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ABSTRACT This article considers the use of linear state observers to infer the unknown state (density
matrix) of a closed quantum system using generalized quantum measurement—positive operator-valued
measures (POVMs). An efficient test for observability is described in terms of two quantum observability
matrices. Themain contribution of this work is the development of a canonical quantum state observer, which
may be utilized to estimate the state of any closed quantum system using POVMmeasurements. The observer
ensures that the state estimation error tends to the unobservable space of the system, which is exactly zero
when the system is observable. The space of Hermitian matrices is shown to be invariant with respect to the
dynamics of the canonical observer, which allows one to project the observer’s state onto the space of valid
quantum density operators while retaining convergence to the true state.

INDEX TERMS Optimization in control, quantum control, quantum state estimation (QSE), spin systems,
state observers.

NOMENCLATURE

Parameter Description
d Dimension of quantum system.
H Hilbert space.
|ψ〉 Pure quantum state.
� Quantum density operator.
�̂ Observer estimate of �.
E Error between �̂ and �.
H System Hamiltonian.
U(t ) Unitary dynamics generated by −ıH.
M Positive operator-valued measure (POVM).
Mk Element of M.
K Cardinality of M.
pk Probability of observing outcome k.
S Set of all density operators in H.
PS Projection onto the set S .
A Generator of system dynamics.
C Output map.
K Observer gain.
(λn, |φn〉) Eigenpair of H.
(ξn, Ξn) Eigenpair of A.
T (t ) C0-semigroup generated by A.
y System output.
ŷ Observer output.

e Error between ŷ and y.
x Vectorized density operator.
A Generator of vectorized system dynamics.
C Vectorized output map.
O(A, C) Observability matrix.
Qc(A, C) Coherent quantum observability matrix.
Qi(A, C) Incoherent quantum observability matrix.
U (A, C) Unobservable space of (A, C).

I. INTRODUCTION
Estimating an unknown quantum state via measurement
is a fundamental problem in quantum information science
(QIS) [1], [2], [3]. Quantum state estimation (QSE) can be
used to calibrate quantum devices and validate quantum state
preparation methods. This has played an important role in,
e.g., quantum optics [4], [5], [6]. However, estimating a
quantum state is considerably more difficult than estimat-
ing the state of a classical system—both in terms of the
mathematical theory required and the experimental burden.
Historically, quantum state tomography (QST) has been the
most widely employed estimation method, and introductions
to this technique can be found in [7] and [8].
While the name QST has blossomed to include many

different techniques, its roots originate in the need to es-
timate the state of qubit systems [9], [10]. As pointed out
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in [2, ch. 4], the word tomography originates from the
Greek noun “tomos,” which translates to “slice” or “section.”
This corresponds to the fact that QST uses the measure-
ment history (the “slices”) of a repeatedly prepared quan-
tum state to reconstruct the entire state. The measurement
basis used must be “complete” in that it uniquely deter-
mines the quantum state [11]; however, as the dimension
of the system grows, the cardinality of a complete mea-
surement basis becomes unruly. An approach proposed to
circumvent this issue is “adaptive” or “self-guided” QST,
which uses only a handful of measurements but updates
them adaptively in order to make up for the lack of in-
formational completeness [12], [13], [14]. This method has
proven successful in physical experiments [15], [16]. How-
ever, QST is not the only approach to estimating a quantum
state.
Classical systems and control theory has permeated QIS

since its foundation. Optimal control [17], [18], [19], [20],
[21], Lyapunov control [22], [23], [24], [25], [26], [27],
adaptive control [28], [29], [30], [31], and, recently, model-
predictive control [32], [33] have been applied to solve
various problems within QIS. Moreover, classical means
for system identification have proven useful in quantum
regimes [34], [35], [36], [37].We are interested in yet another
problem deep seated in control literature: state estimation.
Classical thinking regarding state estimation could prove
quite useful in the quantum regime. Rather than use a quorum
of measurements to infer an unknown static state, as is done
in QST, systems theorists tend to consider the problem of
inferring a dynamic state using fewer measurements. This
requires acknowledging the natural dynamics of the under-
lying quantum system for which the state belongs.
Prior characterizations of observability, or the ability to

distinguish between any two states of a quantum dynami-
cal system, have been given by Wiseman and Milburn [38]
in the Heisenberg picture and by D’Alessandro [39] in the
Schrödinger picture of quantum mechanics. However, the
scenarios considered by the authors vary in terms of the
types of quantum measurement performed. Wiseman and
Milburn [38] consider general measurements of a quantum
particle’s position and momentum, and they define observ-
ability in the sense of classical systems theory—that it is
possible to exactly reconstruct the initial state in the absence
of measurement uncertainty or error. D’Alessandro [39] con-
siders finite-dimensional quantum systems and defines ob-
servability as being able to distinguish between the measure-
ment record of two unique quantum states by manipulating a
control input provided to the system and the time at which the
measurements are performed. In an early paper, he pointed
out a connection between observability and informational
completeness: the set of measurement operators along with
their time evolution due to the dynamics of the system must
contain an informationally complete set of measurements in
order to be observable [40]. Here, he also considers observ-
ability within a finite number of time steps while accounting

for the backaction of measurement on the quantum state.
Later, he provided an exact algorithm for extracting the max-
imum amount of information regarding an unknown state
given a particular observable [41]. In [42], D’Alessandro
addressed observability of quantum systems with selective
and nonselective measurements and proposed an asymptotic
observer that estimates an unknown state dynamically over
time.
Designing asymptotic observers in the Schrödinger picture

is the scenario that we are interested; however, our definition
of observability is the classical one. This is because classical
observability is equivalent to being able to design a linear
state observer with arbitrary convergence rate [43, ch. 13],
i.e., this cannot be achieved by weakening the definition of
observability. The observers studied in this article work as
follows. First, a positive operator-valued measure (POVM) is
used to measure a repeatedly prepared quantum state at var-
ious points in time. This allows one to extract measurement
statistics from the state. Then, the observer works offline
to infer the system’s unknown state from the measurement
statistics. Designing these types of quantum state observers
has gained attention recently. The work of [44] and [45] pro-
posed vectorizing the dynamics of the quantum density oper-
ator in the Schrödinger picture and drew parallels to classical
linear systems theory. This approach has much merit due to
the control community’s collective understanding of linear
systems in standard form. For example, the observability
of the vectorized dynamics can be tested using the Kalman
observability matrix and exponentially stable state observers
can be designed using classical techniques. However, the
vectorized dynamics lead to a dimensionality curse, and
the abstraction away from the natural mathematical form of
the dynamics impedes a delicate understanding of observ-
ability and the process of designing quantum state observers.
In this work, we venture to peel back the curtain on quan-

tum observability and provide an alternate perspective on
designing quantum state observers. The main contributions
of this work are as follows.

1) We provide a test for observability of quantum systems
in terms of two quantum observability matrices. This
observability test is shown to be more computationally
efficient than the Kalman rank test on the vectorized
dynamics.

