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ABSTRACT Quantum software frameworks provide software engineers with the tools to study quantum
algorithms as applied to practical problems. We implement classical hash functions MD5, SHA-1, SHA-2,
and SHA-3 as quantum oracles to study the computational resource requirements of conducting a preim-
age attack with Grover’s algorithm. We introduce an improvement to the SHA-3 oracle that reduces the
number of logical qubits required in the Keccak block permutation by 40%. The source code is available at
https://github.com/rhpreston/grovers-hash-functions.

INDEX TERMS Cryptographic hash function, quantum algorithm, quantum computing, quantum informa-
tion science, software engineering.

I. INTRODUCTION
Consider the following scenario. On a certain banking web-
site, customers log in by entering their username and pass-
word. Before being sent to the server for authentication, the
password is salted (randomdata is appended) and then passed
through a cryptographic hash function.1

Suppose an attacker gains access to the plaintext hash and
salt. Assuming an ideal hash function, the only way to re-
cover the original password is with guess-and-check, a.k.a.
brute force. For an eight-character password consisting of
random characters, the attacker would have to check approx-
imately 264 = 1.8 × 1019 combinations. At a rate of 1 billion
checks per second, it would take on average 292 years to find
the password, at which point it is probably useless.
But what if the attacker had access to a powerful quantum

computer? With Grover’s algorithm, the password could be
found directly in

√
264 = 4.3 × 109 iterations [1]. Assuming

the same rate of 1 billion iterations per second, this could
be accomplished in a matter of seconds. The attacker could
then log in and steal the customer’s funds before the breach
is detected. Fortunately, in this scenario, today’s quantum
computers are not capable of performing computations of
this scale. However, it is critically important to understand
precisely what computational resources would be required
for such an attack.

1A hash function is an algorithm designed to scramble data in a determin-
istic fashion so that 1) the same input always produces the same output but
2) given the output, it is difficult to determine what input produces it. This is
also called a “one-way” or “trapdoor” function because it is relatively easy
to compute in one direction but practically impossible to go backward.

The objective of this research was to study the computa-
tional cost of conducting a preimage attack onMD5, SHA-1,
SHA-2, and SHA-3 with Grover’s algorithm. We used Mi-
crosoft’s Quantum Development Kit (QDK) to implement
each hash function as a quantum oracle, validate the imple-
mentations through simulation, and then estimate the quan-
tum hardware requirements to apply Grover’s algorithm.

A. BACKGROUND
Grover’s algorithm can reverse a black-box function im-
plemented as a quantum oracle in O(

√
N ) iterations with

O(log2 N) qubits, with N being the number of possible input
combinations to the function [1]. In this context, the quantum
oracle phase flips a target qubit when the desired output
is produced (e.g., when the password is correct). Grover’s
algorithm searches for the input(s) that cause the phase flip
to occur.
The steps of the algorithm are given ahead. Assume n is

the number of input bits, N = 2n, and k is the number of
“correct” input combinations or search targets.

1) Allocate n input qubits and 1 target qubit

|I,T〉 = |0⊗n, 0〉 .

2) Apply H to each input qubit

|I,T〉 = 1√
N

N−1∑
i=0

|i〉 ⊗ |0〉 .
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FIGURE. 1. Grover’s algorithm.

3) Apply X to the target qubit

|I,T〉 = 1√
N

N−1∑
i=0

|i〉 ⊗ |1〉 .

4) Do the following �∗�π
4

√
N
k times:

a) Apply the oracle.
b) Apply H to each input qubit.
c) Apply Z to the target qubit, zero-controlled on all input

qubits.
d) Apply H to each input qubit.

5) Measure the input qubits. The result will be a value
that produces the desired output with the probability
approaching 1 for large N. Check the outcome and
repeat if the search failed.

Fig. 1 shows the circuit diagram for Grover’s algorithm.
Note how the oracle is constructed such that any operations
applied in computing the black-box function are reversed.
The challenge in applying Grover’s algorithm to a hash

function lies in translating the classical algorithm into a
quantum one. Referring again to Fig. 1, f and f−1 in the
oracle are not given—they must be designed using quantum
computing primitives. Section II details how MD5, SHA-1,
SHA-2, and SHA-3 can be translated into quantum oracles
so the quantum preimage attack can be conducted.

