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ABSTRACT All-quantum signal processing techniques are at the core of the successful advancement of
most information-based quantum technologies. This article develops coherent and comprehensive method-
ologies and mathematical models to describe Fourier optical signal processing in full quantum terms for any
input quantum state of light. We begin this article by introducing a spatially 2-D quantum state of a photon,
associated with its wavefront and expressible as a 2-D creation operator. Then, by breaking down the Fourier
optical processing apparatus into its key components, we strive to acquire the quantum unitary transformation
or the input/output quantum relation of the 2-D creation operators. Subsequently, we take advantage of the
above results to develop and obtain the quantum analogous of a few essential Fourier optical apparatuses,
such as quantum convolution via a 4f-processing system and a quantum 4f-processing system with periodic
pupils. Moreover, due to the importance and widespread use of optical pulse shaping in various optical com-
munications and optical sciences fields, we also present an analogous system in full quantum terms, namely
quantum pulse shaping with an 8f-processing system. Finally, we apply our results to two extreme examples
of the quantum state of light. One is based on a coherent (Glauber) state and the other on a single-photon
number (Fock) state for each of the above optical systems. We believe the schemes and mathematical models
developed in this article can impact many areas of quantum optical signal processing, quantum holography,
quantum communications, quantum radars and multiple-input/multiple-output antennas, and many more
applications in quantum imaging, quantum computations, and quantum machine learning algorithms.

INDEX TERMS Fourier optics, quantum 4f-processor, quantum 8f-processor, quantum code division
multiple access (QCDMA), quantum convolution, quantum Fourier optics, quantum Fresnel and quantum
Fraunhofer region, quantum grating, quantum imaging, quantum lense, quantum optics, quantum pulse
shaping.

I. INTRODUCTION
The extraordinary success of Fourier optics in sciences and
engineering throughout the past half-century compels us to
return to the basics and grassroots of its ubiquitous and fun-
damental concepts and strive to dig out its fully quantum
analogous [1], [2], [3]. We believe that fully quantum Fourier
optics will be considered supreme, like its classical counter-
part, in many futuristic and disruptive quantum technologies
in information, communications, and computations [4], [5],
[6], [7]. It may also find application in advanced quantum
algorithms [8], [9], [10]. It is from this viewpoint that we
have researched and written this article. The primary purpose
of this article is to return to the grassroots concepts in Fourier
optical signal processing to produce its quantum analogous
in a component-by-component basis and subsequently inte-
grate these components to design a complete quantum optical
signal processing apparatus tailored to any input quantum
lightwave signal.

In this article, the information-encoding platform is the
spatial mode (image) or the wavefront of photons [11].
Spatial modes provide a vast quantum information capac-
ity, such as qudits and continuous-mode quantum informa-
tion for a single photon. Photon-wavefront has lately been
exploited in photons’ orbital angular momentum encoding
techniques [12], [13], [14], [15]. Moreover, it plays the prin-
cipal role in quantum imaging [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25] and quantum holography [26], [27]
and can be used to implement arbitrary and programmable
unitary transformation [28], [29]. Accordingly, quantum
Fourier optics, the core of quantum information processing
on photon-wavefronts, requires special investigation, which
is this article’s primary focus. Quantum Fourier optics shows
how a spatially 2-D quantum state of light (quantum optical
signal) evolves through a Fourier optical system. Quantum
Fourier optics allows us to investigate quantum interference
in a Fourier optical system, which classical Fourier optics
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fails to explain. The applications of quantumFourier optics in
linear optical quantum computation, which requires quantum
interference, will be described in a follow-up paper.
This article begins by developing the fundamentals and

the building blocks of quantum Fourier optics for a general
case of continuous spatial mode. Primarily, it introduces the
quantum state and its photon-wavepacket creation operator
in a 2-D spatial domain. Afterward, it details the quantum
model of Fourier optics elements, which are free propagation
and spatial modulating devices, such as lens and diffraction
grating. These elements can be combined to create various
Fourier optical processors such as the 4f-processing system,
bringing unique functionalities such as continuous mode
quantum Fourier transformation and quantum convolution.
It also provides simulation examples for the evolution of the
photon-wavepacket through the introduced quantum optical
systems.
To demonstrate the supreme capabilities of quantum

Fourier optics, as an example, we detail a quantum pulse
shaping technique. We show how an 8f-processing system
applies the desired phase shifts to each frequency component
of a quantum state of light. This technique is used in optical
frequency combs quantum information processing [30], and
quantum code division multiple access (QCDMA) commu-
nication systems [31].

II. GENERIC REPRESENTATION OF THE QUANTUM STATE
OF LIGHT AS A FUNCTION OF CREATION OPERATORS
Fock states provide an appropriate Hilbert space to represent
the quantum state of light. This article considers pure quan-
tum light states composed of identical photons (some authors
call them indistinguishable photons), meaning photons occu-
pying identical mode ξ . Such a quantum state is mathemat-
ically representable in the Fock space as follows [31], [32],
[33]:

|ψ〉 =
∞∑
n=0

cn|n〉ξ =
∞∑
n=0

cn
â†nξ√
n!

|0〉 = f (â†ξ )|0〉 (1)

where |0〉 denotes the vacuum state, â†ξ is the single-photon
creation operator at the generic optical mode ξ , and cns
fulfill the normalization condition

∑∞
n=0 |cn|2 = 1 and are

the probability amplitudes for the quantum light to be in
the photon number states |n〉ξ and associate with the Tay-
lor coefficients of the analytic, infinitely differentiable func-

tion f (â†ξ ) = ∑
n cn

â†n
ξ√
n!
. It is worth noting that the co-

herent (Glauber) state |α〉 is representable by the expo-
nential function f (â†ξ ) = exp(−|α|2/2 + αâ†ξ ), where cn =
exp(−|α|2/2) αn√

n!
, which is equivalent to the displacement

operator [34]. The number (Fock) state |n〉ξ is representable
by the nth-order power function, f (â†ξ ) = 1√

n!
â†nξ , where

cn = 1 and cn′ = 0 for all n′ �= n.
This article addresses the single-photon wave function

as the photon-wavepacket and writes it with the symbol ξ ,
which indicates the occupation mode of a single photon. As

FIGURE 1. Exemplars of photon-wavepackets. (a) One-dimensional
Gaussian photon-wavepacket. (b) 2-D Gaussian photon-wavepacket. The
height and the color of the plots indicate the amplitude and the phase
(see inset on the left of the figure) of photon-wavepackets, respectively.

detailed in Appendix A, the occupation mode’s degree of
freedom for a single photon is four, one discrete polarization
and three continuous components of the photon wavevector.
The three wavevector occupation modes can be converted
into the photon spectral mode and a 2-D spatial mode known
as the photon wavefront. If the occupation modes of the
understudying photons at any of these four degrees of free-
dom remain unchanged throughout the system, we drop them
from consideration. For example, assume the polarization
and the wavefront of photons remain intact in the system,
and only the spectral mode is under evolution. Therefore, the
effective photon-wavepacket is reducible to a 1-D spectral
wavepacket ξ (ω), which can also be Fourier transformed and
mapped to a 1-D temporal photon wavepacket [31], [34]. A
1-D photon wavepacket creation operator is expandable as

â†ξ =
∫
dv ξ (v)â†v (2)

where for spectral and temporal photon wavepacket, variable
v is frequency ω and time t, respectively, and for a 1-D
wavefront, is position x [35]. Fig. 1 illustrates a 1-D pho-
ton wavepacket ξ (x) and a 2-D photon-wavepacket ξ (x, y).
At each coordinate, the height of the curves denotes the
photon-wavepacket’s absolute value |ξ |, and the photon-
wavepacket’s phase ∠ξ is color-coded.
Let us consider the transformation of the pure state (1) due

to the unitary operator Û, it gives

Û|ψ〉 = Û f (â†ξ )|0〉

=
∞∑
n=0

cn
Ûâ†nξ Û

†

√
n!

|0〉

=
∞∑
n=0

cn

(
Ûâ†ξ Û

†
)n

√
n!

|0〉

= f (Ûâ†ξ Û
†
)|0〉
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= f (â†
ξ ′ )|0〉 (3)

where equality Û
†|0〉 = |0〉 and the unitarity property of op-

erator Û
†
(Û

†
Û = Î) is used, and the output single-photon

creation operator â†
ξ ′ is defined as

â†
ξ ′ = Ûâ†ξ Û

†
. (4)

Equations (3) and (4) denote that the unitary operator Û only
changes the photon-wavepacket from ξ to ξ ′ but not the rep-
resentation of the quantum state in the Fock space expressed
by function f in (1) and (3). Therefore, the only challenge to
transform a quantum state due to a Fourier optical element
is finding the transformation of photon-wavepacket creation
operator equivalent to (4). This simplification stems from
the assumption that the Fourier optical elements do not pos-
sess nonlinear effects or photon-loss and, therefore, perform
a unitary transformation on the quantum light. To make it
short, our goal in this article is to find a transformation similar
to (4) for each Fourier optical element, which we use a full
quantum mechanical approach to accomplish.
Finally, let us highlight that extending the introduced evo-

lution of quantum light through the Fourier optical systems
to quantum mixed states and multiphoton-wavepackets pure
states [31] is straightforward in the first approach. Sim-
ilar to above, for multiphoton-wavepacket quantum pure
and mixed states, only constituent photons’ wavepackets get
transformed while the photon statistics or Fock representa-
tion remains untouched. However, further simplification of
such quantum states requires considering particular cases,
which is beyond the scope of this article.

A. SPATIALLY 2-D QUANTUM STATE OF LIGHT
Equation (1) assumes the photons of the pure light quantum
state occupy identical modes ξ ; identical spatial, spectral,
and polarization modes. Quantum Fourier optics manipulate
the spatial mode, and the manipulation usually depends on
the spectrum and is independent of polarization. Therefore,
as detailed in Appendix A, we drop the polarization and
assume the quantum light is spectrally single-mode with fre-
quency ω and angular wavenumber k = ω

c , where c is the
speed of light. Furthermore, we assume the quantum light
is propagating in the +z-direction only (see Fig. 6). There-
fore, the quantum light’s photon-wavefunction can be asso-
ciated with the wavefront function denoted as ξ (x, y). Since
Fourier optical elements such as lenses would change the
photon-wavefronts in the (x, y) domain, we add the photon-
wavefront function ξ = ξ (x, y) as a subscript to the photon
creation operators â† and introduce the photon-wavefront
(photon-wavepacket) creation operator as â†ξ , such that

â†ξ =
∫∫

dxdy ξ (x, y)â†x,y (5a)

=
∫∫

dkxdky ξ̃ (kx, ky)â
†
kx,ky

(5b)

where creation operator â†x,y creates a single photon at
the point with coordinates (x, y) associated with the 2-D
continuous mode single-photon quantum state â†x,y|0〉 =
|1〉x,y ≡ |x, y〉. Correspondingly, in (5a), the probability am-
plitude function of photon-wavepacket creation operator â†ξ
is denoted by the photon-wavefront ξ (x, y). The photon-
wavepacket ξ̃ (kx, ky) is the 2-D Fourier transform func-
tion of wavefront ξ (x, y) [see (A6)] and corresponds to
the single-photon probability amplitude at wavevector k =
(kx, ky, kz =

√
k2 − k2x − k2y ) (see Fig. 6). We use bold let-

ters to represent wavevectors and nonbold letters for their
wavenumber, |k| = k.

