
Quantum Software Engineeringuantum
Transactions onIEEE

Received 18 May 2022; revised 18 July 2022; accepted 19 July 2022; date of publication 29 July 2022;
date of current version 12 September 2022.

Digital Object Identifier 10.1109/TQE.2022.3195061

Mutation Testing of Quantum Programs:
A Case Study With Qiskit
DANIEL FORTUNATO1,2,3 , JOSÉ CAMPOS1,4, AND RUI ABREU1,2
1Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
2INESC-ID, 1000-029 Lisboa, Portugal
3Artificial Intelligence and Computer Science Laboratory, University of Porto, 4200-465 Porto, Portugal
4LASIGE, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal

Corresponding author: Daniel Fortunato (e-mail: daniel.b.fortunato@tecnico.ulisboa.pt).

This work was supported in part by the Fundação para a Ciência e a Tecnologia/ Ministry of Science, Technology and Higher Education
in Portugal (FCT/MCTES) under Grant PTDC/CCI-COM/29300/2017 and Grant CMU/TIC/0064/2019, in part by the LASIGE
Computer Science and Engineering Research Centre under Grant UIDB/00408/2020 and Grant UIDP/00408/2020, in part by the
Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID) under Grant UIDB/50021/2020,
and in part by the Artificial Intelligence and Computer Science Laboratory, University of Porto, under Grant UIDB/00027/2020.

ABSTRACT As quantum computing is still in its infancy, there is an inherent lack of knowledge and
technology to test a quantum program properly. In the classical realm, mutation testing has been successfully
used to evaluate howwell a program’s test suite detects seeded faults (i.e., mutants). In this article, building on
the definition of syntactically equivalent quantum operations, we propose a novel set of mutation operators to
generatemutants based on qubit measurements and quantum gates. To ease the adoption of quantummutation
testing, we further propose QMutPy, an extension of the well-known and fully automated open-source muta-
tion toolMutPy. To evaluate QMutPy’s performance, we conducted a case study on 24 real quantum programs
written in IBM’s Qiskit library. Furthermore, we show how better test suite coverage and improvements to
test assertions can increase the test suites’ mutation score and quality. QMutPy has proven to be an effective
quantum mutation tool, providing insight into the current state of quantum tests and how to improve them.

INDEX TERMS Quantum computing, quantum mutation testing, quantum software engineering, quantum
software testing.

I. INTRODUCTION
Quantum computation uses the quantum bit (qubit)—the
quantum mechanical analog of the classical bit—as its fun-
damental unit instead of the classical computing bit.Whereas
classical bits can take on only one of two basic states (e.g., 0
or 1), qubits can take on superpositions of those basic states
(e.g., α · |0〉 + β · |1), where α and β are complex scalars
such that |α|2 + |β|2 = 1, allowing a number of qubits to
theoretically hold exponentially more information than the
same number of classical bits. Thus, quantum computers can,
in theory, quickly solve problems that would be extremely
difficult for classical computers. Such computation is pos-
sible because of qubit properties such as the superposition
of both 0 and 1, the entanglement of multiple qubits, and
interference [1], [2].
The field of quantum computing is evolving at a pace faster

than originally anticipated [3]. For example, in March 2020,
Honeywell announced1 a revolutionary quantum computer

1https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-
breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer

based on trapped-ion technology with quantum volume 64—
the highest quantum volume ever achieved, twice the state of
the art previously accomplished by IBM. Quantum volume is
a unit of measure indicating the fidelity of a quantum system.
This important achievement shows that the field of quantum
computing may reach industrial impact much sooner than
initially anticipated.
While the fast approaching universal access to quantum

computers is bound to break several computation limitations
that have lasted for decades, it is also bound to pose ma-
jor challenges for many, if not all, computer science disci-
plines [4], e.g., software testing. Testing is one of the most
used techniques in software development to ensure software
quality [5], [6]. It refers to the execution of software in
in vitro environments that replicate (as close as possible)
real scenarios to ascertain its correct behavior. Despite the
fact that, in the classical computing realm, testing has been
extensively investigated, and several approaches and tools
have been proposed [7]–[12], such approaches for quantum
programs (QPs) are still in their infancy [13]–[15]. It is
worth noting that 1) QPs are much harder to develop than

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 2500517

https://orcid.org/0000-0003-2596-6859
https://orcid.org/0000-0003-3734-3157
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-penalty -@M breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-penalty -@M breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

classical programs, and therefore, programmers, mostly fa-
miliar with the classical world, are more likely to make mis-
takes in the counterintuitive quantum programming one [16]
and 2) QPs are necessarily probabilistic and impossible to
examine without disrupting execution or without compro-
mising their results [17]. Thus, ensuring a correct imple-
mentation of a QP is even harder in the quantum computing
realm [18].
Mutation testing [19], [20] has been shown to be an ef-

fective technique in improving testing practices, hence help-
ing to guarantee program correctness. Big tech companies,
such as Google and Facebook, have conducted several stud-
ies [21]–[23] advocating for mutation testing and its benefits.
The general principle underlying mutation testing is that the
bugs considered to generate buggy program versions repre-
sent realistic mistakes that programmers often make. Such
bugs are deliberately seeded into the original program by
simple syntactic changes to create a set of buggy programs
called mutants, each containing a different syntactic change.
To assess the effectiveness of a test suite at detectingmutants,
these mutants are executed against the input test suite. If
the result of running a mutant is different from the result
of running the original program for at least one test case in
the input test suite, the seeded bug denoted by the mutant is
considered detected or killed.
Just et al. [24] performed a study on whether mutants are

a valid substitute for real bugs in classical software testing,
and they concluded that 1) test suites that kill more mutants
have a higher real bug detection rate and 2) mutation score is
a better predictor of test suites’ real bug detection rate than
code coverage. We have no reason to believe that it would be
any different in quantum computing. Thus, and to shed light
on whether manually written test suites for QPs are effective
at detecting mistakes that programmers might often make, in
this article, we aim to investigate the application of mutation
testing on real QPs.
In this article, we focus our investigation on the most

popular open-source full-stack library for quantum com-
puting [25], IBM’s Quantum Information Software Kit
(Qiskit) [26]2. Qiskit is one of the first software devel-
opment kits for quantum to be released publicly and pro-
vides tools to develop and run QPs on either prototype
quantum devices on IBM Quantum Experience infrastruc-
ture or simulators on a local computer. In a nutshell, Qiskit
translates QPs written in Python into a lower level lan-
guage called OpenQASM [27], which is its quantum instruc-
tion language. Many famous quantum algorithms such as
Shor [28] and Grover [29] have already been implemented
using Qiskit’s API.3 Building from our previous work [30],
in detail, the main contributions of this article are the
following:

2[Online]. Available: https://qiskit.org
3[Online]. Available: https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/

qiskit/aqua/algorithms

1) a set of five novel mutation operators, leveraging the
notion of syntactically equivalent gates, tailored for
QPs.

2) a novel Python-based toolset named QMutPy that au-
tomatically performs mutation testing for QPs written
in the Qiskit’s [26] full-stack library.

3) an empirical evaluation of QMutPy’s effectiveness and
efficiency on 24 real QPs.

4) a detailed discussion on extending test suites for QPs
to kill more mutants and, therefore, detect more bugs.

To the best of our knowledge, the study described and
evaluated in this article is the first comprehensive mutation
testing study on real QPs. Our results suggest that QMutPy
can generate fault-revealing quantum mutants and surfaced
several issues in the test suites of the real QPs used in the
experiments. We have discussed two improvements to test
suites, viz. increasing code coverage and improving the qual-
ity of the test assertions. Such improvements significantly
increase the mutation score of the test suites—hence leading
to QPs of higher quality.
The rest of this article is organized as follows. We present

current available open-source mutation tools and detail the
extension done for QMutPy in Section II. We detail how
our experiment was conducted and subjects were selected in
Section III. We present our results in Section IV. We discuss
and execute improvements to current test suites and how
they were impacted in Section V. In Section VI, we mention
published works about mutation tools and current quantum
testing tools. Finally, Section VII concludes this article.

II. MUTATION TESTING OF QUANTUM PROGRAMS
In this section, we explain our mutation strategy, including
the five novel mutation operators tailored for QPs, and the
implementation details of QMutPy—our proposed Python-
based toolset to automatically perform mutation testing for
QPs written in Qiskit’s [26].