B. RELATED WORK
The most relevant paper to this work is [2], where Amy
et al. analyze the computational resources required to run
Grover’s algorithm on SHA-256 and SHA3-256, assuming a
surface-code-based quantum computer. They provide oracle
implementations for the hash functions andmake precise, ed-
ucated estimates on the number of logical qubits and surface
code cycles that would be needed. There are the following
three important ways in which our work differs from theirs.

1) Our analysis includes the entire SHA-2 and SHA-3
families, as well as MD5 and SHA-1.

2) We fully implement the preimage attack as a quantum
software program and use a resource estimator to gen-
erate the cost metrics. This approach has benefits and
limitations, as discussed in Section IV.

3) We introduce an improvement to the SHA-3 imple-
mentation that reduces the number of logical qubits
required.

Our research is an example of a “practicality assessment”
of a quantum computing application. Rather than introducing
a novel quantum algorithm, a practicality assessment seeks
to precisely understand the computational requirements of
applying an existing algorithm, with all the implementation
details laid bare. A similar approach is taken by Clapis in his
report [3]. In that work, he finds that the Quantum Pairwise
Sequence Alignment algorithm proposed by Prousalis and
Konfaos [4] relies on a black-box operation that overwhelms
the rest of the algorithm in terms of computational com-
plexity when a practical implementation is attempted. Such
insights are critical as quantum computers become advanced
enough to solve real-world problems.

II. APPROACH
The entirety of this work was conducted using Microsoft’s
QDK, with the majority of the code written in Q#, Mi-
crosoft’s programming language for quantum computing [5].
The QDK provides built-in simulation and estimation ca-
pabilities that allowed us to validate the correctness of the
program before obtaining resource requirement metrics. Of
particular use was the Toffoli simulator, which can simulate
large numbers of qubits but only allows X and controlled X
gates. (It essentially treats the qubits as classical bits.) This
allowed us to fully test any operation that was derived from
a classical function.
The procedure we followed consists of three steps.

1) Implement the hash function as a quantum operation in
Q#.

2) Validate the correctness of the program using the Tof-
foli simulator.

3) Estimate the computational resources required to con-
duct a preimage attack with Grover’s algorithm.

The first step is the most challenging since quantum
and classical computing occupy two completely different
paradigms. It is oftentimes inefficient or even impossible to
translate a classical function directly into a quantum one.
For example, since measurement destroys superposition, you
cannot “set” or “clear” a qubit like you can a classical bit.
This is particularly relevant in managing working memory
because any operations performed on temporary qubits must
be reversed before they can be reused; you cannot just set
them to zero directly. You also cannot create an independent
copy of a qubit (no-cloning theorem [6]), something that is
trivial and highly useful in classical programming.
The remainder of this section describes each hash function

studied and highlights the key differences in their classical
and quantum implementations.
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FIGURE. 2. Single MD5 iteration.

A. MD5
The high-level designs of MD5, SHA-1, and SHA-2 are very
similar to each other. They are all built using a Merkle–
Damgård construction and therefore contain the following
elements [7], [8].

1) The input message is padded using a special function
that extends its length to be a multiple of a certain
number (e.g., 512). A property of the padding function
is that it encodes the original input length.

2) The message is broken up into fixed-length blocks or
chunks that are processed one at a time.

3) The chunks are processed with a one-way compression
function that mixes two fixed-length inputs into an out-
put of length equal to one of the inputs. Specifically,
each chunk is mixed with the output of processing the
previous chunk. (There is an initialization vector tomix
with the first chunk.)