III. EVOLUTION OF A QUANTUM STATE AND
PHASE-SHIFTING OPERATORS
In this section, we study the evolution of the quantum state of
light due to various parameters, such as time, displacement,
and Fourier optical elements. For all practical purposes, we
show that all of these evolutions are formalizable by phase-
shifting operators. The primary phase-shifting operator can
be expressed as follows [36]:

Û = e−iθ n̂ = e−iθ â
†â (6)

where n̂ = â†â is the number operator. The phase-shifting
operator Û, as its name implies, phase shifts the amplitude
of operator â† by the phase value of −θ when acts on opera-
tor â†, i.e.,

Ûâ†Û
† = â†e−iθ . (7)

A. TIME EVOLUTION OPERATOR
The optical time evolution operator is

V̂(t ) = e−iĤt/�

= e−it
∑

k ω(k)â
†
kâk

= e−i
∑

k θkn̂k

=
∏
k

e−iθkn̂k (8)

where Ĥ = ∑
k �ω(k)â

†
kâk is the electromagnetic radiation

Hamiltonian, and θk = ω(k)t, and n̂k = â†kâk is the number
operator for the state with wavevector k. Time evolution op-
erator (8), similar to (6), is a phase-shifting operator that, at
time t, provides wavevectors creation operator â†k with phase

shift −θk = −ω(k)t, i.e., V̂(t )â†kV̂
†
(t ) = â†ke

−iω(k)t .
This article mainly considers spectrally single-mode quan-

tum light. Single angular frequency ω(k) = c|k| = ck in-
dicates that summation over the wavevector k of (8) re-
duces to the summation over the wavevectors ending to the
surface of the sphere with radius k (see Fig. 6). Conse-
quently, single-frequency photon-wavepacket creation op-
erator (5) gets a constant phase shift, â†ξ → â†ξe

−iωt . This
transformation is equivalent to the wavefront transition from
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ξ (x, y) to ξ (x, y) e−iωt . Thus, the photon-wavefront only gets
a constant phase factor e−iωt over time without any overall
changes in its shape. Therefore, without loss of generality,
in this article, we ignore the time evolution. One can show
that the time evolution operator, as its name denotes, time-
shifts the photon-wavepacket of spectrally multimode quan-
tum light

V̂(τ )|ψ〉 = V̂(τ ) f (â†ξ )|0〉

= f
(
V̂(τ )â†ξ V̂

†
(τ )
)

|0〉

= f (â†
ξ ′ )|0〉 (9)

where ξ ′(ω, x, y) = ξ (ω, x, y)e−iωτ and its Fourier transform
shows that the photon-wavepacket in the time domain is
shifted by time τ , i.e., ξ̇ ′(x, y, t ) = ξ̇ (x, y, t + τ ); see (A13)
of Appendix A-A, which gives more detail about spectrally
multimode photon-wavepacket, which is not the main focus
of this article.

B. DISPLACEMENT TRANSITION OPERATOR
The displacement transition (evolution) operator in the +z-
direction can be expressed as follows:

T̂(z) = e+iz
∑

k kzâ
†
kâk

=
∏
k

e+izkzâ
†
kâk

=
∏
k

e+izkzn̂k (10)

and kz is the corresponding z component of wavevector k.
The displacement transition operator (10) is also a phase-
shifting type operator, which provides operator â†k with phase
shift θ = −kzz for a displacement by z

T̂(z)â†k′ T̂
†
(z) =

(∏
k

e+izkzn̂k
)
â†k′

(∏
k

e−izkzn̂k
)

= e+izk
′
zn̂k′ â†k′e

−izk′zn̂k′

= T̂k′ (z)â†k′ T̂
†
k′ (z)

= â†k′e
ik′zz (11)

where T̂k(z) = e+izkzn̂k = e+izkzâ
†
kâk is the displacement tran-

sition operator for wavevector k.

1) FRESNEL DIFFRACTION
Under the paraxial (Fresnel) approximation, propagating
quantum electromagnetic wave makes a slight angle relative
to the z-direction; therefore, kz is reduceable to

kz =
√
k2 − k2x − k2y ≈ k

(
1 − k2x

2k2
− k2y

2k2

)
. (12)

Therefore, the Fresnel displacement transition quantum op-
erator is

T̂Fr (z) =
∏
k

e+iz kzn̂k

=
∏
k

e
+iz k

(
1− k2x

2k2
− k2y

2k2

)
n̂k

=
∏
k

T̂Fr
k (z) (13)

where T̂Fr
k (z) = e

+iz k(1− k2x
2k2

− k2y
2k2

)n̂k is the Fresnel displace-
ment transition operator for wavevector k.

Fresnel approximation is used in the following to simplify
the displacement operation on the quantum state of light.
Regarding the discussions about (3) and (4), to obtain the
operation of the unitary Fresnel displacement transition (13)
on a quantum state of light, we need to transform the photon-
wavepacket creation operator; using the same procedure as
(11), we get

T̂Fr (z)â†ξ T̂
Fr†(z) =

∫∫
dkxdky ξ̃ (kx, ky)T̂

Fr (z)â†kx,ky T̂
Fr†(z)

=
∫∫

dkxdky ξ̃ (kx, ky)e
ik

(
1− k2x

2k2
− k2y

2k2

)
z
â†kx,ky

=
∫∫

dkxdky ξ̃ (kx, ky)h̃Frz (kx, ky)â
†
kx,ky

=
∫∫

dkxdky ξ̃ Frz (kx, ky)â
†
kx,ky

=
∫∫

dxdy ξ Frz (x, y) â†x,y

= â†
ξFrz

(14)

where Fresnel transfer function h̃Frz (kx, ky) is defined as

h̃Frz (kx, ky) = e
ik

(
1− k2x

2k2
− k2y

2k2

)
z

(15)

and the Fresnel transformed photon-wavepacket ξ̃ Frz (kx, ky)
of the input photon-wavepacket ξ̃ (kx, ky) for a displacement
by z is

ξ̃ Frz (kx, ky) = ξ̃ (kx, ky)h̃Frz (kx, ky)

= ξ̃ (kx, ky)e
ik

(
1− k2x

2k2
− k2y

2k2

)
z

(16)

which is defined in the wavevector domain. For the spatial
domain, use (A5) and the convolution theorem, which re-
cast Fresnel transformed wavepacket (16) into the following
form:

ξ Frz (x, y) = 1

2π

∫∫
dkxdky ξ̃ Frz (kx, ky)e

i(kxx+kyy)

= 1

2π

∫∫
dkxdky ξ̃ (kx, ky)h̃Frz (kx, ky)e

i(kxx+kyy)
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= ξ (x, y) ∗ hFrz (x, y) (17)

where symbol ∗ denotes the convolution operation defined
in (D6). Equation (17) is known as the Fresnel diffraction
formula. The Fresnel impulse response of free space propa-
gation hFrz (x, y) is given by equation

hFrz (x, y) = 1

2π

∫∫
dkxdky h̃Frz (kx, ky)e

i(kxx+kyy)

= −ik
z
eikze

ik
2z (x

2+y2) . (18)

Considering (14) and (17), one may note that Fresnel
diffraction performs a single-photon quantum state convo-
lution with the Fresnel impulse response function (18). For
more detail about the quantum convolution, see Section V on
the 4f-processor.

2) FRAUNHOFER DIFFRACTION
The Fraunhofer diffraction or the far-field diffraction of
photon-wavepacket creation operator â†ξ is the limiting
case of the Fresnel diffraction (14) where the displace-
ment z is much bigger than the size (width) of photon-
wavefront ξ (x, y), denoted by 	x,	y. Mathematically
speaking, if ξ (x, y) ≈ 0 ∀ x /∈ (−	x

2 ,
	x
2 ) ∪ y /∈ (−	y

2 ,
	y
2 ),

at distance

z � k

8
(	x2 +	y2) (19)

the Fresnel wavefront (17) reduces to

ξ Frz (x, y) = ξ (x, y) ∗ hFrz (x, y)

= 1

2π

∫∫
dx′dy′ ξ (x′, y′) hFrz (x− x′, y− y′)

≈ −ik
z
eikze

ik
2z (x

2+y2)

× 1

2π

∫∫
dx′dy′ ξ (x′, y′) e

−ik
z (xx′+yy′ )

= −ik
z
eikze

ik
2z (x

2+y2)ξ̃
(
k

z
x,
k

z
y

)

= ξ Fhz (x, y) (20)

where (17), (18), and (A6) are used, and the Fraunhofer

wavefront is defined as ξ Fhz (x, y) = −ik
z e

ikze
ik
2z (x

2+y2)ξ̃
( kz x,

k
z y), which is proportional to the Fourier transform of

the input wavefront at point ( kz x,
k
z y). Consequently, the

Fraunhofer diffraction of creation operator â†ξ is expressible
as

T̂Fh (z)â†ξ T̂
Fh†(z) = â†

ξFhz
(21)

denoting continuous mode quantum Fourier transformation
on a single-photon number state. For more detail about
the quantum Fourier transform, see Section IV on the lens
operator.

C. 2-D QUANTUM SPATIAL PHASE MODULATION
OPERATOR
We introduce 2-D spatial phase modulation operator Ûφ on
coordinate x and y as follows:

Ûφ = e−i
∑

x,y φ(x,y)n̂x,y (22)

where n̂x,y = â†x,yâx,y is the number operator for posi-
tion (x, y). Phase-shifting operator (22) provides opera-
tor â†x,y with phase shift θ = φ(x, y) as follows:

Ûφ â
†
x′,y′Û

†
φ = e−i

∑
x,y φ(x,y)n̂x,y â†x′,y′e

i
∑

x,y φ(x,y)n̂x,y

= e−iφ(x
′,y′ )n̂x′,y′ â†x′,y′e

iφ(x′,y′ )n̂x′,y′

= â†x′,y′e
−iφ(x′,y′ ) . (23)

To obtain (23) from (22), we use the same argument as in (10)
to reach (11). Therefore, operator Ûφ transforms photon-
wavepacket creation operator â†ξ as follows:

Ûφ â
†
ξ Û

†
φ =

∫∫
dxdy ξ (x, y)Ûφ â

†
x,yÛ

†
φ

=
∫∫

dxdy ξ (x, y)e−iφ(x,y)â†x,y

=
∫∫

dxdy ξ ′(x, y)â†x,y

= â†
ξ ′ (24)

where ξ ′(x, y) = ξ (x, y)e−iφ(x,y) and (5a) and (23) are used.

1) IDEAL THIN LENS QUANTUM MODULATION
An ideal thin lens is a 2-D spatial phase modulator mean-
ing its spatial transformation phase-shifts the 2-D photon-
wavepackets. The phase function φl (x, y) of a classical and
ideal lens with focal length f is

φl (x, y) = k

2 f
(x2 + y2) . (25)

From (22) and (25), the lens phase-shifting operator Ûφl can
be expressed as follows:

Ûφl = e−i
∑

x,y
k
2 f (x

2+y2)n̂x,y . (26)

2) DIFFRACTION GRATING QUANTUM MODULATION
A diffraction grating is a periodic spatial phase modulator.
Assume the periodic structure of the grating is in the x-
direction. In other words, assume the grating phase function
is φg(x) with period dx. Therefore, the corresponding grat-
ing phase factor e−iφg(x) is periodic with spatial frequency
κx = 2π/dx, according to the Fourier transform theory, ex-
pandable as

e−iφg(x) =
∑
r

qre
i(rκxx)

=
∑
r

qre
i
(
2πr
dx
x
)

(27)
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where qr indicates the rth Fourier coefficient of the grating
phase factor. Therefore, as (24) denotes, the diffraction grat-
ing transforms photon-wavepacket creation operator â†ξ as
follows:

Ûφgâ
†
ξ Û

†
φg

=
∫∫

dxdy ξ (x, y)e−iφg(x)â†x,y

=
∑
r

qr

∫∫
dxdy ξ (x, y)eirκxxâ†x,y

=
∑
r

qr

∫∫
dxdy ξr(x, y)â

†
x,y

=
∑
r

qr

∫∫
dkxdky ξ̃r(kx, ky)â

†
kx,ky

(28)

where the rth diffraction order photon-wavefront is defined
as ξr(x, y) = ξ (x, y)eirκxx and its inverse Fourier transform
(A6) gives its corresponding representation in thewavevector
space, that is

ξ̃r(kx, ky) = 1

2π

∫∫
dxdy ξr(x, y)e

−i(kxx+kyy)

= 1

2π

∫∫
dxdy ξ (x, y)e−i((kx−rκx )x+kyy)

= ξ̃ (kx − rκx, ky) . (29)

Substituting (29) into (28) gives

Ûφgâ
†
ξ Û

†
φg

=
∑
r

qr

∫∫
dkxdky ξ̃ (kx − rκx, ky)â

†
kx,ky

=
∑
r

qr

∫∫
dkxdky ξ̃ (kx, ky)â

†
kx+rκx,ky . (30)

Comparing (30) with (5b) indicates the diffraction grat-
ing performs the following quantum transformation in the
wavevector space:

Ûφgâ
†
kx,ky

Û
†
φg

=
∑
r

qrâ
†
kx+rκx,ky . (31)

The quantum grating transformation (31) indicates that at
the rth diffraction order, the diffraction amplitude equals the
rth Fourier coefficient of the grating qr. Furthermore, the
incident wavevector k with x component kx transforms to
the wavevector kr with x component krx = kx + rκx. Assume
the angle of the incident wavevector k and the rth diffracted
wavevector kr with the grating are θi and θr, respectively.
Thus, the transformation equation krx = kx + rκx, indicated
by (31), reduces to the well-known grating equation:

sin(θr ) = sin(θi) + r
λ

dx
(32)

where λ = 2π
k denotes the photon wavelength.

