion quantum computer.

RF Radiofrequency.
AOM Acousto-optic modulator.
AWG Arbitrary waveform generators.
5500124

@IEEE Transactions on

uantum Englneerlng Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

DMA RPU-DDR-To-PL-BRAM ASMD

BRAM_dout = s_axis_data
m_axis_data = BRAM_din

BRAM_we =0’ External inputs:

s_axis_ready =1’ intr_out (periodically fres)
m_axis_valid =0’ MM2S_intr (DMA signal)
m_axis_tlast =0’ S2MM_intr (DMA signal)

BRAM addr = BRAM addr reg

GPIO inputs to RPU:
transfer_num_words_reg

GPIO outputs to RPU:
ready_reg
MM2S _intr_done_reg
S2MM _intr_done_reg
latency_cnter_reg
thrput MM2S_cnter_reg
thrput S2MM_cnter_reg
ready reg = ‘0’ BRAM_addr_reg=0
latency_cnter_reg =0 MM2S_intr_done_reg = ‘0’
thrput. MM2S_cnter_reg=0 S2MM_intr_done_reg = ‘0’
thrput S2MM_cnter reg=0 frst_s_axis_valid_reg = ‘0’

ready _reg="‘1"
intr_done_reg= ‘1"

Y N

¢

Y frst s axis valid reg=="0’ N

latency_cnter_reg++

v
l thrput MM2S_cnter reg++]

s valid =T >N
BRAM _we="1" frst_s_axis_valid_reg="1"
BRAM_addr_reg++
[

MM2S_intr == ‘1" N

Y
BRAM_addr_next=0 MM2S intr done reg= ‘1"
BRAM_addr = BRAM_addr_next
v
thrput_S2MM_cnter_reg++
BRAM_addr = BRAM_addr_next

v ¥ N

[m_axis_valid = ‘1" BRAM_addr_reg++ |

BRAM_addr_reg == transfer num_words_reg N

Y
m_axis_tlast="‘1"

l thrput_ S2MM_cnter_reg++ l
N

S2MM_intr == ‘1’
Y
[S2MM _intr_done_reg =1’]

AT L T]

| GPIO handshake |
@ , with RPU to send,
cnt values B

Lt YRS

FIGURE 28. DMA RPU-PL-DDR-to-PL-Stream ASMD.

DDS Direct digital systhesizer.
FPGA Field-programmable gate array.
DAC Digital to analog converter.
ADC Analog to digital converter.
RFDC Radiofrequency data converter.
DSP Digital signal processing.

QEC Quantum error correction.

AXI Advanced eXtensible interface.

5500124

ADAS Advanced driver-assisted systems.
BRAM Block RAM.
OpenAMP Open asymmetric multiprocessing.

RPMsg Remote processor message.

RTOS Real-time operating system.

GPIO General-purpose input/output.

PLE Pulse length error.

ORE Off-resonant error.

AM Amplitude modulation.

FM Frequency modulation.

GRAPE GRadient Ascent Pulse Engineering.
LUT Lookup table.

PLUT Pulse LUT.

MLUT Memory-map LUT.
GLUT Gate LUT.

IPC Interprocessor communication.
IPI Inter-processor interrupt.

TCM Tightly coupled memory.
EMIO Extended multiplexed I/O.
LCM Life cycle management.

SM State machine.

FPD Full-power domain.

LPD Low-power domain.

TTC Triple timer counter.

MM2S Memory-mapped to streaming.
S2MM Streaming to memory-mapped.

FIFO First-in first-out.

NISQ Noisy intermediate-scale quantum computing.
VQE Variational quantum eigensolvers.

QAOA Quantum approximate optimization algorithm.

VHDL VHSIC hardware description language.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under Contract DE-NA0003525. This article describes ob-
jective, technical results, and analysis. Any subjective views
or opinions that might be expressed in the paper do not neces-
sarily represent the views of the U.S. Department of Energy
or the United States Government.

REFERENCES

[1] M. A.Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
Sformation: 10th Anniversary Edition. Cambridge, MA, USA: Cambridge
Univ. Press, 2010, doi: 10.1017/CB0O9780511976667.

[2] S. M. Clark et al., “Engineering the quantum scientific computing
open user testbed,” IEEE Trans. Quantum Eng., vol. 2, pp. 2021,
Art. no. 3102832, doi: 10.1109/TQE.2021.3096480.

[3] I.Pogorelov et al., “Compact ion-trap quantum computing demonstrator,”
PRX Quantum, vol. 2, 2021, Art. no. 020343, doi: 10.1103/PRXQuan-
tum.2.020343.

