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ABSTRACT In this work, we aim to solve a practical use-case of unsupervised clustering that has applica-
tions in predictive maintenance in the energy operations sector using quantum computers. Using only cloud
access to quantum computers, we complete thorough performance analysis of what some current quantum
computing systems are capable of for practical applications involving nontrivial mid-to-high-dimensional
datasets. We first benchmark how well distance estimation can be performed using two different metrics
based on the swap-test, using angle and amplitude data embedding. Next, for the clustering performance
analysis, we generate sets of synthetic data with varying cluster variance and compare simulation to physical
hardware results using the two metrics. From the results of this performance analysis, we propose a general,
competitive, and parallelized version of quantum k-means clustering to avoid some pitfalls discovered due
to noisy hardware and apply the approach to a real energy grid clustering scenario. Using real-world German
electricity grid data, we show that the new approach improves the balanced accuracy of the standard quantum
k-means clustering by 67.8% with respect to the labeling of the classical algorithm.

INDEX TERMS Cloud quantum computing, quantum clustering, quantum computing, quantum distance

estimation.

I. INTRODUCTION

Given the challenging engineering requirements for building
and maintaining quantum computers, it is likely that quantum
computers will only be accessible through cloud services
for the majority of users. Quantum computers, depending
on the qubit technology, can require a complex construction
and maintenance schedule that makes it impractical for the
average user to own [1]. Rather than building quantum com-
puters as a hardware product to sell to consumers, companies,
such as Amazon, Microsoft, and IBM, are rather developing
cloud-based platforms for online access to their quantum
devices. Although these quantum cloud services are currently
accessible, the question of how useable they are for practical
industrial use-cases arises. For our interest, we ask: Can these
quantum computers produce accurate enough distance esti-
mates for clustering? Can we achieve any speedup with them
currently? The focus of this work is, therefore, to benchmark
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this simple common use-case using the IBM Quantum cloud
services [2].

Clustering algorithms can be used on unlabeled data to find
relationships between the data’s various features. To perform
clustering, an algorithm introduced by Lloyd in 1982, called
k-means clustering [3], can be used. The k-means algorithm
takes as input a collection of unlabeled data points, or feature
vectors, and outputs a list of labels, one for each data point.
The data points are labeled based on the minimal distance
to a particular centroid. During execution, the algorithm im-
proves the centroid locations by running iteratively, updating
the location to be the mean of the data points that are deter-
mined nearest to them based on a distance metric.

Classically, the usual method for measuring the distance
between centroids and data points is to simply compute the
Euclidean distance. For feature vectors of N features, com-
puting the Euclidean distance requires O(N) computational
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steps. With a quantum approach, using quantum amplitude
embedding (see [4] for details), one can encode length-N
vectors into O(log, N) qubits, an exponential decrease in
resources for embedding, assuming one can load quantum
states into a quantum random access memory [5]. With this
embedding, one can perform what is known as a swap-test us-
ing a quantum computer, as described in [5] and [6], to com-
pute an estimate for the Euclidean distance between two vec-
tors. Because the swap-test requires a number of operations
proportional to the number of qubits used for embedding—
needed for swapping two multiqubit states—in theory this
would result in an exponential speedup in runtime complex-
ity. Moreover, the minimum distance to a centroid for each
point can be found using Grover’s search [7] for an addi-
tional quadratic speedup. Using a simpler data embedding
approach such as angle embedding, the theoretical advantage
provided by an amplitude embedding is lost as angle embed-
ding requires a number of qubits directly proportional to the
data dimension. However, the benefit of using this alternative
embedding is that the depth of the state preparation circuit
is constant, whereas with amplitude embedding, the state
preparation circuit uses exponentially more nonlocal gates
as the data dimension grows [8], leading to vastly deeper
circuits using current approaches.

This result makes quantum clustering and nearest-
neighbor classification appear very attractive use cases for
quantum computing since they both use distance estimation
and, therefore, can benefit from a theoretical speedup. When
put into practice though, there are various challenges to over-
come before one can effectively perform distance estimation
on a quantum computer. Moreover, a strong assumption of
efficient state preparation needs to be made in order to have
an exponential speedup using the quantum approach over the
classical approach [9]. Nonetheless, with this article, we aim
to expand the results related to clustering on real gate-based
quantum hardware and, in particular, to explore how this
type of algorithm can be executed on IBM’s quantum cloud
computing service. In this work, we use only the software
libraries and services available to us with no direct hard-
ware access, aiming to demonstrate how well one can expect
quantum clustering to perform using generally available re-
sources.

We begin in Section II by reviewing how we perform data
encoding and how we calculate the distance estimation in our
quantum algorithm using the cloud service. In Section I1I, we
benchmark how well distance estimation can be performed,
testing for various Euclidean distances and dimensions in
simulation and on hardware. Further, we analyze various
clustering experiments using synthetic data with two and four
dimensions with several datasets. Given the results of the per-
formance analysis in Section III, we then apply the findings
to a nontrivial clustering problem, which is relevant in the
energy sector in Section I'V. In particular, we show that by de-
composing high-dimensional vectors into two-dimensional
(2-D) subspace projections, we are able to compute the over-
all distance in a parallel fashion that significantly reduces the
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error induced by existing quantum hardware while simul-
taneously reducing the total number of circuits. Section V
concludes this article.

A. RELATED WORK
Performing clustering and nearest-neighbor type algorithms
using quantum computers has been studied in various con-
texts. Improving the encoding strategy to work better with
IBM’s quantum computers was studied by Khan et al. [10].
In the article, they describe an encoding mechanism for fea-
ture vectors and benchmark the approach on IBM’s quantum
computer. Feature vectors, after PCA is performed, of dimen-
sion two are considered and benchmarked with the MNIST
dataset using quantum hardware. Using the TonQ quantum
hardware, Johri et al. [11] perform data classification using
clustering on their trapped ion quantum computer. In their
work, they define an optimized method for encoding 8-D
classical data into the quantum computer and use PCA to
benchmark against MNIST data for ten different labels and
perform their quantum algorithm for nearest-neighbor classi-
fication. In these works, an explicit benchmarking of distance
estimation accuracy is not demonstrated. Moreover, the only
experiments tested on the IBM quantum system were of two
dimensions. In a quantum annealing setting, clustering has
also been considered. Kumar et al. [12] and Arthuretal. [13]
map a clustering problem to a quadratic unconstrained binary
optimization problem for an adiabatic quantum computer and
use hardware to test their approach. Quantum annealing uses
a different approach to quantum computing versus the gate-
based model, indeed no swap-test is involved, and the results
from annealing experiments do not paint a clear picture of
performance using a universal quantum computing approach.
In [14], Benlamine et al. review three methods for distance
estimation using a quantum approach and benchmark the
approaches using nearest-neighbor classification in simula-
tion only, not testing their approaches on real hardware. Fur-
ther modified quantum clustering approaches were proposed
in [15] and [16]. These works did not perform tests on real
physical hardware and, therefore, did not benchmark their
performance, as we do in this work. In [17], Nguyen et al.
run experiments to test the accuracy of the swap-test using
their trapped ion system in a continuous variable setting but
do not perform any experiments of clustering or distance
estimation for classical input vectors. Overall, our work is
the first to benchmark these popular swap-test-based distance
estimation techniques in a general way and for the purpose
of classification and clustering.