One can see in this 1-D modulation of the grating on the
x-components of the quantum light; we could ignore the y-
component from the consideration, as argued in Appendix A
and shown in Fig. 2.

FIGURE 2. Diffraction grating quantum modulation. The inset
demonstrates a photon-wavepacket in a superposition of wavevectors
with amplitude |k| = k, labeled with their x-components. The grating
shifts each wavevector to a superposition of wavevectors, whose
x-components are shifted by rκx , where κx is the frequency spacing of
the grating.

IV. LENS OPERATOR AS QUANTUM OPTICAL FOURIER
TRANSFORMER
Consider a quantum light impinging upon a lens; consider
its quantum state at the front focal plane and the back focal
plane, respectively, as the lens’s input and output.We express
the quantum transformation of such a passive optical unit
with operator L̂.

Fig. 3 shows the transformation of the lens operator L̂
on a quantum light. The lens transformation is structured as
a sequence of three quantum transformations: the quantum
displacement transformation to the frontend of the lens T̂( f ),
the quantum modulation from the front to the backend of the
lens Ûφl , followed by the second quantum displacement to
the back focal plane T̂( f ); mathematically speaking

L̂ = T̂( f )Ûφl T̂( f ) . (33)

Appendix C shows that the effect of the lens opera-
tor L̂ on a photon-wavepacket creation operator â†ξ is to re-
shape its wavefront, the quantum reshaping operation is as
follows (C9):

L̂â†ξ L̂
† = â†

ξ̃ ′ . (34)

From Appendix C (C10), which assumes the Fresnel
approximation for the transition operator, T̂(z) = T̂Fr (z), the
lens reshapes the wavefront from ξ to ξ̃ ′. The output photon
wavefront ξ̃ ′ corresponds to the input wavefront’s Fourier
transform ξ̃ rescaled with factor k

f as

ξ̃ ′(x, y) = −ik
f
e2ik f ξ̃

(
k

f
x,
k

f
y

)
. (35)

As a general example, consider the generic class of pure
quantum state of identical photons with photon-wavefront ξ
((1), |ψ〉 = f (â†ξ )|0〉) as the inputs of the lens operator L̂. The
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FIGURE 3. Lens quantum operation. The input of the lens is considered
to be the quantum light in its front focal plane, and the output is the
quantum light in its back focal plane. Therefore, the lens operator L̂ is a
sequence of three transformations: The displacement transition up to
the lens T̂(f ), lens spatial phase modulation Ûφl

, and final displacement

transition to the back focal plane T̂(f ). The figure, moreover, shows
simulation results: the input (ξ(x, y)) and the output (ξ̃′(x, y))
photon-wavepackets at the top and the propagation throughout the lens
operator (|ξFr

z (x, y)|2). The color of the input and output
photon-wavepackets represent the phase of photon-wavepackets, and
the color’s intensity reflects the amplitude of photon-wavepackets. At
each point of propagation through the lens system, the intensity of the
red light shows the corresponding single-photon probability (|ξFr

z (x, y)|2).
The simulation demonstrates that a Lens operator performs continuous
mode quantum Fourier transformation on the wavefront(wavefunction)
of the input single-photon.

lens operator L̂ transforms such a quantum light as follows:

|〉 = L̂|ψ〉
= L̂ f (â†ξ )|0〉

=
∞∑
n=0

cn√
n!
L̂â†nξ |0〉

=
∞∑
n=0

cn√
n!

(
L̂â†ξ L̂

†
)n

L̂|0〉

=
∞∑
n=0

cn√
n!
â†n
ξ̃ ′ |0〉

= f (â†
ξ̃ ′ )|0〉 (36)

where the unitarity of the lens operator (L̂
†
L̂ = Î), (34) and

invariance of the vacuum by the lens operation (L̂|0〉 = |0〉)
are used.

1) Example 1: Single-Photon Input: Consider the partic-
ular case of single-photon number state |1〉ξ = â†ξ |0〉
as the input of the lens operator, the output of the lens
would be the following quantum state:

L̂|1〉ξ = L̂â†ξ |0〉 = L̂â†ξ L̂
†|0〉 = â†

ξ̃ ′ |0〉
= |1〉ξ̃ ′ . (37)

Equations (C9) and (C10) give the representation of the
above state in the spatial space as follows:

L̂|1〉ξ =
∫∫

dxdy ξ̃ ′(x, y) â†x,y|0〉

= −ik
f
e2ik f

∫∫
dxdy ξ̃

(
k

f
x,
k

f
y

)
â†x,y|0〉

= −i f
k
e2ik f

∫∫
dudv ξ̃ (u, v) â†f

k u,
f
k v

|0〉

= −ie2ik f
∫∫

dudv ξ̃ (u, v) â†u,v|0〉

= −ie2ik f
∫∫

dudv ξ̃ (u, v) |1〉u,v (38)

where space linear rescaling relations u = k
f x , v = k

f y
and the field rescaling proportionality relation (B2),
â†αu,βv = 1√|αβ| â

†
u,v , are used. As (A6) shows, ξ̃ (u, v)

is the Fourier transform of ξ (x, y). Therefore, ignoring
the trivial phase factor −ie2ik f , (38) denotes that a lens
makes continuous mode quantum Fourier transforma-
tion on a single-photon number state. In other words,
the wave function (wavefront) of a single-photon at the
output of a lens unit is the Fourier transform of the
single-photon’s wave function at the input of the lens.

2) Example 2: Glauber State Input: If the input of the
Lens is a Glauber state, i.e., |α〉ξ = exp(−|α|2/2 +
αâ†ξ )|0〉, the lens operation gives another Glauber state
with the same amplitude α:

L̂|α〉ξ = L̂e−|α|2/2+αâ†
ξ L̂

†|0〉

= e
−|α|2/2+αâ†

ξ̃ ′ |0〉
= |α〉ξ̃ ′ (39)

where also L̂
†|0〉 = |0〉.

V. QUANTUM CONVOLUTION VIA A 4F QUANTUM
SIGNAL PROCESSING SYSTEM
Fig. 4 shows a 4f-processing system consisting of two iden-
tical lenses of confocal length f , with a spatial phase modu-
lator of pupil function φp(x, y) located at the confocal plane
(the Fourier plane of the primary lens). The corresponding
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FIGURE 4. 4f quantum signal processing system. The system comprises
two similar lenses that in their confocal plane there is a pupil, a spatial
phase modulator, associated with the intended quantum processing. a
shows the input photon-wavepacket ξ(x, y). The phase of
photon-wavepacket ξ(x, y) is color-coded according to the color bar at
the upper-right corner of the figure. The strength of the color reflects the
amplitude of photon-wavepacket |ξ(x, y)|. b shows the pupil
function P(x, y). Similar to a, the phase and the amplitude are displayed
with color and the intensity of the color. Since the pupil is phase-only,
the intensity of the colors remains constant and corresponds to unity,
|P(x, y)| = 1. c is like a but for output photon wavepacket η(x, y). In each
point of the 4f-system, the intensity of red light demonstrates the
probability (|ξFr

z (x, y)|2) of the propagating photon-wavepacket. The
simulation demonstrates that a 4f-processing system with an appropriate
pupil’s phase function can decode the quantum information encoded on
the photon-wavefront and consequently focus the quantum light.

quantum operator of this 4f-processing system is expressible
as

F̂Fφp = L̂ÛφpL̂ . (40)

As in (34), the first lens transforms wavepacket creation op-

erator â†ξ to â†
ξ̃ ′ (L̂â

†
ξ L̂

† = â†
ξ̃ ′ ), where, as shown in (C10),

ξ̃ ′ corresponds to the Fourier transform of the input wave-
front ξ .
Afterward, the phase-only pupil P(x, y) = e−iφp(x,y) trans-

forms the operator â†
ξ̃ ′ to â

†
η̃′ (Ûφp â

†
ξ̃ ′Û

†
φp

= â†
η̃′ ), where ac-

cording to (24), the photon-wavefront at the backend of the
pupil (η̃′) is

η̃′(x, y) = ξ̃ ′(x, y)P(x, y)

= ξ̃ ′(x, y)e−iφp(x,y) . (41)

Finally, the second lens transforms the operator â†
η̃′ to â†η

(L̂â†
η̃′ L̂

† = â†η), where, similar to the first lens, the output

photon-wavefront η corresponds to the Fourier transform of
the second lens’s input photon-wavefront η̃′, and, as (D3)
shows, it becomes

η(x, y) = ξ (−x,−y) ∗ h(x, y) . (42)

Equation (42) indicates that the output photon-wavefront η
of the 4f-processing system is the convolution of its im-
pulse response h(x, y) and the parity transformed input
photon-wavefront ξ (−x,−y). For the 4f-processing system

with pupil P(x, y), as (D5), h(x, y) = −ei4k f k2
f 2
P̃( kf x,

k
f y),

denotes, its impulse response h(x, y) corresponds to the
rescaled Fourier transform of the pupil function P(x, y) by
factor k

f . In short, the 4f-operator F̂Fφp transforms its input

photon-wavepacket creation operator â†ξ as follows:

F̂Fφp â
†
ξ F̂F

†
φp

= â†η

=
∫∫

dxdy η(x, y) â†x,y

=
∫∫

dxdy ξ (−x,−y) ∗ h(x, y) â†x,y . (43)

Following the same procedure as (36), one can show that
the unitary, linear, 4f-operator F̂Fφp transforms pure quantum

state |ψ〉 = f (â†ξ )|0〉, as follows:

|〉 = F̂Fφp|ψ〉
= F̂Fφp f (â

†
ξ )|0〉

= f (F̂Fφp â
†
ξ F̂F

†
φp
)|0〉

= f (â†η )|0〉 (44)

where the output photon-wavefront η is given by (42). There-
fore, similar to all linear optical operators, a quantum 4f-
processing systemwithout changing the photon statistics and
the quantum light representation in the Fock space trans-
forms only the associated single-photon wavefunction (its
wavefront). Let us consider two practically common cases
of Fock representation for the input quantum light of the
4f-processor.

1) Example 1: Single-Photon Input: The 4f-processing
operator F̂Fφp transforms single-photon number

state |1〉ξ = â†ξ |0〉 as follows:

F̂Fφp|1〉ξ = F̂Fφp â
†
ξ |0〉

= â†η|0〉

=
∫∫

dxdy η(x, y)â†x,y|0〉

=
∫∫

dxdy ξ (−x,−y) ∗ h(x, y)â†x,y|0〉
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=
∫∫

dxdy ξ (−x,−y) ∗ h(x, y)|1〉x,y .
(45)

The above equation shows that a quantum 4f-
processing system performs a single-photon quantum
state convolution with the impulse response function of
the system, a quantum operation that can bring many
applications for quantum technology.

2) Example 2: Glauber State Input: The output
of 4f-processor for Glauber state input |α〉ξ =
exp(−|α|2/2 + αâ†ξ )|0〉 is Glauber state F̂Fφp|α〉ξ =
exp(−|α|2/2 + αâ†η )|0〉 = |α〉η, where η is given by
(42).

