
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 25 November 2021; revised 31 May 2022; accepted 7 June 2022; date of publication 16 June 2022;
date of current version 26 July 2022.

Digital Object Identifier 10.1109/TQE.2022.3183385

The Present and Future of Discrete
Logarithm Problems on Noisy
Quantum Computers
YOSHINORI AONO1,5 , SITONG LIU2 , TOMOKI TANAKA3,5 ,
SHUMPEI UNO4,5, RODNEY VAN METER2,5 (Senior Member, IEEE),
NAOYUKI SHINOHARA1, AND RYO NOJIMA1
1National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
2Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
3Mitsubishi UFJ Financial Group, Inc., Tokyo 100-8388, Japan
4Mizuho Research and Technologies, Ltd., Tokyo 101-8443, Japan
5Quantum Computing Center, Keio University, Yokohama 223-8522, Japan

Corresponding author: Yoshinori Aono (e-mail: aono@nict.go.jp).

This work was supported by the MEXT Quantum Leap Flagship Program under Grant JPMXS0118067285 and Grant
JPMXS0120319794.

ABSTRACT The discrete logarithm problem (DLP) is the basis for several cryptographic primitives. Since
Shor’s work, it has been known that the DLP can be solved by combining a polynomial-size quantum circuit
and a polynomial-time classical postprocessing algorithm. The theoretical result corresponds the situation
where a quantum device working with a medium number of qubits of very small errors can solve the DLP.
However, all the quantum devices that we can use have a limited number of noisy qubits, as of the noisy
intermediate-scale quantum (NISQ) era. Thus, evaluating the instance size that the latest quantum device can
solve and giving a future prediction of the size along the progress of quantum devices are emerging research
topics. This article contains two proposals to discuss the performance of quantum devices against the DLP in
the NISQ era: 1) a quantitative measure based on the success probability of the postprocessing algorithm to
determine whether an experiment on a quantum device (or a classical simulator) succeeded; and 2) a proce-
dure to modify bit strings observed from a Shor’s circuit to increase the success probability of a lattice-based
postprocessing algorithm. In this article, we conducted our experiments with the ibm_kawasaki device
and discovered that the simplest circuit (7 qubits) from a 2-bit DLP instance achieves a sufficiently high
success probability to proclaim the experiment successful. Experiments on another circuit from a slightly
harder 2-bit DLP instance, on the other hand, did not succeed, and we determined that reducing the noise
level by half is required to achieve a successful experiment. Finally, we give a near-term prediction based on
required noise levels to solve some selected small DLPs and integer factoring instances.

INDEX TERMS Discrete logarithm problem (DLP), IBM quantum, lattice, postprocessing method, Shor’s
algorithm.

I. INTRODUCTION
Since Shor [1] proved that a reasonably large quantum
circuit can solve both the integer factoring problem (IFP)
and the discrete logarithm problem (DLP) efficiently, many
researchers have been discussing its impact and imple-
mentability and have been attempting to reduce the attack’s
resource costs.
An emerging topic in cryptography is to predict when the

progress of quantum computers threatens modern cryptosys-
tems. In order to extrapolate accurately from today, we need
to understand the following two factors.

1) The projected progress in quantum hardware, in ab-
stract terms. The quantum hardware industry can be
said to still be in its infancy, and the introduction of dis-
ruptive new systems remains possible, but several com-
panies have published (and later updated) roadmaps
for the evolution of their systems in coming calendar
years [2]–[6]. In this article, we use these roadmaps,
but our focus is not on assessing or extending them.

2) The relationship between that abstract performance
and the ability of the machine to solve specific prob-
lem instances. To establish the hardest problem the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 3102021

https://orcid.org/0000-0003-1538-7220
https://orcid.org/0000-0002-6438-6454
https://orcid.org/0000-0002-8616-182X
https://orcid.org/0000-0002-5044-9514
mailto:aono@nict.go.jp

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

TABLE 1. Summary of Parameters for Target DLP Instances

Instance O is used only for comparison of circuit size to the factoring in Section I-B.
Instances I–III are used for experiments both in real device and classical simulation.
Instances IV–VI are used for classical simulation and future prediction. nF , nx, and
ny refer to the number of qubits in the corresponding registers in the circuit in Fig. 1.
#Q and #cx are the number of qubits and cnot gates, respectively.

system can solve, we must also quantify what it means
for a quantum computer to “solve” a cryptographic
problem.

A. SUMMARY OF OUR CONTRIBUTION
1) QUANTITATIVELY DEFINE A SUCCESSFUL EXPERIMENT
We propose a formalization of success probability, includ-
ing circuit generation, quantum device execution, and post-
processing. After fixing a problem instance and a quantum
circuit, execution on a quantum device outputs a set of bit
strings. The postprocessing algorithm, then, takes this set of
bit strings as input and returns a set of candidate solutions
to the problem instance. The success probability is defined
by the probability that the set of candidates contains the
desired solution. This success probability can be defined on
bit strings from the ideal device (a noiseless device for a
quantum circuit, e.g., for small instances, as simulated by a
classical computer), a noisy device (real or simulated), and
a virtual device that outputs uniformly random bit strings
(corresponding to randomly guessed solutions). Note that
Shor’s algorithm, like many other quantum algorithms, is
a probabilistic algorithm even when executed on an ideal
device. Thus, by measuring where the quantum device under
test lies between the ideal and the uniform devices, we can
assess the performance. We propose the following definition:

A quantum device is said to be able to successfully solve a
problem when its success probability is greater than the mean
of the success probabilities of an ideal device and a uniformly
random device.

2) PRESENT DLP EXPERIMENTS ON AN IBM QUANTUM
DEVICE
Table 1 is a summary of the DLP instances and Shor’s quan-
tum circuits (see the block diagram in Fig. 1) that we con-
sidered in this article. The DLP over a field and the cor-
responding circuits are outlined in Section II-A and II-C,
respectively.
For each DLP instance gz = a (mod p), the size of the

problem nF is �log2 p�, i.e., the number of bits to represent
an element of the prime field of size p. Each quantum cir-
cuit computes the superposition of |x, y,F (x, y)〉 over all the

FIGURE 1. Overview of Shor’s circuit for solving the DLP comprising
Hadamard gates, two controlled modular exponentiations, and two QFTs.

integers x = 0, . . . , 2nx − 1 and y = 0, . . . , 2ny − 1. Here,
F (x, y) has periods from which the solution can be recov-
ered. nx and ny define the widths of the exponent variables,
which are equal to the size of the quantum Fourier transform
(QFT) gadgets. #Q = nF + nx + ny is the number of qubits
used in the circuit. #cx is the number of cnot gates after
optimization by the Qiskit transpile() command with
optimization level 3; because the optimization phase stochas-
tically searches a large solution space, we take the minimum
value of 100 calls for each circuit.
We use the framework described above to furnish some

data points for future prediction of the security of the DLP
over a finite field against quantum computers. We present
results from experiments, in whichwe used an IBMQuantum
device to solve selected 2-bit instances realized by 7- and 8-
qubit circuits.More precisely, by using theibm_kawasaki
device of quantum volume (QV) = 32, we observed that
the simplest DLP instance 2z ≡ 1 mod 3 with the smallest
quantum circuit (instance I in Table 1 and Fig. 5) outputs
meaningful bit strings and gives success probability higher
than the threshold defined above.
We also experimented with two slightly more complicated

circuits for the instance 2z ≡ 2 mod 3 (instances II and
III). These circuits generate bit strings that give us only a
low success probability. To improve the success probability,
we propose a simple algorithm for modifying the output
bit strings from the devices. Via simulation, we found that
the device success probability of the instance III circuit is
slightly below the threshold defined above and that reducing
the noise by half is required to claim success.

3) PROJECT NEAR-FUTURE DLP SUCCESSES
Via simulation, we also predict how much the noise level
needs to be reduced to solve the larger instances 4z ≡ 2 mod
7 and 3z ≡ 4 mod 7 (instances IV and V). We found that
advancing from the ability to solve instance III to the ability
to solve instance IV requires reducing the noise level by
about one decimal order of magnitude. Table 3 summarizes
the results. With the several-year trend of reducing averaged
cnot gate errors by a factor of 2 each year [7], instances
IV and V are expected to be solved within the next five
years. Solving larger instances of the DLP will require better
quantum devices and perhaps additional techniques, such as
quantum error correction (QEC).

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

B. RELATED WORK
1) DLP AND ITS APPLICATIONS
The DLP over a finite field is a computational problem be-
lieved for a long time to be classically hard [8]. It is used as
the basis for a prominent set of digital signature schemes [9].
Researchers from various areas, including quantum com-
puting and classical cryptography, are investigating how re-
silient the schemes are against quantum computers and when
they become compromised.
Besides the DLP over a finite field, the discrete logarithm

problem over elliptic curves (ECDLP) [10] has also been
used as a security base on some cryptographic systems. Ow-
ing to the intractability of the group operations on elliptic
curves, no experiments to solve the ECDLP have been re-
ported to the best of our knowledge. Finding the smallest
instance of the ECDLP that is executable on quantum de-
vices and experiment is a challenging open problem as of
2022.

2) EXPERIMENTS ON SHOR’S ALGORITHM ON QUANTUM
DEVICES
Many experiments that execute Shor’s factoring circuits (and
its subcircuits) have been performed [11]–[14] by using sev-
eral quantum devices. The latest record of factoring by a
quantum circuit is 21 = 3× 7 by Amico et al. [13] by using
the ibmqx5 device, and they also reported that 35 is infea-
sible. Recently, Skosana and Tame [14] have also reported
their experiment on factoring 21.
On the other hand, to the best of our knowledge, no experi-

ments on the DLP have been reported, even though the circuit
construction is very similar. We discovered that the DLP is
better suited for quantum benchmarking experiments in the
noisy intermediate-scale quantum (NISQ) era because some
circuits of the DLP can be simpler than the circuit to factor
15, which is the simplest factoring circuit. For instance, the
simplest circuit to factor 15 (see Fig. 15 in Appendix F) must
have 8 qubits because the registers required to hold both the
modulo power and the modulo residue must be larger than
log2(15) qubits to output a meaningful result for input to the
postprocessing stage. On the other hand, the DLP instance
2z ≡ 1 (mod 3) can be achieved in a minimum of 6 qubits
(Instance O in Table 1). In addition, the number of cnot
gates after compilation (“transpile” in Qiskit lingo) is only
six in the DLP case, while it is about 85 (see Table 4) in the
factoring case.
Most of the existing experiments have employed folklore

techniques, which are used in logical circuit optimization,
to simplify the quantum circuits. Because the latest quan-
tum devices may not be able to execute modular arithmetic
with sufficient accuracy [15], our circuit implementations are
also simplified from the full implementation. Following this
simplifying policy, we carefully designed our circuit so that
no information on the solution was used, as it was claimed
that some experimental circuits were oversimplified by using
problem solution information [16]. Our circuits are made up

of shift operations over qubits with no auxiliary bits. Details
are explained in Section IV-A.
It is also necessary to follow the policy when we construct

a postprocessing algorithm that generates a set of candidate
solutions by using bit strings from quantum observations.
We also carefully designed our modification algorithm in
Section IV-C that transforms an observed bit string to another
bit string if it is necessary.