In the case of MD5, SHA-1, and SHA-2, the compression
functions are composed of computational iterations that in-
clude nonlinear Boolean functions, arithmetic addition, and
bitwise rotation. They all follow the same basic pattern but
differ in the specific operations employed. In MD5, there is a
128-b state that is initialized to a fixed value and updated after
each chunk is processed. The compression function applied
to the chunks consists of 64 iterations that transform a copy
of the 128-b state broken into four 32-b working registers,
a, b, c, and d. After the iterations are complete, the registers
are recombined, and the result is added to the original state
before proceeding to the next chunk.
Fig. 2 illustrates the computation involved in a singleMD5

iteration. In the diagram, the plus sign means arithmetic ad-
dition and the clockwise arrow means bitwise left-rotate.2

Wi is a 32-b word in the message block determined by the
iteration index. Ki and si are predetermined constants. Fi is
one of four nonlinear Boolean functions that are each used
for 16 of the 64 iterations per chunk. All values are modulus
32-b and little-endian. Note how the names of the working
registers are shuffled after each iteration. See IETFRFC1321
for the full MD5 specification [9].

2The result of left-rotating a 32-b register r by n bits is classically defined
as (r � n) | (r 	 (32 − n)), where � and 	 are bit-shifts and | is bitwise
or.

FIGURE. 3. Quantum version of MD5 iteration.

The main considerations when creating a quantum version
of a classical algorithm are: 1) how the individual operations
translate; 2) how to minimize the number of qubits required;
and 3) how to ensure that the entire design is reversible, i.e.,
it supports the adjoint functor in Q#.3 For example, MD5
uses many arithmetic additions. Q# offers a library function
implementing an in-place quantum ripple carry adder, which
can be used to handle addition between two qubit registers.4

However, this cannot be used to add a constant (Ki) directly.
Instead, it must first be encoded in a temporary qubit register
using an in-place xor and then added normally. Once the ad-
dition is done, the temporary register must be returned to zero
by applying the xor again so the qubits can be de-allocated.
This entire process is reversible so it can be used in the overall
design.
Fig. 3 shows the strategy we employed for implementing

MD5 in quantum software. Here, all values are little-endian
encoded in 32-qubit registers. The plus sign means in-place
arithmetic addition of two qubit registers. The clockwise
arrow is a re-indexing of the qubit register, which has the
effect of a bitwise left-rotate.Wi is a 32-qubit segment of the
message block determined by the iteration index. Ki and si
are the same as before. Quantum versions of Fi perform the
Boolean functions in-place so that the output is stored in c or
d. Fi is reversed after the result is added to a to preserve the
contents of the working registers.
One complication of the quantum implementation ofMD5

is that, classically, the working registers are reset after each
chunk is processed and their contents are added to the state.
This would prevent Grover’s algorithm from being applied
because 1) directly resetting a qubit involves measuring it,
which would destroy any superposition, and 2) the contents
of the working registers are needed for the entire design to be
reversible. Thus, 128 workspace qubits are needed per chunk
if the adjoint functor is to be supported. This is not so surpris-
ing when considering that hash algorithms are designed to
be one-way, and so additional state information is needed to
reverse them directly. That is, you (obviously) cannot directly

3For more info on functors, see https://docs.microsoft.com/en-us/azure/
quantum/user-guide/language/expressions/functorapplication.

4We used the library function that implements Takahashi et al.’s quantum
ripple carry adder design [10].
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FIGURE. 4. Single SHA-1 iteration.

FIGURE. 5. Quantum version of SHA-1 iteration.

reverse a hash algorithm given only the output—otherwise,
that would defeat the entire purpose!

B. SHA-1
SHA-1 is very similar in structure to MD5, except the state
is 160 b instead of 128 so it uses five 32-b working registers
when processing each chunk. Also, each chunk is extended to
2560 b (eighty 32-b words) by mixing the original message
block in a deterministic fashion.5 The SHA-1 compression
function uses 80 iterations instead of 64, where a single iter-
ation is as illustrated by Fig. 4. See IETF RFC 3174 for the
full specification of SHA-1 [11].
The Boolean functions and constants are distinct from

MD5, but the general pattern is the same. The working reg-
isters are shuffled in a different order, with the additions per-
formed on e instead of a. Register b is also bitwise left-rotated
by 10 for each iteration.
Fig. 5 shows how we implemented a SHA-1 iteration with

similar strategies toMD5. Just as before, each horizontal line
represents a little-endian value encoded in a 32-qubit register.
(Note that the left-rotated version of a added to e does not
count as additional qubits since it is just a re-indexing of
the register.) Thus, 160 qubits are required for the working
registers plus 32 temporary qubits to add the constant Ki to
e. Wi comes from the 80-word message schedule generated
from the message block before the iterations begin. We again
have the unfortunate situation that the 160 workspace qubits

5The first 16 words come from the chunk of the padded input message.
After that, word i is the bitwise xor of words (i− 3), (i− 8), (i− 14), and
(i− 16).