A. QUANTUM MUTATION OPERATORS
Similar to classical programs, a QP is fundamentally a cir-
cuit in which qubits are initialized and go through a series
of operations that change their state. These operations are
commonly known as quantum gates. Two of the most used
quantum gates are the not gate and the Hadamard gate,
usually referred to as the x gate and the h gate, respectively.
They are single-qubit operations, i.e., they change the state
of one qubit [31]. The x gate is analogous to the classical
NOT gate; it simply inverts the current qubit state. The h
gate is quantum specific; it puts the qubit in a perfect state
of superposition (i.e., equal probability of being 1 or 0 when
measured). At the time of writing this article, Qiskit v0.29.0
provides support to more than 50 quantum gates.4 This in-
cludes single-qubit gates (e.g., h gate), multiple-qubit gates

4[Online]. Available: https://qiskit.org/documentation/apidoc/circuit_
library.html

2500517 VOLUME 3, 2022

https://qiskit.org
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/penalty -@M qiskit/aqua/algorithms
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/penalty -@M qiskit/aqua/algorithms
https://qiskit.org/documentation/apidoc/circuit_library.html
https://qiskit.org/documentation/apidoc/circuit_library.html

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

FIGURE 1. Equivalent gates in the Qiskit full-stack library reported
horizontally and vertically. For example, the set of equivalent gates of
gate x is y, z, h, i, id, s, sdg, sx, t, and tdg.

(e.g., cx gate), and composed gates, also known as circuits
(e.g., QFT circuit). Given their importance on the execution
and result of a QP, as a simple typo on the name of the gate
could cause bugs that developers may not be aware of, our set
of mutation operators to generate faulty versions of QPs is
based on single- and multiqubit quantum gates, in particular,
syntactically equivalent gates. We argue that our quantum
mutants match real-world bugs as: 1) Liu et al. [32] described
quantummutation to be helpful to assess the correct behavior
of QPs and 2) three out of the eight common bug patterns in
Qiskit programs described by Zhao et al. [33] are related to
quantum gates as so are the majority of our mutation oper-
ators. Nevertheless, and as part of our future work, we will
investigate and develop novel quantum mutation operators
based on conceptual mistakes a developer might make when
developing QPs.
Formally, a gate g is considered syntactically equivalent to

gate j if and only if the number and the type of arguments5

required by both g and j are the same. At the time when we
performed our experiment, we had identified 40 gates that
had syntactical equivalents. Fig. 1 lists all gates and their
syntactically equivalent ones. For instance, the h gate has ten
syntactically equivalent gates: i, id, s, sdg, sx, t, tdg, x,
y, and z. Note that these gates do not perform or compute
the same operation; they are simply used in the same manner
and require the same number and type of arguments.
The following subsections briefly describe the five

quantum mutation operators proposed in this article.
Our examples are based on the implementation of

5Optional arguments are not taken into consideration.

LISTING 1 Example of the QGR operator

LISTING 2 Example of the QGD operator. In Python, a pass statement is
a nop that when executed nothing happens. It is useful as a placeholder
when a statement is required syntactically, but no code needs to be
executed [34].

LISTING 3 Example of the QGI operator.

Shor’s [28] algorithm available in the Qiskit-Aqua’s
repository.6

1) QUANTUM GATE REPLACEMENT (QGR)
This mutation operator first identifies each call to a
quantum gate function (e.g., circuit.x()7) and then
replaces it with all syntactically equivalent gates, e.g.,
circuit.h(),8 one at a time. For instance, for the x quan-
tum gate, ten mutants are generated as there are ten syntacti-
cally equivalent gates (see Fig. 1). Listing 1 exemplifies the
QGR operator.

2) QUANTUM GATE DELETION (QGD)
Adding and removing quantum gates from a QP can signifi-
cantly impact its output. The Quantum Gate Deletion (QGD)
operation deletes an invocation to a quantum gate. Listing 2
exemplifies the QGD operator.

3) QUANTUM GATE INSERTION (QGI)
This quantummutation operator performs the opposite action
of the QGD operator. Instead of deleting a call to a quantum
gate, it inserts a call to a syntactically equivalent gate. For
each quantum gate in the source code, this mutation opera-
tor creates as many mutants as the number of syntactically
equivalent gates. For example, for the x gate, which has ten
syntactically equivalent gates, it creates 11 mutants, one per
equivalent gate. Note that the x gate itself can be inserted in
the source code, counting as a valid mutant. Listing 3 shows
an example of the Quantum Gate Insertion (QGI) operator.

4) QUANTUM MEASUREMENT INSERTION (QMI)
In quantum computing, measuring a qubit breaks the state
of superposition and the qubit’s value becomes either 1 or
0 (as in classical computing), which can be considered a

6https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/
algorithms/factorizers/shor.py

7https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
8https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html

VOLUME 3, 2022 2500517

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/penalty -@M algorithms/factorizers/shor.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/penalty -@M algorithms/factorizers/shor.py
https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

LISTING 4 Example of the QMI operator.

LISTING 5 Example of the QMD operator.

mutation by design. This operator adds a call to the mea-
sure function9 for each quantum gate call. Listing 4 shows
an example of the Quantum Measurement Insertion (QMI)
operator.

5) QUANTUM MEASUREMENT DELETION (QMD)
Contrary to QMI, the Quantum Measurement Deletion
(QMD) operator removes each measurement from a QP, one
at a time. Without a measure call, the QP keeps the super-
position state and, as a consequence, does not converge the
qubit to either 1 or 0. Listing 5 shows an example of the QMD
operator.

B. QMUTPY TOOLSET
QPs written in Python and using Qiskit library are a mix
of classical operations (e.g., initialization of variables and
loops) and quantum operations (e.g., initialization of quan-
tum circuits and measuring qubits). Thus, we foresee that the
most suitable mutation tool for QPs would be one that:

1) supports Python programs and the twowidespread test-
ing frameworks for Python: unittest and pytest;

2) supports various classical mutation operators (e.g., As-
signment Operator Replacement and Conditional Op-
erator Insertion);

3) supports the creation of a report that could be shown to
a developer or easily parsed by an experimental infras-
tructure (as the one described in Section III);

4) fosters wide adoption, the learning curve to install,
configure, and use the tool ought to be low.

In this section, we first describe the most relevant mutation
testing tools out there and which requirements they fulfill.
Then, we selected a tool to build upon and describe its work-
flow and added features.

1) PYTHON-BASED MUTATION TESTING TOOLS
Mutatest [38], mutmut [36], MutPy [35], and Cosmi-
cRay [37] are the most popular mutation testing tools for
Python that are available through pip10 (the package installer
for Python). Table I reports the most relevant features of each

9https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.
html

10https://pypi.org/project/pip

TABLE I MutPy [35] Versus mutmut [36] Versus Cosmic Ray [37] Versus
Mutatest [38]

Regarding testing frameworks, mutmut supports all test runners (because mutmut only
needs an exit code from the test command).

mutation tool. In the following subsections, we describe their
advantages and disadvantages. Albeit being open-source,
fully automated, and supporting classical mutation operators,
not all tools fulfill all our requirements.
Mutatest [38] only supports pytests, whereas, e.g.,

the programs in the Qiskit-Aqua’s repository11 require
unittest. It neither produces a report of a mutation test-
ing session. Thus, any postmortem analysis (e.g., statistical
analysis) could not be easily performed.

mutmut [36] does not allow one to instantiate the tool with
a single mutation operator or a defined set of mutation oper-
ators. Thus, a developer that decides to use it would have to
wait for allmutants to be analyzed. This can be severely time
consuming as a program could have thousands of mutants,
and more importantly, a developer would not be able to, e.g.,
only select quantummutation operators. Thus, using mutmut
would be unproductive.
MutPy [35] and Cosmic Ray [37] are similar in nature.

Both provide a reporting system, support unittest and
pytest, and allow one to select a subset of mutation op-
erators. However, from our own experience installing and
running the tools, MutPy’s learning curve is more gradual
than Cosmic Ray’s.
The tool that better fulfills all the requirements we aimed

for in a mutation tool is MutPy [35], which we extended and
named QMutPy (details in Section II-B3).