A. QUANTUM 4F-PROCESSING SYSTEM WITH PERIODIC
PUPIL
Consider a quantum 4f-processing system with a periodic
pupil phase factor; in other words, the pupil is a 2-D grating-
like spatial phase modulator discussed in Section III-C2. As-
sume its pupil phase factor P(x, y) = e−iφp(x,y) has periods dx
and dy in the x and y directions, respectively. Therefore,
the corresponding spatial angular frequencies are κx = 2π

dx
and κy = 2π

dy
, and the Fourier expansion of the pupil phase

factor P(x, y) is as follows:

P(x, y) =
∑
r

∑
s

qrse
i(rκxx+sκyy) (46)

where qrs is the 2-D Fourier coefficient of the pupil phase
factor (see Appendix D-A).
Appendix D-A shows that the impulse response of such a

4f-processor becomes the discrete latticelike function (D9)

h(x, y) = −2πei4k f
∑
r

∑
s

qrsδ(x− x(r) )δ(y− y(s) ) (47)

where (x(r), y(s) ) = (rx(1), sy(1)) is associated with lattice-
point (r, s) and the 4f-impulse response lattice-constants x(1)

and y(1) are defined as follows:

x(1) = fκx
k

= f cκx
ω

y(1) = fκy
k

= f cκy
ω

(48)

where f denotes the confocal length of the 4f-processor’s
lenses. The impulse response (47) simplifies the 4f-
transformation (43) as follows [see (D11)]:

F̂Fφp â
†
ξ F̂F

†
φp

= â†η

= −ei4k f
∑
r,s

qrs â
†
ξ̄r,s

(49)

where wavefunction ξ̄r,s is the parity transformed and dis-
placed by (x(r), y(s) ) of wavefunction ξ :

ξ̄r,s(x, y) = ξ (x(r) − x, y(s) − y) . (50)

One may drop the trivial constant phase factor−ei4k f in (49),
which is due to the net displacement in the 4f-system, but
for the sake of completeness, let us keep the factor. Assume
(〈x〉, 〈y〉) and (	x,	y) denote the center and the width of
the photon-wavepacket ξ , respectively, such that ξ (x, y) ≈
0 ∀ x /∈ (〈x〉 − 	x

2 , 〈x〉 + 	x
2 ) ∪ y /∈ (〈y〉 − 	y

2 , 〈y〉 + 	y
2 ).

Furthermore, assume photon-widths are narrower than their
corresponding 4f-impulse response lattice-constants, 	x <
x(1) and 	y < y(1). In this case, the wavepackets ξ̄r,s with
a central point at (x(r) − 〈x〉, y(s) − 〈y〉) are orthogonal to
each other, 〈ξ̄r,s, ξ̄r′,s′ 〉 = δr,r′δs,s′ , and therefore, the corre-
sponding creation operators hold the canonical commutation
relation [see also (A2)] as follows:[

âξ̄r,s , â
†
ξ̄r′,s′

]
= 〈ξ̄r,s|ξ̄r′,s′ 〉 = δr,r′δs,s′ . (51)

Since there is no overlap between wavepackets of different
lattice points, they are orthogonal. To clarify the above 4f-
transformation, let us write the photon-wavepacket creation
operators simply with a subscript of their central points.
Then, we substitute the input creation operator â†ξ with

â†〈x〉,〈y〉, and the parity transformed displaced output creation

operators â†
ξ̄r,s

with b̂†
x(r)−〈x〉,y(s)−〈y〉. Therefore, (49) takes the

form as follows:

F̂Fφp â
†
〈x〉,〈y〉 F̂F

†
φp

= −ei4k f
∑
r,s

qrs b̂
†
x(r)−〈x〉,y(s)−〈y〉 . (52)

Equation (52) denotes that a quantum 4f-processing system
with a periodic, gratinglike pupil maps a single-photon with
a wavefront localized at point (〈x〉, 〈y〉) on the input plane
into a latticelike wavefront with lattice coordinates (x(r) −
〈x〉, y(s) − 〈y〉), r, s = 0,±1,±2, . . ., on the output plane.
Also, the wavefront’s probability amplitude at the lattice-
point (x(r) − 〈x〉, y(s) − 〈y〉) corresponds to qrs.

VI. QUANTUM PULSE SHAPING VIA AN 8F-PROCESSING
SYSTEM
Optical pulse shaping techniques have many applications
in classical and quantum technologies such as optical and
quantum communications [31], [37] and quantum computa-
tions [30]. Due to its importance, in this section, we utilize
the aforementioned mathematical tools to detail a quantum
pulse shaping procedure.
A quantum pulse shaper phase modulates different fre-

quency components of quantum light by any desired phases
from 0 to 2π [31]. Therefore, a quantum pulse shaper is, in
fact, a quantum spectral phase modulator. Hence, in this sec-
tion of the article, we exceptionally assume photons occupy
multiple or continuous spectral modes (see Appendix A-A).
Spectral phasemodulation or pulse shaping can be realized

in three steps, as Fig. 5 shows. The first step spatially sepa-
rates the frequency components of the photon. In the second
step, a spatial phase modulation phase shifts each frequency
component of the photon with the desired or preassigned

VOLUME 4, 2023 2100122



Engineeringuantum
Transactions onIEEE

Rezai and Salehi: FUNDAMENTALS OF QUANTUM FOURIER OPTICS

FIGURE 5. quantum pulse shaping. A quantum pulse with the temporal shape shown at the upper-left corner enters the pulse shaper. First, the
4f-processor F̂Fφp in step 1 decomposes the frequency component of the input quantum pulse. Then, at step 2, each spatially separated frequency

component ω of the input pulse gets the desired phase via the spatial phase modulator Ûθ . Eventually, at step 3, the inverse of the first unitary

4f-operation, i.e., F̂F
−1
φp = F̂F

†
φp , reassembles the spatially separated frequency components into a single spatial mode. Consequently, the input

photon-wave packet’s temporal shape, shown in the upper-left corner, gets reshaped at the output, shown in the upper-right corner. The simulation
considers a rectangular function as the spectral photon-wavepacket (the sinc function as the temporal photon-wavepacket) for the input of the pulse
shaper. The reshaping of the pulse is due to 31 random phase shifts applied to 31 spectral chips. The simulation uses a wavelength-based color scheme
to propagate each photon-wave packet’s frequency component through the pulse shaper.

phase values. Finally, The third step brings the spatially sep-
arated frequency phase modulated components into a single
spatial mode.

A. STEP ONE: FREQUENCY SEPARATION VIA A
4F-PROCESSOR
For the sake of simplicity, this section assumes a 1-D photon-
wavefront in the x-direction, and the light propagation is in
the z-direction. Consider a single photon with a narrow, Airy
disklike, diffraction-limited wavefront localized at the center
of the input plane of a 4f-system, 〈x〉 = 0. As (A15) shows,
since the features of this narrow wavefront would have min-
imal consequence, we write its corresponding creation oper-
ator as follows:

â†ξ =
∫
dω ξ (ω)â†0(ω) (53)

where â†0 ≡ â†〈x〉=0, and ξ (ω) denotes the photon’s spectral
wavepacket or probability amplitude. Furthermore, take a pe-
riodic, phase-only, gratinglike pupil for the 4f-system. There-
fore, the pupil Fourier transform (46) becomes [see also the

corresponding diffraction grating (27)]

P(x) = e−iφp(x) =
R∑

r=−R
qre

i(rκxx) (54)

where r = ±R corresponds to the maximum spatial fre-
quency of the pupil phase factor in the x-direction, i.e., qr ≈
0 ∀ |r| > R. We obtained the quantum 4f-transformation (52)
under the single-frequency mode assumption. Technically,
the chromatic aberration of its element (especially the lenses)
can be corrected. Therefore, such a chromatic aberration
corrected quantum 4f-processor transforms each frequency
component â†0(ω) of the creation operator (53) according to
(52), which gives

F̂Fφp â
†
0(ω) F̂F

†
φp

= −ei4k f
R∑

r=−R
qr b̂

†

x(r)ω
(ω) (55)

where x(r)ω = rx(1)ω indicates the rth lattice coordinate of the
frequency component ω and is equivalent to its rth order of
diffraction. We have added frequency ω as a subscript to the
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lattice-constant and lattice coordinates to highlight their fre-
quency dependence. This section considers spectrally mul-
timode (continuous mode) photons, and (48), x(1)ω = f c κx

ω
,

denotes that the lattice-constant x(1)ω of the output photon-
wavefront depends on the photon’s angular frequency ω.
Furthermore, angular frequency ω is given as an argument
to the creation operators â†0(ω) and b̂

†

rx(1)ω
(ω) to emphasize

that (55) is a single-frequency mode transformation. Finally,
(55) indicates that the spatial range of the discretized photon-
wavefront at the output of the 4f-processor is −x(R)ω ≤ x
≤ x(R)ω .
Let b̂† denote the 1-D unitary 4f-operation (55) on

the frequency-dependent photon-wavepacket creation oper-
ator (A15)

b̂† = F̂Fφp â
†
ξ F̂F

†
φp

=
∫
dω ξ (ω) F̂Fφp â

†
0(ω) F̂F

†
φp

= −
R∑

r=−R
qr

∫
dω ξ (ω) eiω

4 f
c b̂†

x(r)ω
(ω) . (56)

The frequency dependence of the output lattice-constant x(r)ω
implies that the 4f quantum operator F̂Fφp spatially separates
frequency components. It separates different frequency com-
ponents of the spatially single-mode and spectrally multi-
mode input photon creation operator â†ξ into different lattices

with different lattice-constant x(r)ω . Yet, a lattice-point of one
frequency component of the input photon may overlap with
a lattice-point of another frequency component. For exam-
ple, the central lattice-point x(r)ω = rx(1)ω = 0 for r = 0 is the
common lattice-point for all frequencies, and pr=0 is the
probability amplitude that the input photon emerges at the
center. However, for a perfect quantum pulse shaping, we
need to completely separate different frequency components
of the input photons. As discussed in Appendix E-A, the
conditions for ideal frequency separation via a 4f quantum
processor are that the Fourier transform of the pupil phase
factor (54) has no dc term (pr=0). And the photon band-
width 	ω is shorter than ωmax

R , where ωmax is the maximum
of the angular frequency components that the input photons
occupy, andR corresponds to themaximum spatial frequency
of the phase-only grating (pupil). Therefore, it is possible to
find the frequency-mapped function �(x), determining the
frequency component mapped to position x, which, as shown
in Appendix E-B–(E8), is

�(x) = min

(
R,

⌊
|x|
x(1)ωmax

⌋)
x(1)ωmax

|x| ωmax (57)

where �x� and |x| denote the floor function of x and the
absolute value function of x, respectively. This means func-
tion�(x) on the rth diffraction order position x(r)ω = rx(1)(ω)
of the frequency ω gives the corresponding frequency, i.e.,

�(x(r)ω ) = ω, ∀ 1 ≤ r ≤ R, ωmax −	ω < ω < ωmax; see
Appendix E-B–(E13) for details.

B. STEP TWO: FREQUENCY MODULATION VIA A SPATIAL
PHASE MODULATOR
As step one spatially separates the frequency components,
now for the second step, a spatial phase modulator in Sec-
tion III-C, as is discussed in this section, can apply any
desired phase into any selected spectral element. Thus, for
example, assume θ (ω) is the desired spectral phase modula-
tion and name its corresponding 1-D spatial phase modulator
as Ûθ , which, as (22) denotes, can be written as

Ûθ = e−i
∑

x φ(x)n̂x . (58)

The amount of phase modulation by a practical spatial phase
modulator usually depends on the frequency of the incident
light beam. But spatial phase modulator (22) [also (58)] is
valid either for an ideal frequency-independent spatial phase
modulator or at least when the incident light beam on each
point x of the modulator is a single spectral mode, which is
the case in this section. Because on position x at the output
plane of the first 4f-processor, only a single-frequency (ω =
�(x)) component may bemapped. Therefore, for the reduced
Hilbert space of the single spatial mode input (53), (58)
is simplified, such that n̂x ≡ b̂†x(�(x))b̂x(�(x)) = n̂x(�(x)),
and φ(x) = θ (�(x)), where �(x) is given by (57). Conse-
quently, (58) takes the form as

Ûθ =
∏
x

e−iθ (φ(ω(x)) n̂x(�(x)) . (59)

If the distance x− x(r)ω is more significant than the size of
the point spread function, the number operator at point x
(n̂x(�(x))) commutes with the creation operator at point x(r)ω
(b̂†
x(r)ω

(ω)). Therefore, the operation of the spatial phase mod-

ulator Ûθ on the creation operator b̂†
x(r)ω

(ω) can be simplified

as follows:

Ûθ b̂
†

x(r)ω
(ω)Û

†
θ

= e
−iθ (�(x(r)ω ))n̂

x(r)ω
(�(x(r)ω ))

b̂†
x(r)ω

(ω)e
−iθ (�(x(r)ω ))n̂

x(r)ω
(�(x(r)ω ))

= e
−iθ (ω)n̂

x(r)ω
(ω)
b̂†
x(r)ω

(ω)e
−iθ (ω)n̂

x(r)ω
(ω)

= e−iθ (ω)b̂†
x(r)ω

(ω) (60)

where (E13), �(x(r)ω ) = ω, is used. The unitary spatial phase
modulation (59) transforms the 4f-processor’s output (56)
into a single-photon creation operator ĉ†

ĉ† = Ûθ b̂
†Û

†
θ

= −
R∑

r=−R
qr

∫
dω ξ (ω) eiω

4 f
c Ûθ b̂

†

x(r)ω
(ω)Û

†
θ
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= −
R∑

r=−R
qr

∫
dω ξ (ω) eiω

4 f
c e−iθ (ω)b̂†

x(r)ω
(ω) (61)

where (60) is used. Therefore, (61), the output of step
two, implies that the spatial modulator (59) adds frequency-
dependent phase factor e−iθ (ω) to the corresponding spectral
component of the input operator (56).