3) QUANTIFICATION OF EXPERIMENTAL RESULTS
It has been a long-standing problem to claim that a quantum
computation experiment has succeeded or failed quantita-
tively. Several quantifier functions have been used to estimate
the quality of outputs from quantum devices.
Satoh et al. [17] used the Kullback–Leibler (KL) diver-

gence. Cross et al. [18] used the probability that the output bit
strings are in the heavy output set. The linear cross-entropy
benchmark was used to claim the demonstration of quantum
supremacy by Arute et al. [19], although Barak et al. [20]
later claimed that their result can be approximated by a poly-
nomial time classical computer.
These works share a spirit that compares distances be-

tween the ideal outputs, device outputs, and uniform ran-
dom using their chosen distance functions. The device output
probability distribution PDev will be the same as the ideal
output distribution PIdeal if the device is free of any kind of
noise and will be the same as the uniform output distribution
PUnif if the device output is completely dominated by random
noise. On the abstract level, PDev should lie between PIdeal
and PUnif, and a suitable distance function to measure the
difference between two probability distributions can define
the position of PDev in a quantitative way.

In other words, we can score the device output by a real
number, usually between 0 and 1, via an appropriate distance
function and a scaling. The existing works use the following
criteria to claim their success by using a score to quantify the
device’s outputs.
First, fix the quantum circuit and some function d to quan-

tify the difference between two probability distributions.
Here, d need not be a distance metric, but it should sat-
isfy conditions typically called premetric: d(x, x) = 0 and
d(x, y) ≥ 0 for legitimate inputs x and y. Then, with the
function, define a score for the device output by

s1 := 1− d (PDev,PIdeal)

d (PUnif,PIdeal)
(1)

which captures Satoh et al.’s [17] KL-divergence-basedmea-
sure. The score is close to 1 if the device output is good.
Assuming that the triangle inequality d(PUnif,PIdeal) ≤

d(PUnif,PDev)+ d(PDev,PIdeal) holds, we have the following
relation:

s2 := d (PUnif,PDev)

d (PUnif,PDev)+ d (PDev,PIdeal) ≤ s1. (2)

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

Thus, for any threshold t, the condition s2 ≥ t is stronger than
the condition s1 ≥ t. Therefore, we should use s2 to claim
that an experiment is successful.
However, it is useless to conduct experiments with a

slightly large number of qubits. Since about 2#Q samples
of bit strings are needed to obtain a good approximation of
PX , the number of samples grows quickly even with a mod-
est increase in #Q. This motivates us to employ a distance
function d(PX ,PY) := |pX − pY |, X,Y ∈ {Ideal,Dev,Unif},
capturing the difference between some probabilities. Typi-
cally, on a set of bit strings, pX is defined by the probability
that the output of a device X satisfies the condition.

Assuming pUnif ≤ pDevice ≤ pIdeal, we can show that

s2 = pDev − pUnif
pIdeal − pUnif

and

s2 ≥ 0.5⇔ pDev ≥ pIdeal + pUnif
2

. (3)

The condition with s2 = 0.5 means that if the probability
of the device is larger than the median of the probabilities
of the ideal and the uniform, then one can claim success.
We call this the “median principle.” The condition is used
to measure the QV by Cross et al. [18, (6)]. In addition, this
s2 is equivalent to the fidelity of the cross-entropy benchmark
introduced by Arute et al. [19].
In the spirit of this previous work, we define our threshold

for success, explicitly given in (8) in Section III-B, by fol-
lowing the form of (2). However, whenwe simply applied the
existing framework to Shor’s DLP algorithm, we discovered
the following issue.
A typical condition for success on DLP computation

should be defined over multiple vectors since the postpro-
cessing algorithm must take at least two bit strings from a
device. However, the existing success criteria are defined by
using a distribution over a single bit string. This is another
reason that we chose the success probability pDev based on
the outputs from the postprocessing algorithm rather than
some distance between probability distributions. Our crite-
ria as of now are a basic version, and we expect that other
researchers will update them according to their own needs.
Another way for quantification has been proposed. The

square of the statistical overlap was introduced by Monz
et al. [12] to measure the similarity between the ideal and
device outputs. It is also used by Amico et al. [13] to claim
their advantage from previous works.

C. ARTICLE ORGANIZATION
In Section II, we give a theoretical introduction to DLP, lat-
tices, and an overview of Shor’s algorithm for solving the
DLP and a computational problem to recover the solution. In
Section III, we define our discussion framework, including
circuit generation, device execution, and postprocessing. In
addition, we define a quantitative method for determining
whether an experiment has succeeded or failed. Section IV
introduces the modular-exponentiation gadgets used in our

experiments and our lattice-based postprocessing algorithm.
(Appendix A contains background theory on this postpro-
cessing algorithm.) Section V gives our experimental results
on IBM Quantum. Section VI gives simulation results of
noisy quantum devices and comparison with the real device.
Finally, Section VII concludes this article.

II. PRELIMINARIES
N, Z, Q, and R are the set of natural numbers, integers, ra-
tional numbers, and real numbers, respectively. For a prime
number p, Zp = {0, . . . , p− 1} is the field under modulo p.
[n] denotes the set {1, 2, . . . , n} for n ∈ N. BallK (x, ρ) is
the Euclidean ball of radius ρ > 0 with center x ∈ R

K , and
VK (ρ) denotes its volume.

The KL divergence defined over two discrete probability
distributions P and Q is

DKL(P||Q) :=
N∑
i=1

P(xi) log
P(xi)

Q(xi)

where P(xi) and Q(xi) are the probability densities at xi. It
is used to measure a “distance” from P to Q, though it is
asymmetric and the triangle inequality does not hold. Note
that DKL(P||Q) = 0, if and only if P = Q.

A. DLP OVER A FIELD
The DLP considered in this article is the version defined over
a prime field Zp. An instance of the DLP is given by a tuple
(g, a, p) ∈ N3 that represents the equation

gz ≡ a (mod p) (4)

where the problem is to find z ∈ Zp. Here, g is assumed
to be a generator under modulo p, that is, it satisfies gn =
1 (mod p) for n = p− 1 and
= 1 for any n ∈ [p− 2].

A variant of theDLPwhere one has extra information, e.g.,
the upper bound of z, has been considered in a cryptographic
context, and it significantly reduces the classical complexity
to solve the problem [21], [22]. In this article, we assume that
no information is provided except for the DLP instance.

B. LATTICES
We provide a brief overview of the lattices used in the analy-
sis of Shor’s algorithm on the DLP. Bremner’s textbook [23]
provides a gentle introduction. The use of lattices in post-
processing to solve the DLP by Shor’s algorithm is also
discussed in [22] and [24].
For a sequence of (not necessarily independent) vectors

b1, . . . , bK ∈ Qm, the lattice spanned by them is defined by
the set

L(B) :=
{

K∑
i=1

aibi : ∀i, ai ∈ Z

}

where b1, . . . , bK are called the basis vectors. A vector in
L(B) is represented by row vectors. We use the matrix B :=

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

[bT1 , . . . , bTK]
T to represent the basis in this article. In particu-

lar, we say that the lattice is full rank ifK = m and the vectors
are all independent.
A point x ∈ Qm is called a lattice point if x ∈ L(B). Many

useful lattice algorithms take a matrix representation of a
lattice basis as input. The majority of them assume that an
input basis is a set of independent vectors, though noninde-
pendent bases are occasionally used in applications. There is
an efficient algorithm for converting a nonindependent basis
to an independent basis that spans the same lattice (see [23,
Sec. 6] or [25, Sec. 2.6.4]). We assume the existence of such
an algorithm in the postprocessing of Shor’s algorithm.
For a given basis, the fundamental region is defined by

P(B) =
{

K∑
i=1

αibi : ∀i, αi ∈ [0, 1)

}

and the covolume covol(L) of a lattice is defined by the
volume of the region. Both the lattice and its fundamental
region are subsets of

span(B) :=
{

K∑
i=1

αibi : ∀i, αi ∈ R

}
.

Note that covol(L) is efficiently computable from the ba-
sis if the basis vectors are independent, since it is equal to∏K

i=1 ‖b∗i ‖, where b∗i is the ith vector in the Gram–Schmidt
basis.
The Gaussian heuristic of lattices in the context of this

article claims that for an n-dimensional full-rank lattice L and
a ball Y , the number of lattice points in Y is expected to be
vol(Y)/covol(L). We should note that the original version of
the Gaussian heuristic [26] argued for a probabilistic distri-
bution over random lattices, whereas the lattices discussed
in the postprocessing of Shor’s algorithm may not be close
enough to random. Appendix C contains experimental evi-
dence in small dimensions.
For a lattice L, its dual lattice L× is defined by the set

L× := {x ∈ span(L) : ∀v ∈ L, 〈x, v〉 ∈ Z}
where 〈x, v〉 denotes the standard Euclidean inner product.
A basis of L× is explicitly given as B(BTB)−1, where B is a
basis of the primal lattice L. It is simplified by (BT)−1 if B is
a square matrix.
For a given lattice basis B in the m-dimensional space and

a target vector y ∈ Qm, the closest vector problem (CVP)
is the computational problem to find a lattice point x ∈ L
that minimizes ‖x− y‖. Any lattice point is allowed if there
are many solutions to minimize. A similar problem is the
bounded distance decoding (BDD) problem. For a problem
instance (B, y) and a bound ρ > 0, the goal is to find all
the lattice points x ∈ L such that ‖x− y‖ ≤ ρ. If there is
no vector in the ball, Ballm(y, ρ), the empty symbol ⊥ is
returned. We should point out that the version of the BDD
presented above differs significantly from the standard one.

In the typical situation of the BDD, it is assumed that a unique
solution x exists.

C. OVERVIEW OF SHOR’S ALGORITHM IN OUR
FRAMEWORK
Fix a DLP instance (4) represented by I = (g, a, p) ∈ N3.
The parameters that specify the circuit size are param =
(nx, ny). They are used to define the size of the two QFTs.
Let Nx := 2nx and Ny := 2ny . nF is the size of the DLP in-
stance in bits, i.e., we set nF = �log2 p�. We assume that
nx, ny ≥ nF . Note that nx, ny > 2nF is necessary in theory;
however, the computing device we used cannot operate the
necessary number of qubits because the fidelity of quantum
operations is not high enough to getmeaningful results. Thus,
we will use smaller numbers nx, ny ≈ nF as in Table 1.
An overview of the quantum circuit for solving the DLP

is shown in Fig. 1. We do not consider the serializing imple-
mentations [13], [27] that can reduce the number of qubits in
the exponent part nx + ny to one, because our experimental
environment (see Section 5-A) does not fully support such
an implementation.
It is easy to see that the bivariate function F (x, y) :=

gxa−y mod p has two periods (p, 0) and (z, 1), where z is the
desired DLP solution. Thus, finding the periods will reveal
the solution. The circuit is designed to compute the super-
position of

∑
x,y |x, y,F (x, y)〉 over the box [0,Nx − 1]×

[0,Ny − 1] and apply the QFT for finding the periods.
The ideal state that assumes no quantum error, which

corresponds to the distribution PIdeal in our framework, is
computed as follows. The initial state |x, y〉|F〉 = |0, 0〉|1〉 is
spread by the Hadamard gates

|0, 0〉|1〉 →
Nx−1,Ny−1∑
x=0,y=0

|x, y〉|1〉 (ignoring normalization).

Then, the modular-exponentiation circuit block sets the
superposition

→
Nx−1,Ny−1∑
x=0,y=0

|x, y〉|gxa−y mod p〉.

Finally, by applying the QFT circuit block over |x〉 and |y〉,
the state to be measured is

−→
Nx−1,Ny−1∑
x=0,y=0

Nx−1,Ny−1∑
k,�

e
2π i·

(
kx
Nx
+ �y
Ny

)
|k, �〉|gxa−y mod p〉.

