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ABSTRACT We seek to develop better upper bound guarantees on the depth of quantum CZ gate, cNOT
gate, and Clifford circuits than those reported previously. We focus on the number of qubits n <1 345 000
(de Brugiere et al., 2021), which represents the most practical use case. Our upper bound on the depth
of CZ circuits is |1/2 + 0.4993-log?(n) + 3.0191- log(n) — 10.9139 |, improving the best-known depth by
a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper
bound of | n + 1.9496- logz(n) + 3.5075-log(n) — 23.4269] for cNOT gate circuits, offering an improvement
by a factor of roughly 4/3 over the state of the art, and depth upper bound of |21 + 2.9487-log?(n) +
8.4909- log(n) — 44.4798 ] for Clifford circuits, offering an improvement by a factor of roughly 5/3.

INDEX TERMS Clifford circuits, quantum circuit depth, quantum circuit synthesis, quantum circuits.

I. INTRODUCTION
Clifford circuits play an important role in quantum com-
puting. Most prominently, they lie at the core of quantum
error correction [2], where they are responsible for both
state encoding and state/gate distillation [3]. Once error cor-
rected, fault-tolerant computations are often expressed as
Clifford+T circuits, directly implying that large chunks of
such computations are themselves Clifford circuits. Clif-
ford circuits play a key role in randomized benchmarking
of quantum gates [4], [5], the study of entanglement [6],
and shadow tomography [7] to name a few more areas of
importance.

Clifford circuits can be defined as those quantum transfor-
mations computable by the quantum circuits using single-
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or constructed as a well-known circuit with two Hadamard
and one CNOT gates.

Circuit implementations of Clifford transformations have
been studied well in the relevant literature. Optimal Clif-
ford circuits are known for up to 6 qubits [8]; however,
optimal synthesis of Clifford circuits spanning more than
6 qubits appears to be out of reach. Asymptotically opti-
mal circuit constructions of arbitrary n-qubit Clifford com-
putations are known: a Clifford operation can be imple-
mented with ®(n2/log(n)) entangling gates [9], [10] in
depth ®(n/log(n)) [1], [10], [11]. No better guarantees, such
as asymptotic tightness—meaning asymptotic equality dis-
carding the lower order additive terms, however, are known.

Due to the 11-stage layered decomposition [9] over the
gate library {H, P, cNOT}, asymptotic analysis of the depth
of Clifford circuits relies on the bounds for cNOT gate cir-
cuits, also known as linear reversible circuits. The cNOT
circuit synthesis algorithm offering asymptotically optimal
upper bound comes with a high leading constant of 20—
specifically, the depth complexity guarantee [1], [10], [11] is

20n
+ O(y/nlog(n)).
log(n)
Given depth-2n implementation was known since

2007 [12], it became clear that the asymptotically optimal
implementation does not offer an advantage until n
becomes very large. The authors of [1] addressed this
by introducing an algorithm offering depth upper bound of
4n/3 + 8[log(n)], that outperforms the asymptotically
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optimal algorithm [10], [I1] for n<1345000 and
outperforms Kutin’s et al. algorithm [12] when n > 75. One
of the results that we report here is a synthesis algorithm
that outperforms the combination of all of the above for
70 <n < 1345000 while offering the upper bound guarantee
of L1 + 1.9496- log?(n) + 3.5075- log(n) — 23.4269 | —
roughly a 25% reduction over [1]; see Lemma 3.

In this work, we focus on the CZ, cNoTt, and Clifford
circuits spanning no more than 1345000 qubits. The num-
ber 1345000 itself originates from [1]. We believe that this
bound on the number of qubits n covers all useful use cases
for CZ, cNor, and Clifford circuits. Indeed, to put this num-
ber in perspective, error-correcting codes often span dozens
to hundreds of qubits (thousands and tens of thousands are
possible albeit regarded to be on the high side [13]), quantum
simulations of condensed matter systems need to rely on only
slightly more than 54 qubits before they become classically
intractable [14], and known likely classically difficult sim-
ulations require as few as between 70 and 185 [15] or be-
tween 109 and 111 [16] qubits. To factor a 1000+ bit integer
number using Shor’s algorithm—a task widely believed to
be intractable classically—only (roughly) 2n to 3n qubits
suffice [17], [18]. This qubit count takes additional space
needed for high-quality circuit optimization into account.
This points to the high likelihood that the number of qubits a
Clifford circuit spans will remain well under 1345 000.