2) We propose a canonical quantum state observer, which
guarantees convergence of the state estimate to the un-
observable space of any closed quantum system with a
POVM output. Of course, when the system is observ-
able, this ensures the state estimation error goes to zero.

3) We prove that the canonical observer preserves the
Hermiticity of the state estimate. This allows us to pro-
vide an algorithm for projecting the state estimate onto
the true set of density operators to ensure a physically
meaningful estimate—which is not even done in many
QST algorithms.
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This article only considers closed quantum systems in or-
der to push the bounds of the theory; however, designing ob-
servers for open quantum systems is possible—e.g., see [46].
Potential applications for the proposed work include cali-
brating quantum information devices and validating quan-
tum state preparation methods in scenarios well within the
device’s decoherence time.
The rest of this article is organized as follows. Section II

presents the notation used in this article. Section III gives a
brief introduction to closed quantum systems and POVMs—
the class of systems for which this article is concerned.
Section IV presents our new test for quantum observability.
Section V defines quantum state observers and proposes our
canonical state observer. A discussion of projecting the state
of a quantum observer onto the set of density matrices is
presented in Section VI and several physically motivated
examples in Section VII. Finally, Section VIII concludes this
article.

II. NOTATION
Let N, R, and C denote the set of natural, real, and complex
numbers, respectively. The set of integers between n and N is
denoted Zn:N . Let ı �

√−1. Matrices (and vectors as a spe-
cial case of matrices) appear in bold font. The d-dimensional
identity matrix appears as Id . The notation A � 0means that
A is positive semidefinite, and A � B means that A− B is
positive semidefinite. For a vector, x � 0 means that each
element of x is greater than or equal to zero. Given a square
matrix X ∈ Cd×d , diag(X ) represents a column vector in
Cd whose entries are the diagonal elements of X; given a
vector x ∈ Cd , diag(x) ∈ Cd×d denotes the diagonal matrix
obtained by putting the elements of x along its diagonal.
vec{X} ∈ Cd2 denotes the vectorization of X , tr{X} denotes
the trace of X , and ‖X‖F denotes the Frobenius norm of X .
‖x‖ denotes the Euclidean norm of the vector x. The trans-
pose and conjugate transpose of X are written XT and X†,
respectively. The commutator of A and B is written �A, B�.
The symbol ⊗ represents the Kronecker product. The set of
functions from [a, b] to Hilbert space H with n ∈ N ∪ {∞}
continuous derivatives is denoted Cn([a, b]; H).

III. QUANTUM DYNAMICS AND MEASUREMENT
The purpose of a quantum state observer is to asymptotically
track the state of a quantum dynamical system. The emphasis
here being that the state evolves over time, which means
we must first investigate the dynamics of the system. If a
d-dimensional closed quantum system is initially in a pure
state, i.e., |ψ(0)〉 ∈ Cd and ‖|ψ(0)〉‖2 = 1, then it evolves
over time according to the Schrödinger equation

ı
d

dt
|ψ(t )〉 = H |ψ(t )〉 (1)

where the Hermitian matrix H ∈ Cd×d is the system Hamil-
tonian. For well-posedness, we will also assume that H

is nondegenerate (its eigenvalues are distinct).1 Defining
U(t ) � e−ıHt , the closed-form solution to the Schrödinger
equation is given by

|ψ(t )〉 = U(t )|ψ(0)〉. (2)

BecauseU(t ) is the exponential of a skew-Hermitian matrix,
U(t ) is unitary.2 Since the Euclidean norm is unitarily in-
variant, it follows that ‖|ψ(t )〉‖ = ‖|ψ(0)〉‖ = 1 for all t ≥ 0.
That is, a closed quantum dynamical system initiating from
a pure state remains a pure state for all future time. However,
pure states are not the most general form of quantum states.
The most general representation of the state of a finite-

dimensional quantum system is the density matrix for-
malization. A density matrix is defined on the Hilbert
space H � Cd×d endowed with the trace inner product
〈�, σ〉 = tr{�† σ} and the induced (Frobenius) norm ‖�‖2F �
tr{�† �}. A density matrix � ∈ H is an ensemble of pure
quantum states [47, ch. 2]. Let {|ψn〉} be any finite set of
pure quantum states, i.e., |ψn〉 ∈ Cd and ‖|ψn〉‖ = 1 for all
n. Any density matrix associated with an ensemble of said
pure states may be written as

� =
∑
n

ηn Pn (3)

where Pn � |ψn〉〈ψn| ∈ H is the orthogonal projection onto
the subspace spanned by the pure state |ψn〉, ηn ≥ 0 for all
n, and

∑
n ηn = 1. A mathematical interpretation of a mixed

state is that it is a convex combination of projections onto a
set of pure quantum states. From the defining equation (3), it
immediately follows that � is Hermitian positive semidefinite
with unit trace. Note that any pure quantum state can be
exactly represented by a density matrix; however, not every
mixed state can be represented by a pure state. Hence, it
is sufficient to develop the theory in this article using the
density-matrix formalism. For convenience, let S denote the
set of all density operators:

S � {� ∈ H | � � 0, tr {�} = 1} .

Using the solution to the Schrödinger equation, which de-
scribes the time evolution of each pure state in the ensem-
ble (3), a density matrix initiating from �(0) is in the state

�(t ) = U(t ) �(0)U†(t ) (4)

at time t ≥ 0. Differentiating (4) with respect to time, the
dynamics of the density matrix are found to be

d

dt
�(t ) = −ı �H, �(t )� (5)

where �H, �(t )� � H�(t ) − �(t )H is the commutator of H
and �(t ). Equation (5) is known as the Liouville–von Neu-
mann master equation.

1Degenerate Hamiltonians cause a myriad of issues within quantum me-
chanics. For instance, if a degenerate energy (i.e., eigenvalue) is observed,
then the corresponding energy eigenstate (i.e., eigenvector) after measure-
ment is unknown.

2A matrix T is unitary if T† is its inverse.
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Remark 1: Despite the abuse of language, we will hence-
forth refer to the density matrix � describing the mixed state
of the quantum system as the system’s “state.”
Measuring a quantum state is quite different from measur-

ing a classical state, which is often done in real time using
appropriate sensors. We will consider generalized quantum
measurements known as POVMs.
Definition 1: A POVM is a set of Hermitian operators

M = {
Mk ∈ H : k = 1, 2, . . . ,K

}
which satisfy

K∑
k=1

Mk = Id, and Mk � 0 (6)

for k = 1, 2, . . . ,K.
Each operatorMk of the POVM corresponds to a potential

experimental outcome. When a measurement is made, only
one of the K potential outcomes is observed. If the quantum
system is in state �, the probability of observing outcome k
is given by Born’s Rule [8, p. 99]:

pk = tr {Mk �} , k = 1, 2, . . . ,K. (7)

Since � andMk are both Hermitian, each pk is a real number.
Due to (6), it is clear that each pk ≥ 0 and

∑K
k=1 pk = 1,

i.e., the total chance of observing one of the K outcomes
is 100%. Exact knowledge of each probability in (7) would
require knowledge of �. However, the probabilities can be
well estimated by repeated measurement of an identically
prepared quantum state. For example, see the simple mean-
zero estimator used in [11].
As the trace function is utilized repeated throughout this

article, recall the following well-known properties.
Lemma 1: Let X and Y be elements of Cd×d . Then, the

following properties hold true:

1) (conjugate property) tr{X} = tr{X†};
2) (cyclic property) tr{XY} = tr{YX}.