FIGURE. 6. Single SHA-2 iteration.

must be preserved after each chunk is processed to make the
entire design reversible.

C. SHA-2
SHA-2 is the latest hash algorithm standard utilizing a
Merkle–Damgård construction. The NIST specification lists
six functions that vary in strength and output size: 1) SHA-
224, 2) SHA-256, 3) SHA-384, 4) SHA-512, 5) SHA-
512/224, and 6) SHA-512/256 [12]. The important difference
between these is that SHA-224 and SHA-256 use 32-b words
and 512-b chunks while the others use 64-b words and 1024-
b chunks. The state consists of eight words so it is either 256
or 512 b depending on the word length. The compression
function performs 64 iterations on eight working registers,
as shown in Fig. 6.
Here,Wi again comes from a message schedule generated

by extending the 16-word chunk into 64 words. (The steps
to generate the message schedule are slightly more complex
than SHA-1, but the effect is similar.) “Ch” is short for bit-
wise choice. In this case, each bit of the output follows f if e
is 1, and g if e is 0. “Maj” is short for bitwise majority, where
each bit of the output follows whatever value occurs most
frequently on the inputs. �1 and �0 involve xoring together
bitwise rotated copies of the input. Note an intermediate
value is added to d partway through the iteration.
SHA-2 is a little trickier to implement in quantum software

because all these functions must be performed in-place and
then reversed, as shown in Fig. 7. The main thing to notice in
the figure is the use of temporary qubits for the � functions.
This is because they cannot be computed in-place and so a
register is needed to store the result. Fortunately, the same
qubits can be recycled for constant addition and both� func-
tions so only one extra word is needed.
Architecturally, the Merkle–Damgård-based functions

lend themselves well to quantum implementation. However,
the addition operation prevalent throughout these is relatively
expensive in the computational cost. (In contrast to a classical
computer, there is no dedicated ALU to perform the addition;
each plus block represents a string of quantum gates imple-
menting a ripple-carry adder.) The situation is the opposite
for SHA-3—the hash function is architecturally complex

2500710 VOLUME 3, 2022
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FIGURE. 7. Quantum version of SHA-2 iteration.

and difficult to implement but it does not rely on arithmetic
addition.

D. SHA-3
SHA-3 was designed to be an effective, unique alternative to
provide resiliency in the case of a catastrophic vulnerability
being discovered in SHA-2. It is based on a cryptographic
primitive called Keccak, which utilizes a sponge construc-
tion to process the input message and generate the output
digest [13]. The high-level steps of Keccak are as follows.

1) Pad the input message so its length is divisible by a
fixed value r (the bitrate) and the final byte is a speci-
fied suffix.

2) Break the input into chunks of length r.
3) Allocate a state register initialized to all zeros (for

SHA-3 this is 1600 b).
4) “Absorb” phase. For each chunk:

a) xor the chunk with the first r bits of the state;
b) apply a complex function to the state called the block

permutation.

5) “Squeeze” phase. While more output is desired:

a) append the first r bits of the state to the output;
b) apply the block permutation.