B. SUMMARY OF CONTRIBUTIONS

In this work, we analyze how well current quantum comput-
ers can perform unsupervised clustering. To do this, we use
two different distance metrics that are based on the swap-test
and thoroughly benchmark their accuracy. The swap-test is a
general method for computing distance between vectors on a
quantum computer and is, therefore, important to thoroughly
understand. The two metrics we use are based on popular
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well-known methods of data embedding and, therefore, of
general interest to explore, something this work does for
the first time on real quantum hardware. To compare the
accuracy of the real quantum device to the true result, we use
noiseless simulation as the ground truth. In order to perform
many distance measurements at once for k-means clustering,
we define two approaches to parallelize the calculations. In
the first case, we offer a parallelization approach when the
quantum computing platform does not allow for sending
circuits to execute in bulk. We tested these approaches to
perform benchmarking, but because of the large performance
improvement when using bulk circuit execution of the second
approach, we use only the second approach for our analy-
sis in this work. We benchmark distance estimation via the
swap-test, varying the scale of the distance, the number of
shots used, and the dimension of the data. To the best of the
authors’ knowledge, no such benchmarking has been previ-
ously demonstrated.

Next, we analyze unsupervised clustering on real quantum
devices. Using the results of the distance metric analysis, we
benchmark the best cases in terms of dimensions—2-D and
4-D—using synthetic data. We found that the accuracy of
the real devices using standard approaches and synthetic data
proved relatively low. We next tested the ability to perform
a true unsupervised clustering problem using real data from
the German energy grid. We found that using a standard ap-
proach for quantum k-means clustering, the accuracy result
output from real quantum hardware is low. We then tested
our novel approach to perform the distance metrics, which
is to decompose the distance calculation into smaller dimen-
sional projections, and then use quantum circuits that com-
pute multiple swap-tests at once, thereby accommodating
the additional swap-tests required after projecting to smaller
dimensions. With this approach, we were able to achieve high
accuracy with respect to the classical results, thus demon-
strating a scalable approach to distance estimation with high
accuracy on real quantum devices.

Il. PROGRAM SETUP AND CONFIGURATION

In this section, we review the setup and configuration used
to perform clustering algorithms. In Section II-A, we review
how the synthetic data are generated. Next, we review how
the quantum algorithm works as well as the two methods
used for classical data embedding in quantum states in Sec-
tion II-B. Finally, we review the software approach used to
execute the algorithms on the quantum cloud hardware in
Section II-C.

A. GENERATING SYNTHETIC DATA AND QUANTUM DATA
LOADING

In the experiments conducted, we used synthetic data gen-
erated with varying dimensions, number of clusters, cluster
variance, and minimal distance between the centers. At a
high level, the cluster generation algorithm used works by
first selecting k center points to then generate cluster data
around them. Using the center points as the multidimensional
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FIGURE 1. Synthetic 2-D data used for clustering. (a) Data are tightly
clustered with four clusters with 60 points in total, which we consider an
easy clustering. (b) Data are more scattered with four clusters and 60
points in total, which we consider a hard clustering. (c) Eight clusters
with 14 points per cluster for a total of 112 points.
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FIGURE 2. Circuit for embedding classical data using amplitude
embedding. We make use of the built-in features of Qiskit to initialize
the amplitude encoded data.

mean of a multivariate normal distribution, a set number
of cluster points are generated surrounding the center. In-
put to this algorithm is a cluster-variance parameter that we
use to set the variance level of the respective dimension to
control the “tightness”—how we measure the difficultly of
clustering—of the cluster. To avoid the randomly initialized
center points being too close to each other, an additional step
that resets a center point if it is within some € distance from
the already initialized center points is added. The synthetic
data generated can be seen in Fig. 1.

To perform the quantum distance estimation algorithm,
the generated data points first need to be embedded into a
multiqubit quantum state. For this, we use two common types
of embeddings, namely amplitude embedding and angle em-
bedding [4], and test them independently. To perform the
embeddings, we use the circuit structure shown in Figs. 2
and 3, respectively. To implement amplitude embedding in
code, we use the built-in initialize function offered by
Qiskit, which is a function that takes as input a real vector
and returns the necessary gate set for complex amplitude
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FIGURE 3. Circuit for embedding classical data using angle embedding
with swap test.

embedding [18]. For angle embedding, we use 2-D rotations
to embed two dimensions of a data vector per one qubit.
This type of embedding is also referred to as “dense angle
embedding” [19], but in this work, we will only use the name
“angle embedding” to refer to it. The scaling in terms of
circuit depth and number of two-qubit gates varies signifi-
cantly between the two embeddings. When embedding data
using angle embedding, gate depth does not increase with the
data dimension but circuit width grows linearly. On the other
hand, embedding classical data using amplitude embedding
can scale quite poorly in depth with respect to the data dimen-
sion [8]. When using NISQ-era quantum devices, width and
depth are some of the properties that should be reduced as far
as possible to reduce the effects of noise in any algorithm.
We plot the experimental scaling with respect to the data
dimension in Fig. 4. The figure shows both the circuit depth
and number of nonlocal gates required for initializing data
for a connected quantum computer (i.e., one in which any
two qubits can interact without any state-swapping) (solid
line), and the 65-qubit IBM Brooklyn topology (dashed line),
followed by a swap-test. For the embedding methods, Fig. 5
shows the qubit resource requirement trends against the fea-
ture vector dimension. The connectivity of the quantum com-
puter topology determines the number of local swaps needed
to perform two qubit gates, which results in deeper circuits
with more nonlocal gates.