IV. QUANTUM OBSERVABILITY
Prior to defining a quantum state observer, which is the focus
of this article, we must address observability. An observer
will attempt to estimate the state � of the closed quantum
system (5) using a vector y ∈ RK of quantum measurement
statistics defined as

y �

⎡
⎢⎢⎢⎢⎣
tr {M1 �}
tr {M2 �}

...

tr {MK �}

⎤
⎥⎥⎥⎥⎦ . (8)

For notational simplicity, we let C : S → RK be the linear
operator that maps �(t ) to y(t ) and A : S → H be the linear
operator defined by

A � = −ı �H, ��. (9)

Both C and A have natural extensions to the whole domain
H—simply plug in any element of H into the formulas
given by (8) and (9). We will represent these extensions
using the same symbols; however, now C : H → CK and
A : H → H. Denote the time derivative of � as �̇. The full
quantum system including state dynamics and output vari-
ables is summarized as{

�̇(t ) = A �(t )
y(t ) = C �(t ).

(10)

From a classical viewpoint, this is simply a linear dynamical
system. However, the reader is cautioned.
Remark 2: Following the discussion of the prior section,

note that it would be impossible obtain the output y(t ) for
more than a finite number of times in any interval [t1, t2]. This
is because at any given time τ , the output y(τ ) may only be
obtained by repeatedly preparing the state �(τ ) and measur-
ing it withM. Nevertheless, it is useful to think theoretically
about the system (10) in continuous time and then discretize
during implementation of a quantum state observer. We are
not the first to think (at least theoretically) about observing
quantum dynamics in continuous time, e.g., see [39].
The following observability definitions for the pair (A, C)

works for abstract linear systems like (10) on Hilbert space.
Our only assumption is that the linear operator A is the gen-
erator of a strongly continuous C0-semigroup on H, which
we will denote T (t ). In the case of our finite dimensional
quantum system, this semigroup is exactly the solution (4) to
the Liouville–von Neumann equation (5)

T (t ) σ = U(t ) σU†(t ).

Definition 2: The unobservable space of (A, C) is the null
space of the operator G : H → C∞(R≥0; CK ) defined via

σ �→ C ◦ T (t ) σ.

This space will be denoted via U (A, C).
The language used here reflects the fact that any state

initiating from the unobservable space cannot be observed
using the state’s evolution under T (t ) and the output operator
C. One may now define observability and detectability.
Definition 3: The pair (A, C) is said to be observable if

the unobservable space is a singleton containing only the zero
element from H.
Definition 4: The pair (A, C) is said to be detectable if

every element of the unobservable space is asymptotically
stable. That is, for any σ ∈ U (A, C)

lim
t→∞ T (t ) σ = 0. (11)

A. FIRST-PRINCIPLES APPROACH TO QUANTUM
OBSERVABILITY
The linear system (A, C) is not in standard form. The quan-
tum system’s state is a matrix and its dynamics involve op-
erators acting on matrices. In [44] and [45], it has been
proposed to vectorize the system (10) in order to obtain a
standard linear system. Define x ∈ Cd2 to be x � vec {�},

5500515 VOLUME 3, 2022
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which is a natural isometry between Cd2 and H. Moreover,
let A ∈ Cd2×d2 be defined as

A � −ı (Id ⊗H −H ⊗ Id )

and let C ∈ CK×d2 be defined as

C �

⎡
⎢⎢⎢⎢⎣

vec{M1}†
vec{M2}†

...

vec{MK}†

⎤
⎥⎥⎥⎥⎦ . (12)

The dynamics of (10) are then equivalently expressed as{
ẋ(t ) = A x(t )

y(t ) = C x(t ).
(13)

Then, the observability of the pair (A,C) can be studied using
techniques from classical systems theory. In fact, the pair is
observable when the “Kalman observability matrix”

O(A, C) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CA(d2−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

is full rank [48]. Using this approach will surely allow one
to determine the observability of the system. However, there
are the following two notable drawbacks of this method.

1) The operators A ∈ Cd2×d2 and C ∈ CK×d2 are large
even for reasonable values of d and K. As a result,
the observability matrix O(A, C) ∈ CKd2×d2 becomes
cumbersome to deal with.

2) If one determines that the pair (A, C) is observable
using the observability matrix, they must still go about
designing a stable state observer. As we will see, if
the system (A, C) is observable, there exists a uni-
versal Hermiticity-preserving quantum state observer
that requires no effort to construct. This insight is only
available by addressing the system (10) directly.

These drawbacks motivate the investigation pursued in this
article.

B. ADDRESSING QUANTUM OBSERVABILITY DIRECTLY
The first goal of this article is to use the structure of closed
quantum systems and POVMs to reduce testing observabil-
ity for quantum systems down to something more manage-
able than constructing the Kalman observability matrix. The
first consequence of addressing observability using Defini-
tions 2–4 is the following theorem, which is nothing more
than an observation regarding the unitary dynamics of a
closed quantum system.
Theorem 2: The closed quantum system (A, C) is observ-

able if and only if it is detectable.

Proof: The definition of observability gives the suffi-
ciency. To prove the necessity, note that for any σ ∈ U (A, C)

‖T (t ) σ‖F = ‖U(t ) σU†(t )‖F = ‖σ‖F (15)

for all t due to the unitary invariance of the Frobenius norm.
Hence, by (15), it is impossible for any element of H to
satisfy (11) other than σ = 0. This proves the theorem. �
Remark 3: In classical systems, detectability is a slightly

weakened version of observability. The above theorem shows
that it is impossible to weaken the definition of observabil-
ity for closed quantum systems using the standard classical
means.
Since the HamiltonianH is a Hermitian operator, the spec-

tral theorem states that the eigenvalues of H are real and
that it is possible to decompose H into a basis of orthonor-
mal eigenvectors [49]. Denote the nth eigenpair of H by
(λn, |φn〉). The eigenvalue λn and eigenvector |φn〉 satisfy the
relation

H|φn〉 = λn |φn〉

and there are d eigenpairs for H ∈ H. The following lemma
relates the eigenvalues and eigenvectors of H to the eigen-
values and eigenmatrices of the operator A.
Lemma 3: The d2 eigenpairs, (ξi, Ξi), of the operator A

are of the form

ξi = ı (λm − λn) and Ξi = |φn〉〈φm| (16)

for n,m ∈ {1, 2, . . . , d}. The eigenmatrices {Ξi : i = 1, 2,
. . . , d2} form an orthonormal basis for H.
Proof: For any pair (ξi, Ξi) defined in (16), it follows that

−ı �H, Ξi� = ı (ΞiH −HΞi)

= ı ( |φn〉〈φm|H −H|φn〉〈φm| )
= ı ( λm|φn〉〈φm| − λn|φn〉〈φm| )
= ξiΞi.