[4] X. Fu et al., “eQASM: An executable quantum instruction set architec-
ture,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture,2019,
pp. 224-237, doi: 10.1109/HPCA.2019.00040.

VOLUME 4, 2023

https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1109/TQE.2021.3096480
https://dx.doi.org/10.1103/PRXQuantum.2.020343
https://dx.doi.org/10.1103/PRXQuantum.2.020343
https://dx.doi.org/10.1109/HPCA.2019.00040

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

@IEEE Transactions on,
uantumEngineering

(51

[7

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Cross et al., “OpenQASM 3: A broader and deeper quantum assembly
language,” ACM Trans. Quantum Comput., vol. 3, no. 3, pp. 1-50, 2021,
doi: 10.1145/3505636.

J. C. Bardin, D. H. Slichter, and D. J. Reilly, “Microwaves in quantum
computing,” IEEE J. Microw., vol. 1, no. 1, pp. 403-427, Jan. 2021,
doi: 10.1109/JMW.2020.3034071.

J. van Dijk et al., “Impact of classical control electronics on qubit fidelity,”
Phys. Rev. Appl., vol. 12,2019, Art. no. 044054, doi: 10.1103/PhysRevAp-
plied.12.044054.

Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S.
L. Scott, “An optimal checkpoint/restart model for a large scale high per-
formance computing system,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2008, pp. 1-9, doi: 10.1109/IPDPS.2008.4536279.

C. Chamberland, T. Jochym-O’Connor, and R. Laflamme, “Overhead
analysis of universal concatenated quantum codes,” Phys. Rev. A, vol. 95,
Feb. 2017, Art. no. 022313, doi: 10.1103/PhysRevA.95.022313.

Xilinx, “Zynq ultrascale RFSoC ZCU111 evaluation kit.” 2022. Ac-
cessed: Jan. 10, 2023. [Online]. Available: https://www.xilinx.com/
products/boards-and-kits/zcul11.html

E. Mount et al., “Error compensation of single-qubit gates in a surface-
electrode ion trap using composite pulses,” Phys. Rev. A, vol. 92, 2015,
Art. no. 060301, doi: 10.1103/PhysRevA.92.060301.

B. Keitch, V. Negnevitsky, and W. Zhang, “Programmable and
scalable radio-frequency pulse sequence generator for multi-qubit
quantum information experiments,” arXiv:1710.04282, 2017,
doi: 10.48550/arXiv.1710.04282.

V. M. Schifer et al., “Fast quantum logic gates with trapped-ion qubits,”
Nature, vol. 555, no. 7694, pp. 75-78, 2018, doi: 10.1038/nature25737.
G. Kasprowicz et al., “ARTIQ and sinara: Open software and hardware
stacks for quantum physics,” in Proc. OSA Quantum 2.0 Conf., 2020,
Art. no. QTu8B.14, doi: 10.1364/QUANTUM.2020.QTu8B.14.

A. Stanco et al., “Versatile and concurrent FPGA-based architecture for
practical quantum communication systems,” IEEE Trans. Quantum Eng.,
vol. 3, 2022, Art. no. 6000108, doi: 10.1109/TQE.2022.3143997.

N. Messaoudi, C. Crocker, and M. Almendros, “A hardware-accelerated
qubit control system for quantum information processing,” in Proc.
IEEE 35th Conf. Des. Circuits Integr. Syst. (DCIS), 2020, pp. 1-5,
doi: 10.1109/DCIS51330.2020.9268643.

X. Qin et al., “An FPGA-based hardware platform for the control of
spin-based quantum systems,” IEEE Trans. Instrum. Meas., vol. 69, no. 4,
pp. 1127-1139, Apr. 2020, doi: 10.1109/TIM.2019.2910921.

Y. Xu et al., “Qubic: An open-source FPGA-based control and mea-
surement system for superconducting quantum information proces-
sors,” IEEE Trans. Quantum Eng., vol. 2, 2021, Art. no. 6003811,
doi: 10.1109/TQE.2021.3116540.

R. Gebauer, N. Karcher, J. Hurst, M. Weber, and O. Sander,
“Accelerating complex control schemes on a heterogeneous MP-
SoC platform for quantum computing,” arXiv:2004.07755, 2020,
doi: 10.48550/arXiv.2004.07755.

R. Gebauer, N. Karcher, and O. Sander, “A modular RFSoC-based
approach to interface superconducting quantum bits,” in Proc.
IEEE Int. Conf. Field-Programmable Technol., 2021, pp.1-9,
doi: 10.1109/ICFPT52863.2021.9609909.