(5)
An observed bit string s is represented as a pair (k, �) of

integers within the box [0, 0]× [Nx − 1,Ny − 1]. It is also
interpreted as the point in [0, 1)× [0, 1)

p := (p, r) =
(
k

Nx
,

�

Ny

)
. (6)

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

1) COMPUTATIONAL PROBLEM IN POSTPROCESSING
A postprocessing algorithm tries to generate a set of candi-
dates z1, . . . , zJ as proposed solutions to the instance I. There
could be several strategies for recovering the candidates.
Formally, the computational problem we have to consider

after the quantum observation is as follows. The detailed
derivation will be provided in Appendix A.
Problem 1: Let L be the 2-D integer lattice spanned by

(p− 1, 0) and (z, 1), where p is known and z is unknown.{(
ki
Nx

,
�i
Ny

)}
i=1,...,K

are the points from the observations,

which are (noisy) approximations of lattice points in L×.
Then, find (a suitable approximation of) z.

We remark that it is enough to assume the existence of
an algorithm that finds an approximation of z, say that the
algorithm recovers z′ s.t. |z− z′| < z/4, where the notation
| · | is considered under modulo p. With the approximated so-
lution, consider the new DLP instance (g, a · g−z′ , p), which
has a smaller solution z− z′. The approximation algorithm
returns z′′ s.t. |z− z′ − z′′| < |z− z′|/4 < z/16. Repeating
this process, we can recover the desired z.
An observed point is shifted from a lattice point by

two factors. The first is due to the finiteness of the QFT,
which is represented by a closed but difficult to analyze
formula precisely described by (14) in Appendix A. The
other is caused by noise in quantum devices. If the quan-
tum circuit works without any quantum noise, we know that
the observed points are close to lattice points with a high
probability [24], [28].

III. GENERIC FRAMEWORK AND SUCCESS
PROBABILITY
We revisit the standard procedures of computation by using
quantum devices and propose our definition of the success
of experiments and success probability. Note that our frame-
work can be applied for any NP problem besides the IFP and
the DLP, because it is based on a check for whether the given
solution candidates satisfy the problem instance.

A. THREE-STEP FRAMEWORK
Our standard procedure to solve a computational problem
using a quantum computer has the following three steps.

1) Generate a quantum circuit from a given problem in-
stance.

2) Execute the circuit on a quantum device.
3) Recover solution candidates and check.

In the NISQ era, steps 1 and 3 are assumed to be classical
(probabilistic polynomial) algorithms, which we may call
preprocessing and postprocessing, respectively. If the perfor-
mance of quantum devices improves, they can be replaced
by quantum algorithms. However, we think considering this
change is pointless for the time being, and we have left it as
an open problem for the future.
Furthermore, we assume that the quantum circuit gener-

ated in step 1 is optimized to solve the given problem instance

rather than being designed to solve generic instances of a
fixed size. Generally speaking, the classical input values for
quantum algorithms are expressed via classical choice of
quantum gates to execute, rather than being encoded in quan-
tum registers. This approach has the potential to simplify the
circuit significantly and reduce resource consumption com-
pared to a circuit designed for generic instances.
More formally, we write the algorithms using the notation

shown below.

1) CircuitGen(I,param)→ QC: It is a probabilistic al-
gorithm that for given a problem instance I and auxil-
iary information param, such as the qubit size of the
circuit, outputs a quantum circuit QC. The output can
be different each time.

2) Device(QC)→ s: Execute the circuit QC by a quan-
tum device and get a bit string s. Here, a device is con-
sidered to be either a real quantum device or a quantum
simulator on a classical computer.

3) PostProcess(s1, . . . , sK; I,param)→ Z: It is a prob-
abilistic algorithm that for given bit strings, problem
instance I, and param, outputs a set of solution candi-
dates Z = {z1, . . . , zJ} to I. Here, the numbers J,K of
solution candidates and bit strings are not fixed but are
assumed to be a polynomial of the instance size.

Let us add some remarks on the postprocessing step. The
step could be further divided into two steps: 1) modification
of bit strings; and 2) recovering a solution. The latter will
be discussed as a lattice-based algorithm in Section IV-B.
The former attempts to transform a bit string into a better
one (a simple method will be presented in Section IV-C) or
to modify a probabilistic distribution. One well-known tech-
nique for improving probability distributions is error miti-
gation [29], [30], which recovers a probabilistic distribution
from an approximated distribution of bit strings derived from
many shots and some information on the error distributions
derived from additional experiments. We do not consider
the modification of the probabilistic distribution because our
preliminary experiments using error mitigation do not signif-
icantly change the success probability. In addition, in the situ-
ation where we want to solve a large DLP instance, execution
costs mean that it will be feasible to execute only a few shots
so that we cannot estimate the distribution. Therefore, in the
cryptographic context, we only consider the modification of
bit strings.

B. DEFINING SUCCESS PROBABILITIES
Within the framework in the above section, we can define
“success” for the experiments using real devices. We start the
discussion by introducing the devices that we will compare.

1) Ideal: This outputs the bit strings from the noiseless
quantum circuit.

2) Dev: This is a real quantum device to be tested.
3) Unif: This outputs the random bit strings uniformly.

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

Definition 1: Fix a postprocessing algorithm; in particular,
the number of input bit strings K is fixed. For a device X ∈
{Ideal,Dev,Unif}, we denote by PX the probability distribu-
tion over the bit strings s1, . . . , sK from K executions of the
circuit QCi = CircuitGen(I,param) on the device X . The
subscript i denotes the ith execution, where we can usually
reuse the same circuit for each execution. The probability in-
cludes the circuit generator’s random coins and superposition
in the device.
The success probability on the computational problem is

defined by the probability that the set of output candidates
contains the desired solution to I

pX := Pr [zsol ∈ PostProcess (s1, . . . , sK; I,param)] . (7)

Fixing the generator and postprocessing algorithm with
the number of input bit strings, the success probabilities
pIdeal, pDev, and pUnif are fixed.
If a program can be executed without any noise on a de-

vice, the output distribution and the success probability are
expected to be the same as the ideal. Increasing the quantum
noise of execution, pDev drops. In addition, if the bit strings
approach uniform noise, pDev approaches to pUnif. Thus, we
can expect that pUnif < pDev < pIdeal and the scaled value
s2 = (pDev − pUnif)/(pIdeal − pUnif) ∈ (0, 1) in (2) can be
used to measure the performance of devices.
Following the common strategy of the existing works that

we named the median principle (described in Section I-B),
we say that the device succeeded in solving the problem if
s2 ≥ 0.5. In other words, we can say that the device experi-
ment to solve a problem instance is a success if

pDev >
pIdeal + pUnif

2
. (8)

We observe that the above definition of success, which we
may call “the success of device experiments as a comput-
ing algorithm,” is somewhat disconnected from the crypto-
graphic context in the real world. In the cryptographic area,
an attacker can claim success if there exists a trial such
that zsol ∈ PostProcess(s1, . . . , sK; I,param) even though
superpolynomial time was wasted.
For small instances considered in the NISQ era, classical

simulations to compute the accurate value of pIdeal and pUnif
are possible, and the median principle is a good criterion for
checking whether the device performance is adequate. For
large quantum circuits, we may assume pUnif ≈ 0 since the
number of candidates is polynomial despite the search space
being exponential. For the DLP [28, Sec. 4], we can assume
the success probability pIdeal ≈ 1 for sufficiently large in-
stances. The above assumptions deduce the threshold 0.5.
It turns out that some lazy version of the median principle
for a large-scale device is smoothly connected with the exact
version.

C. SUCCESS PROBABILITY AND KL DIVERGENCE
We give an experimental motivation to use the success prob-
abilities to measure the difference between PX and PY rather

FIGURE 2. Density function from the exact simulation PIdeal and the noisy
simulation PNoisy with parameters p1 = 0.0003 and p2 = 0.003 that
output similar data. Although we might think the device works well on
first impression, the asymmetry of the KL divergence drives us to
question the results.

than the KL divergence.We simulated the probability density
functions of ideal and noisy execution for the quantum circuit
instance VI, which has the exponent widths nx = ny = 6.
Thus, each simulation of a shot generates nx + ny = 12 bits.
In this case, we set the noise parameters to have a 2-bit

gate depolarizing error p2 = 0.003 and a single-bit gate de-
polarizing error p1 = 0.1 · p2. Fig. 2 depicts a comparison
of the ideal distribution and the noisy distribution. The hor-
izontal and vertical axes represent the position of (�, k) as
determined by 12 bits from a simulation of one shot.
Although we might think the virtual noisy device works

well on first impression, the following KL divergence met-
rics show that it is questionable. The concrete values are
DKL(PIdeal,PNoisy) = 1.022 andDKL(PNoisy,PUnif) = 2.881.
Thus, PNoisy is closer to the ideal than the uniformly random,
and we can conclude that the device output is good.
On the other hand, the values of the reverse

KL divergences are DKL(PUnif,PNoisy) = 1.745 and
DKL(PNoisy,PIdeal) = 3.305, which are evidence that the
device output is closer to the uniform than the ideal
distribution. Hence, we can obtain contradicting results to
each other.
From the result, we think that a naïve comparison of KL di-

vergence is not suitable to decide the success of experiments.
Furthermore, our goal is not only to benchmark quantum
devices but also to measure the device performance as an
accelerator for solving the DLP. This is why we proposed
using the overall success probability to determine whether
an experiment is succeed, as in (8).

IV. OUR IMPLEMENTATION
In Section II-C, we omitted the details of our modular-
exponentiation arithmetic gadgets and postprocessing algo-
rithm to generate solution candidates to Problem 1.Many im-
plementations have been proposed for their building blocks.
In this section, we give the details of our version of the
implementation used in our experiments.

A. OUR QUANTUM MODULAR-EXPONENTIATION CIRCUIT
The modular-exponentiation gadgets are the most compli-
cated part of Shor’s circuit. They are typically implemented
by a sequence of modular-multiplication operations.

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

FIGURE 3. n-bit double then modular quantum circuit without any
auxiliary qubits.

Based on our understanding of the latest hardware, the
general modular-multiplication circuit, even for problems in-
volving only a few qubits, is too demanding for the latest gen-
eration of quantum machines [15]. As a result, we must con-
sider specific cases and simplify the modular-multiplication
circuit as much as possible by the following existing reports.
We used the standard binary representation of nonnegative

integers. For a state |Fn−1 · · ·F0〉 comprising n qubits, we re-
gard it as the integer F = Fn−12n−1 + · · · + F0 and denote it
as |F〉. To simplify the circuits, we exploited the fact that the
left rotate operation |Fn−1 · · ·F0〉 → |Fn−2 · · ·F0Fn−1〉 com-
putes the function F �→ 2F mod (2n − 1) [12] without using
any auxiliary qubits. A stack of these rotation circuits realizes
the modulus power function F �→ F · 2k mod (2n − 1) for
any k.
With this gadget, the controlled version of double-then-

modular operation is expressed as

|x〉|F〉 → |x〉|(1+ x)F mod (2n − 1)〉
=

{ |Fn−1 · · ·F0〉 (x = 0)
|Fn−2 · · ·F0Fn−1〉 (x = 1)

whose circuit is shown in Fig. 3.
In the modular exponentiation, we considered quantum

circuits that use only not and cnot gates and the above gad-
get. In particular, such simplified circuits meet the following
requirements: 1) p is a number of the form 2n − 1 (p should
be prime in a cryptographic context); and 2) both g2

j
mod p

for j ≥ 1 and (a−1)2k mod p for k ≥ 0 are represented by a
power of 2.
Thus, the modular-exponentiation part that computes
|x, y, 1〉 → |x, y, gxa−y mod p〉 comprises of |x, y, 1〉 →
|x, y, g · x0〉 (implemented by not and cnot gates, where
x0 is the least significant bit of x), and the controlled
double-then-modular gadgets.
An illustrative example is, for instance, 3z ≡ 4 (mod 7)

with nx = ny = 4 (instance V in Table 1). By the rela-
tions 32 ≡ 38 ≡ 2 (mod 7), 34 ≡ 4 (mod 7), 4−1 ≡ 4−4 ≡
2 (mod 7), and 4−2 ≡ 4−8 ≡ 4 (mod 7), the following cal-
culation is derived:

gxa−y mod p=3x0 · 2x1 · 4x2 · 2x3 · 2y0 · 4y1 · 2y2 · 4y3 mod 7.