Our goal is to minimize the depth of quantum circuits,
which corresponds to time to solution, being perhaps the sin-
gle most important metric from the consumer’s point of view
(especially, once the fidelity is guaranteed). Furthermore, in
quantum information processing technologies, such as super-
conducting circuits, where the dominating source of errors is
the decoherence, small depth circuits naturally improve the
fidelity of the computation compared to large depth circuits.
We measure the depth of circuits by counting the contri-
bution from the two-qubit gates and discarding that from
the single-qubit gates. There are two basic reasons to make
this choice. First, both leading quantum information process-
ing technologies, superconducting circuits and trapped ions,
offer single-qubit gates at a much higher clock speed and
fidelity compared to the two-qubit gates [19], [20]. Due to
available control and as motivated by Euler’s angle decompo-
sition, the number of single-qubit pulses applied between the
entangling gates is never more than a small constant (e.g., 3).
Thus, the depth by the two-qubit gates describes the depth of
the real-life physical implementation rather closely. Second,
the entangling gates we rely on, cNoT and CZ, are single-
qubit equivalent to each other, each can be obtained with the
minimal number of one entangling pulse in both supercon-
ducting circuits and trapped ions technologies, and neither
of the two directly corresponds to the physical qubit-to-qubit
interaction (such as ZX in superconducting circuits and XX
in trapped ions [19], [20]). Thus, both cNoT and CZ gates are
available simultaneously, and their implementation costs are
roughly equal—independently of the underlying technology
used to implement the desired circuits.
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Our work first focuses on the CZ circuits. CZ circuits
are employed in the short layered decomposition of Clifford
circuits [21], thus allowing us to upper bound the depth of
Clifford circuits more efficiently than would otherwise be
possible with the reduction of —CZ- layers to —CNOT— and
—P-layers. A CZ circuit can be implemented over CZ gates
in depth n—1 for even n and depth n for odd n. This can be
established directly, or by employing Vizing’s theorem [22].
One may also show that the depth cannot be reduced further
unless other gates are allowed. In our work, we employ cCNOT
gates and show how this helps to reduce the depth of CZ
circuits roughly by a factor of 2 (see Theorem 1). We utilize
depth-efficient implementations of CZ circuits to construct
depth-optimized cNoT and Clifford circuits.

Il. CIRCUIT DEPTH GUARANTEES

A. CZ CIRCUITS

We first focus on the depth-efficient no ancilla implementa-
tion of the elements of the finite group generated by CZ gates
over n qubits. Recall the following well-known properties of
CZ gates: CZ(i, j)=CZ(j, i), CZ(, j)2 equals the identity,
and all CZ gates commute. These properties directly imply
that any CZ circuit can be represented by a zero-diagonal
upper triangular binary matrix M € F7*", where m; j = 1 for
i < jiff the gate CZ(i, j) is applied (an odd number of times).
The task of implementing a transformation described by the
matrix M can therefore be solved by applying a set of gates
that zero out all of the entries of matrix M.

We first focus on developing a small-depth circuit imple-
menting a CZ transformation M1 that can be described by
a “rectangular” k x m region (over nonoverlapping sets of k
and m qubits) with ones in the matrix M; the rest of the matrix
M elements are zeroes. A straightforward implementation of
such transformation can be accomplished in depth max{k, m}
by a circuit with km CZ gates. Our construction described
below thus offers an exponential advantage over the naive
implementation. Formally, Lemma 1 can be defined as
follows.