Hence, (ξi, Ξi) is an eigenpair forA. LetΞi = |φn〉〈φm| and
Ξ j = |φk〉〈φl |. Using the cyclic property of the trace,

tr
{
ΞiΞ

†
j

}
= tr {|φn〉〈φm| |φl〉〈φk|}
= tr {〈φk|φn〉 〈φm|φl〉} .

If i �= j, then n �= k or m �= l. By the orthonormality of the
eigenvectors of H, it follows that

〈Ξi, Ξ j〉 = tr
{
ΞiΞ

†
j

}
=

{
1 i = j

0 i �= j.

Hence, the eigenmatrices of A form an orthonormal basis
for H. �
Since A admits a set of orthonormal eigenmatrices that

form a basis for H, it is possible to expand any density

VOLUME 3, 2022 5500515
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operator σ in the {Ξi : i = 1, 2, . . . , d2} basis

σ =
d2∑
i=1

tr
{
Ξ†
i σ

}
︸ ︷︷ ︸

� γi

Ξi.

Moreover, the evolution of any eigenmatrix Ξi under the
semigroup T (t ) is simple

T (t )Ξi = eξit Ξi (17)

where |eξit | = 1 for all t ≥ 0. Hence

T (t ) σ =
d2∑
i=1

γi e
ξit Ξi. (18)

As seen in (16), each ξi is a purely imaginary number; there-
fore, each eξit is a complex sinusoid. We have the following
lemma, which is a slight twist on those for linear systems,
such as (13), in standard form (e.g., see [50, Th. 6.8]).
Lemma 4: Let ξ be an eigenvalue of A which is repeated

N times, and suppose the eigenmatrices {Ξi : i ∈ Z n:n+N}
from (16) all correspond to ξ . The quantum system (A, C)
is observable if and only if for each such eigenvalue ξ the
elements of the set

Zξ �
{
C(Ξi) : i ∈ Z n:n+N

}
(19)

are linearly independent.
Proof: Suppose for some ξ the elements ofZξ are linearly

dependent. Then, there exists a nonzero set of coefficients
{αi : i ∈ Z n:n+N} such that

n+N∑
i=n

αi C(Ξi) = 0.

Then, Ξ �
∑

i αiΞi is an eigenmatrix of A with eigenvalue
ξ . The linear independence of the Ξi’s in Lemma 3 ensures
that Ξ is nonzero. However,

C ◦ T (t )Ξ = eξ t C(Ξ) = 0

for all t ≥ 0. Therefore, Ξ is a nonzero element of the
unobservable space, and (A, C) is unobservable.

To prove sufficiency, suppose (A, C) is unobservable.
Then, according to (18), there exists a nonzero set of coef-
ficients {γ ′

i : i = 1, 2, . . . , d2} such that

d2∑
i=1

γ ′
i e

ξit C(Ξi) = 0 ∀t � 0. (20)

As each eξit represents a complex sinusoid, we see that for
each distinct eigenvalue ξ , which starts at index i = n and is
repeated N times

n+N∑
i=n

γ ′
i e

ξ t C(Ξi) = 0 ∀t � 0.

Therefore

n+N∑
i=n

γ ′
i C(Ξi) = 0

for each distinct ξ . As the set of γ ′
i s were nonzero, the ele-

ments of Zξ are linearly dependent for some ξ . This proves
the theorem. �
The prior lemma is itself an alternate to constructing the

Kalman observability matrix to test observability of the sys-
tem (A, C). However, we can harness more of the quantum
system’s structure to simplify things further.
Lemma 5: Let Ξi = |φn〉〈φm| and Ξ j = |φm〉〈φn| be

eigenmatrices of A. Then, C(Ξi) = 0 if and only if
C(Ξ j ) = 0.
Proof: The kth element of the vector C(Ξi) is given by

Ck(Ξi) = tr {Mk Ξi} .

Moreover, tr{Mk Ξi} = 0 if and only if tr{Mk Ξi} = 0. On
the other hand

tr {Mk Ξi} = tr {Mk|φn〉〈φm|}

= tr
{(
Mk|φn〉〈φm|)†}

= tr {|φm〉〈φn|Mk}
= tr {Mk|φm〉〈φn|}
= tr

{
Mk Ξ j

}
where the third equality uses the Hermiticity of Mk and the
fourth equality uses the cyclic property of the trace. It follows
that Ck(Ξi) = 0 if and only if Ck(Ξ j ) = 0. This holds for
each index k, so C(Ξi) = 0 if and only if C(Ξ j ) = 0. �
We now produce an observability test on (A, C) in terms

of the system Hamiltonian H and the POVM M, which is
the main result of this section. In the process, we introduce
the quantum observabilitymatricesQi(A, C) andQc(A, C).
The computational complexity of determining whether or
not (A, C) is observable using the quantum observability
matrices and the Kalman observability matrix O(A, C) is
studied in the following section. For ease of notation, define
the matrix Vc ∈ Cd2×(d2−d)/2 as in (21) and V i ∈ Cd2×d as
in (23), which are depicted at the bottom of the next page.
Definition 5: Given (A, C), the coherent and incoherent

quantum observability matrices are denoted and defined as

Qc(A, C) � CVc Qi(A, C) � CV i (24)

respectively. The proof of the following theorem will
show that these expressions are equivalent to those in
(22), shown at the bottom of this page, and (23). How-
ever, (24) will play a useful role in designing an efficient
algorithm for testing quantum observability.
Remark 4: We use the term “coherent” because Qc tests

the ability to distinguish between coherent quantum states.
On the other hand,Qi tests the ability to distinguish between
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incoherent classical superpositions of energy (Hamiltonian)
eigenstates of the form � = ∑d

n=1 ηn|φn〉〈φn|.
Theorem 6: LetH be nondegenerate. The closed quantum

system (A, C) is observable if and only if the coherent quan-
tum observability matrixQc(A, C) has no zero columns and
the incoherent quantum observability matrix Qi(A, C) has
full column rank.
Proof: First, we will show that Qc(A, C) defined

in (24) and (22) are equivalent. Given 〈Mk〉|φm〉〈φn| �
tr{Mk|φm〉〈φn|}, note that

〈Mk〉|φm〉〈φn| = vec{Mk}† vec{|φn〉〈φm|}
= vec{Mk}† |φm〉 ⊗ |φn〉.