L. Stefanazzi et al., “The QICK (quantum instrumentation control kit):
Readout and control for qubits and detectors,” Rev. Sci. Instrum., vol. 93,
no. 4, 2022, Art. no. 044709, doi: 10.1063/5.0076249.

K. Manev, A. Vaishnav, and D. Koch, “Unexpected diversity: Quan-
titative memory analysis for Zynq UltraScale systems,” in Proc.
IEEE Int. Conf. Field-Programmable Technol., 2019, pp. 179-187,
doi: 10.1109/ICFPT47387.2019.00029.

M. Argyriou, “Main memory performance for realistic data access in
FPGA systems: An experimental study,” Diploma Thesis, School Elect.
Comput. Eng., Techn. Univ. Crete, Chania, Greece, Apr. 2021. [Online].
Available: https://dias.library.tuc.gr/view/manf/88904

J. T. Merrill and K. R. Brown, “Progress in compensating pulse sequences
for quantum computation,” in Quantum Information and Computation
for Chemistry (ser. Advances in Chemical Physics). Hoboken, NJ, USA:
Wiley, 2014, pp. 241-294, doi: 10.1002/9781118742631.ch10.

Xilinx, “Libmetal and OpenAMP user guide.” Aug. 2020. Accessed:
Jan. 10, 2023. [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2020_2/ug1186-zynq-openamp-gsg
.pdf

VOLUME 4, 2023

[26] Xilinx, “Vivado overview.” 2022. Accessed: Jan. 10, 2023. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado.html

[27] D. S. Lobser, J. W. Van Der Wall, and J. D. Goldberg, “Performant co-
herent control: Bridging the gap between high-and low-level operations
on hardware,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2022,
pp. 320-330, doi: 10.1109/QCE53715.2022.00053.

[28] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, 2018, Art. no. 79, doi: 10.22331/q-2018-08-06-79.

[29] E. Mount et al., “Scalable digital hardware for a trapped ion quan-
tum computer,” Quantum Inf. Process., vol. 15, pp. 5281-5298, 2016,
doi: 10.1007/s11128-015-1120-z.

[30] R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Ar-
bitrary waveform generator for quantum information processing with
trapped ions,” Rev. Sci. Instrum., vol. 84, no. 3, 2013, Art. no. 033108,
doi: 10.1063/1.4795552.

[31] J. Lee et al., “Even more efficient quantum computations of chem-
istry through tensor hypercontraction,” PRX Quantum, vol. 2, 2021,
Art. no. 030305, doi: 10.1103/PRXQuantum.2.030305.

Nafis Irtija (Member, IEEE) received the bach-

elor’s and master’s degree in electrical and elec-

tronic engineering from the University of Dhaka,

Dhaka, Bangladesh, in 2016 and 2018, respec-

tively, and the master’s degree in computer en-

gineering from the University of New Mexico,

Albuquerque, NM, USA, in 2021, where he is

currently working toward the Ph.D. degree with

the Department of Electrical and Computer En-
gineering.

He is currently a Research Assistant with the
University of New Mexico. His research interests include register transfer-
level design, field-programmable gate arrays, system-on-a-chip-based de-
signs, distributed decision-making based on reinforcement learning, and
game theory.

Jim Plusquellic (Member, IEEE) received the
M.S. and Ph.D. degrees in computer science
from the University of Pittsburgh, Pittsburgh, PA,
USA, in 1995 and 1997, respectively.

He is currently a Professor in electrical and
computer engineering with the University of New
Mexico, Albuquerque, NM, USA.

Dr. Plusquellic was the recipient of the Out-
standing Contribution Award from IEEE Com-
puter Society in 2012 and 2017 for cofounding
and for his contributions to the Symposium on
Hardware-Oriented Security and Trust.

Eirini Eleni Tsiropoulou (Senior Member,
IEEE) received her diploma degree in electrical
and computer engineering (summa cum laude),
M.Sc. degree in technoeconomics, and Ph.D. in
electrical and computer engineering from the Na-
tional Technical University of Athens (NTUA),
Greece, in 2008, 2010, and 2014, respectively.

She is currently an Assistant Professor with
the Department of Electrical and Computer En-
gineering, University of New Mexico, Albu-
querque, NM, USA. Her research interests in-
clude cyber-physical social systems and wireless heterogeneous networks,
with emphasis on network modeling and optimization, resource orchestra-
tion in interdependent systems, reinforcement learning, game theory, net-
work economics, and Internet of Things.

