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ABSTRACT Research on near-term quantum machine learning has explored how classical machine learning
algorithms endowed with access to quantum kernels (similarity measures) can outperform their purely
classical counterparts. Although theoretical work has shown a provable advantage on synthetic data sets,
no work done to date has studied empirically whether the quantum advantage is attainable and with what
data. In this article, we report the first systematic investigation of empirical quantum advantage (EQA) in
healthcare and life sciences and propose an end-to-end framework to study EQA. We selected electronic
health records data subsets and created a configuration space of 5-20 features and 200-300 training samples.
For each configuration coordinate, we trained classical support vector machine models based on radial basis
function kernels and quantum models with custom kernels using an IBM quantum computer, making this
one of the largest quantum machine learning experiments to date. We empirically identified regimes where
quantum kernels could provide an advantage and introduced a terrain ruggedness index, a metric to help
quantitatively estimate how the accuracy of a given model will perform. The generalizable framework intro-
duced here represents a key step toward a priori identification of data sets where quantum advantage could
exist.

INDEX TERMS Artificial intelligence, digital health, electronic health records (EHR), empirical quantum
advantage (EQA), machine learning, quantum kernels, real-world data, small data sets, support vector

machines (SVM).

I. INTRODUCTION

Over the last years, real-world data have been increasingly
used to generate medical evidence and progress precision
medicine. This includes sources such as electronic health
records (EHRSs), claims and billing data, product and disease
registries, and data from wearables and health applications
[1]. Powerful data mining techniques have been applied to
such data sets, particularly to EHRSs, to predict a broad range
of medical conditions and events [2]-[5]. However, classical
machine learning and data science techniques have limita-
tions with regard to learning some of the most complex pat-
terns; for instance, the predictive power of genetic risk scores
derived from genome-wide association studies has plateaued
over the last years [6]. As a result, quantum machine learning
has been explored as an alternative and for certain general
problems, it has already been proved that quantum machine
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learning algorithms can provide benefits beyond the scope
of classical ones [7]. The complexity of the correlations and
patterns in EHRs and (real-world) medical data sets make
such data sources prime candidates for the application of
quantum algorithms [8].

The study of supervised machine learning problems with
quantum techniques is an active area of research [9]. In early
work on classification with near-term quantum algorithms
[10]-[12], the proposed quantum feature maps typically en-
code the datapoints into inner products or amplitudes in
the Hilbert space. The quantum circuit used to implement
the feature map is of a length that is typically a linear or
polylogarithmic function of the size of the data set and the
number of qubits is a function of the number of features. In
subsequent work, the advantage of a quantum feature map
was rigorously proved for a carefully chosen synthetic data

2500311


https://orcid.org/0000-0002-5197-4193
https://orcid.org/0000-0002-5737-3487
https://orcid.org/0000-0002-1689-6046

@IEEE Transactions on,
uantumEngineering

Krunic et al.: QUANTUM KERNELS FOR REAL-WORLD PREDICTIONS BASED ON ELECTRONIC HEALTH RECORDS

set [7]. Recently, a body of work [13], [14] implementing
quantum feature maps for small-scale coarse-grained practi-
cal data sets has emerged. Whereas there have been studies
of different feature maps [15], none have been discovered
so far with rigorous advantage for general or practical data
sets. The capability limits of near-term quantum computers
have also been pushed in work where the data set was less
coarse-grained [16], [17]; furthermore, efforts have begun to
study how hyperparameters affect the potential advantage of
a given quantum classifier [18]. Another stream of research
has emerged on finding a suitable quantum feature map for a
given data set with [19] providing a recent review of quantum
classification algorithms. Studies on quantum feature maps
involve both the study of the kernel function and the study of
the quantum circuits that encode the outcome of the kernel
function into Hilbert space [20]-[22]. A new set of metrics
and a protocol have also been proposed to determine the
possibility of quantum advantage for a given pair of data set
and quantum feature map [23].