The equivalence of (24) and (22), follows from (12) and (21).
Similarly, one can show that Qi(A, C) as defined in (24)
and (23), (23) shown at the bottom of next page are equiva-
lent. The alternate descriptions of the quantum observability
matrices may be used to prove the theorem.
Since H is nondegenerate, (16) reveals that the only

repeated eigenvalue of A is ξ = 0, which is repeated d

times and has eigenvectors of the form Ξi = |φn〉〈φn|.
Therefore, for ξ �= 0, Lemma 4 reduces to verifying that
C(Ξi) �= 0 for each eigenmatrix Ξi = |φm〉〈φn| with m �= n.
Given two eigenmatrices Ξi = |φm〉〈φn| and Ξ j = |φn〉〈φm|
(m �= n), Lemma 5 states that one need to only verify that
C(Ξi) �= 0. Given (22), this corresponds to verifying that the
coherent quantum observabilitymatrixQc(A, C) has no zero
columns. Then, according to Lemma 4, we must verify that
the elements of Z0 are linearly independent. Given (23), this
is equivalent to the test onQi(A, C) stated in the theorem.�
Theorem 7: Let H be an arbitrary Hamiltonian. If (A, C)

is observable, then the cardinality of the POVM M is at
least d.
Proof: In the case where H is nondegenerate, the result

follows from the prior theorem. For Qi(A, C) to have full
column rank, it must have at least d rows. The number of
rows of Qi(A, C) is equal to the cardinality ofM.
In the general case, Lemma 3 proves that A will have

at least d zero eigenvalues. Lemma 4 requires that the el-
ements of Z0, which has cardinality at least d, be linearly
independent in order for (A, C) to be observable. For this to

Vc �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|φ1〉 ⊗ |φ2〉 |φ1〉 ⊗ |φ3〉 . . . |φ1〉 ⊗ |φd〉 |φ2〉 ⊗ |φ3〉 |φ2〉 ⊗ |φ4〉 . . . |φ2〉 ⊗ |φd〉 . . . |φd−1〉 ⊗ |φd〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Qc(A, C) �⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈M1〉|φ1〉〈φ2| 〈M1〉|φ1〉〈φ3| . . . 〈M1〉|φ1〉〈φd | 〈M1〉|φ2〉〈φ3| 〈M1〉|φ2〉〈φ4| . . . 〈M1〉|φ2〉〈φd | . . . 〈M1〉|φd-1〉〈φd |
〈M2〉|φ1〉〈φ2| 〈M2〉|φ1〉〈φ3| . . . 〈M2〉|φ1〉〈φd | 〈M2〉|φ2〉〈φ3| 〈M2〉|φ2〉〈φ4| . . . 〈M2〉|φ2〉〈φd | . . . 〈M2〉|φd-1〉〈φd |

...

〈MK〉|φ1〉〈φ2| 〈MK〉|φ1〉〈φ3| . . . 〈MK〉|φ1〉〈φd | 〈MK〉|φ2〉〈φ3| 〈MK〉|φ2〉〈φ4| . . . 〈MK〉|φ2〉〈φd | . . . 〈MK〉|φd-1〉〈φd |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

V i �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|φ1〉 ⊗ |φ1〉 |φ2〉 ⊗ |φ2〉 . . . |φd〉 ⊗ |φd〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Qi �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈M1〉|φ1〉〈φ1| 〈M1〉|φ2〉〈φ2| 〈M1〉|φd〉〈φd |
〈M2〉|φ1〉〈φ1| 〈M2〉|φ2〉〈φ2| 〈M2〉|φd〉〈φd |

...
... · · · ...

〈MK〉|φ1〉〈φ1| 〈MK〉|φ2〉〈φ2| 〈MK〉|φd〉〈φd |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)
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Algorithm 1: Observability Test on Qc(A, C) and
Qi(A, C).
1: Input: H,C.
2: Initialize:Vc = [ ] and V i = [ ].
3: Compute eigenvectors {|φk〉 :k=1, 2, . . . , d} of H.
4: for m = 1, 2, . . . , d do
5: for n = m+ 1,m+ 2, . . . , d do
6: Set Vc =

[
Vc; |φm〉 ⊗ |φn〉

]
7: end for
8: Set V i =

[
V i; |φm〉 ⊗ |φm〉

]
9: end for
10: Set Qc(A, C) = CVc

11: Set Qi(A, C) = CV i
12: Search for zero columns of Qc(A, C)
13: Compute rank of Qi(A, C)
14: if zero column found or rank{Qi(A, C)} < d then
15: Return: Unobservable.
16: else
17: Return: Observable.
18: end if

hold, the codomain of Cmust be at least d-dimensional. Since
the codomain of C has dimension equal to the cardinality of
M, the theorem is proved. �

The results of this section are rooted in the structure of the
quantum system (A, C). Theorem 2 and Lemmas 3–5 rest on
the structure ofA, which generates unitary dynamics, and the
structure of quantum measurement via POVMs. Theorem 6
aggregates the prior lemmas into an equivalent test for quan-
tum observability. Theorem 7 provides a fundamental limit
on quantum observability. While these results may be seen
as elementary, we believe that we are the first to utilize the
structure of (A, C) to deduce these foundational results.

C. COMPUTATIONAL COMPLEXITY OF TESTING
OBSERVABILITY VIA THE QUANTUM OBSERVABILITY
MATRICES
In addition to providing insight on the detectability and ob-
servability of the closed quantum system (A, C), the work
of the prior section provides a computationally efficient tech-
nique for testing the system’s observability. This section de-
tails the complexity of constructing and testing the quantum
observability matrices. This procedure is summarized in Al-
gorithm 1 and is comprised of the following seven steps:

1) compute the eigenvectors of H;
2) compute the 1

2 (d
2 − d) columns of Vc;

3) compute the d columns of V i;
4) compute Qc(A, C) = CVc;
5) compute Qi(A, C) = CV i;
6) search for zero columns of Qc(A, C);
7) compute the rank of Qi(A, C).

The eigendecomposition in step 1 has computational com-
plexityO(d3). Computing each of the 1

2 (d
2 − d) outer prod-

ucts of the form |φm〉 ⊗ |φn〉 in step 2 has complexityO(d2).
Thus, step 2 has a total complexity of O(d4). Similarly,
step 3 has complexity O(d3). Step 4 requires multiplying

C ∈ CK×d2 by Vc ∈ Cd2× (d2−d)
2 for a total complexity of

O(K d4). Similarly, multiplying C by V i ∈ Cd2×d in step 5
has complexityO(K d3). The search in step 6 has amaximum

of K d2−d
2 logical operations for a complexity upper bound of

O(K d2). Computing the rank of Qi(A, C) ∈ CK×d may be
done to high accuracy with the singular value decomposition
(although this is more computationally intense than other
methods [51]) with complexity O(K d2)—here, we have as-
sumed K ≥ d, which is required by Theorem 7. Thus, we
have the following.
Theorem 8: The computational complexity of testing the

observability of (A, C) via the quantum observability matri-
ces is upper bounded by O(K d4).