C. STEP THREE: BEAM ASSEMBLY VIA A 4F-PROCESSOR
The purpose of the third step is to gather the spatially sep-
arated and appropriately (spectrally) phase-modulated com-
ponents of the creation operator (61), the output of the second
step, into a single spatial mode. Reassembling procedure
can be realized by the inverse operation of the first step’s

4f-operator, F̂F
−1
φp

= F̂F
†
φp
. In other words, in step three, the

4f-processor F̂F
†
φp
, whose pupil phase factor P−(x) is re-

lated to the first 4f-processor P(x) as P−(x) = P∗(−x) =
eiφp(−x) [see Appendix D-C–(D19)], can reassemble the
single-photon creation operator ĉ† (61) into a single spatial
mode. To demonstrate that, using (52), we first apply the 1-D

4f-transformation F̂F
†
φp

on operator b̂†
x(r)ω

(ω)

F̂F
†
φp
b̂†
x(r)ω

(ω) F̂Fφp = −ei4k f
R∑

r′=−R
q−
r′ d̂

†

x(r
′ )

ω −x(r)ω
(ω)

= −ei4k f
R∑

r′=−R
q∗
r′ d̂

†

x(r
′−r)

ω

(ω) (62)

where the single-photon creation operator d̂†
x(r

′−r)
ω

(ω) is as-

sociated with the output plane of the 4f-processor F̂F
−1
φp

=
F̂F

†
φp
. And also, (D21), q−

r′ = q∗
r′ , is used, where qr′ is the

corresponding Fourier coefficient of 4f-processor F̂Fφp . Us-

ing (62), the 4f-processor F̂F
†
φp

transforms the input (61) as
follows:

F̂F
†
φp
ĉ†F̂Fφp =

∑
r,r′

qrq
∗
r′

∫
dωξ s(ω) d̂†

x(r
′−r)

ω

(ω) (63)

where

ξ s(ω) = ξ (ω) eiω
8 f
c e−iθ (ω) . (64)

Change of variables r, r′ to r, r′′, as r′′ = r′ − r, allows us
to sum over the index r, which gives

∑
r qrq

∗
(r+r′′ ) = δr′′,0,

where (D13) is used. Therefore, position x(r
′−r)

ω = x(r
′′ )

ω =
r′′x(1)ω , due to δr′′,0, becomes frequency-independent and

zero, x(r
′′ )

ω = x(0)ω = 0, and thus reduces (63) into a single
spatial mode located at the central lattice-point x(0)ω = 0:

F̂F
†
φp
ĉ†F̂Fφp =

∫
dωξ s(ω) d̂†0 (ω)

= d̂†ξ s . (65)

Equation (65) gives the output of the pulse shaper. There-
fore, combining the above three steps quantum transforma-
tion (56), (61), and (65) makes the quantum pulse shaper
transformation as

P̂S â†ξ P̂S
† = d̂†ξ s (66)

where

P̂S = F̂F
†
φp
Ûθ F̂Fφp (67)

denotes the quantum pulse-shaping operator. Equation (66)
indicates that the pulse shaper’s output creation operator d̂†ξ s
becomes spatially single-mode at position x = 0, similar to
the input creation operator â†ξ . However, the output spectral
photon-wavepacket is transformed from ξ to ξ s, given by
(64), which eventually reshapes the pulse or the probabil-
ity of the photon-wavepacket in the time domain [31] (see

Fig. 5). It is worth noting that the phase factor eiω
8 f
c , in the

shaped wavepacket ξ s(ω), is due to the net displacement
transition (see Section III-B) by z = 8 f through the 8f-pulse
shaper. This phase factor is equivalent to a time evolution (see
Section III-A) by t = − 8 f

c . Thus, ignoring the trivial phase

factor eiω
8 f
c , the quantum pulse shaper P̂S has shaped the

photon-wavepacket ξ (ω) into ξ s(ω) = ξ (ω)e−iθ (ω), meaning
the photon component of frequency ω got its corresponding
phase factor e−iθ (ω).

D. EXAMPLES
As before, we take the single-photon state and the Glauber
state as the inputs to the quantum pulse shaper to clarify its
operation!

1) Example 1: Single-Photon Input: Consider a single-
photon number state with spectral-wavepacket ξ (ω)
[see (53)], which corresponds to the quantum state

|1〉ξ = â†ξ |0〉 =
∫
dω ξ (ω)|1〉ω

≡
∫
dω ξ (ω)|ω〉 (68)

as the input of the pulse shaper. State |1〉ω denotes con-
tinuous mode single-photon number state with angular
frequency ω. The pulse shaping operation (66) trans-
forms the single-photon quantum state (68) as follows:

P̂S|1〉ξ = P̂Sâ†ξ |0〉 = P̂Sâ†ξ P̂S
†|0〉 = d̂†

ξ̃ s
|0〉

= |1〉ξ̃ s =
∫
dω eiω

8 f
c e−iθ (ω)ξ (ω)|ω〉 (69)

where (64) is used. The applied frequency-dependent
phase θ (ω) would reshape the input single photon’s
quantum state in the time domain, hence the name [30],
[31] (see Fig. 5).

2) Example 2: Glauber State Input: For a Glauber state
input |α〉ξ , the pulse shaper gives another Glauber state
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with the same amplitude α

P̂S|α〉ξ = P̂Se−|α|2/2+αâ†
ξ P̂S

†|0〉

= e
−|α|2/2+αd̂†

ξ̃s |0〉
= |α〉ξ̃ s . (70)

Yet, each photons’ wavepacket is transformed from
ξ (ω) to function ξ̃ s(ω).

VII. CONCLUSION
The complete representation of the quantum state of light
boils down to two aspects. One is the quantum light’s photon
statistics or its Fock representation [represented by func-
tion f (â†) in this article]. For example, coherent, single-
photon, and squeezed states of light are discriminated against
due to their different representation in the Fock space. The
other is the quantum wave function or wavepacket (usually
symbolized by ξ , and appears as â†ξ in this article) of each
constituent photon of the quantum light. The spatial mode
(image) or the wavefront of photons is one essential feature
of the photon wavepacket (ξ ) that brings vast information
capacity.
Developing the quantum model of optical components

is essential for various quantum information processing.
For example, the quantum model of a simple beam split-
ter [38], arraywaveguide gratings [39], starcoupler, and spec-
tral phase shifter [31] have a significant impact on the math-
ematical modeling of quantum operations and applications.
This article mathematically models Fourier optical systems’
components that transform photons’ wavefronts and, conse-
quently, process the information encoded on them.
It introduces the fundamental concepts of quantum Fourier

optics and shows that unitary quantum Fourier optics oper-
ations can be mathematically modeled with a sequence of
phase-shifting operations. Accordingly, it analyzes the main
building blocks of quantum Fourier optics, namely lens oper-
ator and 4f-processors and shows that lens operators and 4f-
processors perform continuous mode quantum Fourier trans-
formation and convolution on the quantum state of a single
photon.
Furthermore, this article details the quantum pulse shaping

procedure as an actual application of the concepts mentioned
above. This technique plays a crucial role in quantum in-
formation processing and computation based on frequency-
encoded optical combs [5], [30] and is employed in QCDMA
communication systems [31]. The concepts and mathemat-
ical models introduced in this article would benefit quan-
tum technologies extensively. Its application ranges from
quantum computation and communications and quantum or-
bital angular momentum information processing to quan-
tum sensing, quantum imaging, quantum radar, and quantum
multiple-input/multiple-output antennas.

APPENDIX A
PHOTON-WAVEPACKET CREATION OPERATOR
The corresponding creation operator of a photon concerning
its occupationmode can be in themost general case expanded
as [34], [40], [41]

â†ξ =
∑
P=h,v

∫
d3K ξ̃P(K)â†P,K (A1)

where â†P,K denotes the photon creation operator at the mode
with wavevector K and polarization P, and the correspond-
ing photon’s probability amplitude of this mode is ξ̃P(K),
which is normalized and satisfies the canonical commutation
relation[
âξ , â

†
ξ

]
=

∑
P′,P=h,v

∫
d3K′d3Kξ̃∗

P′ (K′)ξ̃P(K)
[
âP′,K′, â†P,K

]

=
∑

P′,P=h,v

∫
d3K′d3Kξ̃∗

P′ (K′)ξ̃P(K)δP,P′δ(K′ − K)

=
∑
P=h,v

∫
d3K |ξ̃P(K)|2

= 〈ξ̃ |ξ̃〉 = ‖ξ̃‖2 = 1 (A2)

where commutation relation [âP′,K′, â†P,K] = δP,P′δ(K′ − K)

is used, and 〈ξ̃ |ξ̃〉 and ‖ξ̃‖ denote the inner product of
the single-photon wave function ξ̃ with itself and its norm,
respectively.
Equations (A1) and (A2) show that there are at most four

degrees of freedom for the occupation mode of any photon,
one discrete polarization mode, and three continuous modes
of wavevector components (Kx,Ky,Kz). This article assumes
the polarization of photons remains invariant throughout all
introduced processes, which reduces the occupation mode’s
degree of freedom to three. The photons that singularly oc-
cupy one of the mode’s degrees of freedom are referred to as
the so-called single-mode photons with respect to that singu-
lar mode; for example, spectrally single-mode photons sin-
gularly occupy one spectral frequency alone. In this case, we
drop its corresponding variable from the notation of photon-
wavepacket ξ̃P and creation operator â†P,K. Therefore, in this
article, we leave the polarization mode’s variable from the
consideration and write photon-wavepacket ξ̃P(K) simply as
ξ̃ (K) and creation operator â†P,K as â†K.
Furthermore, let us take a spectrally single-mode quan-

tum light with frequency ω and angular wavenumber k = ω
c .

The article uses bold letters to represent wavevectors, and
their corresponding nonbold letter indicates their wavenum-
ber, |k| = k. Due to the single-frequency-mode assump-
tion (see Fig. 6), photon-wavepacket ξ̃ (K) is nonzero only
at wavevector with amplitude K = ω

c = k. Therefore, the
photon-wavepacket is proportional to ξ̃ (K) ∝ δ(|K| − k),
which reduces one more from the mode’s degree of free-
dom. Thus, in (A1), the general volume integration over
all wavevectors reduces to the surface integration over the
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FIGURE 6. Single-frequency-mode assumption on photon wavevectors.
The single-frequency-mode assumption limits single-photons to be only
in the superposition of states with wavevectors shown by the sphere.
The no-propagation in (−z)-direction assumption reduces the allowed
state to the upper red hemisphere, consequently makes kx and ky the
sufficient parameters to locate the involved wavevectors.

sphere with radius k (
∮
k), i.e.,

â†ξ =
∫
d3K ξ̃ (K)â†K

=
∮
k
d2k ξ̃ (k)â†k

=
∫∫

dkxdky ξ̃ (kx, ky)â
†
kx,ky

. (A3)

Furthermore, (A3) takes the wavevector’s kx and ky compo-
nents as the independent variables for the integration, imply-

ing the wavevector’s kz component is kz =
√
k2 − k2x − k2y ,

assumed the quantum light is not propagating in the (−z)-
direction. In (A3), the single-frequency-mode assumption
reduced the photon creation operator â†K to â†k. The further
no-propagation in (−z)-direction assumptionmakes kx and ky
the sufficient parameters to locate the involved wavevectors.
Accordingly, in (A3), â†kx,ky is the shorthand notation for

â†k = â†
kx,ky,

√
k2−k2x−k2y

:= â†kx,ky . (A4)

The 2-D inverse Fourier transform of ξ̃ (kx, ky) denotes the
photon-wavepacket’s spatial amplitude

ξ (x, y) = 1

2π

∫∫
dkxdky ξ̃ (kx, ky)e

i(kxx+kyy) (A5)

which is the photon-wavefront. Sometimes we use the term
photon-wavefront instead of the equivalent term photon-
wavepacket to emphasize the photon-wavepacket’s spatial
representation. The corresponding 2-D Fourier transform of
the wavefront reads

ξ̃ (kx, ky) = 1

2π

∫∫
dxdy ξ (x, y)e−i(kxx+kyy) . (A6)

This article adds the tilde sign and removes the tilde sign
over a function to denote the Fourier transform and the in-
verse Fourier transform of the function in the spatial domain,
respectively.