Thus, the computing circuit is started by |x, 1〉 → |x, 3x0〉,
which is implemented by two cnot gates, and the other parts
are double-then-modular gadgets.

Algorithm 1: Our Postprocessing Algorithm for DLP.
Input: s1, . . . , sK : nonzero bit strings from a device.
Output: Z = {z1, . . . , zJ}: a set of solution candidates
for the DLP instance
1: Convert si to (pi, ri) for i = 1, . . . ,K
2: Construct the BDD instance (B, y, ρK) in (9)–(11)
3: BDD(B, y, ρK)→ V = {v1, . . . , vJ}
4: if V = φ then
5: CVP(B, y)→ V = {v1}
6: end if
7: Recover solution candidates zi from vi for

i = 1, . . . , J
8: return z1, . . . , zJ

B. OUR POSTPROCESSING
Wepresent our version of a classical algorithm for recovering
candidates of z via dual lattices, whose naïve extensionwould
be useful in many situations involving Shor-type algorithms.
See, for example, [22], [24], and [31] for details on the al-
gorithm that employs primal lattices. In theoretical analysis,
we assume, as in many previous works, that there is no gate
or measurement noise during algorithm execution.
We outline the algorithm in Algorithm 1. For the input of

a sequence of bit strings s1, . . . , sK , the algorithm outputs a
set of solution candidates z1, . . . , zJ to the DLP instance. As
we described in Appendix A, the bit strings correspond to the
points {(pi, ri)}i=1,...,K , which are approximations of points
in L× ∩ [0, 1)2, where L× is the dual lattice of L spanned by
(p− 1, 0) and (z, 1) with the DLP solution z.
In addition, the lattice defined by the (K + 1)× K matrix

B :=

⎡
⎢⎢⎢⎢⎣

b1
b2
b3
...

bK+1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
p1 p2 · · · pK
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ (9)

has a lattice point x =∑K+1
i=1 aibi close to the target vector

y = (r1, r2, . . . , rK). (10)

Finding x, we can recover the DLP candidate solution z since
the combination coefficient a1 is −z. The details of the post-
processing are given in Appendix A.
Therefore, for a given point set {(pi, ri)}i=1,...,K , executing

a BDD subroutine BDD(B, y, ρK) generates a list of vectors
v1, . . . , vJ , and the corresponding combination coefficients
derive the candidate set z1, . . . , zJ . The parameters in the
BDD subroutine are B and y, which are defined above. The
remainder of this section is concerned with the selection of
the searching radius ρK .

We need to set the radius so that the overall success prob-
ability is sufficiently high while keeping the computing time
feasible. In other words, we need to keep the number of
lattice points in BallK (y, ρK) small, namely, O(K).

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

To bound the number, the Gaussian heuristic assumption
provides us a good estimate in general. The assumption
claims that the number of lattice points in BallK (y, ρK) is
average about one if we set

ρK = VK (1) 1
K covol(B)

1
K = 2−nx/K�(K/2+ 1)1/K · π− 1

2 .

(11)
For details of the derivation, see Appendix C. Although
we basically followed Ekerå’s theory [28] to implement our
postprocessing, we have found two issues to modify whose
details are postponed to Appendixes B and C.
The first issue is the determinant computation of the lattice

B. In the lattice application, a lattice basis is usually given by
a triangular matrix for the simplicity of determinant analysis.
In our situation, the lattice is represented by a (K + 1)× K
matrix as in (9). An auxiliary column c = (τ, 0, . . . , 0)T on
the left of B is commonly used to analyze such bases, where
τ is a parameter to be optimized. Because the dimension
has been changed, it may cause some theoretical issues. In
Theorem 1 of Appendix B, we provide a theoretical analysis
of covol(B). This is appropriate for our situation, in which
experiments to solve the DLP are carried out using small-
dimensional lattices.
The second issue concerns the number of lattice points

within Ball(y, ρK). We experimentally find that an exponen-
tial number of lattice points is contained in the ball (see
Appendix C). This result shows that the DLP lattices are not
close to the level of randomness required to use the Gaussian
heuristic. Thus, we should work in low dimensions, such as
K + 1 ≤ 10, to limit the number of found vectors. Unfortu-
nately, to the best of our knowledge, a method for setting the
radius in a large dimension is unknown.
In small dimensions, the number of lattice points within

the ball has a nonnegligible variance. We experimentally
discovered that there is a nonnegligible number of trials, in
which there is no lattice point within BallK (y, ρK). In this
case, we add the execution of the CVP oracle that finds
the closest lattice point to y and recovers a solution candi-
date from it. Algorithm 1 describes the postprocessing al-
gorithm. We can easily check the candidates by computing
gzi (mod p). We declare the success of the experiment when
one of the candidates passes the check. Otherwise, the exper-
iment is declared failed and we try with a new set of inputs.

C. SELECTION AND MODIFICATION OF BIT STRINGS
In our preliminary experiments, we found that a naïve ex-
ecution of Algorithm 1 sometimes fails to find the desired
DLP solution from device outputs. To increase the success
probability, we propose two methods to select and modify
the bit strings from the devices.
The first method is to remove the zeros from the set. The

zero vector pi = (0, 0), derived from the zero bit string, is
useless because the zero vector is always a point in the dual
lattice L×. As a result, it provides no information, so we
can remove vectors representing points near (0, 0) from the

Algorithm 2:Our Bit String Modification Algorithm for
the DLP.
Input: s: a bit string from a device
Output: (p,′ r′): modified vector
1: Convert s to p = (p, r) as in (6)
2: if p is sufficiently close to a point in Sp in (12) then
3: return p
4: end if
5: for all pi = (p,′ r′) is from the ith bit flip of s do
6: if pi is sufficiently close to a point in Sp then
7: C← C ∪ {pi}
8: end if
9: end for
10: ifC = φ then
11: return ⊥
12: else
13: Choose randomly p fromC
14: return p
15: end if

postprocessing algorithm’s inputs. Because the numbers con-
sidered in our experiments are very small, we removed only
the zero vectors, whereas other vectors near the origin should
also be removed in the case of large DLP instances.
The second method is using the properties of distributions

after applying theQFT. Since L× is spanned by two vectors in
the matrixD (see Appendix A for details), any points in L× ∩
[0, 1)2 from any DLP instance considered under modulo p
must be in the set

Sp = {(0, 0)} ∪
{

1

p− 1
(c1, c2) :

c1 = 1, . . . , p− 2
c2 = 0, . . . , p− 2

}
.

(12)
Thus, if the converted point p′ = (p,′ r′) is not very close

to a point in Sp, errors during the quantum computation or
measurement are expected to be occurred.We simply assume
that the errors are bit flips at themeasurement and canmodify
an output by checking that all the candidates of bit strings that
are small fraction of bits are flipped.
We emphasize that determining whether a vector is close

to a point in Sp can be done quickly and without using any
DLP solution information. Furthermore, unlike error mitiga-
tion techniques, it does not make use of any information from
the probability distribution.
For a bit string containing errors, we can try all the 1-bit

flips to ensure that the corresponding vectors are on the cor-
rect points. If all of the trials fail, we reject the bit string and
try all the 2-bit, 3-bit, and so on flips if necessary. In our
experiments, we try every single 1-bit flip.
Therefore, we modify the bit strings from devices as in

Algorithm 2. Note that we use the criteria p ∈ Sp and pi ∈ Sp
exactly to check the conditions in steps 2 and 6, respectively,
in our experiments.
Using the above two modification methods in Step 1 in

Algorithm 1, each input bit string is translated to a modified

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

FIGURE 4. Connectivity of ibm_kawasaki.

FIGURE 5. Our abstract circuit of instance I.

point (pi, ri) or rejected sample⊥. We replace⊥ with a new
modified sample from a device and move to step 2 after all
the points have been processed.

V. EXPERIMENTS IN IBM QUANTUM
This section provides experimental results on a real super-
conducting quantum computer. For Shor’s quantum circuits
to solve selected instances of DLP, we measured probability
distributions and success probabilities.

A. EXPERIMENTAL ENVIRONMENT
First, we explain the target DLP instances and the conditions
of the experiments. The experiments were performed on the
IBM Quantum device ibm_kawasaki, which has the con-
nectivity of qubits shown in Fig. 4.
The circuit of instance I assuming full connectivity is

shown in Fig. 5 as an illustrative example. On the other hand,
current superconducting quantum computers do not have full
connectivity. Thus, we have to embed the circuit by fitting it
the topology of the target quantum device. The performance
loss should be as small as possible.
There are many methods to measure the loss. We tried

to reduce the total number of cnot (cx) gates, which is
expected to be equal to increase the total performance be-
cause the fidelity of cnot gate is lower than single gate in
IBM Quantum devices. Such circuit-to-circuit translation is
performed by thetranspile command inQiskit [32]. This
command returns a variety of feasible circuits since it uses a
random number in its optimizing subroutine. We set the seed
of random number generator as the input of the transpile

TABLE 2. Experiments Conducted on ibm_kawasaki

command, so that we can generate many circuits and take the
circuit whose number of cnot gates is minimum. We also
set the options so that the output circuit consists of the gate
set [“cx,” “id,” “rz,” “sx,” “x”] and optimization level 3.
Fig. 6 shows the circuit of instance I used in our experiments.
The circuits of instances II and III, which are used in our

experiments, are shown in Fig. E1 in Appendix E. As we
explained in the next section, experiments using both the in-
stances are not succeeded because their success probabilities
do not meet the level of threshold values. Instances IV–VI are
not executed because they are clearly more complicated than
instances II and III, and the success probabilities are very
lower than the thresholds.
The summary of the experimental environment is shown

in Table 2. One execution consists of 8192 shots and mea-
surements, and one experiment consists of 100 repeats of
execution to evaluate the statistical variance. Totally, we have
819 200 bit strings for each instance.

B. RESULTS FROM REAL QUANTUM DEVICES
We compare the output distribution by which we denote
PKawasaki and the ideal distribution PIdeal. Fig. 7 shows the
comparison among the probability distributions of instances
I–III.
From the graph, clearly, instance I is solved. In fact, using

our postprocessing algorithm (see Section IV-B) on instance
I, the success probability is always higher than 99.9% for
K = 2, . . . , 20. On the other hand, in instances II and III,
although the exact peaks of PKawasaki and PIdeal are close to
each other, there are some other peaks that are not expected,
such as 00100. Therefore, in the next section, we discuss the
effects of these peaks in postprocessing.

C. SUCCESS PROBABILITY RESULTS
To facilitate a more quantitative comparison, we checked the
success probability of the postprocessing algorithm. Fig. 8
shows the success probability of pIdeal and pUnif and the ex-
perimental success probability pKawasaki (i.e., the probability
that the return ofAlgorithm 1 includes the correct solution) of
instances II and III, using 819 200 samples from the device.
We compared the probabilities without bit string modifica-
tion in both the cases, as described in Section IV-C.
Fig. 8 depicts a summary of the results. The success proba-

bility from the ideal distribution is almost 1, and the threshold
values are computed by (1+ pUnif)/2. Unfortunately, the
success probabilities of the device outputs are lower than that
of the uniform. This can be expressed as follows. In instances
II and III, the DLP has the solution z = 1 and the vectors that
span the dual lattice are (0,1) and (1/2, 1/2). Thus, (p, r) =
(0, 0) and (1/2, 1/2) from the bit string s0 = 00000 and

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

FIGURE 6. Compiled circuit of instance I after optimization by the transpile command with optimization level 3.