Our complexity analysis has assumed naive “schoolbook”
calculations for all mathematical computations. Let us com-
pare the complexity of Algorithm 1 to that of construct-
ing O(A, C), which was defined in (14), and checking its
rank. Recall that A ∈ Cd2×d2 . Assuming repeated squar-
ing, which is, for example, used by the MATLAB matrix
power command [52], the complexity of computing Ak is
O((k − 1) (d2)3) = O((k − 1) d6), and this is done for k up
to d2 − 1 for a complexity of O(d8). Each of the d2 − 2
termsCA,CA2, . . . ,CAd

2−1 requires a matrix multiplication
of complexity O(Kd4) for a total complexity of O(Kd6).
With these pieces in place, onemay constructO(A, C).With-
out even considering the complexity of computing the rank of
O(A, C) ∈ CKd2×d2 , we see that theO(max{d8, Kd6}) com-
putational complexity of constructing the Kalman observ-
ability matrix greatly exceeds the complexity of constructing
and testing the quantum observability matrices.

V. QUANTUM STATE OBSERVERS
An important object in classical systems is the “state ob-
server,” which is a dynamic estimate of a system’s true state.
It evolves over time by measuring the system’s output and
updating its estimate of the true state according to a pre-
engineered rule. We define a linear quantum state estimator
below.
Definition 6: A linear quantum state observer is an

estimate �̂(t ) ∈ H of the true quantum state �(t ) ∈ S , which
evolves according to a rule

˙̂�(t ) = A �̂(t ) + (K ◦ C)E(t ) (25)

that ensures that the error E(t ) � �̂(t ) − �(t ) is globally
exponentially stable. Here, K : CK → H is a linear opera-
tor known as the observer gain, which is designed by the
practitioner.
Remark 5: For the rest of this document, we will simply

use “stable” to mean “globally exponentially stable.”
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A quantum state observer gives rise to the linear error
dynamics

Ė(t ) = (A + K ◦ C)E(t ). (26)

The central focus of designing classical observers is to
choose an observer gain K such that the composite operator
Ao � A + K ◦ C has eigenvalues with negative real parts.
Clearly, if such aK exists, then the error dynamics are stable.
However, finding the eigenvalues of the abstract operatorAo

would be difficult in general, and designing a gain operator
K that ensures that the stability condition is even more daunt-
ing. This section seeks to present three important ideas, given
an observable quantum system.

1) It is possible to design a convergent linear quantum
state observer.

2) It is possible to construct a linear time-varying ob-
server of the system’s initial state.

3) There exists a canonical quantum state observer that
requires no analysis to construct.

A. TIME-VARYING OBSERVER FOR THE INITIAL
QUANTUM STATE
In classical systems theory, the notion of detectability is
a slightly weakened version of observability. Definition 4
states that, if detectable, any unobservable modes of (A, C)
are stable. Then, if there were unobservable modes, it is
impossible to know what portion of the state �(0) occupied
said modes. We see, however, that in the quantum case

‖E(t )‖F = ‖�̂(t ) − �(t )‖F
= ‖U†(t ) (�̂(t ) − �(t ))U(t )‖F
= ‖U†(t ) �̂(t )U(t ) − �(0)‖F

due to the unitary invariance of the Frobenius norm and the
solution (4) to the Liouville–von Neumann equation. Hence,
if (A, C) is detectable, then it is possible to design a simple
stable estimator of the initial state according to the rule

�̂0 � T −1(t ) �̂(t ) = U†(t ) �̂(t )U(t ). (27)

This indicates the ability to perfectly reconstruct the initial
state via a quantum state observer when the pair (A, C) is
detectable. This result is analogous to Theorem 2.

B. CANONICAL QUANTUM STATE OBSERVER
We will now introduce what we believe will be one of the
most important linear quantum state observers for the arbi-
trary closed quantum system (A, C). Let �̂(t ) evolve accord-
ing to the rule

˙̂� = − ı �H, �� −
K∑
k=1

(
tr {Mk�̂(t )} − yk(t )

)
·Mk

= − ı �H, �� −
K∑
k=1

tr {MkE(t )} ·Mk. (28)

This estimator has a simple interpretation. Define ŷ(t ) �
C �̂(t ) to be the “output” of the state estimator and e(t ) �
ŷ(t ) − y(t ) to be the output error between the observer and the
true quantum system. The kth component of e(t ) is written
ek(t ). Then

∂ ek(t )
∂ E(t )

= ∂ tr {Mk E(t )}
∂ E(t )

= M†
k = Mk

for each k ∈ {1, 2, . . . ,K}. Thus, the estimator (28) mini-
mizes the output error e(t ) by updating E(t ) in the direction
of steepest descent. In this estimation scheme, the linear op-
erator K : CK → H is defined according to the rule

K e(t ) = −
K∑
k=1

Mk · ek(t ). (29)

It turns out that (A, C) is observable if and only if (28)
is a linear quantum state estimator. In that sense, (28) is a
universal, or canonical, linear quantum state estimator when-
ever the pair (A, C) is observable. Hence, one need merely
show that (A, C) is observable, and a linear quantum state
estimator has been designed for them.
Theorem 9: The error E(t ) of the linear quantum state

observer with observer gain (29) tends to the unobservable
space U (A, C) asymptotically.
Proof: Suppose that observer gain (29) is used in (26), and

consider the Lyapunov candidate functionV (t ) � 1
2‖E(t )‖2F,

which is positive definite and radially unbounded. The can-
didate function’s time derivative is evaluated to be

V̇ (t ) = 1

2

(
tr

{
Ė
†
(t )E(t )

}
+ tr

{
E†(t ) Ė(t )

})
= Re

{
tr

{
E†(t ) Ė(t )

}}
= Re

{
tr

{
−ıE†(t )�H, E(t )�

}}

−Re

{
tr

{
E†(t )

K∑
k=1

tr {MkE(t )}Mk

}}
.

The second equality follows from the fact that for any z ∈
C, z+ z̄ = 2Re{z}. The third equality follows from (26)
and (29). Using the definition of the commutator and the
linearity and cyclic properties of the trace function

tr
{
E†�H, E�

}
= tr

{
E†HE − E†EH

}
= tr

{
E†HE

}
− tr

{
E†EH

}
= tr

{
EE†H

}
− tr

{
E†EH

}
.

The matrices EE†, E†E, and H are all Hermitian. Hence,
tr{E†(t )�H, E(t )�} is a real number and

Re
{
tr

{
−ıE†(t )�H, E(t )�

}}
= 0
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for all t. On the other hand, we have

tr

{
E†

K∑
k=1

tr {MkE}Mk

}
=

K∑
k=1

tr {MkE} · tr
{
E†Mk

}

=
K∑
k=1

tr {MkE} · tr {MkE}

=
K∑
k=1

|tr {MkE} |2.