B. QUANTUM CIRCUITS FOR DISTANCE ESTIMATION

To perform clustering, we replace the distance calculation
from the classical algorithm with a quantum algorithm for
distance estimation. Using amplitude embedding, we use a
Euclidean distance approximation based on the one devel-
oped in [5] and reiterated in [20]. For angle embedding, we
define a simple encoding that scales the data for embedding.
The algorithm used for distance estimation first embeds the
data for two vectors and then performs a swap-test. To ap-
proximate the distance, a number of repetitions, or shots, of
the circuit are used to aggregate measurement statistics for
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FIGURE 4. Circuit-depth and number of nonlocal gates in a circuit that
embeds classical data using amplitude embedding and performs the
swap test of varying dimension transpiled with the basis gates under full
connectivity and for the IBMQ Brooklyn device. The upper plot
demonstrates results using amplitude embedding, and the bottom plot
from angle embedding.

—— Angle Embedding

a —— Amplitude Embedding
z
5 200
=
o
<
S 100
=]
Q
—

0

T I I I I T T I T
ol 92 23 91 925 96 97 98 99
Data Dimension

FIGURE 5. Number of qubits required to embed classical data of varying
dimension.

a single ancilla qubit. The number of repetitions to use will
vary from problem to problem and hardware to hardware.
Theoretically, using a higher number of shots will produce
a more precise distance estimates, but each hardware will
have a finite precision, and so more shots do not always lead
to more accuracy. Moreover, some datasets do not require
high-precision distance estimation to cluster accurately if
they, for example, have well-separated clusters. We explore
this further. Once the repetitions are complete, the distance
estimation can be calculated via the probabilities of a O or 1
measurement outcome of the ancilla qubit

(I s
Pr(0) = 5+5|<w|¢>| ey
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Thus, the estimate |(1/|¢)|> provides an approximation to
the inner product for our choice of embedding or at least a
measure that scales with the inner product in the case of angle
embedding.

For each of the two embeddings used, the swap-test proce-
dure differs in terms of the number of controlled swaps—also
known as Fredkin gates [21]—used due to the difference in
qubit resources required to perform the data embedding as
well as the data representation strategy. For two (not nec-
essarily normalized) data vectors a := (ay, az, ..., a,) and
b:= (by, by, ..., by,)—which in the case for clustering or
classification would be one centroid and one data point—the
two quantum states that are compared when performing the
swap-test when using amplitude embedding are given by

1

= 0 N 3
V) ﬁ(l )a) +11)1b)) 3)
1
=— 0) — |b[[1 4
) ﬁ(lall ) = [BI11) “)

where Z := |a|> + |b|? [5]. To recover the distance estima-
tion in this case, an ancilla qubit initialized in the |0) state
is added to the system, and, after applying a Hadamard gate
to it, a Fredkin (or controlled-swap) gate is applied with the
ancilla as the control with |1{/) and |¢) as the target systems.
In this case, since |¢) is just one qubit, one Fredkin gate is
needed, thereby greatly reducing the number of controlled
swaps needed. Another Hadamard gate is applied to the an-
cilla qubit and then it is measured. By repeating the process
a number of times, Pr(0) can be estimated to finally recover
the distance

la — b|*> = 4Z(Pr(0) — 0.5) . (5)

The circuit for this process is depicted in Fig. 2.

For the angle embedding version of distance estimation,
we prepare the two angle-encoded data vectors in the fol-
lowing way. Given the classical input vectors a and b defined
above, let

a; = F(a; + 1) (6)
b= %(bi+1) @)
such that the angle embedded representations are given by
a = (dy,d,, ... a,) and b' := (b}, D), ..., b),). The map-
pings given by (6) and (7) are used to ensure that the values

are between 0 and . With this embedding, we can encode
data using a 2-D rotation operation defined by

0 .9
L COS§ —Slnz
v@.y):= <ei7/ sin% e cos% ‘ ®)

We encode the two vectors @’ and b in [n/2] qubits, using 1
qubit per two dimensions of each vector resulting in the final
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where odd(n) is the set of odd numbers from 1 to n. To
recover the distance estimation, again an ancilla qubit is in-
troduced to the system. A Hadamard gate is applied to the an-
cilla followed by a series of n/2 controlled-swap gates using
the ancilla as the control and one qubit from |¢) and one from
|¢). A final Hadamard gate is applied to the ancilla qubit and
then is measured. The overall circuit is depicted in Fig. 3. The
goal in this case is to produce an estimate for Pr(1), which is
a valid distance metric. Because we are using arbitrary data
that are not normalized in advance, we accommodate for this
in the distance metric. For this, we set Z := |a|? + |b|? such
that a and b are normalized as a = a/~/Z and b = b/~/Z. The
final distance metric is, therefore, given by

d(a,b) = Z - P(1) (11

where P(1) is given in (2). We make the choice not to con-
sider prenormalized data in this case because when using
amplitude embedding with the swap-test, by design there is
no need to prenormalize data. For (dense) angle embedding,
a good practice is to consider, based on the dataset, how
to divide the interval [0, 7v) into subintervals such that each
subinterval has leeway to accommodate overrotation due to
imperfect quantum gates when embedding the data. This
would affect the definitions for (6) and (7) for each unique
dataset we use, as we would need to change the coefficient
and the linear shift to accommodate the largest distance be-
tween data points in the dataset. Therefore, for this work, we
do not normalize the data ahead of time to better align with
the amplitude embedding approach and to keep the embed-
ding process general for varying datasets.

C. RUNNING CLUSTERING ON THE QUANTUM CLOUD

To implement the circuit preparation and execution of the
quantum circuits in software, we use IBM’s Qiskit Python
software development kit (SDK) [22].

A property of the k-means clustering algorithm is that it
is highly parallelizable, and we use this property to execute
the clustering algorithm more time-efficiently. In each itera-
tion of k-means clustering, a distance is calculated between
the current set of centroids and each point in the dataset.
These distance calculations are independent of each other
and can be computed in parallel using multiprocessing or in
a batch job. In the quantum case, to parallelize, we take two
approaches. First, we prepare one circuit per distance estima-
tion and then send the collection of circuits as a batch job to
the cloud service. The response is the measurement results
of the circuits which can then be postprocessed according
the embedding. The second way we parallelize the algorithm
is to embed multiple swap-tests into one circuit and execute
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them on the same quantum computer at once. This allows for
multiple distance estimations to be done on a single quantum
computer.