In this article, we focus on one kernel-based method that
uses the quantum support vector machine (QSVM), estimat-
ing the kernel with a quantum computer and feeding it back
into a classical support vector machine (SVM) for classi-
fication [11]. We empirically study classical and quantum
SVMs, allowing for a direct comparison between a quantum
method and a corresponding state-of-the art classical algo-
rithm. Since it has been shown that for large data sets, there
are no significant differences between classical SVMs and
other classical approaches such as random forests [24], we
conjecture that our approach is generalizable to other settings
where different classical algorithms are used. However, the
existence of empirical advantage depends on the specific
application studied.

To the best of our knowledge, there have not yet been
any systematic studies regarding the applicability of quantum
kernels to EHRs. Here, we predict the six-month persistence
of rheumatoid arthritis (RA) patients on biologic therapies.
The central research questions investigated in this article are
as follows.

1) Can we enhance the prediction of medication per-
sistence by applying quantum kernels to real-world
EHRs?

2) Can we systematically identify problem instances
(number of features and number of samples) where
quantum computing may have an advantage for such
real-world data sets?

The methods developed in this article are general and can
be applied for a wide variety of problems with different-size
data sets in machine learning and optimization. In this arti-
cle, nevertheless, we focus on small data sets, particularly
those where the ratio of the number of features to the num-
ber of samples is relatively large, which typically engenders
hard classification problems. Such data sets are important
in a range of medical settings, for instance in clinical trials,
studies of very specific cohorts, and translational medicine.
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Moreover, small data sets are naturally suited to near-term
quantum computers. Predicting medication persistence is
one of the more difficult problems when applying machine
learning to EHRs; we deliberately selected such a challeng-
ing setting to explore quantum computing for research ques-
tions where classical solutions are often insufficient.

The concepts “quantum supremacy” [25] and “quantum
advantage” [26] have been around for a while and refer to
asymptotic performance comparisons between a quantum
approach and the best classical approach. Complementing
these two foundational concepts, in this article, we intro-
duce a related concept called empirical quantum advantage
(EQA). We define EQA as the incremental gain of using a
specific quantum approach over a specific classical approach
for a given problem. Once this heuristic measure is calcu-
lated, it is meaningful only in the context of three elements—
the problem as well as the classical and quantum approaches
used. It may not give any general asymptotic indications
about “supremacy” or “advantage” for a family of problems.
However, as in the field of practical classical algorithms [27],
practitioners may use EQA to observe trends in empirical
data. This is a key in biology and medicine where both
theoretical and operational factors must be considered, in
general, when exploring the benefits of quantum algorithms
for a given application [28].

When making measurements of EQA, multiple metrics
were considered, with a final choice of three key metrics—
F1 score and balanced accuracy at the configuration space
coordinate level as well as the phase space terrain rugged-
ness index (PTRI) at the configuration space landscape level.
PTRI is thus a global metric, fully described in Section V.
The reasoning behind choosing these metrics was as follows.

Both F1 score and balanced accuracy are commonly used
in machine learning; they measure the performance of a given
model. On the other hand, PTRI captures the hardness of the
configuration space for a given set of machine learning prob-
lems. The typical coordinate structure to explore that space of
problems consists of the number of features and the number
of samples, whereas the final data set used for binary clas-
sification is quite balanced (52% to 48%), more imbalanced
cases were also considered. F1 score and balanced accuracy
are thus readily generalizable to more imbalanced settings
in future research. Furthermore, we chose to present the F1
score because, although it equally weights false negatives
and false positives, we do not have the exact cost of either of
those. In other words, the relative cost of recall and precision
are different in specific model deployments.