FIGURE 7. Probability distribution of ideal output and IBM Quantum
real device output. From the top, the experimenting circuits are I, II, and
III in Table 1. In instances II and III, the values are cut at 0.2 and the
ideal probabilities are all 0.5.

s1 = 10100 in instance II are the points observed under
ideal conditions. On the other hand, noise bit strings s2 =
00100 and s3 = 10000 are frequently observed in experi-
ments. In particular s2 corresponds to (p, r) = (1/2, 0) and
the solution z = 0 that the postprocessing algorithm makes
mistake. We think the reason why the error bit sequence s2
is higher than the correct solutions (s0 = 00000 and s1) is

FIGURE 8. Experiment success probabilities using our postprocessing
algorithm (see Algorithm 1). The top and bottom are on instances II and
III, respectively. Note that this result is before using our bit modification
algorithm, whose detail and result are explained in Sections V-D and
IV-C. Here, K is the number of used bit strings sampled from the set of
bit strings generated by the IBM Quantum device.

a concentration of error since the Hamming distance relation
dH (s0, s2) = dH (s1, s2) = 1.

D. RESULTS AFTER 1-BIT MODIFICATION
To obtain better results, we apply our procedure to modify
the bits introduced in Section IV-C. We also apply the mod-
ification for the uniform output for a fair comparison. The

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

FIGURE 9. Experimented success probabilities of our postprocessing
algorithm with modified bit string.

probability distribution of the device output before and after
modification is supplied in Appendix D.
Fig. 9 shows the comparison of success probabilities. We

can see that the device probabilities have increased, as have
the thresholds. The success probabilities of device outputs
are still lower than the thresholds. We emphasize that in
instance III, the probabilities of the device become higher
than the uniform. As a result, it appears that if noise levels
are reduced, there is a chance of success. In the following
section, we will discuss how much noise we need to reduce
through simulation.

VI. IMPLICATIONS FOR REQUIRED NOISE REDUCTION
As we can see in the above section, the problem level that
the latest quantum devices can solve is between instances I
and II. This section provides the results of our simulation of
noisy devices to discuss the near future of the DLP and the
IFP against quantum devices.
Noise in the real quantum devices is represented by many

parameters. To simplify the discussion, we represent the
noise by one real number p2 that indicates the 2-bit gate
depolarizing error.

FIGURE 10. Comparison of success probabilities. The yellow line is the
probability of random bits with 1-bit modification. Because the success
probability of the ideal output is 1, the threshold (red dotted line) is
computed by (pUnif + 1)/2. The orange line is the probability of the real
Kawasaki device, which matches the purple dot line of simulation with
p2 = 0.07. To claim success, it is necessary to reduce the noise level to
p2 = 0.04.

TABLE 3. Summary of Necessary Noise Level (as of p2 in Simulation) for
the Instances Under Consideration

The #cx row is the same as the #cxmin row
in Table I. pmod and pnomod are necessary p2
to claim success when 1-bit modification is
used and unused, respectively.

We simulated the circuit of instance III, setting 1-bit and
2-bit gate depolarizing errors to 0.1 · p2 and p2, respectively.
Fig. 10 shows the success probabilities. Since the success
probability of random bits with 1-bit modification is about
0.55, the threshold (red dot line) is about 0.8. On the other
hand, the success probability of Kawasaki output with 1-bit
modification is about 0.6, which does not meet the thresh-
old. The success probability graph is comparable to that of
our simulation with p2 = 0.07. It is necessary to achieve
p2 = 0.04 to obtain a success experiment. We remark that
p2 = 0.07 does not match the claimed cnot gate error rate
reported for ibm_kawasaki [33], because we tried to rep-
resent the complex effect of diverse errors in the real device
by using a single value. From the ratio of p2, we think that it is
necessary to halve the noise to claim success for experiments
on instance III.
We also simulated the circuits in Table 1 to find the noise

levels we need to achieve to claim success. The results are
summarized in Table 3 and Fig. 11. pmod and pnomod are the
maximum of p2 to claim success when 1-bit modification is
used and unused, respectively. Here, we declare success if
one of the success probabilities of postprocessing for K =
2, . . . , 10 is higher than the threshold.

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

FIGURE 11. Comparison between #cx and the necessary noise level p2.
The blue circles and red triangles are the results with bit string after and
before modification, respectively. The points from instances II–V all fit on
the line 1/#cx. The horizontal dotted line is p2 = 0.07, the noise level as
of 2021.

The values on instances II and III look the same, whereas
the details are different. The size of the QFTs is one of the
differences. Based on the experimental results, we discov-
ered that increasing the QFT size results in increased noise
resiliency. In these cases, it appears that the noise increase
caused by the number of gates and the resiliency from the
QFT size are balanced.
For instances IV and V, the values pmod and pnomod are the

same because the modification algorithm (see Algorithm 2)
has very small effects on the inputs. Since both the instances
are from the DLP instance with p = 6, the set of legitimate
points Sp defined by (12) contains 31 points and the number
of corresponding legitimate bit strings is inherently greater
than 31. On the other hand, the possible number of output bit
strings is 2nx+ny = 64 and 256 for instances IV andV, respec-
tively. Thus, most outputs are regarded as legitimate such that
the true condition is satisfied in step 2 in Algorithm 2.
Fig. 11 shows the log plot of #cx and the probability. We

can see that the values of instances II–V are on the line 1/x.
This explains the weakness of the circuits against noise. If
any one of the cnot gates has an error, the whole computa-
tion fails.
Future prediction: IBM provides the history of averaged

cnot gate error rates [7] over the past five years. The rate
continues to decrease, falling by roughly half every year. We
can predict when the DLP instances will be solved if the
total noise level of real quantum devices continues to de-
crease at the same rate. As previously stated, the IBM Quan-
tum (ibm_kawasaki) released in 2021 corresponds to the
noise level p2 = 0.07, which we use to simulate cnot and
single-gate errors. To solve instances II and III, p2 = 0.04
is required. If the current trend continues, we would expect
these instances to be solved by a quantum device released in
2022. In addition, in 2025, the noise level will reach about

TABLE 4. Summary of Quantum Circuits for the Proof of Concept of
Shor’s Factoring Algorithm

p2 = 0.07 · 2−4 = 0.004375 and instances IV and V are ex-
pected to be solved.
We also give a prediction on Shor’s factoring algorithm

based on the number of cnot gates and a slightly speculative
assumption

p2 ≈ 1/#cx (13)

because we have never discussed enough lattice-based post-
processing algorithms and bit string modification for integer
factoring.
Table 4 summarizes the factoring quantum circuits that

were considered. Similar to the DLP circuits, we implement
them using Qiskit and compile them using the tran-
spile() function with 100 different seeds for the random
portions of compilation. The columns #cxmin and #cx avg
represent the minimum and average of #cx of transpiled
circuits.
The factoring circuits considered here are textbook proof-

of-concept circuits. That is, they are simplified by using
the properties of ax mod N. For example, the second line
instance 15B is simplified by using the fact 2x mod 15 ∈
{1, 2, 4, 8} and 24 mod 15 = 1. The third line, instance 21A,
is from the circuit by Amico et al. [13]. The details of the
factoring circuits considered are described in Appendix F.
From the viewpoint of #cx, 15A, 15B, and 21A are two

to three times harder than the DLP instances II and III.
Under our assumption, when p2 = 0.07× 2−3 = 0.00875
is achieved in 2024, 15A and 15B may be solved since
1/#cx = 0.01 and 0.0116, respectively. The instance 21A
has a chance to be solved since 1/#cx = 0.00794. On the
other hand, to solve the larger instance 21B, we have to wait
for the machines to progress until 2026.
This near-term prediction also explains why the existing

reports on successful integer factoring over the past 20 years
(see[14]–[34]) use oversimplified circuits (and subcircuits)
and yet only factor 15 and 21. Current error rates are not
good enough to execute the canonical proof-of-concept cir-
cuits for factoring 15, which require hundreds of cnot gates.
Achieving this first step will take several years. We predict
that larger instances will be solved constantly after the first
report of complete execution of factoring 15 or 21 including
postprocessing because the growth rate of the number of
gates is polynomial in logN of the number N being factored.
We expect that new reports of factoring numbers greater than
35 will be published frequently after 2025.

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

VII. DISCUSSION
We reported our experiments on the DLP executed on an
IBM Quantum device. The entire performance of the latest
quantum device against the DLP, including the postprocess-
ing algorithm, is very limited. Such a device can solve the
smaller 2-bit instance 2z ≡ 1 (mod 3) (instance I in Table 1)
in the sense of the median principle on the success probabil-
ity. On the other hand, it might require a reduction of the
noise by half to solve the larger instance 2z ≡ 2 (mod 3)
(instances II and III in Table 1).
We have predicted that the 3-bit DLPs considered in Ta-

ble 1 and the factoring instances in Table 4 will be solved
around 2025. On the other hand, solving 4-bit or larger in-
stances seem to necessitate the use of a device with QEC. The
importance of noise reduction has been known since the early
days of Shor’s algorithm [35]. Here, we provide quantitative
support by (13) for that consensus.
Threatening RSA-2048: The growing speed of device per-

formance under the assumption from the history of device
noises and (13) is notable. Assuming that the executable
number of cnot gates with negligible errors doubles ev-
ery year, it can be expected that a quantum circuit with
millions of gates can be executed in the coming decades.
The estimate of Gidney and Ekerå [36, Table 1] claims that
about 2.7× 109 logical Toffoli gates are required to factor
RSA-2048. Assuming that one Toffoli gate is implemented
using five cnot gates and several single qubit gates, about
1.35× 1010 ≈ 234 cnot gates are necessary to implement
the circuit. As a result, it can be expected that a quantum
device that threatens integer factoring-based cryptosystems
will be developed in the next 30–40 years.
This prediction backs up previous reports predicting that

the time of compromise RSA-2048 will also arrive in the
coming decades. Sevilla and Riedel [37] make a prediction
based on the assumption of exponential progress of physical
qubits and gate fidelity, claiming that this is an optimistic sce-
nario. Their prediction is based on their quantifier of quantum
devices that they named generalized logical qubits. They
predicted that a superconducting quantum device capable of
solving RSA-2048 (using 4100 qubits) would be available
in the early 2050s, rather than before 2039. This is more
optimistic than expert opinions [38], [39] published in 2019
and updated in 2020. Mosca and Piani [38], [39] say that
90% of experts predict that there is 50% or greater chance
of a quantum device that can break RSA-2048 in 24 h being
released in the next 20 years.
In addition, our method also shares the difficulty of early

prediction of emerging technologies. That is, the predictions
on RSA in the above assumed the exponential growth of
some performance values at a glance from historical values.
Owing to the small number of data points, the evidence sup-
porting our assumptions is not very strong, and we need to
refine the predictions by taking account into the progress of
quantum devices and experiments over the next few years.
We also remark that our prediction method is slightly dif-

ferent from the typical methods in cryptographic research.