We developed the first parallel approach in two ways, one
using our own approach and later, when it became available,
using a Qiskit native approach. For the first approach, we
use many computational thread processes (locally) to send
requests simultaneously to the server to reduce computation
time. In the simulation, the approach improved performance,
but when there is only one quantum computer, this makes no
difference. The advantage of parallel execution is achieved
with multiple quantum computers working together to com-
pute distance estimations as described in [23].

The second approach was sending batches of circuit jobs
via a recently added feature called Qiskit Runtime. This
feature allows the user to submit many circuit jobs at once
such that there is only one job to queue. The performance
improvement between parallel execution via multiprocessing
and batch-circuit execution that we observed was signifi-
cant. The complete algorithms for the two applied k-means
clustering approaches are described by Algorithms 1 and 2,
respectively.

1ll. BENCHMARKING ON QUANTUM HARDWARE

To develop a clear understanding of how well clustering and
nearest-neighbor classification can be performed using cur-
rent quantum hardware, it is helpful to test how accurately
distance estimation can be performed on quantum devices.
In this section, we rigorously investigate the performance
of distance estimation between vectors of different dimen-
sion sizes, number of shots used, standard embedding ap-
proaches, and vector distances. Building on this distance
measure study, we then benchmark quantum k-means clus-
tering which uses the previously described distance calcula-
tion by means of low- to mid-dimensional synthetic data and
clusters.

A. BENCHMARKING DISTANCE ESTIMATION
In this section, we benchmark a variety of cases for
performing distance estimation and compare the estimations
using simulation and real quantum hardware. Simulation,
in this case, is done using the noiseless quantum computing
simulation platform offered via the Qiskit framework using
the OpenQASM backend. Software for the simulation is pre-
pared in exactly the same way in which the quantum circuit
logic is sent to the quantum cloud services, we can simply
switch the target backend from the simulated backend to the
hardware. To perform the analysis, we test three different
cases. We first test how varying the number of circuit shots
affects the estimation in both two and four dimensions. Next,
we vary the distance of the data points also in two and four
dimensions. Finally, we test how varying the data dimensions
affects the estimation of up to 32 dimensions using amplitude
embedding and up to 26 dimensions using angle embedding.
In all tests, for each resulting data point, we use 100 repeti-
tions, plotting the average output and the standard deviation.
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Algorithm 1: Clustering on the Quantum Cloud With
Multiprocessing.

Input:
o k: The number of clusters
e data: The data to cluster
e embedding: The choice of data embedding
e ¢: The minimum distance between two cluster
centers
e maxlterations: The maximum number of iterations
to make
e processes: A list of running processes
Output: An ordered list of labels for the data points
1:  centroids < initialize the centroids using € min
distance
2:  convergence < false,i < 0

3:  while not convergence do
4: circuits <—generate all circuits with the data,
centroids, and embedding choice
5: dists < initialize empty shared storage
6: while not all circuits have been processed do
7: if a process is idle then
8: job < send single circuit to server and
await response
9: dist < process job results according to the
embedding
10: add dist with circuit number to shared storage
11: else
12: wait
13: end if
14: end while
15: Sort dists according to circuit number
16: dists < using the returned, ordered measurement
results from the server, complete the
distance estimation procedure
17: labels < using the distances to the centroids,
label the data points
18: centroids < with the updated labels, recompute
the centroids as an average position of
the labeled data. Delete centroids for
empty clusters.
19: Check for centroid convergence, update
convergence
20: i<—i+1
21: Check if i = maxlIterations and break
accordingly

22:  end while
23:  return labels

In each case, we use the measurement error mitigation fea-
ture when running the experiments on the physical hardware.
To execute the 100 instances, we make 100 copies of the cir-
cuits and use the circuit-runner service to execute the circuits
in a batched job.
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Algorithm 2: Clustering on the Quantum Cloud With
Batched Circuits.

Input:

o k: The number of clusters

e data: The data to cluster

e embedding: The choice of data embedding

e ¢: The minimum distance between two cluster

centers
e maxlterations: The maximum number of iterations
to make

Output: An ordered list of labels for the data points

1:  centroids < initialize the centroids using € min
distance

2:  convergence < false,i <— 0
3:  while not convergence do

4. circuits <—generate all circuits with the data,
centroids, and embedding choice
5: job < send the collection of circuits to the
cloud server for processing and await
response
6: dists < using the returned, ordered

measurement results from the server,
complete the distance estimation

procedure
7: labels < using the distances to the centroids,
label the data points
8: centroids < with the updated labels, recompute

the centroids as an average
position of the labeled data. Delete
centroids for empty clusters.

9: Check for centroid convergence, update
convergence
10: i<—i+1
11: Check if i = maxIterations and break
accordingly

12:  end while
13:  return labels

The results of varying the number of circuit shots are
plotted in Fig. 6. In this experiment, we created a circuit
for the vectors (1,0) and (1,1). Comparing simulation to the
physical device results in simulation, we see a convergence
in the number of shots to the true answer, and moreover, the
average is close to the true distance as desired. With the real
hardware, we see no convergence trends behind the dotted
line, and using more shots than around 2000 does not gener-
ally perform better than using the maximum number of shots
8192. These behaviors indicate that the output probability in
the measurements using the real hardware is not consistently
Gaussian as one would expect from a noiseless system. Thus,
convergence between simulation and real hardware does not
match their trends. In some cases, for the same reasons,
a lower number of shots performed better, having a lower
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variance in the standard deviation than with more shots, as
seen, for example, in Fig. 6, where the standard deviation
is smaller with fewer used shots indicating more consistent
outputs overall. Measurement consistency is important for
iterative algorithms when many measurements are used, and
so a small standard deviation of the estimate is critical. On
the other hand, when we switched to a quantum computer
that supported a higher number of shots, much better and
more consistent results are seen. For 4-D, the points (1,0,0,0)
and (1,1,1,1) are used, and the same effects are more or less
seen. Convergence is not reached using real hardware, but
a relatively rapid convergence is seen in simulation, where
with a high number of shots, the results improve significantly.
We reiterate that in some cases, depending on the dataset,
high-precision distance estimation is not necessary for clus-
tering, and therefore, this level of accuracy could suffice in
some cases.