Lemma 1: Let A :={aj,ap,...,ar} and B:=
{by, by, ..., by} be nonoverlapping sets of qubits. A CZ
transformation M1 described as the set of gates CZ(a, b)
for all acA and beB can be implemented in depth
2- max{[log(k)1, [log(m)1}.

Proof: First, recall that the action of CZ(x, y) is accom-
plished by the mapping |x, y) — (—1)?|x, y), i.e., it can be
described as the addition of phase (—1)* to |x, y). Thus, the
phase transformation performed by M1 is described as

@ )
l_[ (_l)ab:(_l) i=1.k,j=1..m
acA,beB
— (_1)(01€Baz®-~®ak)(b1®b2®~-@bm)_

The latter term can be implemented by a single CZ gate
acting on qubits carrying the values a1 ® a; & ... @ a; and
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FIGURE 1. Depth-6 implementation of a “rectangular” set of gates
[CZ(a, b), forallacA= {ay, a2, a3, a} andbeB= {b] N bz, b;, b4, b5].
The left-hand side shows basic circuit construction, and the right-hand
side includes the reduction of the depth by 1.

by ® by ®...®Db,. Those linear combinations can be im-
plemented in logarithmic depth (to both compute them and
uncompute after applying CZ) by a CNOT gate circuit, leading
to the overall depth of 2- max{[log(k)1, [log(m)]} + 1.

We next explain how to reduce the depth by 1, leading
to the advertised complexity. To accomplish the reduction,
we focus on the three central layers of the constructed cir-
cuit. Observe that the middle gate is always a single CZ,
and logarithmic-depth EXOR (exclusive OR, also known as
modulo two addition) calculation of qubits in the sets A and B
ends with a single cNOT gate. Because of the varying depths
of the cNoT parts for sets A and B, the three middle stages
come in the following three flavors:

[\ —
D o—N D FanY
4 N N and N N
FanY N
N N>
VRN VR
N N

Each can correspondingly be rewritten in depth two, as
follows.
» —————
I , , and
11

We illustrated the resulting circuit in Fig. 1 for k = 4 and
m=>35. |

We next focus on a more complex version of the rectan-
gular region M1 defined as the transformation M0l com-
puted by a subset of CZ(a, b) (rather than all for the case
of M1), where a € A, b € B, and A N B = (). We show that
MO1 can be implemented in depth max{|k/2], |m/2]} +
2-max{[log(k)1, [log(m)1}.

Lemma 2: The transformation M01 over nonoverlapping
sets A and B with k and m qubits each can be implemented
as adepth max{|k/2], |m/2]} 4+ 2- max{[log(k)], [log(m)]}
circuit.

Proof: The transformation M0l can be written as a
Boolean matrix {m01; ;}|i=1 k, j=1..m, where m01; ; denotes
the presence (1) or the absence (0) of the gate CZ(q;, b)).
By a slight abuse of language, M01 can be interpreted as a

*—o

[ —
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rectangle Ax B with zeroes and ones. To implement M01 as
an efficient circuit, we apply a logarithmic depth circuit that
reduces MOI to a transformation M01’ such that the weight
(the number of ones) of rows in it is no more than |m/2 |
and the weight of columns is no more than |k/2]. Since
MO1’ can be interpreted as an adjacency matrix of a bipar-
tite graph, the edge coloring problem can be solved using
precisely max{|k/2], |m/2]} colors [22], [23]. Edges of the
same color correspond to individual CZ gates implementable
in depth 1, and thus, the number of colors describes the CZ
gate circuit depth.

We next show how to reduce MO1 to M01’ by a logarithmic
depth circuit. To this end, we first show how to select a set of
rows and columns of the matrix M01 that, when inverted, si-
multaneously reduce the row and column weights to no more
than a half, and next express this row and column inversion
transformation as a logarithmic depth circuit.