To predict threats to RSA and DSA in future, cryptogra-
phers typically have used “bit lengths of cryptosystems,”
represented by the bit lengths of numbers to be factored
in RSA and the modulus in DSA, to measure the security
of cryptosystems. However, this strategy cannot be applied
simply to the situation of quantum computing. Despite the
advances in technology, the known claimed successful fac-
toring experiments using Shor’s circuit on real quantum com-
puters have only been for the values 15 and 21 over a span
of 20 years [14]–[34]. Thus, it is difficult to predict the time
of compromise RSA-2048 from only previous experiments.
Therefore, another predicting method was needed, leading us
to the present analysis.
Technical future work: Our experiments in this article

employ the standard approach to constructing the circuits.
To increase the success probability, several techniques can
be applied.
In addition to the simplification of modular-

exponentiation circuits, an approximate QFT can also
be used [40], [41]. The approximation, or omitting rotation
gates of very small angles in particular, can reduce the
number of gates and required total noise levels, at the
expense of accuracy. Balancing the hardware noise and
its inaccuracy is a problem that we hope to address in the
near-future.
QEC is under continuing development. Once imple-

mented, it can also significantly reduce the noise level. How-
ever, with short code distances and limited distillation ca-
pabilities for the magic states needed for the fault-tolerant
implementation of Toffoli gates, early fault-tolerant systems
will still have residual (post-QEC, post-FT) error rates that
must be handled using techniques similar to those described
in this article, rather than assuming that logical gates are
perfect. It will be interesting to see how the noise level trend
changes as QEC and fault-tolerant techniques are applied to
actual algorithm execution [4], [42].
The postprocessing algorithm is also a work in progress,

with room for continued improvement. Based on the set
Sp of valid bit strings, we proposed a simple bit modifica-
tion algorithm. Other methods should be considered. Out-
puts with low levels of noise, in particular, can aid in the
recovery of the correct solution in some security-related
problems [43].

APPENDIX A
BACKGROUND THEORY OF OUR POSTPROCESSING
This section provides a framework for deriving the computa-
tional problem (see Problem 1), which is implicitly described
in several previous works [22], [31], [44]. We begin by ex-
plaining why the noiseless execution of Shor’s circuit (see
Fig. 1) produces a point close to a lattice point.
We regroup (5) by the value of F = gxa−y mod p as

Nx−1,Ny−1∑
k,�

p−1∑
F=0

Nx−1,Ny−1∑
x=0,y=0

gxa−y mod p=F

e
2π i·

(
kx
Nx
+ �y
Ny

)
|k, �〉|F〉.

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

Thus, the probability that we observe |k, �〉 is

p−1∑
F=0

∣∣∣∣∣∣∣∣
Nx−1,Ny−1∑
x=0,y=0

gxa−y mod p=F

e
2π i·

(
kx
Nx
+ �y
Ny

)
∣∣∣∣∣∣∣∣

2

(14)

up to the normalization constant. To the best of our knowl-
edge, there is no closed simple formula to compute or ap-
proximate this.
However, if there exists a pair (k, �) and a constant ck,�,F

satisfying the following conditions: 1) the constant does
not depend on x and y and 2) for any (x, y) satisfying
gxa−y mod p = F , the constant satisfies

kx

Nx
+ �y

Ny
− ck,�,F mod 1 ≈ 0.

Then, the probability factor | · |2 in (14) is high for the pair.
Here, mod 1 transforms a real number to a number within the
range (−0.5, 0.5]. In other words, the above (k, �) satisfies
that for any pairs (x, y), (x,′ y′) satisfying gxa−y mod p =
gx
′
a−y′ mod p, we have(

kx

Nx
+ �y

Ny

)
−

(
kx′

Nx
+ �y′

Ny

)
mod 1

=
(
k

Nx
,

�

Ny

)
· (x− x,′ y− y′) mod 1 ≈ 0.

This condition can be interpreted using the terminology
of lattices. Since the function gxa−y mod p have two periods
(z, 1) and (p, 0), the above (kNx ,

�
Ny
) satisfies(

k

Nx
,

�

Ny

)
· (x, y) ≈ Z

for all the lattice point (x, y) ∈ L ∩ [0,Nx − 1]× [0,Ny −
1], where the lattice L(B) is spanned by (z, 1) and (p, 0).
Thus, we can expect that (kNx ,

�
Ny
) is an approximation of

a point in L× ∩ [0, 1)2 if the observed pair has no quantum
errors.
We explain the derivation of an instance (B, y, ρ) of the

BDD problem and how the solution implies the desired DLP
solution z. The matrix representation of B and its dual D are
given as

B =
[
p− 1 0
z 1

]
and D = 1

p− 1

[
1 −z
0 p− 1

]
.

Suppose that we carry outK shots on a quantum device and
have bit strings s1, . . . , sK . In addition, we let the ith point
interpreted from the ith vector as

pi := (pi, ri) =
(
ki
Nx

,
�i

Ny

)
. (15)

There exists a short error vector (εi, ηi) so that (pi +
εi, ri + ηi) ∈ L×. Decomposing into coordinates, for each
measurement, there exists integers ai and bi, and they satisfy

pi = ai
p− 1

− εi and ri = −aiz
p− 1

+ bi + ηi.

Therefore, erasing ai, we obtain the fundamental relation

z · pi + ri − bi = −z · εi + ηi. (16)

Revealing z from given sequence of pi and ri is the compu-
tational problem (see Problem 1) that we have to solve. One
straightforward way is a procedure that calls a BDD oracle.
Consider the BDD instance given by the (K + 1)× K matrix

B :=

⎡
⎢⎢⎢⎢⎣

b1
b2
b3
...

bK+1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
p1 p2 · · · pK
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ (17)

the target vector

y = (r1, r2, . . . , rK) , (18)

and the radius ρ to be optimized. To find suitable ρ, a refined
determinant analysis is necessary, which we will describe in
Appendix B.
We can see that there exists x ∈ L close to y satisfying

y− x = (−zε1 + η1,−zε2 + η2, . . . ,−zεK + ηK) . (19)

We explain how to recover z. We first remark that find-
ing the combination coefficient ai of the lattice vector x =∑K+1

i=1 aibi, z is easily recovered since z = −a1. Our im-
plementation via lattice algorithms is slightly technical as
follows.
The first operation is to transform the lattice basis (9) to

its full-rank form since a BDD subroutine typically takes a
full-rank matrix basis as its input. For instance, there is an
efficient algorithm (see, e.g., [23, Sec. 6] or [25, Sec. 2.6.4])
that outputs a pair of a matrixU and a square basis matrix B′
so that satisfies

B′ :=

⎡
⎢⎢⎢⎢⎢⎣

b′1
b′2
b′3
...
b′K

⎤
⎥⎥⎥⎥⎥⎦

= UB =

⎡
⎢⎣
u1,1 u1,2 · · · u1,K+1
...

...
. . .

...
uK,1 uK,2 · · · uK,K+1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

bK+1

⎤
⎥⎥⎥⎥⎥⎦ .

In particular, each b′j is expressed as
∑K+1

i=1 u j,ibi.
Then, a BDD subroutine with the input (B,′ y, ρ) returns

a set of lattice vectors. Let x =∑K
j=1 c jb′j be a vector in the

set. Here, a typical BDD subroutine returns its combination
coefficients c j. If not, we can easily compute them by simple
matrix multiplication. By the relation

K∑
j=1

c jb
′
j =

K∑
j=1

c j

K+1∑
i=1

u j,ibi

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

the coefficient of b1 is
∑K

j=1 c ju j,1 and it is −z, the negative
of the desired DLP solution candidate.

APPENDIX B
REFINED DETERMINANT ANALYSIS
This section gives our refined theoretical analysis of the co-
volume of the lattice defined by (9), which is used in our
BDD implementation in relatively small dimensions. The
technique is generally called the point-counting method, and
we apply it to the dual lattice of B.
Theorem 1: Let B be the matrix of the form (9). In particu-

lar, assume that all pi are fractions of the form ai/2mi , where
ai is odd integer or zero. For pi = 0, we set ai = mi = 0.
Then, the covolume of the lattice spanned by the rows of B
is

covol(B) = 2−mj

where mj is the maximum of all mis.
Proof: Let w = (w1, . . . ,wK) be a vector in the dual lat-

tice and consider the condition the vector must satisfy. By the
definition of dual lattice, 〈w, bi〉 ∈ Z for all i = 1, . . . ,K +
1. Thus, w must be an integer vector by the condition for
i = 2, . . . ,K + 1. Consider the condition that for i = 1, we
have

K∑
�=1,�
= j

w� · a�

2m�
+ w j ·

a j
2mj
∈ Z.

After fixing all w� except for w j, there exists just one w j in
2mj integers, so that the inner product is an integer. Thus, we
have vol(D) = 2mj and vol(B) = vol(D)−1 = 2−mj . �

In our situation, maxmi = nx (QFT size) holds with high
probability since pi = ai/2nx are considered as random num-
bers from the observations.

APPENDIX C
SELECTING RADII IN BDD
Computing the lattice covolume, one can try to set the search-
ing radius ρ in the BDD subroutine so that the computa-
tional time of postprocessing is feasible. The number of lat-
tice points in the ball, BallK (y, ρ), should be small, for this
purpose, i.e., bounded by some constant or subpolynomial
function of the lattice dimension. As a result, determining
a relationship between the number of lattice points and the
radius is crucial. In typical situations, the Gaussian heuris-
tic plays an important role. However, we discover that the
heuristic does not hold in our DLP situation, posing a new
unsolved problem.
The Gaussian heuristic says that there exists approxi-

mately vol(BallK)/covol(L) lattice points in the intersection
BallK ∩ L for a K-dimensional full-rank lattice. In our situa-
tion, the number can be computed as

vol (BallK (y, ρ))
covol(L)

= 2nx · πK/2 · ρK
�(K/2+ 1)

.

FIGURE 12. Averaged numbers of vectors within the ball, BallK (y, ρ),
where y is set from the DLP (red) and set randomly (blue). The radius ρ is
set by (20) so that the average number is expected to be 1.

Thus, setting the radius ρ′K = N1/K · ρK , where

ρK = 2−nx/K�(K/2+ 1)1/Kπ−
1
2 (20)

the expected number of lattice points is about N.
Ekerå’s [28, Sec. 5.2.1] estimation compares the above

radius and an asymptotic upper bound �K to ‖y− x‖ in the
K-dimensional space. Then, estimate howmany samplesK is
required so that the lattice-based postprocessing can be com-
pleted in a reasonable amount of time. However, based on
our preliminary experiments, we discovered that the strategy
needs to be modified.
We simulated noiseless quantum computation and sample

many bit strings for the DLP instance V. We generate 10 000
sets of BDD instances defined by (9) and (10) for each di-
mension K and count the number of lattice points within
BallK (y, ρ), where ρ is defined by (20), corresponding to
N = 1. For the control, we also count the number of lattice
points when the target point y is randomly generated from
[0, 1)K . The result is depicted in Fig. 12. We can see that
the number in the ball grows exponentially in the DLP case,
while the random case keeps about 1.
Hence, we think that we cannot use the Gaussian heuris-

tic simply in the postprocessing of Shor’s algorithm for the
DLP. Either lattices or target vectors are not random. The
reason can be explained as follows. Suppose that there exists
a lattice vector x in the ball. Then, the neighborhood lattice
vectors x± ei ± e j ± · · · are very likely in the ball where
ei = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector. As a result,
we believe that using the Gaussian heuristic to set the BDD
radius is not a good strategy in this situation. How to set the
searching radius or searching space for large K should be an
open problem. This is why, in the main section, we propose
using postprocessing with small K.
We remark that another setting method by using the cov-

ering radius could be considered, but may not be very useful.
The covering radius of a lattice L is defined by the minimum
radius c of the ball so that the set∩x∈LBallK (x, c) = span(L).
In other words, the BDD instance (B, y, c) has always a

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

TABLE 5. Summary of 1 Bit Modification (Algorithm 2) on Instance II

solution for any y ∈ span(L) if c is greater than the radius.
Thus, setting ρK by some upper bound of the covering radius,
the return of BDD subroutine is always not empty. However,
there could find an exponential number of lattice points even
for K = 2. Let us consider the following extreme situation
with K = 2, p1,1 = N−1x , and p2,k = 0. The covering radius

of the lattice is c = 1
2

√
1+ N−2x , which is achieved by the

target vector y = (0, 0.5). On the other hand, for the target
vector y = (0, 0), the ball of radius c contains an exponential
number of lattice points. Thus, we decided to keep using the
simple radius from the Gaussian heuristic and use an extra
CVP subroutine if the BDD subroutine returns the empty set.