An important point of note is that for angle embedding,
the difference in output between the simulation and the hard-
ware is much starker than with amplitude embedding. The
reason behind this is due to the fact that on the IBM quantum
devices, the accuracy of qubit rotations is less precise with
the available gate basis of [CX, ID, RZ, SX, X] and, there-
fore, significant differences between the simulation, where
such rotations are highly precise, are observed [24]. Another
noteworthy aspect is that in some instances, the variance in
the standard deviation can become very small for the 100
samples, with no recognizable trend. See, for example, Fig. 6,
the 7000 shots point in the upper-left plot and the 6000 shot
point in the lower-left plot. We suspect this may come from a
periodic hardware calibration that is performed by IBM that
was executed on the quantum devices between experimental
runs.

For the next set of experiments, we vary the distance be-
tween two points in 2-D and 4-D (see Fig. 7). The vectors we
chose have the form (1, ..., 1) and (x, . .., x), where we vary
x to modify the distance between the points. The results of
the 2-D experiments show that the simulation and the phys-
ical device have similar outputs for x < 5, but for x > 5, the
outputs from the simulation and real devices start to diverge.
In 4-D, the effects of embedding show a stark difference
between amplitude and angle embeddings. Interestingly, the
simulation results for 4-D amplitude embedding match very
closely to the hardware execution for all tested values of x,
more so even than in 2D. On the other hand, angle embedding
performs far worse in 4-D than in 2-D, where already for
x = 5, the difference between simulation and real hardware
is significant. This extra noise is again likely due to the fact
that for more dimensions, the limited precision of the angle
embedding is now applied for another two dimensions and
that an additional controlled-swap is introduced.

In the last set of experiments, we vary the dimension of the
data to observe the limits to the number of features we can use
and with what level of accuracy. We test up to 32 dimensions
for amplitude embedding and up to 26 dimensions for angle
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FIGURE 7. Plots for varying the distance between points. The plots on the left are for amplitude (top) and angle (bottom) embedding in two dimensions.
The right plots are for amplitude (top) and angle (bottom) embedding in four dimensions. We run the experiments for a vector of shape (1, ..., 1) for the
base points and, (x, ..., x) for the varying point. We repeat the experiments 100 times with 2048 shots plotting the average with the standard deviation.

embedding, using the 27 qubit device IBMQ Sydney to its
capacity in the angle embedding case. We compare vectors
with shape (1, ..., 1), to vectors (2,...,2),(3,...,3), and
(4,...,4). In Tables 1 and 2, we show the percent differ-
ence between the simulation outputs and the results from the
quantum computer for amplitude and angle embedding re-
spectively, whereas Fig. 8 displays the corresponding results.
Additionally, we show the average gate depth, single-qubit
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gates, and two qubit gates required to execute the circuit.
Circuit transpiling and optimization is a randomized pro-
cess [25] and so we write the standard deviation for these
values after transpiling 100 times. The results demonstrate
a clear relationship between total gate depth, 2-qubit gate
counts, and the data dimensions effect on distance estima-
tion. Although distance estimation using either amplitude or
angle embedding approaches each have different gate-depth
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TABLE 1 Amplitude Embedding: Percent Difference Comparison
Between Simulation and Real Data for the Distance Between Data Points
of Varying Dimension and Distance on IBMQ Sydney

Dim. | =2 | «=3] =4 ] Depth | IQ | 2Q
2 [ 664% | 96% | 140% | 25+1 [ 28 | 12+1
4 | 979% | 303% | 92% | 37£4 | 31 | 25%5
8 | 1282% | 614% | 84% | 50+4 | 34 | 39L5
16 | 1332% | 550% | 34.1% | 93E8 | 37 | 84£9
32 | 1109% | 474% | 24.7% | 167 £10 | 40 | 173 £ 14

‘We write the average circuit depth, number of 1-qubit gates and number of 2-qubit
gates. Note that circuit optimization is a randomized process, but with a number of
fixed single qubit gates [25], and therefore, we show the standard deviation of 100
independent circuit optimizations.

TABLE 2 Angle Embedding: Percent Difference Comparison Between
Simulation and Real Data for the Distance Between Data Points of
Varying Dimension and Distance on IBMQ Sydney

Dim. | =2 | =3 | #=4 | Depth | 1Q | 2Q
2 85.9% 61.9% 61.3% 25+0 27 11+0
4 144.2% 117.9% 98.8% 53+ 3 47 42+ 4
8 161.7% 131.1% 115.9% 8947 87 99 £ 10
16 156.8% 128.4% 113.8% | 209+ 17 | 167 | 364 £ 40
26 158.6% 129.6% 111.4% | 328 £22 | 267 | 611 +50

We write the average circuit depth, number of 1-qubit gates and number of 2-qubit
gates. Note that circuit optimization is a randomized process, but with a number of
fixed single qubit gates [25], and therefore, we show the standard deviation of 100
independent circuit optimizations.
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amounts, we observe empirical evidence of the decoherence
effects as a function of problem (data) size. We also observe
that at further distances, simulation and hardware results tend
to agree more closely in both embedding types. We believe
that the accuracy tends to improve as the true distances in-
crease because the normalization factor has a bigger impact
on the postprocessing, thereby better mitigating inaccurate
distance estimates. These results motivate data scaling tech-
niques, where mapping the data into a space where the data
are more separated could result in more accuracy, a hypoth-
esis we intend to explore in future work.

B. BENCHMARKING QUANTUM CLUSTERING

In this section, we benchmark the quantum k-means clus-
tering algorithm using various dimensions and number of
clusters using synthetic data. To determine the accuracy of
clustering using the quantum approaches, we generated three
types of synthetic data using two and four dimensions. The
first two types of data that we generate are an easy dataset,
a hard dataset both with four clusters and 15 data points in
each cluster, as seen in Fig. 1(a) and (b). This totals 60 data
points. The third dataset we use has a variance between the
easy and hard sets but with eight clusters and 14 points per
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FIGURE 10. Results from clustering 2-D synthetic data, as depicted in Fig. 1(c), using (a) amplitude embedding and (b) angle embedding on hardware

running circuits for 8192 shots on IBMQ Sydney.

cluster, as seen in Fig. 1(c). The number of data points and
clusters was selected to most easily work with the Circuit
Runner service, reaching the limits to how many circuits
can be sent at once.