To select rows and columns, start with the empty set S.
Cycle sequentially through all rows and columns in an in-
finite loop. If inverting an entire given row/column reduces
the number of ones in it, perform the inversion and add this
row/column to the set S, or if it is already there, remove
it. Each row/column addition/removal operation reduces the
number of ones in the matrix MO01 by at least one; thus, this
algorithm will run out of options to invert a row/column and,
thus, can be terminated after no more than km(k+m) steps.
When it terminates, M01 has been transformed to M01’ with
row and column weights of no more than a half.

Denote the sets of rows and columns identified in the pre-
vious paragraph as A’ and B', correspondingly. To implement
this set of row and column flips, observe that rather than im-
plementing the rectangles A x B’ (implements all columns)
and A’ x B (implements all rows) sequentially, one could
instead implement the rectangles A\A’ x B" and A’ x B\B’
in parallel, since the qubit sets A’, A\A’, B’, and B\B’ do not
overlap. According to Lemma 1, this can be done in depth

2- max{[log(JA"DT, Mog(JA\A")1, Mog(IB')1.
[og(IB\B')T}
< 2-max{[log(k)1, [log(m)1}.

Adding the cost of the transformation M01 +— MO01’ with
the cost of the implementation of M01’ reveals the desired
depth figure. |

We now have enough instrument to prove the main result
of this section.

Theorem 1: For ne[39...1345000], an n-qubit CZ
transformation M can be implemented by a depth |[n/2 +
0.4993-log?(n) + 3.0191-log(n) — 10.9139] circuit.

Proof: Let d(n) denote the depth of CZ circuits over n
qubits. We start the proof by recalling that an n-qubit CZ
circuit can be implemented in depth n — [ [ ] -2 ] by
the reduction to graph coloring problem [22], and thus, a

2500408



@IEEE Transactions on,
uantumEngineering

Maslov and Zindorf: DEPTH OPTIMIZATION OF CZ, CNOT, AND CLIFFORD CIRCUITS

simple upper bound holds

din) <n-— H’n—;_l—‘ —%—‘ (D

For odd n, the maximal number of colors, as given by Viz-
ing’s theorem [22], is needed. For even n, a widely known
simple geometric construction shows that n—1 colors suf-
fice: take n—1 points on the plane as vertices of a regular
polygon, with the last nth point at its center. Each of the n—1
colors applies to the segment joining the point at the center
with a selected vertex of the polygon, and all segments join-
ing polygon vertices perpendicular to it. One may convince
themselves that all possible segments joining any two of the n
points considered are properly colored, and thus, n—1 colors
suffice. Furthermore, if one is limited to using the CZ gates to
implement CZ circuits, the bound in (1) is tight. This follows
from the counting argument, noting that the largest CZ circuit
contains @ CZ gates. Thus, to implement CZ circuits in
shorter depth, one must thus rely on other gates, which is
what we do.

We next introduce a recursive construction that is respon-
sible for reducing the above depth figure to almost n/2 and
analyze it carefully using two methods. In our recursion, at
each step, the set of qubits is broken into two nonoverlapping
sets, A with first [n/27 qubits and B with last |n/2] qubits.
Operation M can be expressed in three parts: 1) M restricted
to the set A; 2) M restricted to the set B; and 3) MOl over
the rectangle A xB. Since the first two can be implemented
in parallel, the overall depth can be upper bounded as

d(n) < d([n/2]) + d(MOI)

where d(MO01) is the depth of the implementation of M01. In
other words, by Lemma 2,

d(n) < d([n/21) + [[n/21/2] + 2-Tlog(n/2)].

Combining the above with (1) allows us to obtain the follow-
ing recursion:

d(n) < MIN{n — [[ =] -2
d([n/21) + L[n/21/2] + 2-Tlog(n/2)1} 2)
d2)=1, d3)=3.