Il. RESULTS

We started by evaluating multiple two-dimensional land-
scapes in the classical domain with the number of topmost
important features ranging from 1 to 20 in increments of 1
and the training set sizes ranging from 50 to 600 samples in
increments of 50. The topmost features were determined us-
ing the SHapley Additive exPlanations (SHAP) method [29]
(see Section V). For each landscape coordinate, 200 random
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train/test subsets were created out of the available data. Since
the most resource- and time-demanding part of the process is
the calculation of the custom kernels in quantum simulations
(classical hardware simulating the behavior of a quantum
computer) and on a real quantum processing unit (QPU), a
small number of these data sets were chosen to evaluate the
required total processing time. Custom kernels were calcu-
lated using both quantum simulations and QPUs. With the
obtained runtimes, a realistic number of data sets that could
be executed were calculated. As a result, the configuration
landscape was reduced to four feature number values [5],
[10], [15], [20] and three training set sizes [200, 250, 300],
yielding a 12-point configuration space. For each config-
uration space coordinate, two data sets, each containing a
train and a test subset, were selected out of the 200 train/test
subsets. This was achieved by calculating balanced accuracy
in the classical domain and then selecting two sets with the
balanced accuracy close to the mean of the balanced accura-
cies of the full 200-sample set. The term subpoint is used to
denote each individual data set within the given coordinate.

This yielded a total of 24 subpoints across the 12-
coordinate configuration space. We found this to be feasible
for quantum simulation and, critically, also for QPU exe-
cution. Since the analytical study of the hardness of such
a large practical problem is extremely difficult, these types
of large-scale simulation and hardware experiments across
a broad configuration space are the most pragmatic way to
identify trends and outliers. As a parallel outcome, this work
hence represents one of the largest quantum machine learn-
ing experiments to date. The feature size component of the
coordinates dictates the number of qubits for the QSVM. It
was obtained by taking the most important features from the
classical models built on the same data using the full-size
data sets (see Section V).

We used the predict method from the svm.SVC class
within scikit-learn [30] as the main method for comparing
quantum and classical SVM performance. In addition, the
predict_proba method was used to obtain estimates of prob-
abilities. Thresholds were varied in the range of 0 to 1 in
small increments and applied to the probabilities to generate
the optimal split between the two class labels. The plots
presented focus on the predict method; a detailed discussion
of the probability-based results can be found in Section V.

Presented in Fig. 1 are the comparative three-dimensional
plots of F1 score and balanced accuracy metrics with the
orange surface presenting points of the averaged metric for
classical computing and the blue surface for quantum com-
puting (QPU). All QPU experiments presented in this article
were run on ibmq_dublin (see Section V). Each point on
the configuration space coordinate was averaged from two
selected data sets for that coordinate; thus, each plotted con-
figuration space has 12 points in total. The z-axis is the metric
and the x- and y-axis are the number of features and training
samples, respectively.

The PTRI was calculated for the full configuration space
both for balanced accuracy and F1 score metrics and plotted
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FIGURE 1. (Top) Balanced accuracy landscape. (Bottom) F1 score
landscape. The classical domain is shown in orange and the quantum
domain is in blue.

in Fig. 2 using the same approach as previously presented for
the other metrics.

For each point in the configuration space and its corre-
sponding two subpoints, we calculated the geometric dif-
ference defined in [23] between radial basis function and
quantum kernels and averaged the corresponding two values
at each coordinate, as shown in Fig. 3.

The plots in Fig. 4 illustrate the results obtained with QPU
and classical processing for different metrics. The plots show
the metric value achieved by QPU minus the metric value
calculated by classical SVM. Since there are two random
data sets for each coordinate, those are averaged and then the
difference is calculated, resulting in 12 configuration space
points. The points are plotted as three lines, one for each
training set size, across four feature number values.

By comparing the position of the data points with the hor-
izontal “zero-advantage line,” we observe EQA for a subset
of problem instances in the configuration space: 0% and 92%
of all instances for nonprobability-based balanced accuracy
and F1 score, respectively, as well as 33% and 8% of all
instances for probability-based balanced accuracy and F1
score, respectively, showed such quantum advantage.
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FIGURE 2. (Top) PTRI (balanced accuracy) landscape. (Bottom) PTRI (F1
score) landscape. The classical domain is shown in orange and the
quantum domain is in blue.

Training samples
N
w
o
N £ o ©

10 15
Top features

FIGURE 3. Geometric difference between classical and quantum kernels
across the configuration space. Despite its name, the mathematical
definition demonstrates that it is a ratio. The greater the geometric
difference, the more potential for quantum advantage the given
quantum kernel has compared to the given classical kernel.