In the case of the four cluster easy and hard datasets, we
analyze the quantum clustering approach using the same ex-
ecution parameters for both datasets. We use both amplitude
and angle embedding with a maximum of five iterations or
until convergence of the centroid locations is reached. We
use the outputs of the classical algorithm implementation
as the base truth, 8192 shots for each experiment, and use
the option for measurement error mitigation in all cases.
For these sets of experiments, we submit jobs to quantum
devices that have a quantum volume of 32. The results of the
experiments for 2-D are seen in Fig. 9. The results displayed
are, on the left side, left column, the confusion matrices com-
paring the classical baseline to the quantum outputs using
amplitude embedding, and the equivalent for angle embed-
ding in the right column. We observe that in the simulation
setting, the classical outputs are matched perfectly; how-
ever, for real hardware, the results show a relatively low
accuracy in the labeling for both embeddings. The results
are similar to the hard dataset, as seen on the right side of
Fig. 9.
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For the 8-cluster data, we perform the same simulation
steps but for a maximum of three iterations with 8192 shots.
In simulation, convergence is reached with two iterations
with perfect labeling results. We test both 2-D and 4-D
datasets. The 2-D results are shown in Fig. 10. For 4-D data,
the results had very low accuracy with essentially a random
labeling and we neglect to show the results here.

Overall, these experiments motivate that using one
instance of executing the distance estimation circuit with low
shot counts produces a distance estimation that is not accu-
rate enough to cluster data. To mitigate noise, we predictthat
we can instead average multiple distance estimations to im-
prove estimation consistency while simultaneously increas-
ing the circuit shots. We test this hypothesis in Section III-C.

C. SUMMARY OF BENCHMARKING RESULTS

In summary, we benchmarked three key points for
performing distance estimation and clustering on a
quantum computer. First, for distance estimation quality, we
benchmarked distance estimation accuracy versus the total
number of shots used. We find, generally, a high number
of shots—Ilarger than 10 000— should be used to get fairly
consistent results. Using values less than 10000, we find
that the noise levels are too high to provide high accuracy
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and consistency. Next, we considered how increasing
the Euclidean distance affects accuracy. Here, we found
that with amplitude embedding, the results trended more
similarly to the noiseless simulated results, whereas the
(dense) angle embedding approach tended to diverge from
the simulated value. In our last experiment, we investigated
how the dimension of the data affects the distance estimation
for increasing dimension size. We found that with amplitude
embedding, the simulation results matched more closely
to the hardware, but with angle embedding, the values
tended to diverge more quickly. We believe this is due to
both the additional number of controlled swaps required
as well as the finite precision of the physical qubit rotation
gates.

Building upon these distance-related metric results, we
benchmarked the ability to perform clustering with synthetic
data. We tested clustering in terms of varying the dimension
of the data, the cluster tightness, and in the number of total
clusters. We found that the real hardware performed best
in the easiest cases with only 2-D data. By increasing the
number of clusters, we expectedly observed a sharp fall in
accuracy using our parameter regime.

In the field of quantum computing, being able to produce
accurate and consistent results using noisy quantum
computers is a major challenge. Here, we have conducted
an initial study of accuracy, but future work involves
finding the best parameter settings, such as data dimension
and well-clusterable data types, that can provide both
good performances in terms of runtime and accuracy. In
Section IV, we propose a scheme that can break down
larger-scale problems into smaller problems that are within
such a parameter regime.

IV. APPLICATIONS FOR ENERGY SUBGRID CLUSTERING

The motivation for performing a detailed analysis on how
well real quantum hardware performs on various distance-
related metrics for high-dimensional data is because, typi-
cally, many real-world datasets are nontrivial, high dimen-
sional, and not well clusterable. In classical computing so-
lutions involving unsupervised clustering, the problem of
aggregating and grouping sets of objects usually involves
some dimension reduction techniques and some type of do-
main knowledge to tune any machine learning algorithm
used. Indeed, a standard k-means approach—in the classical
sense—when used in practice involves a fine balance of mit-
igation and optimization techniques depending on the data.
Selecting the optimal clusters, choosing the initial centroid
locations, choosing an optimal subset size of the dataset for
large datasets, dealing with outliers, and dimension reduc-
tion are all points to consider when applying k-means to an
unlabeled dataset. Celebi et al. analyze the effects of these
points in [26].

Here, we focus more on the quantum aspect of k-means
clustering. After using standard techniques for preprocessing
the data and selecting initial centroids, we direct our efforts
to improve the distance estimation accuracy. Since quantum
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TABLE 3 Description of the Features for Each Powerline in the Dataset

Name | Unit
Conductor cross-section cm?
Operating Voltage kV
Average Renewable Energy In-feed Load MWh
Average Non-Renewable Energy In-feed Load | MWh
Number of Exits of Next Major Substation #
Line Length m
Sum MVA at closest HV exist MVA

machine learning and variations of clustering are touted as
being a possible avenue for quantum advantage, we aim to
employ the findings in the previous sections in a real use-
case that provide business value. In doing so, we propose an
alternative implementation of the distance estimation circuit
to overcome some of the deficiencies revealed in the previous
section, namely, the inability of the vanilla quantum k-means
algorithm to be able to handle classical input vector dimen-
sions more than four.

A. GERMAN ELECTRICITY GRID DATA
Predictive maintenance is a major area of applied research
in the energy operations sector [27], [28]. The ability to de-
termine areas of the electrical grid which are susceptible to
failing in some predetermined timespan has many obvious
benefits for customers downstream from any grid infrastruc-
ture which may fail. One possible approach to this problem
is using data-driven analysis of different partitions of the full
network grid to group and find similar types of subgrid assets.
This can be done by taking into account data features such
as 1) the amount of renewable and nonrenewable electricity
flowing through the grid subsection; 2) the number of power
lines within a subsection; and 3) descriptive statistics about
the ages of the assets contained in the subsection. Given such
a collection of asset properties for electrical grid assets, we
aim to employ unsupervised k-means clustering to classify
various subgrids of part of the German Electrical Grid [29].
The dataset consists of 81350 low-voltage power lines
from a distribution system operator grid in Germany. Each
power line has seven numerical features, as described in
Table 3. Low-voltage subgrid networks are connected to
high-voltage entry and exit points in the grid. For a given
high-voltage transformer in the grid network, we collect the
low-voltage lines that are part of its respective subnetwork
and compute numerical features describing the entire subset
of low power lines. Specifically, for each subgrid we com-
pute: the number of nonpowerline assets, the total number of
connected assets, and the minimum, maximum, and sum of
each of the features are listed in Table 3. There are 1037 sub-
grids and, therefore, we have a final dataset of 1037 feature
vectors, each of dimension 26.
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B. RESULTS

To cluster the 26-D data created using the individual power
line features (see Table 3) for all power lines in a given high
voltage entry point, we first perform a preprocessing step
to reduce the total feature vector dimension. In order to fit
the data onto the quantum computers available for this work,
we reduce the dimension to eight using principal component
analysis (PCA) which results in a 97.7% explained variance
as well as a dataset with six dimensions using PCA, which
accounted for 91.4% of the variance. This second dataset was
used for the angle embedding approach to fit in a 7-qubit
quantum computer, the quantum computer topology we had
the most access to in this work.