The solution to (2) can be upper bounded by the expression
1n/2 4 0.9937-log?(n) + 1.1882-log(n) — 14.6772]  (for
ne[43...1345000]). However, the constant in front of
log?(n) can be improved through a more careful analysis
of the recursive decomposition based on Lemma 2. We
accomplish this by considering two steps of the recursive
decomposition at once.

Each recursive step implements the transformation
T:MO01 — MO1’, which we further refer to as 7-
transformation, and the leftover operation MO1’. The
circuit obtained by two steps of the decomposition can
be thought of as a combination of the implementations
of two layers of T-transformations (one of which applies
two T-transformations to nonoverlapping sets) performing
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the mappings over recursively defined MO01/MOl’ and
two layers of the implementations of M01” (one of which
applies to two nonoverlapping qubit sets) via bipartite graph
coloring. Recall that all four stages implement certain CZ
gate transformations, and thus, they all commute. We will
employ the commutation property to prove a better bound
on the depth of the CZ circuit. Specifically, we group the
implementations of M01” and all T-transformations into two
subcircuits and analyze their depths separately.

The depth of the implementations of two recursively de-
fined layers of MO1’ is described by the following formula:

LIn/21/2] + LTTn/21/21/2].

To analyze the depth of two T-transformation layers, recall
what transformations they perform. At the first step of the
recursion sets, A and B are defined as the first and second
halves of the set of variables. Subsets A’ C A and B’ C B are
constructed, and the transformation 7 implements the sets of
two all-one rectangles

A’ x B\B' and A\A’ x B’

in parallel, by computing EXORs of variables in the sets A’,
A\A’, B', and B\B' in logarithmic depth. At the second step of
the recursion sets, AA, AB, BA, and BB such that AA LLAB=A
and BA LI BB = B are defined with a quarter of the number
of qubits in each. Their subsets AA’, AB’, BA’, and BB’ are
identified such that the all-one rectangles

AA" x AB\AB', AA\AA' x AB', BA' x BB\BB,
and BA\BA" x BB’

can be implemented in parallel, since no two sets intersect.

To implement these two sets of 7-transformations, we de-
fine 16 indexed sets S; jx, where i and j offer two options
each, and k offers four options, as follows: i chooses the
set S between A and B, j chooses between S’ and S\S’, and
k chooses between SA’, SA\SA’, SB’, and SB\SB’'. The set
Si,jk 1s defined as the intersection of the three sets defined
by the choice of i, j, and k. For example, if i chose A, j
chose S\S', and k chose SB', S123 =ANA\A)NAB =
(A\A") N AB’ (here, the enumeration of lists for i, j, k starts
with 1).

By definition, no two sets §; ; x overlap, and each contains
no more than [[n/2]/2] qubits. Thus, EXORs of variables
in each can be implemented by a CNOT gate circuit in depth
at most [log[[n/27/2]]. The CZ gate transformations to be
applied to these sets can be described as rectangles

($1,1,1® 81,12 D S1,1,3 D S1,1.4)
X(822,1 0 8222 D 5223 D $2.2.4)
and

(81,21 © 81,22 D S1,23 D S1,2,4)
X(82,1,1 © 82,12 D 52,13 D $2,1,4)
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FIGURE 2. Comparison of the best previously known bound on the CZ circuit depth (red dots) to the upper bound proved in Theorem 1 (green dots) to
the solution of the recursion (3) (blue dots). (a) Small number of qubits n < 100. (b) Comparison for the full range of values n considered.

applied in parallel, followed by rectangles
(S1.1.1 ® S12.1) X (S1,1.4 D S1.2.4)
(1120 S12.2) X (51,13 D S1.2.3)
(82,11 ©S82.2,1) X (52,1.4 D S2.2,4), and
(82,120 822.2) X (52,13 D $2.2.3)

applied in parallel. The rectangles are introduced in the same
order as they are discussed in the previous paragraph. Since
these are 4 x4 and 2 x2 rectangles, they take total depth 4 +
2 = 6 to implement as a CZ circuit. Thus, the total depth to
implement 7-transformations is 2-[log[[n/27/21] + 6, and
the combined depth of two stages of the recursive decompo-
sition is

L[n/21/2) + LTTn/21/21/2]) + 2-[log[[n/21/211 + 6.