Plugging (A6) into the photon-wavepacket creation oper-
ator (A3) gives

â†ξ =
∫∫

dxdy ξ (x, y)â†x,y (A7)

where

â†x,y = 1

2π

∫∫
dkxdky â

†
kx,ky

e−i(kxx+kyy) (A8)

and its inverse Fourier transform is:

â†kx,ky = 1

2π

∫∫
dxdy â†x,ye

i(kxx+kyy) . (A9)

It is worth noting that since the operations and measure-
ments usually perform in the spatial domain, we choose the
wavepackets’ representation in the spatial space, known as
wavefront, for the subscript of the photon-wavepacket cre-
ation operators, rather than its representation in the wavevec-
tor space. In the above equations, ξ and ξ̃ represent the same
photon-wavepacket in the spatial and wavevector spaces,
respectively. However, photon-wavepacket creation opera-
tor â†ξ takes ξ , the wavefront, for its subscript but not ξ̃
[compare (A3) with (A7)].

A. MULTIFREQUENCY MODE
The first line of (A3) denotes the general photon-wavepacket
creation operator, where photon-wavepacket ξ̃ (K) gives the
probability amplitude that the associated single-photon be
in wavevector K. Above, due to the single-frequency-mode
assumption and no-propagation in the (−z)-direction as-
sumption, the two wavevector’s components kx and ky be-
came sufficient parameters to locate the wavevector K =
(kx, ky, kz) = (kx, ky,

√
k2 − k2x − k2y ) [see (A4)]. As a result,

the volume integration was reduced to the integration over
the surface, which is the upper hemisphere in Fig. 6.
This section allows a single-photon to occupy multiple

frequencies (wavenumbers) K = ω
c . Furthermore, it holds

the no-propagation in (−z)-direction assumption. There-
fore, wavenumber (wave-frequency) K = ω

c together with
wavevector’s components kx and ky can locate the wavevec-
tor K. For the sake of practicality, we choose frequency ω
rather than wavenumber K to locate the wavevector K. This
choice alters the photon-wavepacket creation operator (A3)
as follows:

â†ξ =
∫
d3K ξ̃ (K)â†K

≡
∫∫∫

dωdkxdky ξ̃ (ω, kx, ky)â
†
kx,ky

(ω) . (A10)

Similar to (A5) and (A6), we introduce wavefront function ξ
as the inverse Fourier transform of ξ̃

ξ (ω, x, y) = 1

2π

∫∫
dkxdky ξ̃ (ω, kx, ky)e

i(kxx+kyy)

ξ̃ (ω, kx, ky) = 1

2π

∫∫
dxdy ξ (ω, x, y)e−i(kxx+kyy) . (A11)
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This article uses the frequency-dependent photon-wavefront
function (ξ (ω, x, y)) in the subscript of the photon-
wavepacket creation operator â†ξ

â†ξ =
∫∫∫

dωdxdy ξ (ω, x, y)â†x,y(ω)

=
∫∫∫

dωdkxdky ξ̃ (ω, kx, ky)â
†
kx,ky

(ω) . (A12)

The above equation is equivalent to (A10) in the wavevector
space.
For the sake of completeness, we consider the Fourier

transform of the photon-wavepacket with respect to angular
frequency ω, which gives the representation of the photon-
wavepacket in the time domain [42]

ξ̇ (t, x, y) = 1√
2π

∫
dω ξ (ω, x, y)e−iωt

= 1

(2π )
3
2

∫∫∫
dkxdkydωξ̃ (ω, kx, ky)e

i(kxx+kyy−ωt)

˙̃ξ (t, kx, ky) = 1√
2π

∫
dω ξ̃ (ω, kx, ky)e

−iωt

= 1

(2π )
3
2

∫∫∫
dxdydω ξ (ω, x, y)e−i(kxx+kyy+ωt)

(A13)

where (A11) is used, and the dot sign over the function
denotes the representation of the photon-wavepacket in the
time domain. This article adds the dot sign and removes
the dot sign over a photon-wavepacket function to represent
the Fourier transform and the inverse Fourier transform of
the function in the frequency domain, respectively. There-
fore, we use four representations for the photon-wavepacket
ξ (ω, x, y), ξ̇ (t, x, y), ξ̃ (ω, kx, ky), and ˙̃ξ (t, kx, ky), related to
each other as shown in (A5), (A6), (A11), and (A13). Let us
highlight that as (A2) indicates, all the representations of the
photon-wavepacket are normalized, for example∫∫∫

dωdxdy|ξ (ω, x, y)|2 = ‖ξ‖2 = 1

∫∫∫
dtdkxdky| ˙̃ξ (t, kx, ky)|2 = ‖ ˙̃ξ‖2 = 1 . (A14)

In some situations, quantum light’s spatial occupa-
tion mode becomes unimportant, such as single-mode
fibers. For example, suppose a photon occupying a sin-
gle spatial mode with central coordinate (〈x〉, 〈y〉); there-
fore, its frequency-dependent photon-wavefront function is
rewritable as ξ (ω, x, y) = ξ (ω)ξ〈x〉,〈y〉(x, y). This photon-
wavepacket function reduces (A12) as follows:

â†ξ =
∫∫∫

dωdxdy ξ (ω)ξ〈x〉,〈y〉(x, y)â†x,y(ω)

=
∫
dω ξ (ω)â†〈x〉,〈y〉(ω) (A15)

where

â†〈x〉,〈y〉(ω) =
∫∫

dxdy ξ〈x〉,〈y〉(x, y)â†x,y(ω) . (A16)

Note that the photon-wavefront of a point source at (〈x〉, 〈y〉)
is the normalized function ξ〈x〉,〈y〉(x, y), i.e., ‖ξ〈x〉,〈y〉‖ = 1.
Thus, when the shape of photon-wavefront is of no account,
instead of the photon-wavefront, we may write its central
point at the subscript of the creation operator [compare (A7)
with (A16)]. Furthermore, for systems that even the central
point is trivial, such as collimated quantum light or quantum
light in optical fibers, the subscripts 〈x〉, 〈y〉 become redun-
dant. Then, for simplicity, one can rewrite (A15) as follows:

â†ξ =
∫
dω ξ (ω)â†(ω) (A17)

which is the notation used in [34].
To sum up, suppose the photon-wavepacket function is

separable into normalized functions of independent vari-
ables, for example, ξ (ω, x, y) = ξ (ω)ξ (x, y) with Fourier
dual ˙̃ξ (t, kx, ky) = ξ̇ (t )ξ̃ (kx, ky). And imagine the considered
operation depends on independent variables, for example,
time evolution operator (8), which depends only on fre-
quency ω. If this is the case, one can drop the unintended
variables such as in (A17) and grating operation Fig. 2. As
another example, when the considered quantum operations
are independent of frequency ω and the photon-wavepacket
is separable, we write

â†ξ =
∫∫∫

dωdxdy ξ (ω, x, y)â†x,y(ω)

=
∫∫

dxdyξ (x, y)
∫
dωξ (ω)â†x,y(ω)

=
∫∫

dxdyξ (x, y)â†x,y (A18)

where

â†x,y =
∫
dωξ (ω)â†x,y(ω) . (A19)

Such systems are the main focus of this article, where we
drop frequency ω from consideration.

APPENDIX B
RESCALING PROPORTIONALITY RELATION FOR THE
FIELD OPERATORS
The commutation relations for the spatial and wavevector
field operators are as follows:[

âkx,ky , â
†
k′x,k′y

]
= δ(kx − k′x)δ(ky − k′y) (B1a)[

âx,y, â
†
x′,y′
]

= δ(x− x′)δ(y− y′) (B1b)

where δ denotes the Dirac delta function. To obtain the
rescaling proportionality relation for the field operators, we
assume parameters u and v are, respectively, related to pa-
rameters x and y with rescaling proportionality constants α
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and β, i.e., x = αu and y = βv. Substituting these relations
into (B1b) gives[

âαu,βv, â
†
αu′,βv′

]
= δ

(
α(u− u′)

)
δ
(
(β(v − v′)

)

= δ
(
u− u′) δ (v − v′)

|αβ|

=
[
âu,v, â

†
u′,v′

]
|αβ| (B2)

where the Dirac delta function’s proportionality rela-
tion δ(α(u− u′)) = δ(u−u′ )

|α| and (B1) are used. Equa-

tion (B2) is rewritable as [
√|αβ|âαu,βv,

√|αβ|â†
αu′,βv′ ] =

[âu,v, â
†
u′,v′ ], which denotes the rescaling proportionality re-

lation for the field operator is

â†αx,βy = 1√|αβ| â
†
x,y. (B3)

The field’s rescaling (B3) can only be used in the context of
its corresponding photon-wavepacket’s integrand.

APPENDIX C
LENS QUANTUM OPERATION
The quantum transformation operator from the front fo-
cal plane to the back focal plane of the lens can be ex-
pressed as the products of three sequential operators, L̂ =
T̂( f )Ûφl T̂( f ). We follow these three operations to evaluate
the transformation of operator L̂ on photon-wavepacket cre-
ation operator â†ξ .
The first transformation, the displacement transition by

distance f , is due to the displacement from the front focal
plane up to the lens, which under the paraxial (Fresnel) ap-
proximation (14) becomes

T̂Fr ( f )â†ξ T̂
Fr†( f ) = â†

ξ− (C1)

where the photon-wavepacket at the front of the lens in the
wavevector space is given by (16) for z = f

ξ̃−(kx, ky) = ξ̃ Frf (kx, ky)

= ξ̃ (kx, ky)e
ik f

(
1− k2x

2k2
− k2y

2k2

)
. (C2)

Using the Fourier transform (A5), the spatial representation
(wavefront) reads

ξ−(x, y) = 1

2π

∫∫
dkxdky ξ̃

−(kx, ky) ei(kxx+kyy). (C3)

The minus sign in the superscript of ξ−(x, y) indicates
the photon-wavefront before entering the lens. After exiting
the lens, the lens transforms the photon-wavepacket creation
operator as follows:

Ûφl â
†
ξ−Û

†
φl

=
∫∫

dxdy ξ−(x, y) Ûφl â
†
x,yÛ

†
φl

=
∫∫

dxdy ξ−(x, y) e−iφl (x,y) â†x,y

=
∫∫

dxdy ξ−(x, y) e−i
k
2 f (x

2+y2) â†x,y

=
∫∫

dxdy ξ+(x, y) â†x,y

= a†
ξ+ (C4)

where the lens phase function (25) is used, and the photon-
wavefront ξ+(x, y) (the plus superscript denotes after exiting
the lens) is defined as

ξ+(x, y) = ξ−(x, y) e−i
k
2 f (x

2+y2)

= 1

2π

∫∫
dkxdky

⎡
⎣ξ̃ (kx, ky)eik f

(
1− k2x

2k2
− k2y

2k2

)

× e−i
k
2 f (x

2+y2)+i(kxx+kyy)
]

(C5)

where (C2) and (C3) are used. The displacement transition
operator (10) is diagonal in the wavevector basis. To apply
the final displacement transition from the lens up to the back
focal plane, therefore, using (A6), we calculate the photon-
wavepacket amplitude in the wavevector basis