The SHA-3 NIST specification defines drop-in replace-
ments for SHA-2 functions with the same level of security:
SHA3-224, SHA3-256, SHA3-384, and SHA3-512 [14]. It
also introduces two functions with variable-length output,:
SHAKE128 and SHAKE256. These all follow the above
steps, but with different values for the padding suffix and
bitrate. (Note that a lower bitrate or r value means a higher
level of security since it results in more permutations.)
For SHA-3, the devil is in the details of the block permuta-

tion. First, the 1600-b state register is mapped to a 5×5×64
array, and then five functions are applied in succession: θ , ρ,
π , χ , and ι. These are composed of only xor, and, and not

FIGURE. 8. In-place Keccak block permutation using inverse functions.

gates plus permutations of the bits in the array so they are rel-
atively straightforward to implement on a classical computer.
Importantly, they are all invertible, i.e., for each function,
another function exists that maps the output of the original
to the corresponding input, for all such input/output pairs.
This is not just theoretical—the Keccak authors provide C++
implementations of the inverse functions in the KeccakTools
GitHub repository.6

Amy et al. [2] showed how the block permutation could
be performed in-place on a quantum computer. Since ρ and
π only consist of permutations or rotations, they could be
implemented by reordering the state array (no quantum gates
required). And ι simply xors the first lane of the state array
with a constant that depends on the round, which we have
seen before. However, θ and χ are trickier; the former in-
volves computing the parities of each column in the state
array, and the latter is a nonlinear function utilizing and and
not. Amy et al. mapped the classical steps of these func-
tions directly to quantum gates so that the output would be
constructed in a new 1600-qubit register. Then, they applied
the inverse function with the input/output registers swapped,
transforming the original input register to all |0〉’s so those
qubits could be released (de-allocated). Fig. 8 illustrates the
authors’ strategy for computing the Keccak block permuta-
tion in-place in a quantum context.
While the entire block permutation is computed in-place

with the above approach, θ and χ individually are not. That
is, the two functions store the result in an output register,
rather than modifying the input register. When implementing
these in Q#, it was discovered that θ and χ could themselves
be computed in-place, requiring fewer qubits and gates than
allocating an output register and computing the inverse. For
both functions, a working memory of 320 qubits is used to
store intermediate values necessary to transform the input,
and then, a modified version of the inverse function is used to
recompute those intermediate values so the ancillary qubits
can be released. This modified inverse is denoted by θ−1′

in
Fig 9; the modified inverse for χ is not shown. Using the
method ahead, the block permutation can be performed with
only 1920 logical qubits, instead of the 3200 required by
Amy’s approach, without increasing the gate depth.
Listing 1 shows the Q# implementation of the in-place

theta function. Note that the modified inverse is built-in so
that the ancilla qubits can be scoped to the single opera-
tion (they are allocated and de-allocated within it). The code
is based on the Keccak team’s classical implementation of

6https://github.com/KeccakTeam/KeccakTools
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FIGURE. 9. Qubit-efficient Keccak block permutation.

Listing 1: In-Place Theta Function

the inverse theta function7 and uses the following custom
operations.

1) ArrayAsWords: Breaks up a flat array into an array
of words with specified length.

2) Xor: Applies cnot to each pair of qubits in the parallel
array arguments.

3) RightRotate: Shifts an array to the right in a cir-
cular manner by a specified amount. That is, elements
that “fall off” the right are “fed into” the5 left.

Listing 2: In-Place Chi Function

Listing 2 shows the Q# implementation of the in-
place chi function. Again, the KeccakTools repository was
referenced,8 and it uses the following additional custom
operations.

1) Not: Applies X to each qubit in the array.
2) And: Applies ccnot to each triple in the parallel array

arguments.

III. RESULTS
When characterizing a quantum program, the most relevant
costs are 1) qubit width because it must not exceed the num-
ber of qubits supported by the hardware, and 2) gate depth

7https://github.com/KeccakTeam/KeccakTools/blob/master/Sources
/Keccak-f.h#L553

8https://github.com/KeccakTeam/KeccakTools/blob/master/Sources
/Keccak-f.h#L519
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TABLE 1. Cost of MD5 Preimage for Various Search Space Sizes

FIGURE. 10. Gate depth over search space size for MD5 preimage.

because it corresponds to the amount of time the system state
must remain coherent (i.e., no errors) before the result is
measured. There are other factors to consider, such as the
types and quantities of gates, but from a software perspective,
the time complexity of the algorithm is exhibited in the gate
depth, and the space complexity is seen in the width. Thus,
by varying a parameter and estimating these metrics, we can
see its effect on the computational complexity of a quantum
program.