Based on the above analysis, the final form the recursion
takes, further improving (2), is

d(n)=MIN{n — [[(n+1)/2]—(n+1)/2]
d([n/21) 4 L[n/21/2] + 2-Tlog(n/2)]
d([Tn/21/21) + L[n/21/2] + L[Tn/21/21/2]

+ 2-Tlog[n/21/211 + 6}
d(1)=0, d2)=1, d3) =3.

3)

We numerically upper bounded the solution to (3) by
the expression |n/2 + 0.4993. logz(n) + 3.0191-log(n) —
10.9139] for the range of values n of interest. ]
We illustrate the comparison of the best previously known
bound on the depth of CZ circuits to the exact solution of
the recursion (3) and the upper bound given in Theorem 1
in Fig. 2. Note that the exact solution of the recursion (3)
gives slightly lower numbers than those made available by
the upper bound. This is because the discrete operations ceil-
ing and floor are not easy to model by continuous functions
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used in the formulation of the upper bound. At the full scale
[see Fig. 2(b)], the difference between exact solution and the
upper bound given is visually undetectable, and our result
can be seen to improve the best-known previously roughly
by a factor of 2 (therefore, agreeing with the asymptotics).

B. CNOT CIRCUITS

Here, we extend the construction of depth-efficient CZ cir-
cuits to obtain depth-efficient implementations of linear re-
versible circuits. A linear reversible function can be imple-
mented exactly or up to the SWAPping of output qubits, also
known as qubit reordering. An implementation up to qubit re-
ordering may be preferred since the proper qubit SWAPping
may be obtained classically, allowing us to outsource this
task to a classical computer and thus minimize the expensive
quantum resources used. The following Lemma reports an
optimized depth figure for linear reversible functions and
highlights that a depth reduction by 6 is possible to achieve
if it suffices to implement the desired linear function up to
qubit reordering.

Lemma 3: For n € [70...1345000] an n-qubit
linear reversible transformation R can be implemented
in depth no more than |n+ 1.9496 -log?(n) + 3.5075 -
log(n) —29.4269] up to qubit reordering and depth
ln+ 1.9496 - logz(n) + 3.5075 - log(n) — 23.4269] exactly
as a circuit over {cNoT, CZ, H} gates.

Proof: We start with the LU decomposition R=LU,
where L is lower triangular and U is upper triangular in-
vertible Boolean matrices. Recall that the LU decomposition
exists, subject to proper row and/or column ordering. Such
row/column reordering can be implemented as a SWAPping
circuit with the SWAP depth of no more than 2, translating
to the two-qubit gate depth (by those gates considered in
this work as contributing to depth) of 6. Thus, the difference
between the depths of implementations up to qubit reordering
and the exact one is a constant equal to 6. In the following,
we show that each L and U stage can be implemented in
depth |1/2 4 0.9748- log?(n) + 1.7538-log(n) — 14.7134],
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and thus, the total depth of cNOT circuits is upper bounded
by the expression |[n + 1.9496- logz(n) + 3.5075-log(n) —
23.4269].

Without loss of generality, focus on U. Divide the set of
qubits into two, set A with the first [n/2] qubits and set B
with the last |n/2] qubits (this assumes that the qubits are
already ordered so as to accept the LU decomposition). The
operation R can be written as the block matrix product

R |Ra WOLI Ry Of{7 O]|1 Ry'Wol
|0 Rg| |0 [I||0 Rg||O I
“)

where Ry is the [n/2]x[n/2] upper triangular matrix ob-
tained by restricting R to the set of qubits A, Rp is defined
similarly, W01 is the [n/2] x | n/2] top-right block of R, and /
and O are the identity and zero matrices of proper dimensions.