With an initial classical analysis using the elbow
method [30], the optimal number of clusters for this dataset
was determined to be k = 5. From this dimension-reduced
dataset of 1087 points, we randomly selected 180 points
to cluster, where 180 points allow us to send 900 circuits
(180 -5 =900) to IBM’s cloud service in one job (an upper
limit for some hardware). Important to any unsupervised
clustering algorithm is the choice of initial centroid points.
In order to ensure a quick convergence, and to reduce
the number of quantum iterations, we ran the classical
algorithm with a variety of random seeds such that
convergence was reached within three iterations. The
classical clustering results are depicted in Fig. 11(a), using
t-distributed stochastic neighbor embedding (t-SNE) [31]
on the high-dimensional data to generate a 2-D projection.
Using the initial centroids that achieved this, we then ran the
quantum clustering experiment.

To validate the quantum approaches we used, we first
compare the labeling output from noiseless simulation to
the label output using the classical approach and then
repeat the comparison running on real quantum devices. Be-
cause the classical approach converged in three iterations, we
allow the quantum versions to run with a maximum of five
iterations. In simulation, the balanced accuracy of the exper-
iments was 100% with amplitude embedding and 97.8% for
angle embedding. Given that simulation produces high accu-
racy, we performed a series of tests on the quantum hardware.

1) CLUSTERING USING AMPLITUDE EMBEDDING

The first test we perform is to simply run the same logic
as in the simulation. We use 12 000 shots per distance esti-
mate and run the full clustering algorithm for five iterations.
The clustering result using amplitude embedding is given in
Fig. 11(b). The grid data are of relatively high dimension and
the circuits to prepare the data are roughly 120 gate depth
with approximately 70 nonlocal gates for amplitude embed-
ding. For angle embedding, the gate depth is expectantly
shallower at approximately 86 but with roughly 103 nonlocal
gates, depending on the randomization of the circuit transpi-
lation step. With the level of noise occurring, five iterations
do not improve the results, and indeed, we speculate further
iterations would not have led to improved results either. Here,
our observation is that the labeling is essentially random due
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FIGURE 11. (a) Classical clustering output after t-SNE is performed on
the subgrid data. (b) Quantum labeling output using 8-D amplitude
embedding for five iterations with 12 000 shots per distance estimation
on IBM Casablanca. (c) Quantum clustering output using the angle
embedding split distance estimation (12) of the subgrid data. We
decomposed the distance estimation to be one estimate per circuit, for
five iterations with 12 000 shots per distance estimation on IBM Perth.
(d) Quantum clustering using amplitude embedding split distance
estimation (12) using a parallel execution process as described in (c).

to the noise in the distance estimation circuits, never leading
to a converging state.

2) CLASSIFICATION USING AMPLITUDE EMBEDDING
As a second test, we implemented a pure nearest-neighbor
classification application. We begin by training the model
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FIGURE 12. Results of classifying the test set of 60 data points using a
nearest-neighbor prediction. (a) Amplitude embedding in eight
dimensions and 30 000 shots per distance estimation. The balanced
accuracy in this case is 17.0% and the raw accuracy 46.7%. Weighted
precision cannot be computed since some classes are empty. (b) Repeat
the classification using 15 000 shots using the divided distance
estimation in four 2-D estimates, using an average of five estimates per
distance. The results have a balanced accuracy of 84.8%, a raw accuracy
of 90.0%, and a weighted precision score of 92.1%. (c) Classification is
done using the vector subspace parallelization circuit that uses two
swap-tests per circuit. This approach reduces the total number of circuits
by 50%. The results improved significantly to have a balanced accuracy
of 73.3% and a raw accuracy of 83.3%.

offline classically to determine optimal centroid locations,
then, at runtime, we compute only the prediction step quan-
tumly to determine which cluster test set data points belong
to. Fig. 12(a) shows the accuracy results of the outcome,
where we used 30 000 shots to estimate the distances using
amplitude embedding in 8-D. We see that the majority of
points were assigned to one class, similarly to how the five
iterations of clustering performed.

3) DISTANCE ESTIMATION WITH VECTOR SUBSPACE
PARALLELIZATION

So far, our approach to distance estimation has been to use the
approach, as stated in [5]; however, the accuracy in practice
using this approach has thus far been relatively low. From the
benchmarking section, the highest accuracy was seen in the
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2-D data experiments. Using this as motivation, we propose
a new technique of parallelizing the distance calculation for
high-dimensional vectors by using distances between 2-D
subspaces of the full feature vectors. In classical clustering
problems, for large dimensional datasets, subspace clustering
has been considered to cluster subspaces of the data [32].
In our case, we can use approaches for large dimensional
datasets, but for small datasets, accommodating near-term
quantum computers. We consider the entire space as a sum
of the subspaces rather than find clusters in any particular
subspaces, as described in [32].

Given input data vectors a := (aj, az, ...,a,) and b :=
(by, by, ..., by,), the distance between them can be decom-
posed as

d(a,b) = d(ai,b12)+d(aza, bzs)
+ -+ d@n—1 bn—1.n)

12)

where a; j = P; j(a) and b; ; = P; ;(b) are projections of the
respective vectors to the (7, j)th vector subspace. The circuit
for this parallel distance estimate using angle embedding is
depicted in Fig. 13(a) and amplitude embedding in (b). One
can extend this approach to any form of 2-D data embedding,
filling a quantum processor with many simultaneous distance
estimates. Moreover, as quantum computers improve, more
dimensions can be included in the decomposition, for exam-
ple, using 4-D decompositions instead of 2-D. When filling
multiple circuits into one quantum processor, we need to be
concerned about the cross talk [33], and future work will
be to investigate optimal qubit layouts to maximize perfor-
mance.