2) MUTPY FLOW
MutPy’s workflow is composed by four main steps. Given
a Python program P, its test suite T , and a set of mutation
operatorsM, MutPy’s workflow is as follows: 1) MutPy first

11https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9

2500517 VOLUME 3, 2022

https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.penalty -@M html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.penalty -@M html
https://pypi.org/project/pip
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

loads P’s source code and test suite; 2) executes T on the
original (unmutated) source code; 3) appliesM and generates
all mutant versions of P; and 4) executes T on each mutant
and provides a summary of the results either as a yaml or
html report.
Since steps 1 and 2 are self-explanatory, we will focus on

steps 3 and 4. In step 3, MutPy parses the code and for each
mutation operator12 checks if there are mutants to be gen-
erated. Mutants in MutPy are generated through the Python
Abstract Syntax Tree (AST). When a possible mutation is
found, the corresponding node from the AST is removed, and
a mutated node is created and injected into the unmutated
source code.
In step 4, MutPy executes T on the mutated version and

produces a report. Each report includes information such
as the number of mutants, whether each mutant was either
killed, survived, incompetent (e.g., mutants that make the
source code uncompilable), or timeout, the time it took to
run T on P, the time it took to run T on each mutant.

3) QMUTPY
QMutPy13 is built on top of the open-source Python muta-
tion testing tool MutPy. Installing and using QMutPy is sim-
ple and straightforward. One only needs to clone QMutPy’s
repository and follow the installation and usage instructions
available in the README14 file.

We extended MutPy by implementing the quantum mu-
tation operators described in Section II-A which develop-
ers can freely use to perform mutation testing on their QPs
written in Qiskit. Notwithstanding, addressing the techni-
cal challenges of implementing the quantum operators, we
added support to MutPy to mutate AST calls,15 which is
not possible in its original version. Interested readers can
find more information on the technical challenges we faced
to implement the quantum mutation operators described in
Section II-A and how we addressed them in Fortunato et
al.’s [39] recent work.

III. EMPIRICAL STUDY
We have conducted an empirical study to evaluate QMutPy’s
effectiveness and efficiency at performing mutation testing
on QPs. In particular, in this study, we aim to answer the
following research questions.

RQ1: How efficient is QMutPy at creating quantum mu-
tants?

RQ2: How many quantum mutants are generated by
QMutPy?

RQ3: How do test suites for QPs perform at killing quan-
tum mutants?

12MutPy supports 20 classical mutation operators and seven experimen-
tal mutation operators. If a user does not specify any mutation operator,
MutPy applies all of them in alphabetical order.

13QMutPy is publicly available at https://github.com/danielfobooss/mutpy.
14https://github.com/danielfobooss/mutpy/blob/master/README.rst
15https://docs.python.org/3/library/ast.html#ast.Call

RQ4: How many test cases are required to kill or timeout
a quantum mutant?

RQ5: How are quantum mutants killed?

As a baseline, we have compared the results achieved by
QMutPy’s quantum mutation operators with MutPy’s classi-
cal mutation operators.16 Note that works [40]–[43] on quan-
tum mutation are very preliminary and no other classical or
quantummutation tool could have been used in our empirical
study as a baseline (see Sections II-B1 and VI for more
information).
We show our commitment to open science [44] by

making QMutPy and our experimental infrastructure (data
and scripts) available to the research community to assist in
future research. The QMutPy tool is available at https://
github.com/danielfobooss/mutpy and all data and scripts
are available at https://github.com/jose/qmutpy-experiments.

A. EXPERIMENTAL SUBJECTS
To conduct our empirical study, we require: 1) real QPs writ-
ten in the Qiskit’s framework [26] (as, currently, QMutPy
only supports Qiskit’s quantum operations); 2) QPs written
in Python17; 3) an open-source implementation of each QP;
and 4) a test suite of each QP. To the best of our knowl-
edge, there are four primary candidate sources of QPs that
fulfill 1): the Qiskit-Aqua’s repository18 itself, the “Pro-
gramming Quantum Computers” book’s repository19 from
O’Reilly, the “Qiskit Textbook Source Code”’s repository20

from the Qiskit Community, and the official “Qiskit tutori-
als”’s repository21.

Qiskit-Aqua’s22 repository provides the implementation
of 24 QPs in Python, including the successful Shor [28],
Grover [29], and HHL [45], and a fully automated test suite
for each program. Hence, it fulfills all our requirements.
O’Reilly’s book provides the implementation of 182 QPs,

29 written using the Qiskit’s framework. However, no test
suite is provided for any of the 182 programs. Hence, it does
not fulfill 4). “Qiskit Textbook Source Code”’s and “Qiskit
tutorials”’s repositories provide Jupyter Python notebooks
with examples on how to interact with the Qiskit’s frame-
work. No test suite is available for any of the examples.
Hence, it does not fulfill 2) nor 4).
Table II lists all QPs used in our empirical evaluation.

For each program it provides the number of lines of codes

16https://github.com/mutpy/mutpy#mutation-operators
17Although Jupyter notebooks include Python source code, they are not

supported by QMutPy.
18https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/

algorithms
19https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/

samples
20https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9
21https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
22Although Qiskit-Aqua’s repository has been deprecated as of April

2021, all its functionalities “are not going away” and have been migrated
to either new packages or to other Qiskit packages. For example, core algo-
rithms and operators’ functions have beenmoved to the Qiskit-Terra’s repos-
itory. More info in https://github.com/Qiskit/qiskit-aqua/#migration-guide.

VOLUME 3, 2022 2500517

https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy/blob/master/README.rst
https://docs.python.org/3/library/ast.html#ast.Call
https://penalty -@M github.com/danielfobooss/mutpy
https://penalty -@M github.com/danielfobooss/mutpy
https://github.com/jose/qmutpy-experiments
https://github.com/mutpy/mutpy#mutation-operators
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/penalty -@M algorithms
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/penalty -@M algorithms
https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/penalty -@M samples
https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/penalty -@M samples
https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9
https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
https://github.com/Qiskit/qiskit-aqua/#migration-guide

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

TABLE II Details of QPs Used in the Empirical Evaluation

The test suite of each QP was identified and selected based on each program’s name. In
Qiskit, a QP is named after the algorithm it implements and to its test suite is given the
prefix “test.” For example, the test suite test_shor.py corresponds to the program
shor.py. Code coverage was measured using the Coverage.pytool.

(LOCs), the number of correspondent test cases, the time
required to run the tests, and the code coverage at line level
of the tests.
In the Qiskit-Aqua’s repository, 24 QPs meet our crite-

ria. We argue that including all QPs, i.e., purely classical
(e.g.,classical_cplex,cplex_optimizer), hybrid
(e.g., vqe, qaoa), and purely quantum (e.g., shor, bern-
stein_vazirani) was relevant to evaluate the effective-
ness of 1) our tool at generating classical and quantum mu-
tants and 2) tests designed for QPs at killing classical and
quantum mutants.
On average, the considered QPs have 184 LOC, where

the smallest program has 56 LOC (numpy_ls_solver)
and the largest has 443 (vqc). The number of tests and
the time required to run all tests differs significantly. The
number of tests ranges from 1 test (classical_cplex
and numpy_ls_solver) to 593 tests (grover), and the
runtime ranges from nearly 0 s (numpy_ls_solver) to
1627 s (vqc).
Regarding code coverage, on average, QPs’ test suites

cover 90% of all LOCs. This is in accordance with best
practices [46] and also with a previous study conducted by
Fingerhuth et al. [25], where the ratio of code exercised by
QPs’ tests was slightly above the industry-expected standard.

B. EXPERIMENTAL SETUP
All the experiments were executed on a machine with an
AMD Opteron 6376 CPU (64 cores) and 64 GB of RAM.
The operating system installed on this machine was CentOS
Linux 7. We used Python version 3.7.0 in our experiments
because it is the version supported by QMutPy and one of

the required versions of Qiskit. We used the GNU Parallel
tool [47] to run all the experiments in parallel.
In our experiments, we ran QMutPy with two config-

urations: with classical mutation operators only and with
quantum mutation operators. For both the configurations, we
used MutPy’s default parameters. For each QP/test suite, we
collected the number of generated mutants, the number of
mutated LOCs, the ratio of mutants per LOC, the number of
mutants killed, the number of mutants that survived and were
exercised as well as that survived and were not exercised by
the test suite, the number of incompetentmutants, the number
of timeout mutants, the mutation score calculated with the
number of survived mutants exercised and not exercised by
the test suite, and, finally, the time it took to run all mutants.

C. EXPERIMENTAL METRICS
To be able to compare the effectiveness of each test suite
at killing mutants, we first compute its mutation score [19],
i.e., the ratio of killed mutants to the total number of mutants
(excluding incompetent mutants, e.g., mutants that introduce
noncompiling changes). Formally, the mutation score of a
test suite T is given by

∑

o∈O

|Ko|
|Mo|−|Io| , |Mo| − |Io| > 0

|O| × 100% (1)

whereO represents the set of mutation operators, o is a single
mutation operator, |Mo| is the number of mutants injected by
o, |Io| is the number of incompetent mutants generated by o,
and |Ko| is the number of mutants (of o) killed by T .