Assuming that d(n) denotes the depth of the implementa-
tion of an n-qubit upper triangular matrix, first two terms in
the decomposition (4) can be implemented in parallel, i.e.,
in depth d([n/27). The third term can be implemented as the
CNOT gate circuit where individual gates have targets in the
qubit set A and controls in the set B. This transformation can
thus be written as the circuit HyMO01H4, where Hy applies
Hadamard gates to all qubits in the set A, and MO0l is an
AxB CZ rectangle. By inducing the bipartite graph coloring
argument, we conclude that the rectangle M01 can be imple-
mented in depth at most [r/2]. This results in the recursion

d(n) = d([n/21) + [n/2]

d2)=1, d(3)=2. ®)

The solution, d*(n), is almost equal to n. For the range of
values of interest, we can upper bound it as d*(n) < n+
[log(n—1)] — 2.

On the other hand, Lemma 2 can be used to implement
MOl in depth | [n/27/2] + 2-[log([n/27)]. Thus, the recur-
sion describing the overall implementation depth can be writ-
ten as

d(n) = MIN{d([n/2]) + [n/2]

d([n/21) + L[n/21/2] + 2-[log(Tn/21)1} (6)
d2)=1, d3)=2.

We calculated that the solution of recursion (6) can be upper
bounded by the expression

Ln/2 + 0.9748-Tog?(n) + 1.7538- log(n) — 14.7134|

for the range of values n € [70...1345000].

We employ the solution of the recursion (6) within the
LU decomposition to obtain the desired upper bound, [n +
1.9496- logz(n) + 3.5075-log(n) — 23.4269]. We start the
range with n =70, because it marks the smallest n for which
our solution based on the recursion (6) beats the best-known
upper bound of min{2n, |4n/3 4 8[log(n)1]} [11, [12]. W

Note that the circuit constructed in Lemma 3 relies on the
gates from the library {cNoT, CZ, H}. It is convenient to use
this gate library for didactic reasons; however, the circuit
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constructed in Lemma 3 can be rewritten using the same
number of entangling gates and the same depth, but relying
on the cNOT gates only.

Proposition 1: The circuit constructed in Lemma 3 can be
implemented in the same depth and with the same entangling
gate count as the original, but using only the cNOT gates.

Proof: Given the division of the set of all qubits into two
nonoverlapping sets A and B, a two-qubit gate is called inter-
nal to a given set if both qubits it operates on belong to this
set and straddling iff it operates over two qubits belonging to
different sets. Clearly, all entangling gates in such circuit are
either internal to one of the sets or straddling.

Choose the sets A and B from the proof of Lemma 3.
Observe that we apply Hadamard gates to all qubits in the set
A in two layers. Between those two Hadamard gate layers, all
internal gates are CNOT gates and all straddling gates are CZ
gates. This means that we can push the left layer of Hadamard
gates to the right layer to cancel both, while flipping controls
and targets of some CNOT gates and turning CZ gates into
CNOT gates using the following rules:

fify— el fify ol
B

Observe that this operation, when applied recursively to
the matching pairs of layers of Hadamards, eliminates all
Hadamard gates and turns all CZ gates into cNOTs. Thus, the
transformed circuit has only the cNOT gates. |

We illustrate the constructions in Lemma 3 and Proposi-
tion 1 with the following Example.

Example 1: Consider the 14x 14 linear reversible trans-
formation given by the Boolean matrix

(1000000111
0100000111
0010000111
0001000111
0000100111
00000101111111
00000011111111
00000001000000
00000000100000
00000000010000
00000000001000
00000000000100
00000000000010

| 00000000000001 |

11117
1111
1111
1111
1111

A naive algorithm focusing on depth optimization may im-
plement this linear transformation in depth 7 by noticing that
all off-diagonal ones with matrix indices over nonoverlap-
ping sets of qubits can be turned into zeroes by applying
the cNOT gates with controls in the second half of the set
of qubits and target in the first half. A tight schedule exists
that squeezes all 49 such cNoOT gates in depth 49/7 = 7.