ξ̃+(k′x, k
′
y) = 1

2π

∫∫
dxdy ξ+(x, y)e−i

(
k′xx+k′yy

)

= −i f
k
e
ik f

(
1+ k′x2

2k2
+ k′y2

2k2

)
ξ

(
− f

k
k′x,−

f

k
k′y

)
(C6)

where integration

Int : = 1

2π

∫∫
dxdye−i

k
2 f (x

2+y2)e−i
(
(k′x−kx )x+(k′y−ky )y

)

= −i f
k
ei

f
2k ((k

′
x−kx )2+(k′y−ky )2 ) (C7)

is used, and (A5) replaces the inverse Fourier trans-
form of ξ̃ (kx, ky) at x = − f

k k
′
x and y = − f

k k
′
y with

ξ (− f
k k

′
x,− f

k k
′
y). After the displacement operation T̂Fr ( f )

(C1) and the lens spatial modulation Ûφl (C4) of the lens
operator L̂ = T̂Fr ( f )Ûφl T̂

Fr ( f ), eventually, the Fresnel
displacement transition (13) from lens to the back focal
plane transforms the photon-wavepacket creation operator
as follows:

L̂â†ξ L̂
† = T̂Fr ( f )Ûφl T̂

Fr ( f )â†ξ T̂
Fr†( f )Û

†
φl
T̂Fr†( f )

= T̂Fr ( f )Ûφl â
†
ξ−Û

†
φl
T̂Fr†( f )

= T̂Fr ( f )â†
ξ+ T̂

Fr†( f )

=
∫∫

dk′xdk
′
y ξ̃

+(k′x, k
′
y)
(
T̂Fr ( f )â†k′x,k′y

T̂Fr†( f )
)
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=
∫∫

dk′xdk
′
y ξ̃

+(k′x, k
′
y) e

ik f

(
1− k′x2

2k2
− k′y2

2k2

)
â†k′x,k′y

= −i f
k
e2ik f

∫∫
dk′xdk

′
yξ

(
− f

k
k′x,−

f

k
k′y

)
â†k′x,k′y

(C8)

where (C6) is used to substitute ξ̃+(k′x, k′y). Equation (C8)

shows the transformation of lens operator L̂ on the photon-
wavepacket creation operator in the wavevector space.
Equivalently, one can write this transformation on spatial
mode

L̂â†ξ L̂
† =

∫∫
dxdy ξ̃ ′(x, y) â†x,y

= â†
ξ̃ ′ (C9)

where the wavefront function ξ̃ ′ can be achieved, as (A5)
demonstrates, by inverse Fourier transforming the photon-
wavepacket amplitude in the wavevector space of (C8),
which gives

ξ̃ ′(x, y) = 1

2π

−i f
k
e2ik f

∫∫
dk′xdk

′
y ξ

×
(
− f

k
k′x,−

f

k
k′y

)
e
i
(
k′xx+k′yy

)

= −ik
f
e2ik f

(
1

2π

∫∫
dkxdky ξ (kx, ky)e

−i
(
kx

k
f x+ky kf y

))

= −ik
f
e2ik f ξ̃

(
k

f
x,
k

f
y

)
(C10)

where (A6) is used for the Fourier transform of
wavepacket ξ (kx, ky). Therefore, the lens transforma-
tion (C9) indicates that the lens operator L̂ reshapes the
photon-wavefront. Furthermore, as the second line of (C10)
shows, the reshaped wavefront of the lens output photon
corresponds to the Fourier transform of the input wavefront.
In other words, a lens performs Fourier transformation on
the photon-wavepacket of creation operator â†ξ .
Due to the unitarity of the quantum Fourier optics op-

erators T̂Fr ( f ) , Ûφl , and L̂, one can show that all photon-
wavepackets [see (C2), (C6), and (C10)] holds the normal-
ization condition, i.e. ‖ξ̃−‖ = ‖ξ̃+‖ = ‖ξ̃ ′‖ = 1.

APPENDIX D
QUANTUM 4F-PROCESSING SYSTEM
Fig. 4 shows a 4f-processing system whose operation on
photon-wavepacket creation operators is expressed by

(43), F̂Fφp â
†
ξ F̂F

†
φp

= â†η. Let us first consider the quantum

operation of the second lens of Fig. 4, L̂â†
η̃′ L̂

† = â†η, where
the relation between the output photon-wavefront η and
the second lens’ input photon-wavefront η̃′ is given by the

photon-wavefront Fourier transformation (C10)

η(x, y) = −ik
f
e2ik f

1

2π

∫∫
dkxdkyη̃

′(kx, ky)e
−i
(
kx

k
f x+ky kf y

)
.

(D1)
Also, the relation between photon-wavefront η̃′, the input to
the second lens, and photon-wavefront ξ̃ ′(x, y), the output of
the first lens, is given by (41), η̃′(x, y) = ξ̃ ′(x, y)e−iφp(x,y),
where ξ̃ ′(x, y), the output of the first lens, is related
to its input by the lens photon-wavefront Fourier
transformation (C10). Therefore, (41) and (C10) give

η̃′(x, y) = ξ̃ ′(x, y) e−iφp(x,y)

= −ik
f
e2ik f ξ̃

(
k

f
x,
k

f
y

)
e−iφp(x,y)

= −ik
f
e2ik f ξ̃

(
k

f
x,
k

f
y

)
P(x, y) (D2)

where P(x, y) = e−iφp(x,y) is the pupil phase factor. Plugging
the above equation into (D1) gives

η(x, y) = −k2
f 2

ei4k f
1

2π

∫∫
dkxdky

[
ξ̃

(
k

f
kx,

k

f
ky

)
P(kx, ky)

× e
−i
(
kx

k
f x+ky kf y

)]

= 1

2π

∫∫
dk′xdk

′
y

[
ξ̃ (−k′x,−k′y)

×
(

−ei4k f P(− f

k
k′x,−

f

k
k′y)
)
e
i
(
k′xx+k′yy

)]

= 1

2π

∫∫
dk′xdk

′
y ξ̃ (−k′x,−k′y) h̃(k′x, k′y) ei

(
k′xx+k′yy

)

= 1

2π

∫∫
dx′dy′ ξ (−x′,−y′) h(x− x′, y− y′)

= ξ (−x,−y) ∗ h(x, y) (D3)

where k′x = − k
f kx, k

′
y = − k

f ky, and the transfer function of
the 4f-processing system is

h̃(kx, ky) = −ei4k f P
(

− f

k
kx,− f

k
ky

)

= −ei4k f e−iφp(− f
k kx,− f

k ky ) . (D4)

The third line of (D3) indicates that the Fourier transform
of the 4f-operation’s output photon-wavefront η(x, y)
is ξ̃ (−kx,−ky) h̃(kx, kx). Therefore, according to the
convolution theorem, the 4f-operation’s output photon-
wavefront η(x, y) corresponds to the convolution of the
inverse Fourier transform of ξ̃ (−kx,−ky) and h̃(kx, kx),
expressed in the last line of (D3).
According to the scaling property of the Fourier trans-

form, FT[ f (ax)] = 1
|a| f̃ (

kx
a ), the inverse Fourier transform

of ξ̃ (−kx,−ky) is the parity transformed input photon-
wavefront, ξ (−x,−y), and the inverse Fourier transform of
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the transfer function h̃(kx, kx) gives

h(x, y) = 1

2π

∫∫
dkxdkyh̃(kx, kx)e

i(kxx+kyy)

= −ei4k f

2π

∫∫
dkxdky P

(
− f

k
kx,− f

k
ky

)
ei(kxx+kyy)

= − k2

f 2
ei4k f

2π

∫∫
dk′xdk

′
y P(k

′
x, k

′
y)e

−i
(
k′x( kf x)+k′y( kf y)

)

= −ei4k f k
2

f 2
P̃

(
k

f
x,
k

f
y

)
(D5)

where P̃ is the Fourier transform of the pupil phase fac-
tor P(x, y) = e−iφp(x,y), and h is defined to be the impulse
response (the point-spread function or Green’s function) of
the 4f-processing system with pupil P(x, y).

One can show the photon-wavepacket η(x, y) at the output
of the 4f-processing system for the phase-only pupil (D3) is
a normalized function, ‖η‖ = 1.

It is worth noting that, in this article, the convolution of
functions f (t ) and g(t ) is defined as follows:

f (t ) ∗ g(t ) : = 1√
2π

∫ ∞

−∞
f (t − τ )g(τ )dτ

= 1√
2π

∫ ∞

−∞
f (τ )g(t − τ )dτ . (D6)

A. PERIODIC PUPIL PHASE FACTOR
Assume pupil phase factor P(x, y) = e−iφp(x,y) is a periodic
function with period dx in the x-direction and period dy in
the y-direction. Therefore, according to the Fourier trans-
form theory, the phase factor’s spatial frequency intervals are
κx = 2π

dx
and κy = 2π

dy
for the x and y directions, respectively;

accordingly, the phase factor is expressible as

P(x, y) =
∑
r

∑
s

qrse
i(rκxx+sκyy) (D7)

where qrs is the Fourier coefficient of pupil phase fac-
tor P(x, y) = e−iφp(x,y) corresponding to the 2-D spatial fre-
quencies rκx and sκy in x and y directions, respectively

qrs = 1

dxdy

∫ dy

0
dy
∫ dx

0
dxP(x, y)e−i(rκxx+sκyy) . (D8)

Consider a 4f-processor with periodic pupil phase fac-
tor (D7). Its impulse response function (D5) becomes

h(x, y) = −ei4k f 1

2π

∫∫
dkxdky P

(
− f

k
kx,− f

k
ky

)
ei(kxx+kyy)

= −ei4k f 1

2π

∑
r,s

[
qrs

×
∫∫

dkxdkye
i
(
kx(x−r fκxk )+ky(y−s fκyk )

)]

= −2πei4k f
∑
r,s

qrsδ

(
x− r

fκx
k

)
δ

(
y− s

fκy
k

)

= −2πei4k f
∑
r,s

qrsδ(x− rx(1))δ(y− sy(1))

= −2πei4k f
∑
r,s

qrsδ(x− x(r) )δ(y− y(s) ) (D9)

where the 4f-impulse response lattice-constants x(1) and
y(1) are defined as x(1) = fκx

k and y(1) = fκy
k . Therefore,

the lattice point (r, s) has x-coordinate x(r) = rx(1) and y-
coordinate y(s) = sy(1). Equation (D9) denotes a discrete
power spectral density due to the periodicity assumption of
the pupil phase factor.
The 4f-processor with the latticelike impulse re-

sponse (D9) transforms the input photon-wavepacket ξ (x, y)
as follows [use (D3)]:

η(x, y) = ξ (−x,−y) ∗ h(x, y)

= 1

2π

∫∫
dx′dy′ ξ (−x′,−y′) h(x− x′, y− y′)

= − ei4k f
∑
rs

qrs

∫∫
dx′dy′

[
ξ (−x′,−y′)

× δ(x− x′ − x(r) )δ(y− y′ − y(s) )
]

= − ei4k f
∑
r,s

qrsξ (−(x− x(r) ),−(y− y(s) ))

= − ei4k f
∑
r,s

qrsξ̄ (x− x(r), y− y(s) )

= − ei4k f
∑
r,s

qrsξ̄r,s(x, y) (D10)

where the bar sign over the wavepacket indicates the parity
transformation on the wavepacket, i.e., ξ̄ (x, y) = ξ (−x,−y).
Photon-wavepacket ξ̄r,s = ξ̄ (x− x(r), y− y(s) ) has the same
shape as wavepacket ξ̄ (x, y), yet its origin is shifted to the
lattice point (r, s) with coordinate (x(r), y(s) ). Therefore, the
single-photon creation operator â†η with wavefront (D10) is
rewritable as the following form:

â†η =
∫∫

dxdy η(x, y) â†x,y

= −ei4k f
∑
r,s

qrs

∫∫
dxdy ξ̄r,s(x, y) â

†
x,y

= −ei4k f
∑
r,s

qrs â
†
ξ̄r,s
. (D11)

B. CYCLIC ORTHOGONALITY OF PHASE FACTOR’S
FOURIER COEFFICIENTS
The pupil phase factor is a unit complex number at all x and y
positions, |P(x, y)|2 = |e−iφp(x,y)|2 = 1. This unitarity prop-
erty, taking the pupil phase factor’s Fourier transform (D7),
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gives

|P(x, y)|2 =
∑
r,s
r′s′

qrsq
∗
r′s′e

i(rκxx+sκyy)e−i(r
′κxx+s′κyy)