As some mutants might not be killed by T because the
mutated code is not even executed by T , in our empirical
analysis, we also report a mutation score, which ignores
mutants that are not executed by T . This score would allow
one to assess the maximum mutation score T could achieve.
Formally, this score is computed as

∑

o∈O

|Ko|
|Eo|−|Io| , |Eo| − |Io| > 0

|O| × 100% (2)

where |Eo| represents the number of mutants injected by m
and exercised by T .

Regarding time, we compute and report three different
runtimes: 1) total time to perform mutation analysis on test
suite T , which includes the time to create the mutants and
run all tests on all mutants (Runtime column in Table IV);
2) time to inject a mutant in a nonmutated code (Generate
mutant in Fig. 3); and 3) time to create a mutated module
after injecting the mutant (Create mutated module in Fig. 3).
We also perform the Kruskal–Wallis nonparametric

test [48], with a significance level of 0.01, and Cohen’s d
effect-size measure to evaluate the statistical significance of
the results reported in Section IV. Note that, in Section V, we
performed ad-hoc experiments on specific tests, and there-
fore, there are not enough data points to perform a statistical
analysis.

2500517 VOLUME 3, 2022

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

FIGURE 2. Detailed analysis and classification of all mutation operations performed in our study per algorithm and mutation operator.

VOLUME 3, 2022 2500517

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

FIGURE 3. Distribution of the time required to inject a mutant and create a mutated target version. For each mutation operator, the purple text reports
the maximum time of the “Generate mutant” phase, i.e., time to inject or remove nodes from the AST, the green star reports the average time a mutation
operator takes to create a mutated module (i.e., Python code), and the orange circle reports the median time a mutation operator takes to generate a
mutant and create a mutated module.

TABLE III Results per Mutation Operator (Refer to Table IV for an
Explanation of Each Column)

D. THREATS TO VALIDITY
Based on the guidelines in [49], we discuss the threats to
validity.

1) THREATS TO EXTERNAL VALIDITY
The QPs used in our empirical evaluation might not be rep-
resentative of the whole QPs population. Moreover, the state
of test cases selected for each QP might not be complete
(i.e., we may have missed other test cases in Qiskit-Aqua
that test the QPs’ code). Note that the lack of real-world QPs
is a well-known challenge [40], [50]. Another threat is that
we compared the results for only one yet popular quantum

framework (Qiskit). Caution is required when generalizing
to other frameworks (e.g., Cirq).

2) THREATS TO INTERNAL VALIDITY
The main threat to internal validity lies in the complexity of
the underlying tools leveraged to build QMutPy as well as the
ones supporting our experimental infrastructure. To mitigate
this threat, the authors have peer-reviewed the code before
making the changes final.

3) THREATS TO CONSTRUCT VALIDITY
The parameters for drawing our conclusionsmay not be suffi-
cient. In particular, by default, MutPy (hence, QMutPy) runs
a test case t on a mutant m for five times the time t takes to
run on the nonmutated version. Increasing this number may
lead to different results (i.e., fewer timeouts).

IV. RESULTS
Section III defines the methodology and protocol for our mu-
tation analysis and poses a set of research questions related
to QMutPy’s effectiveness and efficiency. The following sub-
sections answer these questions in detail. Fig. 2 summarizes
our results, detailing and classifying all of our mutation op-
erations for each QP and mutation operator.

A. RQ1: HOW EFFICIENT IS QMUTPY AT CREATING
QUANTUM MUTANTS?
Fig. 3 shows the distribution of time QMutPy takes to gen-
erate a mutant using classical and quantum mutation oper-
ators. On the one hand, the time taken to remove or inject
new nodes into the program’s AST is higher on all quantum
mutation operators (except QMD) than on classical mutation
operators. The latter takes up to a maximum of 2.68s (SCD),
whereas the former takes up to 5.53 s (QGD), 11.36 s (QMI),
61.13 s (QGR), and 75.04 s (QGI). On the other hand, the
time taken to create a mutated version, i.e., to convert the
mutated AST back to Python code, is relatively small (less
than 0.1 s) for all classical and quantum mutation operators.

2500517 VOLUME 3, 2022

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

TABLE IV Summary of Our Results per QP

Note that although 24 QPs were considered in our study, here, we only list the ones for which QMutPy was able to generate at least one mutant (either classical or quantum).
Column “Quantum Program” lists the subjects used in our experiments. Column “# Mutants” reports the number of mutants per subject. Column “# Mutated LOC” reports the
number of LOCs with at least one mutant and the ratio of mutants per line of code. Column “# Killed” reports the number of mutants killed by the subject’s test suite. Column “#
Survived” reports the number of mutants that survived and were exercised by the test suite, and the number of mutants that survived and were not exercised by the test suite. Note
that any buggy code or mutant that is not exercised by the test suite cannot be detected or killed. Column “# Incompetent” reports the number of mutants considered incompetent,
e.g., mutants that make the source code uncompilable. Column “# Timeout” reports the number of mutants for which the subject’s test suite ran out of time. Column “% Score”
reports the mutation score considering all mutants killed and survived (but excluding incompetents) and reports the mutation score considering all mutants killed by the test suite
and all mutants that survived and were exercised by the test suite. Column “Runtime” reports the time, in minutes, QMutPy took to run all mutants and each mutant on average.

According to Fig. 3, there is no runtime difference between
creating a mutated version with a classical mutation operator
or a quantum mutation operator.

QMutPy is statistically significantly slower (p-value <

2.20e−16 for an effect-size measure of 2.03), up to 16×
times more, at generating quantum mutants than at gen-
erating classical mutants.

We hypothesize the following reasons to explain its per-
formance while developing our quantum operators.

1) Mutation operators based on functions calls (i.e.,
calls to quantum gates): Our set of quantum mutation
operators, conversely to the classical ones, is based on
function calls. Mutating a function is more complex
than mutating, for example, a constant or a logical
operator (e.g., “+”) since specific grammar exists
(e.g., ast.BinOp) for these types of mutations. It is

worth noting that classical mutation operators that also
modify function calls (e.g., SCD) are also more time
consuming than operators that work at, e.g., logical
operator level, as the LOD.

2) Search for quantum gates: Quantum mutation
operators QGR, QGD, QGI, and QMI first visit
all nodes of the AST and for each function call
checks whether it is a call to a quantum gate. As the
number of function calls in a program is typically
high, we estimate that the consecutive checking is
time consuming. Possible solutions to address this
problem would be to create a new type of operation
in the Python AST, analogous to logical operators, but
dedicated explicitly to quantum gates.

3) Modifying or adding nodes in the AST:Although quan-
tum mutation operators QGR, QMD, and QGD only
modify one node of the program’s AST, QGI and QMI
not only modify one node but also add another to the
end of the AST. We estimate this to increase the run-
time of these operators.

VOLUME 3, 2022 2500517

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

B. RQ2: HOW MANY QUANTUM MUTANTS ARE
GENERATED BY QMUTPY?
To answer this research question, we analyze our data at
two different levels: 1) mutation operator, i.e., how many
mutants are generated by each quantum mutation operator
(see Table III); and 2) program level, i.e., howmany quantum
mutants are generated per program (see Table IV). For these
subresearch questions, we focus on the columns “# Mutants”
and “# Mutated LOC” on both the tables.

1) RQ2.1: HOW MANY MUTANTS ARE GENERATED BY EACH
QUANTUM MUTATION OPERATOR?
As shown in Table III (column “# Mutants”), on average, our
set of quantum mutation operators generated 140 mutants.
The operator that generated fewer mutants is QMD (12 mu-
tants), whereas QGI (328mutants) is the one generatingmore
mutants. These results show the following.

1) Quantum measurements are not that common in QPs
(as only 12 measurements were mutated).

2) Out of the 40 quantum gates with at least one syntacti-
cal equivalent gate, 28 appear in the evaluated QPs.

3) The insertion and replacement of quantum gates with
their syntactical equivalent ones represent 90% of all
quantum mutants. This shows the importance of syn-
tactically equivalent gates, tailored for QPs, in muta-
tion testing.