A better circuit of depth 6 can be obtained by applying
Lemma 3. First, observe that the matrix L is already upper
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FIGURE 3. Depth-6 implementation of the transformation from Example 1. Circuit on the left-hand side is obtained by applying Lemma 3, and its

modification on the right-hand side is offered by Proposition 1.
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FIGURE 4. Comparison of the best previously known bound on the CNOT circuit depth [1], [12] (red dots) to the upper bound proved in Lemma 3 (green
dots) to the solution of the recursion (6) (blue dots). (a) Small number of qubits n < 270. (b) Comparison for the full range of values n considered.

triangular, and thus, the LU decomposition needs not be de-
veloped. The setA = {ay, az, as, a4, as, ag, a;} contains first
7 qubits, to which the Hadamard gates are applied, and the
set B = {by, by, b3, by, bs, be, b7} contains the remaining 7
qubits. The 7x7 matrix R4 found in the first quadrant of L
gives rise to the 7x7 all-1 CZ matrix, and thus, the circuit
for it can be obtained from Lemma 1. Recall that this circuit
EXORs qubits in the sets A and B applies CZ gates and un-
computes the EXORs. All five stages (opening Hadamards,
finding EXOR, applying CZ, uncomputing EXOR, and clos-
ing Hadamards) are clearly visible in the resulting circuit
illustrated in Fig. 3 on the left-hand side. The circuit on the
right-hand side of Fig. 3 is obtained from the one on the
left-hand side by applying Proposition 1.

We conclude this section with the comparison of the depth
of cNoT circuits developed in our work to the best known
previously in Fig. 4. Similarly to the analogous comparison
for CZ circuits, small values of n reveal a small difference be-
tween the exact solution and the upper bound (see Lemma 3),
that is undetectable by eye over the full range [see Fig. 4(b)].

VOLUME 3, 2022

For values of n in the target range, our result improves the
best known previously by a factor of almost 4/3, as expected
from the asymptotics.

C. CLIFFORD CIRCUITS
Recall that a Clifford circuit admits the layered decomposi-
tion -X-Z-P-CX-CZ-H-CZ-H-P- [21]. Adding depths of the
implementations of CZ circuits by Theorem 1 (two layers)
and cNoOT circuits by Lemma 3 (single layer), we obtain the
following result. Note that one of the two -CZ- layers neigh-
bors the -CX- layer, thus allowing us to merge the CNOT gates
used in the largest 7-transformation with the -CX- stage;
accounting for this results in the reduction of the depth by
either [log(n/2)]—1 or [log[[n/2]/2]], depending on the
first stage called by the recursion (3).

Lemma 4: For ne[43...1345000], an n-qubit Clifford
circuit can be implemented in depth

|21 4 2.9487-1og?(n) + 8.4909- log(n) — 44.4798 .
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FIGURE 5. Comparison of the best previously known bound on the two-qubit gate depth of Clifford circuits (red dots) to the upper bound established in
Lemma 4 (green dots) and the solution of the respective recursion (blue dots). (a) Small number of qubits n <270. (b) Comparison for the full range of
values n considered.

We illustrated the comparison of the best-known depth of
Clifford circuits to that offered by our construction, based on
the reduced depth of CZ and cNor circuits (Theorem 1 and
Lemma 3, correspondingly) in Fig. 5.

CONCLUSION

In this article, we focused on the study of depth-reduced
implementations of CZ gate quantum circuits spanning a
practically relevant number of qubits n, n < 1345 000. The
improvements in depth were accomplished by implementing
CZ circuits over {CZ, cNoT} library rather than relying on
the CZ gates alone. We extended the methods used to ob-
tain better depth guarantees for CZ gate circuits to linear
reversible and Clifford circuits. Asymptotic reductions on
the CZ, cNor, and Clifford circuit depths against state of the
art proved in our work are by a factor of 2, 4/3, and 5/3,
correspondingly.
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