Dr. Tsiropoulou was the recipient of the National Science Foundation
CRII Award in 2019 and Early Career Award by the IEEE Communications
Society Internet Technical Committee in 2019. Four of her papers received
the Best Paper Award at IEEE WCNC in 2012, ADHOCNETS in 2015,
IEEE/IFIP WMNC 2019, and INFOCOM 2019 by the IEEE ComSoc Tech-
nical Committee on Communications Systems Integration and Modeling.
She was selected by the IEEE Communication Society—N2Women—as
one of the top ten Rising Stars of 2017 in the communications and network-
ing field.

5500124

https://dx.doi.org/10.1145/3505636
https://dx.doi.org/10.1109/JMW.2020.3034071
https://dx.doi.org/10.1103/PhysRevApplied.12.044054
https://dx.doi.org/10.1103/PhysRevApplied.12.044054
https://dx.doi.org/10.1109/IPDPS.2008.4536279
https://dx.doi.org/10.1103/PhysRevA.95.022313
https://www.xilinx.com/penalty -@M products/boards-and-kits/zcu111.html
https://www.xilinx.com/penalty -@M products/boards-and-kits/zcu111.html
https://dx.doi.org/10.1103/PhysRevA.92.060301
https://dx.doi.org/10.48550/arXiv.1710.04282
https://dx.doi.org/10.1038/nature25737
https://dx.doi.org/10.1364/QUANTUM.2020.QTu8B.14
https://dx.doi.org/10.1109/TQE.2022.3143997
https://dx.doi.org/10.1109/DCIS51330.2020.9268643
https://dx.doi.org/10.1109/TIM.2019.2910921
https://dx.doi.org/10.1109/TQE.2021.3116540
https://dx.doi.org/10.48550/arXiv.2004.07755
https://dx.doi.org/10.1109/ICFPT52863.2021.9609909
https://dx.doi.org/10.1063/5.0076249
https://dx.doi.org/10.1109/ICFPT47387.2019.00029
https://dias.library.tuc.gr/view/manf/88904
https://dx.doi.org/10.1002/9781118742631.ch10
https://www.xilinx.com/support/penalty -@M documentation/sw_manuals/xilinx2020_2/ug1186-zynq-openamp-gsgpenalty -@M .pdf
https://www.xilinx.com/support/penalty -@M documentation/sw_manuals/xilinx2020_2/ug1186-zynq-openamp-gsgpenalty -@M .pdf
https://www.xilinx.com/support/penalty -@M documentation/sw_manuals/xilinx2020_2/ug1186-zynq-openamp-gsgpenalty -@M .pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://dx.doi.org/10.1109/QCE53715.2022.00053
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1007/s11128-015-1120-z
https://dx.doi.org/10.1063/1.4795552
https://dx.doi.org/10.1103/PRXQuantum.2.030305

@IEEE Transactions on,
uantumEngineering

Irtija et al.: DESIGN AND ANALYSIS OF DIGITAL COMMUNICATION WITHIN AN SOC-BASED CONTROL SYSTEM

Joshua Goldberg received the B.S. degree in
electrical engineering from Texas Tech Univer-
sity, Lubbock, TX, USA, in 2000, and the M.B.A.
degree in technology management from the Uni-
versity of Phoenix, Phoenix, AZ, USA, 2006.
He is currently a Principal Electrical Engineer
with the Photonic Microsystems Technologies
Department, Sandia National Laboratories, Albu-
querque, NM, USA. He has been specializing in
software development over the last 22 years. His
research focuses on modernizing control software

paradigms for trapped ion quantum systems to further full-stack develop-
ment for quantum information platforms.

5500124

Daniel Lobser received the Ph.D. degree in
physics from the University of Colorado, Boul-
der, CO, USA, in 2015.

He currently leads the control systems thrust
of QSCOUT. He studied ultracold atomic gases
with the University of Colorado. His research fo-
cuses on the development of custom classical and
quantum control hardware that employs novel
paradigms for coherent operations and dynamic
noise mitigation in trapped-ion qubit platforms.

Daniel Stick (Member, IEEE) received the B.S.
degree in physics from the California Institute of
Technology, Pasadena, CA, USA, 2002, and the
Ph.D. degree in physics from the University of
Michigan, Ann Arbor, MI, USA, in 2007.

He is currently a Distinguished Member of
Technical Staff with Sandia National Labs, Albu-
querque, NM, USA. His research focuses on de-
veloping innovative technologies around atomic
and quantum systems, including microfabricated
surface ion traps for quantum information appli-
cations. This work includes the design and fabrication of the traps, as well
as experiments with storing, transporting, and performing quantum gates on
ions.

Dr. Stick was the recipient of a 2012 Presidential Early Career Award for
Scientists and Engineers for his research in trapped ion quantum computing.

VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