=
∑
r,s
r′s′

qrsq
∗
r′s′e

i((r−r′ )κxx+(s−s′ )κyy)

=
∑
r,s

|qrs|2 +
∑
r,s
r′ �=r
s′ �=s

qrsq
∗
r′s′e

i((r−r′ )κxx+(s−s′ )κyy)

=
∑
r,s

|qrs|2 +
∑
r,s
r′′ �=0
s′′ �=0

qrsq
∗
r−r′′,s−s′′e

i(r′′κxx+s′′κyy)

=
∑
r,s

|qrs|2

+
∑
r′′ �=0
s′′ �=0

ei(r
′′κxx+s′′κyy)

(∑
r,s

qrsq
∗
r−r′′,s−s′′

)

(D12)

where the substitution r′′ = r − r′ and s′′ = s− s′ is used.
Since the above equation should be one for any x and y val-
ues, the first term is one,

∑
r

∑
s |qrs|2 = 1, and the second

is zero, implying
∑

r

∑
s qrsq

∗
r−r′′,s−s′′ = 0. Therefore, we

combine these two results and, in short, write∑
r

∑
s

qrsq
∗
r−r′′,s−s′′ = δr′′,0δs′′,0 . (D13)

The above equation indicates that the pupil phase factor’s
Fourier coefficients form a cyclic orthogonal unit vector.
In other words, vector q = (. . . , q−1,−1 , q−1,0 , q−1,1 , . . . ,

q0,−1 , q0,0 , q0,1 , . . .) is a unit vector, |q|2 = 1, and is or-
thogonal to any of its nonzero element-shifted unit vec-
tors q′, i.e., q.q′ = 0. For example, for an element shift
of +1, q′ = (. . . , q−1,0 , q−1,1 , q−1,2 , . . . , q0,0 , q0,1 , q0,2 , . . .),
and q.q′ = 0.

C. INVERSE OF 4F-PROCESSOR
Equation (43), the unitary transformation of a 4f-processing
system on a single photon creation operator, and its inverse
are

F̂Fφp â
†
ξ F̂F

†
φp

= â†η

F̂F
†
φp
â†η F̂Fφp = â†ξ . (D14)

Considering (3) and (D14), one can show that the quan-
tum 4f-operator F̂Fφp transforms the quantum light |ψ〉 =
f (â†ξ )|0〉 to quantum state F̂Fφp|ψ〉 = f (â†η )|0〉 = |〉 [as

denoted in (44)]. Also, its conjugated 4f-operator F̂F
†
φp

re-

verses the operation, i.e., F̂F
†
φp

|〉 = |ψ〉. This section finds
the relation between the pupil phase factor P(x, y) of the

4f-processor and its inverse operation’s pupil phase fac-
tor P−(x, y). Assume the corresponding impulse response of

operator F̂Fφp (F̂F
†
φp
) is h(x, y) (h−(x, y)), which, according

to (D3), transforms the input photon-wavepackets η(x, y)
(ξ (x, y)) as follows:

η(x, y) = ξ (−x,−y) ∗ h(x, y)
ξ (x, y) = η(−x,−y) ∗ h−(x, y) . (D15)

According to the convolution theorem, the Fourier trans-
forms of (D15) is

η̃(kx, ky) = ξ̃ (−kx,−ky)h̃(kx, ky)
ξ̃ (kx, ky) = η̃(−kx,−ky)h̃−(kx, ky) (D16)

which gives the following relation between the transfer
function h̃(kx, kx) of operator F̂Fφp and the transfer func-

tion h̃−(kx, kx) of operator F̂F
†
φp

h̃−(kx, ky) = 1

h̃(−kx,−ky)
. (D17)

Plugging (D4) (ignore its trivial traveling phase factor ei4k f ),
which relates the 4f-operator’s transfer function to its pupil
phase factor, into (D17) gives

e−iφp− (− f
k kx,− f

k ky ) = eiφp(
f
k kx,

f
k ky ) (D18)

where P(x, y) = e−iφp(x,y) and P−(x, y) = e−iφp− (x,y) are the

pupil’s phase factors of operator F̂Fφp and F̂F
†
φp
, respectively.

Therefore, (D18) indicates that

P−(x, y) = P∗(−x,−y) . (D19)

As denoted in (D7), under the periodicity assumption of the
pupil phase factors, phase factors are expressible as follows:

P(x, y) =
∑
r

∑
s

qrse
i(rκxx+sκyy)

P−(x, y) =
∑
r

∑
s

q−
rse

i(rκxx+sκyy) . (D20)

Inserting (D20) into (D19) gives the following relation be-
tween the Fourier coefficients qrs of the Pupil P(x, y) and q−

rs
of P−(x, y)

q−
rs = q∗

rs . (D21)

Therefore, noting (D13) and (D21), the Fourier coefficients
of the Pupil P(x, y) and P−(x, y), qrs and q−

rs, are cyclic
orthogonal to each other.

APPENDIX E
QUANTUM PULSE SHAPING
A. DETERMINISTIC PULSE SHAPING CONDITIONS
As discussed in Section VI-A and shown in (56), a 4f-
Processor with periodic pupil phase factor (54) maps each
frequency component of the input photons into latticelike
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points with frequency-dependent lattice-constant (48)

x(1)ω = f cκx
ω

. (E1)

Still, two lattice points of two different frequencies may over-
lap, which we need to prevent for perfect and deterministic
quantum pulse shaping.
The central lattice-point x(r)ω = rx(1)ω = 0 for r = 0 is the

common lattice-point for all frequencies. Therefore, for
a complete frequency separation, we assume the central
lattice-point’s probability amplitude pr=0 vanishes (p0 = 0);
in other words, the Fourier transform of the pupil phase fac-
tor (54) has no dc term.
The output lattice-constant x(1)ω is proportional to the in-

verse of angular frequency ω, x(1)ω ∝ 1
ω
. Then, the higher

the frequency is, the shorter its corresponding lattice-
constant x(1)ω becomes. Consequently, it is possible that two
noncentral lattice-points of two different frequency com-
ponents also overlap, which we need to avoid for achiev-
ing a perfect frequency separation and then a determin-
istic quantum pulse shaping operation. Assume ωmin and
ωmax are, respectively, the minimum and maximum angu-
lar frequency components that the input photons occupy,
i.e., ξ (ω) = 0 ∀ ω /∈ (ωmin, ωmax). The lattice-constants for
these limiting frequency components are (x(1)ω )max = f c κx

ωmin

and (x(1)ω )min = f c κx
ωmax

, respectively. The min-lattice’s farthest

occupied lattice-point, (x(R)ω )min = R(x(1)ω )min, should be be-
yond the max-lattice’s second farthest occupied lattice-point,
(x(R−1)
ω )max = (R− 1)(x(1)ω )max, i.e.,

(x(R−1)
ω )max < (x(R)ω )min

(R− 1)(x(1)ω )max < R(x(1)ω )min

(R− 1)x(1)ωmin
< Rx(1)ωmax

(R− 1)
f c κx
ωmin

< R
f c κx
ωmax

(R− 1)ωmax < Rωmin (E2)

which gives the deterministic pulse shaping condition as

ωmax

ωmin
<

R

R− 1
(E3a)

or equivalently as

	ω <
ωmax

R
(E3b)

where 	ω = (ωmax − ωmin) is the photon spectral band-
width. Note that if R equals one, (E3b) becomes	ω < ωmax,
which is satisfied for any photon-wavepacket ξ (ω).
In conclusion, if p(r=0) = 0 and the photon bandwidth	ω

is shorter than ωmax
R , the 4f-processor spatially separates dif-

ferent spectral components of the input point source as (56).
Therefore, it is possible to find the frequency-mapped func-
tion�(x), which determines the frequency component going
to position x.

B. FREQUENCY-MAPPED FUNCTION �(x)
The x-coordinate of rth order of diffraction for frequency ω
is as follows:

x(r)ω = rx(1)ω = r
fκx
k

= r
f cκx
ω

(E4)

where (48) is used. The rth order of diffraction happens with
probability amplitude pr as (56) indicates. Assume the con-
ditions of no frequency overlap holds, meaning r �= 0, and
	ω < ωmax

R as presented in (E3b). Therefore, one can find
function�(x), which gives the mapped angular frequency at
each position x; therefore, �(x(r)ω ) = ω for 1 ≤ |r| ≤ R. To
find function �(x), we use (E4), which gives

x(r)ω

x(r)ωmax

= ωmax

ω
.

Then

ω = ωmax
x(r)ωmax

x(r)ω

= ωmax
rx(1)ωmax

x(r)ω
. (E5)

Thus, we can define the frequency-mapped function �(x) as
follows:

�(x) = ωmax
r(x)x(1)ωmax

x
(E6)

where r(x) determines that diffraction order is mapped to
position x. The smallest lattice-constant corresponds to the
highest frequency (ωmax) denoted as x

(1)
ωmax , which determines

the cutting edge of the lowest allowed frequency. Further-
more, since the maximum diffraction order of the grating
is R, we can define a diffraction order mapped function r(x)
as follows:

r(x) = sgn(x)min

(
R,

⌊
| x

x(1)ωmax

|
⌋)

(E7)

where sgn(x), �x�, and |x| indicate the sign function of x,
the floor function of x, and the absolute value function of x,
respectively. Substitution of (E7) into (E6) gives

�(x) = min

(
R,

⌊
|x|
x(1)ωmax

⌋)
x(1)ωmax

|x| ωmax . (E8)

Let us consider angular frequency ω0, ωmin < ω0 < ωmax.
The rth order of diffraction maps this frequency to posi-

tion x = x(r)ω0 = rx(1)ω0 = r
x(1)ωmax
ω0/ωmax

, where (E5) is used. To in-

spect if �(x(r)ω0 ) = ω0, we plug x = x(r)ω0 in (E8), which gives

�(x(r)ω0 ) = min

(
R,

⌊
|x(r)ω0 |
x(1)ωmax

⌋)
x(1)ωmax

|x(r)ω0 |
ωmax

= min

⎛
⎜⎝R,

⎢⎢⎢⎢⎣ |r x(1)ωmax
ω0/ωmax

|
x(1)ωmax

⎥⎥⎥⎥⎦
⎞
⎟⎠ x(1)ωmax

|r x(1)ωmax
ω0/ωmax

|
ωmax
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= ω0 min

(
R,

⌊
|r|ωmax

ω0

⌋)
1

|r| . (E9)

To evaluate min(R, �|r|ωmax
ω0

�), note that ωmin < ω0, and use
(E3a), which give

|r|ωmax

ω0
< |r|ωmax

ωmin
< |r| R

R− 1
= |r| + |r|

R− 1
. (E10)

Also, since ω0 < ωmax, therefore, |r| < |r|ωmax
ω0

, and together
with (E10), we can write

|r| < |r|ωmax

ω0
< |r| + |r|

R− 1
. (E11)

From (E11), if |r| ≤ R− 1, we get �|r|ωmax
ω0

� = |r|, hence,
min(R, �|r|ωmax

ω0
�) = |r|. Also, if diffraction order r gets its

extreme values ±R, i.e., |r| = R, From (E11) we have R <
|R|ωmax

ω0
; therefore, min(R, �|R|ωmax

ω0
�) = R = |r|. In conclu-

sion, for all possible diffraction orders of the grating, i.e.,
|r| ≤ R, we get the following simplification:

min

(
R,

⌊
|r|ωmax

ω0

⌋)
1

|r| = |r| (E12)

which reduces (E9) as

�(x(r)ω0 ) = ω0 (E13)

the proof of concept.

APPENDIX F
SIMULATION
This article presents several simulation results to illustrate
the evolution of photon-wavepacket through the quantum
Fourier optical systems. For these simulations, we consider
a single photon in a Gaussian wavefront (state) or a super-
position of several Gaussian wavefronts as the input of the
Fourier optical system. A python 3 script simulates the evo-
lution of the photon-wavepacket and creates the propagating
photon-wavepacket data in OpenVDB format. The Open-
VDB data file is, for higher quality and a 3-D representation
of data, imported into the blender 3 software and visualized.
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