A. COMPUTATIONAL COMPLEXITY OF
GROVER’S ALGORITHM
Table 1 lists the depth and width for different search space
sizes when applyingGrover’s algorithm toMD5with a single
search target. (Recall the search space is the possible com-
binations of the input message, and the number of search
targets is how many of those combinations are expected to
map to a specified output.) Notice that the width remains
constant—this is because the input is padded to a multiple
of 512 inside the hash function so the total number of qubits
required is the same for the values listed.
Fig. 10 shows a plot of the data on a log scale. It includes

an exponential regression that shows the gate depth increases
proportional to 20.5n, with n being the number of qubits in
the search space. This is consistent with the theoretical time
complexity of Grover’s algorithm.9

Table 2 lists the results of a similar analysis but this time
varying the number of search targets instead of the size of
the search space. (In this case, the search space was held

9The size of the search space N is 2n, and the number of search targets

k is 1 so the required number of Grover’s algorithm iterations is O(
√

N
k ) =

O(2
n
2 ).

TABLE 2. Cost of MD5 Preimage for Various Numbers of Search Targets

FIGURE. 11. Gate depth over a number of search targets for MD5
preimage.

TABLE 3. Cost of Preimage for Various Hash Functions

constant at 16 qubits.) Fig. 11 plots the data with a power re-
gression confirming that the gate depth falls off proportional
to 1/

√
k, with k being the number of search targets. Again,

this matches the expected time complexity.
While these are not actionable results in and of themselves,

they serve as a “sanity check” that Grover’s algorithm was
implemented correctly, and that the underlying methods used
are sound.

B. DIFFERENCES BETWEEN HASH FUNCTIONS
The main result of this study is the data in Table 3, which
lists the required gate depth and qubit width to conduct a
preimage attack on each of the hash functions implemented.
The number of qubits in the search space was kept constant
at 16, with only one search target.
Fig. 12 compares the gate depth of each function. Note the

log scale. Clearly, the computational cost of a quantum attack
against SHA-3 is much lower than that of MD5, SHA-1, and
SHA-2. This is largely due to the fact that SHA-3 utilizes

VOLUME 3, 2022 2500710
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FIGURE. 12. Gate depth for preimage of various hash functions.

FIGURE. 13. Qubit width for preimage of various hash functions.

operations and permutations that translate more naturally to a
quantum context while the others rely primarily on arithmetic
addition, which is expensive on a quantum computer. The
figure does not show a comparison with Amy et al. since
they included error correction overhead in their calculation of
gate depth; this simply shows the results from the Q# logical
resource estimator.
The picture in Fig. 13 is a little different. When it comes

to the number of qubits required, SHA-3 is comparable in
cost to SHA-2 functions with a 256-b state but those with
a 512-b state are much more expensive. This suggests that,
for example, SHA-512/256 is more quantum-resistant than
SHA-256 and SHA3-256. The figure includes a comparison
with Amy et al., who reported a logical qubit width of 2402
for SHA-256 and 3200 for SHA3-256.
Fig. 14 combines the qubit width and gate depth on a single

plot. The color of the point denotes the hash family and the
shape denotes the equivalent level of security.
The results obtained show important differences in the

computational costs associated with each hash function.
Of particular interest is how SHA-3, a more recently de-
veloped algorithm, is cheaper to preimage on a quantum
computer than the others (except for MD5 in terms of
qubit width). However, it should be noted that the quantum
implementations of the hash functions used here are not
guaranteed to be optimal. We directly translated the classical
steps into quantum instructions, but newmethods for creating

FIGURE. 14. Qubit width over gate depth for various hash functions.

more cost-efficient quantum oracles could be devised in the
future.
The extent of the findings is also qualified by the limita-

tions in the underlying quantum computing hardware as well
as some practical considerationswhen it comes to conducting
preimage attacks against hash functions. These are discussed
as follows.