It is worth noting that the average number of mutants gen-
erated by our quantum mutation operators is slightly below
the number of mutants generated by classical mutation op-
erators (140 versus 186, which CRP highly dominates). As
there are manymore LOCs that could be targeted by classical
mutation operators (e.g., usage of constants) and many more
classical operators (18 versus our set of 5 quantum ones), it is
expected that there are more classical mutants than quantum
mutants. Nevertheless, the top-two quantum mutation oper-
ators (i.e., QGI and QGR) generated more mutants than 15
out of the 18 classical mutation operators.

On average, for 11 out of 24 QPs, QMutPy mutates
four LOCs and generates 14 different quantum mutants
per mutated line. It generates a total of 696 quantum mu-
tants, 140 per mutation operator. Overall, the number of
quantummutants generated byQMutPy is not statistically
significantly lower (p-value = 5.98e−06 for an effect-size
measure of 0.17) than the number of classical mutants.

2) RQ2.2: HOW MANY QUANTUM MUTANTS ARE
GENERATED ON EACH PROGRAM?
As we can see in Table IV (column “# Mutants”), QMutPy
generates at least one quantum mutant for 11 out of the 24
QPs. This means that the remaining programs use neither
quantum gates nor measurements. It is worth noting that the
quantum technique used impacts the number of generated

quantum mutants, e.g., fewer (or no) mutants were gener-
ated for hybrid algorithms (e.g., vqe and qaoa) compared
to purely quantum algorithms (e.g., classical_cplex
and cplex_optimizer). Thus, more quantum mutation
operators should be investigated and developed to support
those QPs.
On average, QMutPy generated 64 quantummutants (e.g.,

one mutant for vqe and qsvm and 207 mutants for shor).
Given that our set of mutation operators targets function
calls, which might not occur as often as, e.g., classical arith-
metic operations in a program, on average, QMutPy only
mutated four LOCs with an average of 13 mutants per line
(see the column “# Mutated LOC”). In contrast, at least
one classical mutant was generated for all programs. 147
mutants on average (+83) and 64 LOCs mutated (+60) with
an average of three mutants per line (−10). Note that QPs
are composed of more traditional programming blocks, such
as conditions, loops, and arithmetic operations, than calls to
the quantum API. Thus, as there are many more LOCs that
can be mutated using classical mutation operators than using
quantum mutation operators, it is expected to have fewer
quantum mutants in a QP.

C. RQ3: HOW DO TEST SUITES FOR QPS PERFORM AT
KILLING QUANTUM MUTANTS?
The question aims to analyze the quality and resilience of
test suites designed to verify QPs. As mentioned before,
the idiosyncrasies underlying QPs (e.g., superposition and
entanglement) make testing far from trivial. We argue that
QMutPy’s mutants can be used as benchmarks to assess the
quality of tests designed to verify QPs. Table IV reports the
results of performing mutation testing on the 24 QPs de-
scribed in Table II, whereas Table III summarizes the results
per mutation operator.
As we can see in Table III, out of the 696 mutants gen-

erated by our quantum mutation operators, 325 (46.70%)
were killed by the programs’ test suites. QGI, the mutation
operator that generated more mutants, killed 102 mutants out
of 328, followed by QGR with 170 killed mutants out of 300
generated. The nonkilled mutants either survived to the test
suites (307, 44.11%), were not even exercised by the test
suites (two QMD mutants, 0.29%), or resulted in a timeout
(62, 8.91%). In comparison, out of the 3527 generated by
classical mutation operators, 1264 (35.84%) were killed, 971
(27.53%) survived, 353 (10.01%) were not exercised by the
test suites, and 885 (25.10%) timeout. Note that +10.86%
more quantum mutants are killed than classical ones and that
only 0.29% of all the quantum mutants are not exercised
by the test suites, as opposed to 10.01% (+9.72%) of all
the classical mutants. These results show that the programs’
test suites might have been designed to mainly verify the
quantum aspect of each program.
To verify whether quantum mutants are not killed by

chance and that instead the tests were tailored to verify quan-
tum behavior, we conducted a small experiment on two QPs,
i.e., shor and grover. We first removed all the assertions

2500517 VOLUME 3, 2022

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

from shor’s and grover’s test suites, then reran our mu-
tation analysis on each QP, and finally recomputed muta-
tion scores. The mutation scores achieved in this experiment
dropped from 53.34% to 24.22% (shor) and from 50.32%
to 20.00% (grover). This further shows that the intention
of testing specific quantum behavior is the main reason tests
kill quantum mutants.
At program level, on average, the mutation score achieved

by all programs’ test suites was 57.69% if all mutants are
considered [see (1)] and 62.23% if only mutants covered by
the test suite are considered [see (2)]. Recall that noncovered
mutants would never be killed by any test as the mutated
code is never executed. The mutation score achieved by each
test suite ranged from 0% (vqc and vqe, more on this in
Section V-A) to 100% (hhl and qsvm). The mutation score
achieved by all programs’ test suites on classical mutants was
33.51% on average (considering all programs) and 41.61%
if we only consider the same set of 11 programs for which
quantum mutation operators were able to generate at least
one mutant. The programs’ test suites achieved a higher mu-
tation score on quantum mutants than on classical mutants,
+20.62% (62.23% versus 41.61%), hence reinforcing the
idea that the test suites have been designed to mainly verify
the quantum characteristics of each QP.
Regarding the time required to run mutation testing, on

average, test suites took 148.18 min to run on quantum mu-
tants. Note that although different programs have more/less
mutants or test cases, the runtime of each QP’s test suite on
quantum mutants differs largely. For instance, shor’s test
suite, the QP with more quantum mutants, took 779.68 min;
qsvm, the QP with fewer mutants and tests, took 47.85 min;
and grover, the QP with more tests, took 212.24 min. In
comparison to classical mutants, programs’ test suites took
longer to run on quantum mutants than on classical. For
example, qsvm’s test suite took 47.85 min to run on the
only generated quantum mutant and 4.79 min on average
(674.82min
141 classical mutants) on each classical mutant. The reasons be-
hind these time differences are explained in Section IV-A.

Test suites for QPs achieved a mutation score sta-
tistically significantly higher than the mutation score
achieved on classical mutants (62.23% versus 33.51%),
p-value = 2.00e−05 for an effect-size measure of 0.92.

D. RQ4: HOW MANY TEST CASES ARE REQUIRED TO KILL
OR TIMEOUT A QUANTUM MUTANT?
The questions aims to understand the effectiveness of cur-
rent quantum test suites. Fig. 4 shows the distribution of the
number of tests required to kill or timeout each mutant per
mutation operator and per QP.
At the mutation operator level, the average number of tests

needed to kill or timeout each quantum mutant is 9 (e.g., one
test for QMI and 73 tests for QMD). The average number
of tests needed to kill or timeout each classical mutant is 26,

with 10 out of 18 classical mutation operators executingmore
than 500 tests.
At program level, the average number of tests needed to

kill or timeout a quantum mutant is 13 (e.g., one test for
bernstein_vazirani, iqpe, and qsvm, and 73 for
grover). Regarding classical mutants, the average number
of tests needed to kill or timeout each classical mutant was 18
(considering all programs) or 64 if only the ten programs for
which at least one quantum mutant was generated and killed
or timeout are considered.

Although on average quantum mutants require
−65.38% tests to be killed or timeout than classical
mutants (9 versus 26), there is no statistically significant
difference (p-value = 0.52 for an effect-size measure of
−0.10) between the number of tests required to either
kill or timeout a classical mutant and a quantum mutant.

E. RQ5: HOW ARE QUANTUM MUTANTS KILLED?
With this question, we aim to analyze what kills quantum
mutants. Fig. 5 depicts the overall number of mutants killed
by an assertion or an error. Fig. 6 shows us the same but by
mutation operation.
Out of the 1589 killed mutants, we observed that two-

thirds of mutants were killed by errors (1067) and the other
one-third by test assertions (522). Fig. 6 reports the number
of mutants killed by errors and test assertions per mutation
operator. Overall, the majority of classical mutants are killed
by errors. As already mentioned, we argue that Qiskit’s test
suites are mainly designed to check for the correct behavior
of QPs. Therefore, they are less resilient to classical muta-
tions and likely to be killed by errors instead of test asser-
tions. This observation does not hold for quantum mutants.
QGD, QGR, QGI, and QMDmutants are killedmore often

by test assertions than by errors. We also observed that QMI
mutants, as expected, are killed by errors only. The reason is
that Qiskit does not have a fail-safe mechanism for inserting
measurements. When a measurement operation is inserted
in a random position, the circuit may become unprocessable
and an error is thrown. Developing better approaches to re-
duce the number of design errors of QMI mutants remains,
however, as future work.