I1l. DISCUSSION

In this article, we have considered a configuration space
of classification problems with varying numbers of features
and samples. On that manifold, we have observed EQA
for 0% and 92% of classification problem instances for
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FIGURE 4. QPU balanced accuracy and F1 score versus classical

balanced accuracy and F1 score, nonprobability, and probability-based
approach.

nonprobability-based balanced accuracy and F1 score, re-
spectively, as well as 33% and 8% of classification prob-
lem instances for probability-based balanced accuracy and
F1 score, respectively. This makes it apparent that EQA is
something that must be evaluated on a case-by-case basis
until clearer trends present themselves. Identification of hard
instances through careful domain consideration has allowed
us to observe such advantages with no circuit being exe-
cuted more than 1024 times (i.e., a maximum of 1024 shots),
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which is almost one order of magnitude less than previous
large-scale quantum machine learning experiments [16], [17]
(and therefore results in higher sampling noise). This indi-
cates that, in the future, domain expertise in the hardness of
practical problems is going to be crucial for the development
and refinement of quantum algorithms. Our observation of
these empirical trends reiterates the significance of devel-
oping such large-scale experiments to understand the trends
and detect outliers. The considerable differences in EQA
based on the choice of performance metric could suggest that
practical quantum advantage is going to be highly domain-
specific. Further work is needed to explore the applicability
of different performance metrics for various domains. Given
that there is a need to build robust machine learning models
in medical settings where additional samples are costly or
impossible to acquire, even a modest reduction in the number
of samples required for training based on certain data distri-
butions can yield considerable benefits for many predictions
and inference problems in biology [28].

We also introduced a practical metric, i.e., PTRI, to quan-
tify and thereby qualify the quantum advantage potential
for a given problem. For any metric, PTRI helps identify
the flattest and most rugged regions in configuration space.
One could imagine that the flattest classical performance
region is the configuration subspace where the performance
of the classical techniques becomes stagnant and where a
quantum algorithm should therefore be considered. In that
case, computing the PTRI for the quantum approach over the
given configuration space may give some insights into where
quantum advantage is likeliest. This domain-agnostic metric
is one of the first attempts for an operational tool that, in the
future, quantum practitioners can use to determine when to
use a quantum computer, a dynamic decision that may have
to be taken very frequently, under severe timing constraints.
Further study is needed to interpret the amount of correlation
between the manifolds of classical and quantum performance
metrics in terms of PTRI and related measures.

As a parallel result, we have also presented, to the best
of our knowledge, the first independent application of the
geometric difference, which we employed to determine the
relative separation between classical and quantum feature
maps. Further study is needed to understand how quantum
practitioners may combine the concepts of PTRI and geo-
metric difference to first identify the potential for quantum
advantage in a configuration subspace and then estimate the
potential of a specific quantum feature map in that subspace.
We emphasize that there may be other relevant metrics worth
exploring in the future when studying forms of quantum
advantage, such as energy consumption.

It is also important to observe that we used the same
kernel function and feature map for every classification
problem. More studies are needed to determine appropriate
combinations of kernel function and feature map that result
in greater EQA. It may also be worthwhile to investigate
whether there are kernel functions inspired by one-way [7],
trapdoor, or learning with error [31] protocols that may not
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only provide an advantage in prediction accuracy but also in
time complexity.

Finally, we also note that being generated using near-term
quantum computers, the kernels of interest in this work are
noisy. It has been shown that the advantage of quantum ker-
nels, expressed in terms of the generalization error, vanishes
for large datasets, fewer measurements, and increased system
noise [15]. However, we believe the setup used to understand
the relationship between noise and quantum advantage may
be incomplete. The quantum advantage would be better un-
derstood in the context of a phase transition in the compu-
tational hardness of SVMs. Instead of properties like dataset
size, higher-level structural artifacts such as sparsity [32] and
characteristics of the input distribution [33] have been used
to study the phase transition in the computational hardness of
SVMs. In a similar vein, the impact of system noise and finite
measurement may have to be understood in terms of higher-
level artifacts, for instance, the ratio between features and
sample size instead of just sample size. However, it would
be reasonable to conjecture that with higher system noise, the
kernel will keep deviating. On the other hand, while in [15]
it has been indicated that increased measurement will reduce
the generalization error, one may also think the readout error
during measurement may be counterproductive. Overall, we
observe that the impact of noise is not yet well-understood
and should be investigated further.