APPENDIX D
DEVICE PROBABILITIES AFTER 1-BIT MODIFICATION
This section gives supporting materials of Section V-D. We
give a detailed example of our modification algorithm and
probability distribution results of the ibm_kawasaki de-
vice and the distribution after the 1-bit modification on in-
stances II and III.
Since both instances II and III consider the DLP instance

of p = 3, the set of legitimate points is

S3 = {(0, 0), (0.5, 0), (0.5, 0.5)}.
The corresponding bit strings are 00000, 00100, and
10100 in instance II and 000000, 000100, and 100100
in instance III, respectively. We should explain the bit string
b0b1b2b3b4 from the Qiskit output is interpreted as (k, �) =
(4b2 + 2b3 + b4, 2b0 + b1) in instance II. In addition, the bit
string b0b1b2b3b4b5 in instance III is interpreted as (k, �) =
(4b3 + 2b4 + b5, 4b0 + 2b1 + b2).
Table 5 shows the summary of 1-bit modification for an

instance with p = 3. For instance II, its ideal distribution
takes (0,0) and (0.5,0.5) with probabilities 0.5, which cor-
respond to the bit strings 00000 and 10100. The device
frequently outputs bit strings that are modified to incorrect
bit string 00100, and we can see that the probabilities of
10100 (correct) and 00100 are very close to each other.
This is one reason why the experiment failed.
Fig. 13 shows the probability distribution before and

after modification of the ibm_kawasaki device outputs.

FIGURE 13. Comparison between the probability distribution of the
ibm_kawasaki outputs and after 1-bit modification.

After the modification, we can see that instance III has
better results because the probability of the correct bit string
(100100) is higher than the other (000100), and this
explains the difference in success probabilities (see Figs. 8
and 9).

APPENDIX E
CONSTRUCTION OF OUR DLP CIRCUITS
This section provides the detailed construction of the
modular-exponentiation part of the DLP circuit experi-
mented in Section V. Fig. 14 shows transpiled circuits of
instances II and III to solve the DLP instance 2z ≡ 2 (mod 3).

APPENDIX F
CONSTRUCTION OF OUR FACTORING CIRCUITS
This section provides the detailed construction of the
modular-exponentiation part of Shor’s factoring circuit con-
sidered in Table 4 for the experimental reproducibility.
We first remark that the four circuits that we considered are

proof-of-concept versions. That is, they are oversimplified by
techniques that are not scalable.
Construction of 15A: Factoring circuit with (a,N) =

(7, 15) is traditionally discussed in [34], and recently, Monz
et al. [12] and Duan et al. [45] reported experiments with
using semiclassical QFT. Our circuit (see Fig. 15) fol-
lows [34]. It computes Y = (y323 + y222 + y121 + y020) =
7x32

3+x222+x121+x020 mod 15. The gadget G0 computes 2x0 ,
and G1 computes ×4x1 mod 15 since 72 = 4 mod 15. The
computations on x2 and x3 can be omitted since 74 ≡ 78 ≡
1 (mod 15).

VOLUME 3, 2022 3102021

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

FIGURE 14. Our transpiled circuits of instance II (top) and III (bottom) to solve the DLP instance 2z ≡ 2 (mod 3). The last observing gates are omitted.

FIGURE 15. Modular-multiplication gadgets for a proof-of-concept
circuit of Shor’s factoring algorithm with parameters (a, N) = (7, 15) and
size of QFT is 4.

Construction of 15B: For the parameters (a,N) = (2, 15),
the size of factoring circuit can be slightly reduced by us-
ing the information that 2x mod 15 ∈ {1, 2, 4, 8}. The logi-
cal relations between Y = (y323 + y222 + y121 + y020) and
X = x12+ x0 are written as

y3 = x0 · x1, y2 = x0 · x1
y1 = x0 · x1 y0 = x0 · x1

and they are interpreted to the following formulas and the
circuit in Fig. 16:

y3 = x0 · x1
y2 = y3 ⊕ x0
y1 = y3 ⊕ x1
y0 = y1 ⊕ x0.

As the situation of a = 7, the computations on x2 and x3
can be omitted since 24 ≡ 28 ≡ 1 (mod 15).
Construction of 21A: We construct a factoring circuit

with parameters (a,N) = (2, 21) and size of QFT 3. We

FIGURE 16. Modular-multiplication gadgets for a proof-of-concept
circuit of Shor’s factoring algorithm with parameters (a, N) = (2, 15) and
size of QFT is 4. The number of CNOT gates after transpiling is slightly
reduced to the circuit of Fig. 15.

FIGURE 17. Modular-multiplication gadgets for a proof-of-concept
circuit of Shor’s factoring algorithm with parameters (a, N) = (2, 21) and
size of QFT is 3.

follow the construction of Amico et al. [13]. Our cir-
cuit to computeY = (y424 + y323 + y222 + y121 + y020) =
2x22

2+x121+x020 mod 21 is displayed in Fig. 17. In the gadget
circuit G01, it computes Y = 2x12

1+x020 by using the pre-
computed information that 2X for X = 0, 1, 2, 3 is 1, 2, 4,
and 8 respectively. This gadget is the same as circuit 15B.
Then, the next gadget computes ×24x2 mod 21. The trick
here uses the fact forY = {1, 4, 8}, the results of 16Y mod 21
and 16Y mod 63 are the same. This allows us to use the

3102021 VOLUME 3, 2022

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

FIGURE 18. Modular-multiplication gadgets for a proof-of-concept
circuit of Shor’s factoring algorithm with parameters (a, N) = (2, 21) and
size of QFT is 4.

TABLE 6. Values That Are Necessary to Be Modified After the First Three
CSWAPs in G3

bit-rotation technique described in Section IV-A, which is
implemented by the first three CSWAP gates in G2. After
the CSWAP gates applied, Y = 01000 = 8 corresponding
to X = 101 = 5 is only the value to modify. The last two
CCX gates modify it to 25 mod 21 = 11.
Construction of 21B: A circuit with parameters (a,N) =

(2, 21) and size of QFT 4 is constructed by a similar method
to that of 21A. In Fig. 18, the gadgets G01 and G2 are
the same as Fig. 17. To construct the (×28x3 mod 21) =
(×4x3 mod 21) circuits, we use the equivalence between
4Y mod 21 and 4Y mod 63 forY = 1, 2, 4, 16. The first three
CSWAPs change the values ofY , as described in Table 6. The
remaining part transformsY = 2, 14 to 11 and 2, respectively
without changing other values.

ACKNOWLEDGMENT
The results presented in this article were obtained in part us-
ing an IBMQunatum quantum computing system as a project
of the Quantum Computing Center, Keio University. The
views expressed are those of the authors and do not reflect
the official policy or position of IBM or the IBM Quantum
team.

REFERENCES
[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5,
pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.

[2] J. Gambetta and S. Sheldon, “Cramming more power into a quan-
tum device,” 2019. [Online]. Available: https://www.ibm.com/blogs/
research/2019/03/power-quantum-device/

[3] J. Gambetta, “IBM’s roadmap for scaling quantum technology,” 2020.
[Online]. Available: https://www.ibm.com/blogs/research/2020/09/ibm-
quantum-roadmap/

[4] P. Chapman, “Scaling IonQ’s quantum computers: The roadmap,”
2020. [Online]. Available: https://ionq.com/posts/december-09-2020-
scaling-quantum-computer-roadmap

[5] “Our quantum computing journey,” Accessed: Jul. 13, 2022. [Online].
Available: https://quantumai.google/learn/map

[6] “Get to know Honeywell’s latest quantum computer system model
H1,” 2020. Accessed: Jul. 13, 2022. [Online]. Available: https://www.
honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-
quantum-computer-system-model-h1

[7] “IBM quantum experience,” Accessed: 13 Jul. 2022. [Online]. Available:
https://research.ibm.com/blog/heavy-hex-lattice

[8] C. P. Schnorr, “Efficient identification and signatures for smart
cards,” in Proc. Conf. Theory Appl. Cryptol., 1990, pp. 239–252,
doi: 10.1007/0-387-34805-0_22.

[9] Digital Signature Standard (DSS), National Institute of Standards
and Technology, Gaithersburg, MD, USA. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[10] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc.
Conf. Theory Appl. Cryptographic Techn., 1985, pp. 417–426,
doi: 10.1007/3-540-39799-X_31.

[11] E. Lucero et al., “Computing prime factors with a Josephson phase
qubit quantum processor,” Nature Phys., vol. 8, pp. 719–723, 2012,
doi: 10.1038/nphys2385.

[12] T. Monz et al.>, “Realization of a scalable Shor algorithm,” Science,
vol. 351, no. 6277, pp. 1068–1070, 2016, doi: 10.1126/science.aad9480.

[13] M. Amico, Z. H. Saleem, and M. Kumph, “Experimental study of Shor’s
factoring algorithm using the IBM Q experience,” Phys. Rev. A, vol. 100,
no. 1, Jul. 2019, Art. no. 012305, doi: 10.1103/PhysRevA.100.012305.

[14] U. Skosana and M. Tame, “Demonstration of Shor’s factoring algo-
rithm for n = 21 on IBM quantum processors,” Sci. Rep., vol. 11, no. 1,
Aug. 2021, Art. no. 16599, doi: 10.1038/2Fs41598-021-95973-w.

[15] K. Oonishi, T. Tanaka, S. Uno, N. Yamamoto, and N. Kunihiro, “Proposal
of efficient quantum modular addition circuit and its implementation,”
Inst. Electron., Inf. Commun. Eng., Tokyo, Japan, Tech. Rep., 2019.

[16] J. A. Smolin, G. Smith, and A. Vargo, “Oversimplifying quantum factor-
ing,” Nature, vol. 499, no. 7457, pp. 163–165, Jul. 2013, doi 10.1038/na-
ture12290.

[17] T. Satoh, Y. Ohkura, and R. Van Meter, “Subdivided phase oracle for
NISQ search algorithms,” IEEE Trans. Quantum Eng., vol. 1, 2020,
Art. no. 3100815, doi: 10.1109/TQE.2020.3012068.

[18] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gam-
betta, “Validating quantum computers using randomized model circuits,”
Phys. Rev. A, vol. 100, Sep. 2019, Art. no. 032328, doi: 10.1103/Phys-
RevA.100.032328.

[19] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019,
doi: 10.1038/s41586-019-1666-5.

[20] B. Barak, C. Chou, and X. Gao, “Spoofing linear cross-entropy bench-
marking in shallow quantum circuits,” in Proc. 12th Innov. Theor. Comput.
Sci. Conf., 2021, pp. 30:1–30:20, doi: 10.4230/LIPIcs.ITCS.2021.30.

[21] J. H. Cheon, “Discrete logarithm problems with auxiliary inputs,” J. Cryp-
tol., vol. 23, pp. 457–476, 2010, doi: 10.1007/s00145-009-9047-0.