On the one hand, classical mutants are mainly killed
by errors. Quantum mutants, on the other hand, are sta-
tistically more likely (p-value = 0.01 for an effect-size
measure of 0.80) and mainly killed by test assertions
(with the exception of QMI mutants).

V. IMPROVING QUANTUM TEST SUITES
The results in Section IV suggest that there is room for im-
provement in Qiskit’s test suites. For example, we observed
that 150 out of the 207 quantummutants generated for shor
survived.

VOLUME 3, 2022 2500517

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

FIGURE 4. Distribution of the number of tests that must be executed to kill or timeout each mutant. The purple text reports the maximum number of
tests needed to kill a mutant, the green star reports the median of the number of tests needed to kill a mutant, and the orange circle reports the average
number of tests needed to kill a mutant. The red line represents the overall average number of tests needed to kill a classical mutant or a quantum
mutant. (a) Distribution of the number of tests that must be executed to kill or timeout a mutant per mutation operator. (b) Distribution of the number
of tests that must be executed to kill or timeout a mutant per program.

FIGURE 5. Overall number of mutants killed by an assertions or an
error, e.g., an exception. In our experiments, we found three types of
errors thrown by the test suites: 1) Qiskit-related: AquaError,
QiskitOptimizationError, QiskitError, and CircuitError; 2)
Python: NotImplementedError, IndexError, ValueError,
AttributeError, IsADirectoryError, ZeroDivisionError,
OverflowError, UnboundLocalError, RuntimeError, NameError,
and KeyError; and 3) Third-party: CplexSolverError, DQCPError,
AxisError, and LinAlgError.

We draw on two hypotheses to guide our discussion
on how to improve QPs’ test suites to kill more quantum
mutants:

h1: The low mutation score achieved by each test suite is
due to their low coverage.

h2: The low mutation score achieved by each test suite is
due to their low number of test assertions.

Note that the described mutations and improvements
to the test suites are available at https://github.com/jose/
qmutpy-experiments.

A. IMPROVING COVERAGE
Fig. 7 shows the relation between coverage and mutation
score overall, of each test suite, and for each mutation opera-
tion.We computed the Spearman-rank correlation coefficient
between coverage and mutation score of each test suite and
observed that mutation score and coverage are correlated
(+0.28, i.e., mutation score increases with coverage, p-value
1.02e−06). Thus, with this first hypothesis, we aim to inves-
tigate whether increasing the coverage of QPs, e.g., covering
mutated LOCs that are not exercised by the program’s test
suite, leads to a higher mutation score.
Table IV shows that there are two QPs (hhl and vqc)

that have one mutant, generated by the QMD operator, that
survived the test suites and are not covered by any test. The

2500517 VOLUME 3, 2022

https://github.com/jose/penalty -@M qmutpy-experiments
https://github.com/jose/penalty -@M qmutpy-experiments

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

FIGURE 6. Number of mutants killed by an assertions or an error per mutation operator. In our experiments, we found three types of errors thrown by
the test suites: 1) Qiskit-related: AquaError, QiskitOptimizationError, QiskitError, and CircuitError; 2) Python: NotImplementedError,
IndexError, ValueError, AttributeError, IsADirectoryError, ZeroDivisionError, OverflowError, UnboundLocalError, RuntimeError,
NameError, and KeyError; and 3) Third-party: CplexSolverError, DQCPError, AxisError, and LinAlgError.

LISTING 6 Mutant not exercised by hhl.s original test suite andtherefore
not killed.

mutants are generated by the QMD operator and are in un-
covered methods: construct_circuit (see Listing 6)
and get_optimal_vector (see Listing 8), respectively.
We extended hhl’s and vqc’s test suite,23,24 as shown in
Listings 7 and 9, respectively, to cover these methods and
added a more specific test assertion to each test. The test
assertions verify that the number of combinations of qubits
measurements is correct, which it would not be if no mea-
surement was performed. We verified that our hypothesis
holds by rerunning the mutation analysis using the aug-
mented test suites. In both the QPs, the mutants that survived
our initial mutation analysis are killed by the augmented test
suites. That is, hhl’s mutation score increased from 50%
to 100% (coverage increased from 86.55% to 89.16%), and
vqc’s mutation score from 0% to 50% (coverage increased
from 93.26% to 94.43%).

B. IMPROVING TEST ASSERTIONS
As mentioned before, QPs are probabilistic in nature. Sup-
pose a quantum circuit with two qubits. When read, these
qubits could either be 00, 01, 10, or 11. Suppose that the
correct behavior is to observe 00 with 25% probability and

23https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_
hhl.py

24https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_
vqc.py

LISTING 7 Augmented hhl.s test suite.

LISTING 8 Mutant not exercised by vqc.s original test suite andtherefore
not killed.

LISTING 9 Augmented vqc.s test suite.

11 with 75%. If, instead, we observe a survived mutant that
measured 00, 01, 10, and 11 with some probability, then we
would have a false negative since the mutant should have
been killed.

VOLUME 3, 2022 2500517

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

FIGURE 7. Mutation score (in %) versus coverage (in %).

2500517 VOLUME 3, 2022

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

LISTING 10 Augmented test_shor with four additional assertions.

We argue that asserting the number of measurements in
the test suites is necessary to avoid these false negatives—
hence improving the mutation score. To verify this intuition,
we augmented shor’s test suite25 (the QP with the most
generated quantum mutants; see Table IV) with additional
test assertions, as shown in Listing 10. The added assertions
check the correctness of the number of obtained measure-
ment values.
Similar to h1, we rerun the mutation analysis using the

augmented test suites to verify that h2 holds. Mutation score
achieved by shor’s original test suite was 53.34% (50 mu-
tants killed and 150 survived out of 207). The augmented
test suite achieved a mutation score of 72.81% (109 mutants
killed and 91 survived). In detail, the augmented test suite
killed six out of eight QGD mutants (+3 than the original
test suite), 32 out of 99 QGI mutants (+19), 63 out of 91
QGR mutants (+37), and the same QMD and QMI mutants
(one out of one and seven out of eight, respectively) as the
original test suite.

VI. RELATED WORK
To the best of our knowledge, there are four works in the lit-
erature that have performed quantum mutation on QPs [40]–
[43]. However, these are preliminary attempts to conduct
quantum mutation testing, empirically evaluating these prior
works on the same set of QPs and tests, and comparing those
tools’ performance with QMutPy is impossible due to several
limitations.
Ali et al. [40] performed mutation analysis on automati-

cally generated tests for QPs to assess their effectiveness at
finding seeded faults. Their study introduces four mutation
operators: QGD, QGI, and QGR (with no concept of syn-
tactically equivalent gates), and a classical operator named
“replace mathematical operator.” Such studies could further
benefit from a fully automated tool such as QMutPy, which
supports a more extensive set of mutation operators, includ-
ing 20 classical operators.

25https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_
shor.py

Mendiluze et al. [41] proposed Muskit, a Python muta-
tion tool for Qiskit QPs. Muskit supports the mutation of
19 Qiskit’s gates, the mutation operator QGD, as defined in
Section II-A2, and the mutation operators QGI and QGR but
with no concept of syntactically equivalent gates. QMutPy,
on the other hand, supports two additional mutation opera-
tors, i.e., QMD and QMI, which can mutate measurement
calls, and is able to mutate 40 gates (+21 thanMuskit). To use
Muskit, one must provide the specification of the QP so that
Muskit is able to assess whether a mutant has been killed by
a test. This requires expertise in quantum computing and/or
on Qiskit. As the manually written tests used in our study are
equipped with test assertions, QMutPy does not require any
program specification to assess whether a test kills a mutant.
Mendiluze et al. [41] also conducted an experimental evalu-
ation of Muskit on four QPs, one shared with our study, the
Bernstein–Vazirani cryptography algorithm. They reported
that Muskit generated 343 mutants for that algorithm (255
generated by the QGI operator, nine QGD, and 79 QGR) and
achieved a mutation score of 77.35%. In our study, QMutPy
only generated 88 mutants (44 generated by the QGI opera-
tor, four QGD, and 40 QGR) but achieved a mutation score
of 91.32%. These differences can be explained as follows.

1) Mendiluze et al.’s [41] implementation of the
Bernstein–Vazirani algorithm is 14 lines long and
contains nine gates,26 and the implementation
available on Qiskit-Aqua’s repository (and used
in our study) is 80 lines long and contains four gates27

only.
2) We performed mutation analysis with the 33 manually

written tests as opposed to the 64 automatically gener-
ated tests used by Mendiluze et al. [41]. As the man-
ually written tests achieved a higher mutation score,
further research on the automatic generation of tests
for QPs should be conducted (see, e.g., [40]).