Thus, the time derivative of V (t ) is negative semidefinite

V̇ (t ) = −
K∑
k=1

|tr {MkE(t )} |2 ≤ 0. (30)

Applying LaSalle’s invariant set theorem [53, Th. 4.4], E(t )
tends to the set

Ω �
{
E ∈ H

∣∣∣ V̇ (t ) = 0 and Ė(t ) = −ı�H, E� ∀t
}

.

Using (30), we see that Ω is exactly equal to the unobserv-
able space U (A, C). �
Theorem 10: The quantum system (A, C) is observable if

and only if the observer gain (29) renders the observer error
dynamics stable.
Proof: Suppose (A, C) is observable. Then, 
 =

U (A, C) = {0} and the origin is globally asymptotically
stable. However, since the system is linear, it is
asymptotically stable if and only if it is exponentially
stable. On the other hand, if (29) does not render the origin
of the error system stable, then 
 = U (A, C) must contain
more than the origin. Hence, (A, C) is not observable. This
proves the theorem. �

While these results already emphasize the importance of
the observer gain defined in (29), the gain has another prop-
erty that has practical importance when estimating a quantum
density operator. This property will form the basis of the
results established in Section VI.
Theorem 11: Let �̂(0) be Hermitian. With observer

gain (29), the observer state �̂(t ) remains Hermitian for all
time t ≥ 0.
Proof: Define the “Hermitian error” EH(t ) � E(t ) −

E†(t ).WhenEH = 0, thematrixE is Hermitian. Since � ∈ S
is automatically Hermitian, when EH = 0 one can conclude
that �̂ is also. According to the statement of the theorem,
EH(0) is zero. Applying elementary analysis and Lemma 1,
one may deduce the time evolution of EH(t ) as follows:

ĖH(t ) = Ė(t ) − Ė
†
(t )

= − ı �H, EH(t )� −
K∑
k=1

tr {MkEH(t )} ·Mk. (31)

We see that EH(t ) = 0 is an equilibrium of this system.
Hence, if EH(0) = 0 then E(t ) will remain Hermitian for all
time. �

Remark 6: The above theorem shows that the set of
Hermitian operators is positively invariant with respect
to the error system (26) when the canonical gain (29)
is used.

VI. ENSURING A VALID STATE ESTIMATE
Given the observability of (A, C), we know that it is possible
to design a quantum state observer. However, we are not
guaranteed that the observer state �̂(T ) at any stopping time
T ∈ (0,∞) is a valid density matrix. We have the following
theorem regarding the set S (the set of all density operators),
which proves that there exists a unique projection from H to
the set of density operators S .
Theorem 12: The set S is a closed convex subset of H.

Moreover, for any ρ ∈ H, there exists a unique density op-
erator σ̆ ∈ S such that ‖σ̆ − ρ‖F ≤ ‖σ − ρ‖F for all σ ∈ S
and

‖σ̆ − ρ‖F = inf
σ∈S

‖σ − ρ‖F.

Proof: See [44]. �
The prior theorem ensures that the projection operator

PS (ρ) � argmin
σ ∈S

‖σ − ρ‖2F (32)

of ρ ∈ H onto the set S is well defined. Unfortunately, this
projection is nonlinear and no closed-form solution is known.
However, if observer gain (29) is used and �̂(t ) is initiated
from a valid density matrix (or any Hermitian matrix for
that matter), it is known that �̂(T ) is Hermitian for any stop-
ping time T ≥ 0. This greatly reduces the complexity of the
projection onto S . Suppose that �̂(T ) is Hermitian. By the
spectral theorem, it is possible to write

�̂(T ) = TΛT†

where Λ ∈ H is the diagonal matrix of real eigenvalues of
�̂(T ) and T is a unitary eigenvector matrix for �̂(T ). Let v �
diag(Λ) ∈ Rd be the vector of eigenvalues of �̂(T ). Let Q �
Id and c � −2v. Consider the following quadratic program
(QP):

P1 : x̆ � argmin
x∈Rd

xTQx+ cTx

subject to x � 0

〈1d, x〉 = 1

where 1d ∈ Rd is vector of all ones.
Theorem 13: Let �̂(T ) be Hermitian. Then, its projection

onto the set S of valid density matrices is

PS ( �̂(T ) ) = T diag(x̆)T† (33)

where x̆ is the solution to Problem 1.
Proof: Let σ ∈ S . Define Λ̆ � T† σ T and observe that

Λ̆ ∈ S . By the unitary invariance of the Frobenius norm and
the definition (32), it follows that

min
σ ∈S

‖σ − �̂‖2F = min
Λ̆∈S

‖ Λ̆−Λ ‖2F
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FIGURE 1. Trajectory of observer state �̂(t ) evolving in the positively
invariant set of Hermitian matrices (gray) followed by the projection PS
onto the set S of density matrices (yellow).

and

PS ( �̂(T ) ) = T PS (Λ )T†.

Since Λ is a real diagonal matrix, we conclude that ‖ Λ̆−
Λ ‖2F is only minimized when Λ̆ is a real diagonal matrix.
Let x � diag(Λ̆). The projection PS (Λ) is equal to diag(x̆)
where x̆ is the solution to

P2 : x̆ = argmin
x∈Rd

‖x− v‖2

subject to x � 0,

〈1d, x〉 = 1

Here, the optimization constraints ensure that Λ̆ is positive
semidefinite and has a trace of one—the requirements to
be an element of S . Expanding the objective in the last
expression, ‖x− v‖2 = (x− v)T (x− v)

= xT x− 2vT x+ vT v.

As v is not an optimizable parameter, we conclude that
Problems 1 and 2 are equivalent. This proves the theorem.�
TheQP in Problem 1may be solved efficiently by any stan-

dard optimization package, such as MATLAB [54]. Then,
(33) may be used to project a Hermitian �̂ onto S . In prior
quantum state estimators, i.e., [44] and [45], there have been
no means of projecting �̂ onto S when the dimension d is
greater than 2. Using the canonical state estimator proposed
in this article, we have overcome this hurdle. Fig. 1 depicts
the estimated state �̂(t ), when the canonical estimator (28) is
used. When �̂(t ) is initiated in the set of Hermitian operators,
it remains there for all time. Then, (33)may be used to project
the observer state onto the set S of valid density operators.
For notation’s sake, let

ˆ̂� (t ) � PS ( �̂(t )). (34)

As the projection guaranteed by Theorem 12 is nonexpansive
[55, Th. 5.1], it follows that

‖ ˆ̂� (t ) − �(t )‖F = ‖PS ( �̂(t ) ) − PS ( �(t ) )‖F
≤ ‖�̂(t ) − �(t )‖F. (35)

Hence, if �̂(t ) tends to �(t ), then so does �̂(t ). Moreover, the
rate of convergence is preserved. We have shown that, if �̂(t )
is the state of a convergent linear quantum state observer,
then ˆ̂� (t ) is a convergent nonlinear estimate of the state �(t ),
which is also a valid density operator.

VII. EXAMPLES
In this section, we present a few concrete examples for which
the theory developed in this article may be applied. All sim-
ulations are performed numerically on a classical computer.