C. HARDWARE LIMITATIONS
This article takes a relatively abstract view of quantum com-
puting, essentially at the level of quantum software. While
Q# provides a simulator and resource estimator, support for
running on a real live quantum computer is limited. And so,
we do not consider computational costs associated with the
underlying quantum hardware. The most important of these
is quantum error correction (QEC).
On real quantum computers, the qubits are subjected to

environmental noise that degrades or destroys their state over
time. To perform useful computation, any errors that were
introduced by noise must be fixed using QEC. In a nutshell,
QEC uses error codes to reduce the likelihood of error by
introducing additional qubits. For example, a QEC scheme
might use eight physical qubits to compose a single “logical”
qubit, whose error rate is brought down to an acceptable
level. Obviously, performing the error correction algorithm
introduces additional costs in terms of both qubits and gates.
These costs are so prohibitive to current-generation quantum
computers that they are hard-pressed to maintain even a sin-
gle logical qubit for practical applications.10 This means that
any quantum program relying on error-free qubits (such as
the ones discussed in this report) cannot be run at all in the
near term and will have large overhead costs associated with
QEC into the future.
Another important hardware-related cost is introduced by

the qubit topology. There are multiple approaches to how a
qubit is physically realized in quantum hardware, and how
they are arranged in space. For example, the qubits may be
laid out in a 2-D grid, and controlled gates such as cnot can
only be applied to adjacent qubits [16]. In that case, SWAP

10See [15, Sec. 3.2] for an excellent discussion of how the overhead asso-
ciated with QEC is a major barrier to realizing scalable quantum computers.

2500710 VOLUME 3, 2022



Preston: APPLYING GROVER’S ALGORITHM TO HASH FUNCTIONS: A SOFTWARE PERSPECTIVE Engineeringuantum
Transactions onIEEE

gates would be required to position the desired states in the
appropriate location before each cnot. To put it plainly, this
becomes a total mess—you need optimization algorithms to
minimize the number of SWAPs, and it may significantly
increase the level of computational complexity. It remains
to be seen what quantum hardware approach will be most
successful so for now, it suffices to mention that this is likely
to be a factor in any physical implementation of a quantum
algorithm.

D. PRACTICAL CONSIDERATIONS OF PREIMAGE ATTACKS
When talking about a preimage attack against a crypto-
graphic hash algorithm, typically no knowledge of the orig-
inal input is assumed. That is, you are given a hash output
and asked to find at least one corresponding input of any
length. Assuming a theoretically perfect hash function, given
any distinct input, there is an equal chance ( 1

2l
) of getting

any of the possible l-bit outputs. Thus, the probability of
getting a specific output after n guesses follows a binomial

distribution, P(n) = 1 − (1 − 1
2
l
)n. Setting n = 2l gives a

probability of

P
(
2l

) = 1 −
(
1 − 1

2l

)2l

≈ 1 − 1

e
for large l.

Therefore, the probability that a preimage attack succeeds
with 2l guesses and no prior knowledge is about 63.2%. Of
course, in a classical context, if you do not find a match you
can just keep guessing and expect to find one eventually.
Now, consider Grover’s algorithm. It is not guess-and-

check. Rather, it finds the matching input directly using am-
plitude amplification. However, the number of search targets
must be specified. This is a problem because hash functions
are not one-to-one; more than one distinct input can map to
the same output.11 In other words, the number of search tar-
gets is not known in advance (although it follows a binomial
probability distribution).
The software program we developed for this research sup-

ports simple strategies for trying Grover’s algorithm with
different numbers of search targets. However, they were not
used when estimating computational resources; one search
target was assumed. This is because the search space was so
small (216) that the probability of a collision existing is near
zero. (There are more sophisticated methods of dealing with
an unknown number of search targets; Boyer et al. lay out
one such strategy in [18].)

In practice, and particularly for the current officially ap-
proved functions (SHA-2 and SHA-3), a search space of suf-
ficient size to contain a collisionwith nonnegligible probabil-
ity is too big to search, even for Grover’s algorithm. Consider

11Multiple inputs that produce the same output of a hash function are
called collisions. Part of the security model of hash functions is that colli-
sions, though they may exist, are practically impossible to find. One way to
degrade the security of a hash function is through a birthday attack, which
attempts to generate a collision. The BHT algorithm is a quantum birthday
attack that makes use of Grover’s algorithm to generate a collision in O(2

n
3 )

steps, with n being the number of output bits [17].