[22] M. Ekerå and J. Håstad, “Quantum algorithms for computing
short discrete logarithms and factoring RSA integers,” in Proc.
Int. Workshop Post-Quantum Cryptography, 2017, pp. 347–363,
doi: 10.1007/978-3-319-59879-6_20.

[23] M. R. Bremner, Lattice Basis Reduction: An Introduction to the LLL
Algorithm and Its Applications, 1st ed. Boca Raton, FL, USA: CRC Press,
2011.

[24] M. Ekerå, “Quantum algorithms for computing general discrete loga-
rithms and orders with tradeoffs,” J. Math. Cryptol., vol. 15, no. 1,
pp. 359–407, 2020, doi: 10.1515/jmc-2020-0006.

VOLUME 3, 2022 3102021

https://dx.doi.org/10.1137/S0097539795293172
https://www.ibm.com/blogs/penalty -@M research/2019/03/power-quantum-device/
https://www.ibm.com/blogs/penalty -@M research/2019/03/power-quantum-device/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap
https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap
https://quantumai.google/learn/map
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1
https://research.ibm.com/blog/heavy-hex-lattice
https://dx.doi.org/10.1007/0-387-34805-0_22
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://dx.doi.org/10.1007/3-540-39799-X_31
https://dx.doi.org/10.1038/nphys2385
https://dx.doi.org/10.1126/science.aad9480
https://dx.doi.org/10.1103/PhysRevA.100.012305
https://dx.doi.org/10.1038/2Fs41598-021-95973-w
https://dx.doi.org/10.1038/nature12290
https://dx.doi.org/10.1038/nature12290
https://dx.doi.org/10.1109/TQE.2020.3012068
https://dx.doi.org/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.4230/LIPIcs.ITCS.2021.30
https://dx.doi.org/10.1007/s00145-009-9047-0
https://dx.doi.org/10.1007/978-3-319-59879-6_20
https://dx.doi.org/10.1515/jmc-2020-0006

Engineeringuantum
Transactions onIEEE

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS

[25] H. Cohen, A Course in Computational Algebraic Number Theory. ser.
Graduate Texts in Mathematics Series, vol. 138. Berlin, Germany:
Springer, 2013, doi: 10.1007/978-3-662-02945-9.

[26] C. A. Rogers, “The number of lattice points in a set,” Proc. London Math.
Soc., vol. s3-6, pp. 305–320, 1956, doi: 10.1112/plms/s3-6.2.305.

[27] T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n + 2
qubits with Toffoli based modular multiplication,”Quantum Inf. Comput.,
vol. 17, nos. 7/8, pp. 673–684, Jun. 2017, doi: 10.5555/3179553.3179560.

[28] M. Ekerå, “Revisiting Shor’s quantum algorithm for computing general
discrete logarithms,” 2019, doi: 10.48550/arXiv.1905.09084.

[29] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-
depth quantum circuits,” Phys. Rev. Lett., vol. 119, no. 18, 2017,
Art. no. 180509, doi: 10.1103/PhysRevLett.119.180509.

[30] S. Endo, S. C. Benjamin, andY. Li, “Practical quantum error mitigation for
near-future applications,”Phys. Rev. X, vol. 8, no. 3, 2018, Art. no. 031027,
doi: 10.1103/PhysRevX.8.031027.

[31] M. Ekerå, “On post-processing in the quantum algorithm for computing
short discrete logarithms,” Des. Codes Cryptography, vol. 88, no. 11,
pp. 2313–2335, Nov. 2020, doi: 10.1007/s10623-020-00783-2.

[32] M. S. Anis et al., “Qiskit: An open-source framework for quantum com-
puting,” 2021, doi: 10.5281/zenodo.2562111.

[33] “IBM quantum experience.” Accessed: Jul. 13, 2022. [Online]. Available:
https://quantum-computing.ibm.com

[34] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance,” Nature, vol. 414,
no. 6866, pp. 883–887, Dec. 2001, doi: 10.1038/414883a.

[35] C. Miquel, J. P. Paz, and R. Perazzo, “Factoring in a dissipative quan-
tum computer,” Phys. Rev. A, vol. 54, no. 4, 1996, Art. no. 2605,
doi: 10.1103/PhysRevA.54.2605.

[36] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, Apr. 2021, Art. no. 433,
doi: 10.22331/q-2021-04-15-433.

[37] J. Sevilla and C. J. Riedel, “Forecasting timelines of quantum computing,”
2020, doi: 10.48550/arXiv.2009.05045.

[38] M. Mosca and M. Piani, “Quantum threat timeline.” Accessed:
Jul. 13, 2022. [Online]. Available: https://globalriskinstitute.org/
publications/quantum-threat-timeline/

[39] M. Mosca and M. Piani, “Quantum threat timeline report,” 2020.
[Online]. Available: https://globalriskinstitute.org/publications/quantum-
threat-timeline-report-2020/

[40] D. Coppersmith, “An approximate Fourier transform useful in quan-
tum factoring,” 1994. [Online]. Available: https://books.google.co.
jp/books?id=MZi8HgAACAAJ

[41] Y. Nam, Y. Su, and D. Maslov, “Approximate quantum Fourier trans-
form with O(n log(n))T gates,” NPJ Quantum Inf., vol. 6, no. 1, pp. 1–6,
Mar. 2020, doi: 10.1038/s41534-020-0257-5.

[42] L. Egan et al., “Fault-tolerant control of an error-corrected qubit,” Nature,
vol. 598, pp. 281–286, 2021, doi: 10.1038/s41586-021-03928-y.

[43] N. Heninger and H. Shacham, “Reconstructing RSA private keys from
random key bits,” in Proc. Annu. Int. Cryptol. Conf., 2009, pp. 1–17,
doi: 10.1007/978-3-642-03356-8_1.

[44] M. Ekerå, “Modifying Shor’s algorithm to compute short discrete loga-
rithms,” IACR Cryptol. ePrint Arch., vol. 2016, 2016, Art. no. 1128.

[45] Z.-C. Duan et al., “Proof-of-principle demonstration of compiled Shor’s
algorithm using a quantum dot single-photon source,” Opt. Exp., vol. 28,
no. 13, pp. 18917–18930, Jun. 2020, doi: 10.1364/OE.390209.

Yoshinori Aono received the B.S. degree in en-
gineering from the Musashi Institute of Technol-
ogy, Tokyo, Japan, in 2005, and the M.S. and
Ph.D. degrees in mathematical and computing
sciences from the Tokyo Institute of Technology,
Tokyo, in 2007 and 2010, respectively.

He is currently a Researcher with the Na-
tional Institute of Information and Communica-
tions Technology (NICT), Tokyo. He is also an
IAS Visiting Associate Professor with Yokohama
National University, Yokohama, Japan. He is also

a Visiting Researcher with the Keio Quantum Computing Center, Yoko-
hama. In 2011, he joined NICT, where he conducts research on security
analysis of cryptography.

Sitong Liu received the B.A. degree in environ-
ment and information studies from Keio Univer-
sity, Fujisawa, Japan, in 2021, where she is cur-
rently working toward the master’s degree under
the supervision of Prof. Van Meter.

In 2019, she joined the Advancing Quan-
tum Architecture Research Group, Keio Univer-
sity, Shonan Fujisawa Campus, Fujisawa. During
her undergraduate study, she worked on quan-
tum machine learning and quantum circuit opti-
mization. Her research interests include quantum

computing.

Tomoki Tanaka received the B.S. degree in sci-
ence and the M.S. degree in mathematical sci-
ences from Nagoya University, Nagoya, Japan,
in 2009 and 2011, respectively, and the Ph.D.
degree in quantum computing from Keio Univer-
sity, Tokyo, Japan, in 2022.

In 2011, he joined Mitsubishi UFJ Financial
Group, Inc., Tokyo, where he is currently the
Vice-President. His major is topology, especially
knot theory. He joined the project IBM Quantum
Network Hub@Keio University as a Project Re-

searcher of the Keio Quantum Computing Center, Yokohama, Japan. His re-
search interests include quantum computing for using financial applications,
such as derivative simulation, risk management, optimization, and machine
learning.

Shumpei Uno received the M.Sc. and Ph.D.
degrees in particle physics from Nagoya
University, Nagoya, Japan, 2008 and 2011,
respectively.

He is currently a Chief Consultant of the
Mizuho Research and Technologies, Ltd.
(MHRT), Tokyo, Japan. During the Ph.D.
degree, he formulated quantum electrodynamics
on finite volume lattice in order to accurately
predict the light quark masses. In 2011, he joined
MHRT. He became a Project Researcher of the

Keio Quantum Computing Center, Yokohama, Japan, in 2018. His research
interests include quantum computing for using financial applications, such
as derivatives simulation, risk management, optimization, and machine
learning.

Rodney Van Meter (Senior Member, IEEE)
received the Ph.D. degree in computer science
from Keio University, Tokyo, Japan, in 2006.

He is currently a Professor of Environment
and Information Studies with Keio University,
Shonan Fujisawa Campus, Fujisawa, Japan. He
is also a Vice-Center Chair of the Keio Quantum
Computing Center, Yokohama, Japan, a Board
Member of the WIDE Project, and a Member of
the Quantum Internet Task Force. His research
interests include quantum networking, quantum

computing, storage systems, networking, and post-Moore’s law computer
architecture.
Dr. Van Meter is a Member of the Association for Computing Machinery,

the American Physical Society, and the American Association for the Ad-
vancement of Science.

3102021 VOLUME 3, 2022

https://dx.doi.org/10.1007/978-3-662-02945-9
https://dx.doi.org/10.1112/plms/s3-6.2.305
https://dx.doi.org/10.5555/3179553.3179560
https://dx.doi.org/10.48550/arXiv.1905.09084
https://dx.doi.org/10.1103/PhysRevLett.119.180509
https://dx.doi.org/10.1103/PhysRevX.8.031027
https://dx.doi.org/10.1007/s10623-020-00783-2
https://dx.doi.org/10.5281/zenodo.2562111
https://quantum-computing.ibm.com
https://dx.doi.org/10.1038/414883a
https://dx.doi.org/10.1103/PhysRevA.54.2605
https://dx.doi.org/10.22331/q-2021-04-15-433
https://dx.doi.org/10.48550/arXiv.2009.05045
https://globalriskinstitute.org/penalty -@M publications/quantum-threat-timeline/
https://globalriskinstitute.org/penalty -@M publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://books.google.co.penalty -@M jp/books{?}id=MZi8HgAACAAJ
https://books.google.co.penalty -@M jp/books{?}id=MZi8HgAACAAJ
https://dx.doi.org/10.1038/s41534-020-0257-5
https://dx.doi.org/10.1038/s41586-021-03928-y
https://dx.doi.org/10.1007/978-3-642-03356-8_1
https://dx.doi.org/10.1364/OE.390209

AONO et al.: PRESENT AND FUTURE OF DISCRETE LOGARITHM PROBLEMS ON NOISY QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

Naoyuki Shinohara received the B.S., M.S.,
and Ph.D. degrees in mathematics from Kyushu
University, Fukuoka, Japan, in 2002, 2004, and
2008, respectively.

He is currently a Research Manager of the Na-
tional Institute of Information and Communica-
tions Technology, Tokyo, Japan.

Ryo Nojima received the Ph.D. degree in in-
formation processing from the Nara Institute of
Science and Technology, Ikoma, Japan, in 2005.

He was a Postdoctoral Fellow with the Uni-
versity of Tokyo, Tokyo, Japan, in 2006. He is
currently the Director of the National Institute
of Information and Communications Technology,
Tokyo.

Dr. Nojima was a Program Co-Chair of 2021
International Workshop on Security.

VOLUME 3, 2022 3102021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