A. EXAMPLE 1: THE QUBIT
We first consider an example with the fundamental building
block of QIS: the qubit. The system Hamiltonian is given by

H � Z

whereZ is the Pauli-Zmatrix. A two-element POVMMwith
measurement operators

M1 � 1

4

[
1 1 − √

2 ı

1 + √
2 ı 3

]

M2 � 1

4

[
3 −1 + √

2 ı

−1 − √
2 ı 1

]

is used. The Hamiltonian has eigenvalues λ1 = 1 and λ2 =
−1, which correspond to the eigenvectors

|φ1〉 = |0〉 �
[
1

0

]
|φ2〉 = |1〉 �

[
0

1

]

respectively. Here, the standard QIS notation for the zero
and one bits, |0〉 and |1〉, has been used [8]. The quantum
observability matrices are evaluated to be

Qc(A, C) = 1

4

[
1 + √

2 ı

−1 − √
2 ı

]

Qi(A, C) = 1

4

[
1 3

3 1

]
.

Clearly, the single column of Qc(A, C) is nonzero, and
Qi(A, C) is full rank. By Theorem 6, this quantum system
is observable. As such, the canonical observer developed
in Section V-B may be used to estimate the state of this
system. Both the system and observer are initiated at pure
states denoted |ψ0〉 and |ψ̂0〉, respectively. The associated
density matrices are �(0) = |ψ0〉〈ψ0| and �̂(0) = |ψ̂0〉〈ψ̂0|.
The following three scenarios are considered:

1) |ψ0〉 = |0〉 and |ψ̂0〉 = |1〉;
2) |ψ0〉 = 1√

2
(|0〉 + |1〉) and |ψ̂0〉 = 1√

2
(|0〉 − |1〉);

3) |ψ0〉 = 1√
2
(|0〉 + ı|1〉) and |ψ̂0〉 = 1√

2
(|0〉 − ı|1〉).

In each scenario, the observer’s state is initiated orthogo-
nal to the system’s state. The canonical observer is used to
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FIGURE 2. Trajectory (blue) of the observer’s estimate of the initial state ˆ̂� 0 plotted on the Bloch sphere. Since the system is observable, the canonical
observer gain (29) guarantees convergence of this estimate to the true state.

FIGURE 3. Observer error for scenario 1) of Example 1 plotted over time.
Because the system is observable and the canonical observer is used, the
error is guaranteed to converge to zero.

produce an estimate �̂(t ). For demonstration, the projection
discussed in Section VI is used to compute ˆ̂� (t ) at each time
step. Then, an estimate ˆ̂� 0 of the true initial state �(0) is
obtained via the rule ˆ̂� 0 � T −1(t ) ˆ̂� (t ) = U†(t ) ˆ̂� (t )U(t ),
as discussed in Section V-A. The trajectory of ˆ̂� 0 for each of
the three scenarios is depicted in the Bloch spheres of Fig. 2.
For scenario 1, Fig. 3 plots the error of the observer state
�̂(t ) and its projection, ˆ̂� (t ), onto S with respect to the true
quantum state �(t ). In this example, we see that �̂(t ) remains
a valid density matrix for all time, so ˆ̂� (t ) = PS (�̂(t )) =
�̂(t ). A QST algorithm with an informationally complete
POVM would require d2 = 4 measurement operators. How-
ever, with this example, we have shown that it is possible
to trade measurement complexity for allowing the system to
evolve according to its natural dynamics over time.

B. EXAMPLE 2: A SPIN-2 PARTICLE
We now consider a spin-2 particle, which has dimension d =
5. The spin-Z and spin-Ymatrices [56] for such a particle are
given by

Sz �

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

and

Sy �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ı 0 0 0

ı 0 −ı
√

3
2 0 0

0 ı
√

3
2 0 −ı

√
3
2 0

0 0 ı
√

3
2 0 −ı

0 0 0 ı 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We take the system Hamiltonian be H � Sz + Sy. A 5-
element POVM is used, which consists only of rank one
projective measurements onto the standard basis:

M �
{

|k〉〈k| : k = 0, 1, . . . , 4
}
.

Rather than construct the large Kalman observability matrix
O(A, C) ∈ C125×25, one may opt to work with the quantum
observability matrices Qc(A, C) ∈ C5×10 and Qi(A, C) ∈
C5×5, which take up less than 1.5% of the space of the
Kalman observability matrix. Using Algorithm 1, we con-
clude that (A, C) is an observable quantum system. Hence,
the canonical observer may be applied to estimate the state
of the quantum system, which we take to be �(0) = |0〉〈0| at
time t = 0 s. For 50 experiments, �̂(0) was randomly gener-
ated using QETLAB’s random density matrix generator [57]
and the canonical observer was used to estimate the state �(t ).
The results are depicted in Fig. 4(a), which shows the error
converging to zero on all 50 runs. Fig. 4(b) shows one of

5500515 VOLUME 3, 2022



Clouâtré et al.: LINEAR QUANTUM STATE OBSERVERS Engineeringuantum
Transactions onIEEE

FIGURE 4. For 50 random initial estimates, the canonical observer was used to estimate the unknown state of the spin-2 particle considered in Example
2. (a) Error over time for each of the 50 experiments. (b) Zoomed version of one of the runs to show that the estimate ˆ̂� (t ) left the set of valid density
matrices, which is evident by the fact that ˆ̂� (t ) was closer to �(t ) than �̂(t ).

these runs and demonstrates a time in which �̂(t ) did not
remain in the set S of valid density operators for all time.
However, as discussed in Section VI, the projection ˆ̂� (t ) of
�̂(t ) onto S preserves the convergence rate of �̂(t ) to the true
state �(t ).

VIII. CONCLUSION
This article ventured to use the rich structure of closed quan-
tum dynamical systems to make new conclusions about their
observability. The main results of this article may be summa-
rized by the following theorem.
Theorem 14: Let (A, C) be a closed quantum system.

Then, the following are equivalent.

1) (A, C) is observable.
2) (A, C) is detectable.
3) (WhenH is nondegenerate.) The coherent quantum ob-

servability matrix Qc(A, C) has no zero columns and
the incoherent quantum observability matrixQi(A, C)
has full column rank.

4) The Kalman observability matrixO(A, C) has rank d2.
5) The estimator (28) is a linear quantum state observer

for (A, C).

Prior to this work, only the equivalence between 1 and
4 had been studied [44], [45]. The canonical linear quan-
tum state observer introduced in Section V-B works for
any observable quantum system and allows one to estimate
the state of a quantum dynamical system without having
to manually design an observer gain. Moreover, the canon-
ical observer ensures the estimated state remains Hermi-
tian for all time. It was then shown that a Hermitian state

estimate can be projected onto the set of valid density ma-
trices, and that this projection preserves convergence of the
estimated state to the ground truth. The canonical observer
will allow quantum engineers to infer the unknown state of
a quantum system without having to manually design an
observer.
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