SHA-256. The search space would have to be somewhere
near 256 b before it is likely to contain a collision. But
the gate depth of Grover’s algorithm applied to SHA-256 is

O(2
l
2 ), or O(2128). Even supposing one trillion operations

per second, this would still take around 1019 years.
A more realistic situation is where the input length is

known in advance, or it is at least limited in length. Suppose
you intercept the SHA-256 hash of a password that you hap-
pen to know is 12 characters long (96 bits). Recovering the
password is O(296) using guess-and-check and O(248) with
Grover’s algorithm on a quantum computer. Assuming one
billion operations per second, that is the difference between
quadrillions of years and a few days. In scenarios like this,
you are searching for exactly one target, and so the results
shown in Section III are applicable.

Another typical situation is where there is some infor-
mation known or assumed about the input. For example,
a certain password may consist of multiple English words,
but it is not known what the words are. To apply Grover’s
algorithm, a mapping between the search index and the hash
input would need to be embedded into the oracle operation,
which may introduce nontrivial overhead to the computation.
We leave open the problem of determining an upper bound
on this mapping.
Finally, many password hash libraries utilize multiple

rounds of hashing for additional security. To attack such
schemes, all the rounds would need to be contained in the
oracle. Therefore, both the qubit width and gate depth of
Grover’s search would be expected to increase linearly with
the number of rounds.

IV. CONCLUSION
This work provides an example of analyzing quantum algo-
rithms through software. We used Microsoft’s QDK to study
the practicality of quantum preimage attacks on classical
hash functions. This involved implementing the hash func-
tions as quantum oracles in Q#, validating their correctness
using the Toffoli simulator, and then applying the built-in
resource estimator to obtain computational complexity met-
rics. Through this process, we reduced the number of logical
qubits required for the SHA-3 oracle by 40% compared to
Amy et al.’s implementation. And our analysis concluded
that the 512-b state variants of SHA-2 are the most quantum-
resistant out of the hash functions studied.
The advantage of this approach is that the algorithm must

be explicitly expressed as a software program so it leaves
very little room for false assumptions about its actual behav-
ior and complexity. Also, once the program is written and
validated, the resource estimation can be performed automat-
ically, rather than manually on paper. As quantum software
frameworks like the QDK improve, the metrics reported can
be more precise and tailored to the specific hardware plat-
form the program is expected to run on. For example, IBM’s
Qiskit platform allows the user to run quantum code on real
quantum computers or perform simulations that introduce
realistic errors [19].
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A. FUTURE WORK
Here, we were limited to providing grounded estimates in
terms of logical qubits with the QDK since the width and
depth of the programs written for this research were much
too large to run on today’s NISQ-era devices. It must be
emphasized that major blocking challenges exist in creating
scalable, error-corrected quantum computers. Nevertheless,
this type of analysis is critical in understanding the practi-
cal considerations when applying a quantum algorithm to
a real-world problem so that we can prepare appropriately
for the threats and opportunities that advances in quantum
computing technology will bring.
The logical next step would be to expand the library of

classical functions implemented in quantum software so that
Grover’s algorithm can be applied. For example, Jaques et al.
[20] provide oracle implementations for AES-128, -192, and
-256 in their paper.We could also improve the confidence and
precision of our study by reproducing the implementations
in other quantum software frameworks, such as Qiskit, and
comparing the results of various resource estimation tools.
Going further, the approach we took can be replicated for

other quantum algorithms. A standard library of common
quantum applications implemented with multiple software
frameworks could provide clear and precise benchmarks for
quantum computers. The Standards and Performance Met-
rics Technical Advisory Committee of the Quantum Eco-
nomic Development Consortium recently published a study
in this vein where they developed and proposed application-
oriented performance benchmarks and open-sourced their
code12 [21]. By providing actual quantum programs to run,
different quantum computers can be compared fairly, and
the practicality of running an algorithm on various quantum
systems can be studied in detail.
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