3) As put forward by Mendiluze et al. [41], the large
number of mutants generated by the mutation oper-
ators QGI and QGR that survived might be equiv-
alent/irrelevant mutants. QMutPy only injects or re-
places syntactically equivalent gates, thus keeping the
number of equivalent mutants, if any, low.

Wang et al. [42] proposed an approach named QDiff,
to perform differential testing [51] on quantum software
(e.g., Qiskit). QDiff generates semantically equivalent ver-
sions by applying equivalent gate transformations and mu-
tations (QGI/QGD/QGR of random gates, gate swap, and
qubit change). To identify whether a sequence of gates is
semantically equivalent to another, both are executed and
their measurements compared. This is time consuming for
programs with a large number of gates. QMutPy, on the other

26https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/
Experimental%20Data/LittleBV/LittleBV_program.py

27https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/
algorithms/education/bernstein_vazirani.py

VOLUME 3, 2022 2500517

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py
https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/penalty -@M Experimental%20Data/LittleBV/LittleBV_program.py
https://github.com/Simula-COMPLEX/muskit/blob/c148ad7/penalty -@M Experimental%20Data/LittleBV/LittleBV_program.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/penalty -@M algorithms/education/bernstein_vazirani.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/penalty -@M algorithms/education/bernstein_vazirani.py

Engineeringuantum
Transactions onIEEE

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT

hand, generates syntactically equivalent versions, which do
not require the execution of any other program version to
assess equivalency.
Finally, MTQC [43] is a Java quantum mutation tool that

supports Qiskit and Q# QPs. MTQC supports the mutation
of 17 Qiskit’s gates (versus 40 in QMutPy) and a subset
of operations performed by our QGR operator (52 versus
225; see dark squares in Fig. 1). At the time of writing this
article, no study has been conducted with MTQC. We could
not include MTQC in our study as: 1) it does not support
unittest, a requirement to run Qiskit-Aqua’s manually
written tests and 2) it requires one to manually use its GUI to
perform the mutation analysis, one program at a time, which
is time consuming and prone to mistakes.

VII. CONCLUSION
In this article, we propose a mutation-based technique to
test QPs, coined QMutPy, that is capable of mutating QPs
for Qiskit, the IBM quantum framework. This is a first at-
tempt to perform mutation testing on QPs with a tool that
is easy to use and works at scale. Furthermore, QMutPy
offers classical and more quantum mutation operators than
the approaches/tools proposed in the literature.
To demonstrate the effectiveness of QMutPy, we carried

out an empirical study with 24 real QPs (selected from
Qiskit). We observed several issues that may lead to future
failures—nonoptimal code coverage, low mutation scores,
and minimal number of test cases. Furthermore, we observed
that quantum mutants required fewer test cases to be killed
than classical mutants. This is likely due to the objective of
the designed test suites—checking for the QP’s behavior. As
a consequence of our observations, we draw on two potential
ways to improve test suites: coverage and assertion improve-
ments. We show how both the improvements can increase
the mutation score significantly on the QPs considered in our
study.28

As for future work, we plan to extend QMutPy with other
mutation operators, offer it to other quantum frameworks
(e.g., Cirq and Q#), and run our mutation analysis on real
quantum computers.

REFERENCES
[1] A. Steane, “Quantum computing,” Rep. Prog. Phys., vol. 61, no. 2,

pp. 117–173, 1998, doi: 10.1088/0034-4885/61/2/002.
[2] N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Com-

puter Scientists. Cambridge, U.K.: Cambridge Univ. Press, 2008,
doi: 10.1017/CBO9780511813887.

[3] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, Aug. 2018, Art. no. 79, doi: 10.22331/q-2018-08-06-79.

[4] J. Zhao, “Quantum Software Engineering: Landscapes and Horizons,”
2020, arXiv:2007.07047, doi: 10.48550/arXiv.2007.07047.

[5] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. Cam-
bridge, U.K.: CambridgeUniv. Press, 2016, doi: 10.1017/9781316771273.

28We are currently discussing with the IBM Qiskit developers how to
integrate our findings into their codebase.

[6] G. Fraser and J. M. Rojas, “Software testing,” in Handbook of Software
Engineering, S. Cha, R. N. Taylor, and K. Kang, Eds. Cham, Switzerland:
Springer, 2019, pp. 123–192, doi: 10.1007/978-3-030-00262-6_4.

[7] N. Juristo, A. M. Moreno, and W. Strigel, “Guest editors’ introduc-
tion: Software testing practices in industry,” IEEE Softw., vol. 23, no. 4,
pp. 19–21, Jul./Aug. 2006, doi: 10.1109/MS.2006.104.

[8] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An
industrial evaluation of unit test generation: Finding real faults in a finan-
cial application,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.: Softw.
Eng. Pract. Track, 2017, pp. 263–272, doi: 10.1109/ICSE-SEIP.2017.27.

[9] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regres-
sion test case selection: A systematic literature review,” ACM Comput.
Surv., vol. 50, no. 2, pp. 1–32, 2018, doi: 10.1145/3057269.

[10] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in Proc. 28th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 318–328,
doi: 10.1145/3293882.3330566.

[11] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. 29th Int. Conf. Softw. Eng., 2007,
pp. 75–84,doi: 10.1109/ICSE.2007.37.

[12] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based
testing through test case diversity,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 1, pp. 1–42, Mar. 2013, doi: 10.1145/2430536.2430540.

[13] G. Li, L. Zhou, N. Yu, Y. Ding,M.Ying, andY.Xie, “Projection-based run-
time assertions for testing and debugging quantum programs,” Proc. ACM
Program. Lang., vol. 4, Art. no. 150, Nov. 2020, doi: 10.1145/3428218.

[14] J. Wang et al., “QuanFuzz: Fuzz testing of quantum program,” 2018,
arXiv:1810.10310, doi: 10.48550/arXiv.1810.10310.

[15] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing
of quantum programs in Q#,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng. Workshops, 2020, pp. 430–435, doi: 10.1145/3387940.3391459.

[16] A. V. Miranskyy and L. Zhang, “On testing quantum programs,” in
Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.: New Ideas Emerg. Results
(ICSE-NIER), 2019, pp. 57–60, doi: 10.1109/ICSE-NIER.2019.00023.

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge, U.K.: Cambridge Univ.
Press, 2010.

[18] Y. Huang and M. Martonosi, “QDB: From quantum algorithms to-
wards correct quantum programs,” in Proc. 9th Workshop Eval. Usability
Program. Lang. Tools, 2019, vol. 67, pp. 4:1–4:14, doi: 10.4230/OA-
SIcs.PLATEAU.2018.4.

[19] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep./Oct. 2011, doi: 10.1109/TSE.2010.62.

[20] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Does mutation testing
improve testing practices?,” in Proc. IEEE/ACM 43rd Int. Conf. Softw.
Eng., 2021, pp. 910–921, doi: 10.1109/ICSE43902.2021.00087.

[21] M. Beller et al., “What it would take to use mutation testing in
industry—A study at Facebook,” in Proc. IEEE/ACM 43rd Int. Conf.
Softw. Eng.: Softw. Eng. Pract., 2021, pp. 268–277, doi: 10.1109/ICSE–
SEIP52600.2021.00036.

[22] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Practical mutation
testing at scale: A view from Google,” IEEE Trans. Softw. Eng., early
access, doi: 10.1109/TSE.2021.3107634.

[23] G. Petrović and M. Ivanković, “State of mutation testing at Google,”
in Proc. 40th Int. Conf. Softw. Eng. Pract., 2018, pp. 163–171,
doi: 10.1145/3183519.3183521.

[24] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G.
Fraser, “Are mutants a valid substitute for real faults in software test-
ing?,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014,
pp. 654–665,doi: 10.1145/2635868.2635929.

[25] M. Fingerhuth, T. Babej, and P. Wittek, “Open source software in
quantum computing,” PLoS ONE, vol. 13, 2018, Art. no. e0208561,
doi: 10.1371/journal.pone.0208561.

[26] G. Aleksandrowicz et al., “Qiskit: An open-source framework for
quantum computing,” Jan. 2019, doi: 10.5281/zenodo.2562111.

[27] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta,
“Open quantum assembly language,” 2017, arXiv:1707.03429, doi:
10.48550/arXiv.1707.03429.