This approach has various benefits in terms of mitigating
noise. First, it uses only low-dimensional projections. In this
case, we use 2-D projections, aligned with our benchmarking
results, but as hardware improves, we can extend this to
larger dimensions to reduce the number of total independent
measurements until we can eventually use the entire vec-
tor. Next, these low-dimensional circuits will be, in general,
shallower and thinner, which will improve the accuracy and
moreover reduce the computation time, allowing for more
shots within the same execution timespan. Because in some
cases we observed a large standard deviation, with a shorter
execution time, one can also execute the circuit many times
to produce an average distance estimate the same timespan,
mitigating Gaussian noise in the system.

Because the distance estimation circuits are thinner, we
can load multiple circuits into one quantum processor pro-
portional to the number of qubits. For example, because the
swap-test with angle embedding in 2-D uses three qubits per
swap-test, we can load two distance calculations ata time in a
seven qubit quantum computer, reducing the number of total
circuits to execute by 50%. This approach could be general-
ized to contain as many swap-tests as there are (the floor of)
one-third the number of qubits, which could in turn result
in again using one circuit for distance estimation, simply
with a modified pre- and postprocessing step. These benefits
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FIGURE 13. Circuit for processing multiple distances in one circuit using
(a) angle embedding and (b) amplitude embedding with swap tests. The
dashed boxes separate each independent swap-test.

make this much more NISQ compatible than performing the
distance estimation with all dimensions considered at once.

After verifying this approach produced accurate results
in simulation, we tested how well it mitigates the effects
of noise in the classification task, we ran the circuit imple-
menting (12) using two approaches. For the first approach,
we used amplitude embedding and executed each distance
estimation circuit independently five times, averaging the re-
sults and using the average as the distance estimate. We used
15 000 shots per execution and since the circuit uses four
qubits, we could fit just one circuit at a time on the 7-qubit
device. The confusion matrix of the results is in Fig. 12(b),
showing a vast improvement. The balanced accuracy in this
case is 84.8% compared to 17% using the standard quantum
k-means algorithm, an improvement of 67.8%.

3102316

For the second approach, we perform classification again,
now using angle embedding, but in this case, since just three
qubits per swap-test are required, we loaded two distance es-
timates in parallel into the 7-qubit device. Using 15 000 shots
with, in this case, two repetitions per circuit, we again use the
average for the estimate. The results of the classification are
shown in Fig. 12(c). Again, we see a strong improvement
for the classification problem over the standard method of
embedding all the data at once and using a larger number
of controlled swaps, increasing the balanced accuracy from
17% in the standard approach to 73.3% using this novel
approach, a difference of 56.3%.

4) CLUSTERING WITH VECTOR SUBSPACE
PARALLELIZATION

Given the promising results from the classification task using
the vector subspace parallelization, we again perform the full
clustering algorithm using the angle embedding approach.
We use the distance estimation (12) with 18 000 shots and
one measurement repetition on the IBM Perth machine with
a total of five iterations for the clustering algorithm. The
clustering results are shown in Fig. 11(c). Although the labels
were reduced to four classes, one fewer than in the classical
algorithm, we see a much clearer separation of the classes
in comparison to using amplitude embedding processing all
eight dimensions in the standard approach. The balanced
accuracy compared to the classical label results from clus-
tering in this case is 58.5%. We use the same subspace ap-
proach with 8-qubits on the IBM Montreal machine, using
two amplitude encoded circuits, as in Fig. 11(d), with 12 000
shots and balanced accuracy of 63.9% in comparison to the
classical clustering label results. Overall, these results show
a vast improvement to the standard approach which would
consider all dimensions in one measurement.

V. CONCLUSION AND OUTLOOK
In this work, we thoroughly investigated the potential of
using quantum k-means clustering in a practical manner
on current NISQ quantum hardware. In terms of distance
estimation comparison between classical and quantum dis-
tance calculations, we clearly observed a high level of differ-
ence between simulation and running on physical devices—
especially comparing the distance estimation results using
angle embeddings. The results which used batched job sub-
mission via Qiskit Runtime showed vastly improved perfor-
mance, allowing for more circuit executions, improving reli-
ability, as well as drastic speed improvements when dealing
with large datasets due to the reduction in job-queuing time.
The best k-means clustering results observed were from
clustering datasets of 2-D data points. When we increased the
number of clusters from four to a more complex scenario of
eight clusters and changed the input vector dimension from
two to four, the results worsened. We experimented with
an industrial unsupervised learning problem, labeling high-
dimensional energy grid data using k-means clustering. Us-
ing the standard approaches, the clustering and classification
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results proved inaccurate when executed over real hardware.
When we changed the distance metric and used our vector
subspace parallelization approach, we saw a significant im-
provement in both our classification and clustering experi-
ments. For amplitude embeddings, the balanced accuracy of
the classification went from 17% using the standard approach
to 84.8% with this novel distance estimation method. With
angle embedding, loading two swap-tests into one circuit to
execute in parallel, albeit an overall wider circuit, proved to
also have a large performance improvement over the am-
plitude embedding approach with a balanced classification
accuracy of 73.3% and raw accuracy of 83.3%.

This work provides the first step into quantum clustering
for practical industrial use-cases but still there are questions
to be answered. Future work will be to consider other clus-
tering algorithms, such as k-medoids which uses alternative
distance metrics, considering other quantum approaches for
distance estimation as in [14] and [34] or those better suited
for NISQ hardware as proposed in [35]. Indeed, many algo-
rithms require a distance calculation step, and so benchmark-
ing their quantum performance leaves many possibilities for
future work.

Although it is well known that quantum computing is in
its early stages of development, it is important to investi-
gate what boundaries exist in relation to nontrivial problems
that move beyond fundamental algorithm proof-of-concepts.
Clustering and, particularly, distance estimation are widely
used in various industrial applications. With this work, we
have tested a large set of experiments that can be performed
on the quantum cloud using only the core features of the
platform. Even though we do not believe in the current stage,
using quantum computers for clustering will add a benefit,
quantum technology is continuously and rapidly improving.
With this, we expect that as NISQ-era quantum computers
mature, these types of analysis and industry-driven use-case
studies will continue to provide valuable insight into how
they will be used for real-life applications.
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