2500517 VOLUME 3, 2022

https://dx.doi.org/10.1088/0034-4885/61/2/002
https://dx.doi.org/10.1017/CBO9780511813887
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.48550/arXiv.2007.07047
https://dx.doi.org/10.1017/9781316771273
https://dx.doi.org/10.1007/978-3-030-00262-6_4
https://dx.doi.org/10.1109/MS.2006.104
https://dx.doi.org/10.1109/ICSE-SEIP.2017.27
https://dx.doi.org/10.1145/3057269
https://dx.doi.org/10.1145/3293882.3330566
https://dx.doi.org/10.1109/ICSE.2007.37
https://dx.doi.org/10.1145/2430536.2430540
https://dx.doi.org/10.1145/3428218
https://dx.doi.org/10.48550/arXiv.1810.10310
https://dx.doi.org/10.1145/3387940.3391459
https://dx.doi.org/10.1109/ICSE-NIER.2019.00023
https://dx.doi.org/10.4230/OASIcs.PLATEAU.2018.4
https://dx.doi.org/10.4230/OASIcs.PLATEAU.2018.4
https://dx.doi.org/10.1109/TSE.2010.62
https://dx.doi.org/10.1109/ICSE43902.2021.00087
https://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://dx.doi.org/10.1109/TSE.2021.3107634
https://dx.doi.org/10.1145/3183519.3183521
https://dx.doi.org/10.1145/2635868.2635929
https://dx.doi.org/10.1371/journal.pone.0208561
https://dx.doi.org/10.5281/zenodo.2562111
https://dx.doi.org/10.48550/arXiv.1707.03429

Fortunato et al.: MUTATION TESTING OF QUANTUM PROGRAMS: A CASE STUDY WITH QISKIT Engineeringuantum
Transactions onIEEE

[28] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999, doi: 10.1137/S0036144598347011.

[29] L. K. Grover, “A fast quantummechanical algorithm for database search,”
in Proc. 28th Annu. ACM Symp. Theory Comput., 1996, pp. 212–219,
doi: 10.1145/237814.237866.

[30] D. Fortunato, J. Campos, and R. Abreu, “Mutation testing of quan-
tum programs written in QISKit,” in Proc. IEEE/ACM 44th Int. Conf.
Softw. Eng. Companion, 2022, pp. 358–359, doi: 10.1109/ICSE-Compan-
ion55297.2022.9793776.

[31] J.-L. Brylinski and R. Brylinski, “Universal quantum gates,” in Mathe-
matics of Quantum Computation. London, U.K.: Chapman and Hall/CRC,
2002, pp. 117–134, doi: 10.1201/9781420035377.

[32] P. Liu, S. Hu, M. Pistoia, C. R. Chen, and J. M. Gambetta, “Stochastic
optimization of quantum programs,” Computer, vol. 52, no. 6, pp. 58–67,
Jun. 2019, doi: 10.1109/MC.2019.2909711.

[33] P. Zhao, J. Zhao, and L. Ma, “Identifying bug patterns in quantum pro-
grams,” in Proc. IEEE/ACM 2nd Int. Workshop Quantum Softw. Eng.,
2021, pp. 16–21, doi: 10.1109/Q-SE52541.2021.00011.

[34] Python—Pass Statement, Python Software Foundation, Wilmington,
DE, USA, 2021. Accessed: Aug. 8, 2021. [Online]. Available:
https://docs.python.org/3/tutorial/controlflow.html#pass-statements

[35] K. Hałas, “MutPy: A mutation testing tool for Python 3.x source code,”
2011. Accessed: Jan. 18, 2021. [Online]. Available: https://github.com/
mutpy/mutpy

[36] A. Hovmöller, “Mutmut: A Python mutation testing system,” 2011.
Accessed: Jan. 18, 2021. [Online]. Available: https://github.com/
boxed/mutmut

[37] A. Bingham, “Cosmic ray: Mutation testing for Python.” Accessed: Jan.
18, 2021. [Online]. Available: https://github.com/sixty-north/cosmic-ray

[38] E. Kepner, “Mutatest: Python mutation testing.” Accessed: Jan. 18, 2021.
[Online]. Available: https://github.com/EvanKepner/mutatest

[39] D. Fortunato, J. Campos, and R. Abreu, “QMutPy: A mutation test-
ing tool for quantum algorithms and applications in Qiskit,” in Proc.
31st ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2022, pp. 797–800,
doi: 10.1145/3533767.3543296.

[40] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness
of input and output coverage criteria for testing quantum programs,” in
Proc. 14th IEEE Conf. Softw. Testing Verif. Validation, 2021, pp. 13–23,
doi: 10.1109/ICST49551.2021.00014.

[41] E. Mendiluze, S. Ali, P. Arcaini, and T. Yue, “Muskit: A mu-
tation analysis tool for quantum software testing,” in Proc. 36th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2021, pp. 1266–1270,
doi: 10.1109/ASE51524.2021.9678563.

[42] J. Wang, Q. Zhang, G. H. Xu, and M. Kim, “QDiff: Differential testing
of quantum software stacks,” in Proc. 36th IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2021, pp. 692–704, doi: 10.1109/ASE51524.2021.9678792.

[43] J. Pellejero, “MTQC: Mutation testing for quantum computing,”
2020, Accessed: Jan. 18, 2021. [Online]. Available: https://javpelle.
github.io/MTQC

[44] D. Méndez Fernández, M. Monperrus, R. Feldt, and T. Zimmermann,
“The open science initiative of the empirical software engineering jour-
nal,” Empir. Softw. Eng., vol. 24, no. 3, pp. 1057–1060, Jun. 2019,
doi: 10.1007/s10664-019-09712-x.

[45] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Phys. Rev. Lett., vol. 103, Oct. 2009,
Art. no. 150502, doi: 10.1103/PhysRevLett.103.150502.

[46] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage at
Google,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2019, pp. 955–963, doi: 10.1145/3338906.3340459.

[47] O. Tange, “Gnu parallel—The command-line power tool,” login: The
USENIX Mag., vol. 36, no. 1, pp. 42–47, Feb. 2011, doi: 10.5281/zen-
odo.16303.

[48] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” J. Amer. Statist. Assoc., vol. 47, no. 260, pp. 583–621, 1952,
doi: 10.1080/01621459.1952.10483441.

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. New York, NY,
USA: Springer, 2012, doi: 10.1007/978-3-642-29044-2.

[50] J. Campos and A. Souto, “QBugs: A collection of reproducible bugs
in quantum algorithms and a supporting infrastructure to enable con-
trolled quantum software testing and debugging experiments,” in Proc.
IEEE/ACM 2nd Int. Workshop Quantum Softw. Eng., 2021, pp. 28–32,
doi: 10.1109/Q-SE52541.2021.00013.

[51] W. M. McKeeman, “Differential testing for software,” Digit. Tech. J.,
vol. 10, no. 1, pp. 100–107, 1998.

VOLUME 3, 2022 2500517

https://dx.doi.org/10.1137/S0036144598347011
https://dx.doi.org/10.1145/237814.237866
https://dx.doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://dx.doi.org/10.1109/ICSE-Companion55297.2022.9793776
https://dx.doi.org/10.1201/9781420035377
https://dx.doi.org/10.1109/MC.2019.2909711
https://dx.doi.org/10.1109/Q-SE52541.2021.00011
https://docs.python.org/3/tutorial/controlflow.html#pass-statements
https://github.com/penalty -@M mutpy/mutpy
https://github.com/penalty -@M mutpy/mutpy
https://github.com/penalty -@M boxed/mutmut
https://github.com/penalty -@M boxed/mutmut
https://github.com/sixty-north/cosmic-ray
https://github.com/EvanKepner/mutatest
https://dx.doi.org/10.1145/3533767.3543296
https://dx.doi.org/10.1109/ICST49551.2021.00014
https://dx.doi.org/10.1109/ASE51524.2021.9678563
https://dx.doi.org/10.1109/ASE51524.2021.9678792
https://javpelle.penalty -@M github.io/MTQC
https://javpelle.penalty -@M github.io/MTQC
https://dx.doi.org/10.1007/s10664-019-09712-x
https://dx.doi.org/10.1103/PhysRevLett.103.150502
https://dx.doi.org/10.1145/3338906.3340459
https://dx.doi.org/10.5281/zenodo.16303
https://dx.doi.org/10.5281/zenodo.16303
https://dx.doi.org/10.1080/01621459.1952.10483441
https://dx.doi.org/10.1007/978-3-642-29044-2
https://dx.doi.org/10.1109/Q-SE52541.2021.00013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