IV. CONCLUSION

Ultimately, we conducted the first systematic study of QSVM
configuration space and quantum classification based on an
EHR data set. We classified the persistence of RA patients on
biologic therapies, predicting six-month persistence via bi-
nary classification. Furthermore, we proposed an end-to-end
framework to study EQA that can be generalized for other
machine learning and optimization problems and observed
EQA for a subset of problem instances in the configuration
space. Our framework represents progress toward a priori
identification of data sets where quantum advantage could
be achieved and underscored that even with current quantum
computers it is possible to arrive at predictions that are at
least as good as those obtained with classical computers.
These results have implications for classification problems
across industries, particularly for small data sets.

V. METHODS

A. QUANTUM FEATURE MAP

The feature map used in this article is known as the ZZFea-
tureMap, which gives rise to a feature space of 2"V dimensions
where N is the number of qubits [11]. This family of circuits
is believed to be hard to simulate classically [34].

B. IBM QUANTUM HARDWARE

ibmq_dublin is a 27-qubit superconducting qubit quantum
computer available on the IBM Quantum Services. The qubit
connectivity is shown in Fig. 5. For qubits, lighter color
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FIGURE 5. Qubit connectivity of ibmq_dublin. For qubits, lighter color
means higher T2 time; for couplings, lighter color means lower fidelity.
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FIGURE 6. Cropped circuit for quantum kernel calculations with full
subcircuit feature for one inner product calculation on the top two
qubits for a five-feature instance. The full circuit repeats a similar pattern
across different qubit pairs. Qubits and interactions were mapped based
on the connectivity of ibmq_dublin. q; is the ith algorithmic qubit and the
double-digit index after the arrow sign is the physical qubit index on
ibmq_dublin.

means higher T2 time, and for couplings, lighter color means
lower fidelity.

The average CNOT error rate and average readout error
rate, at the time of authoring this manuscript, were 1.097%,
and 3.585%, respectively. The average T1 and T2 times were
107.03 us and 114.53 pus, respectively. The average gate
time was 473.397 ns. More details may be accessed in real
time [35]. For every quantum circuit, 1024 shots were run.
The circuits were always maximally optimized using appli-
cation programming interface (API) calls before the runs. A
sample circuit computing the feature map of a five-feature
data set is given in Fig. 6.

C. QUANTUM SIMULATOR

The quantum simulations were run without noise models
on the qasm_simulator, available on the IBM Quantum Ser-
vices. Each circuit was run with 1024 shots and the circuits
were always maximally optimized before each run. The sim-
ulations supported the experimental design and results.

D. EHR DATA

In this article, there have been two main challenges related to
making predictions based on the EHR data. First, the problem
of binary classification in patient persistence depends on the
quality of the main classification label — that is, whether or
not a given patient is persistent on the medication. This is
derived from prescription, and there are known challenges in
determining patient persistence from prescriptions [36], [37],
whereas additional claims-based data sets could be used in
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conjunction with EHR data to improve the certainty of pre-
scription patterns, which was not an available option during
this work.

In addition, we used imputation to fill in missing data
points. For example, not all laboratory results are equally
present in each of the patients, and more specifically, not in
the period of time covered by the data used for model training
and testing. As detailed in the data section, the data were
chosen such that for the first 10 features there is no missing
data for any selected patient. Above the 10th feature, the
data are sparser. Thus, for the features, 11-20 missing data
were imputed using the mean of the present data, whereas the
impact of that imputation is minimal given that the majority
of the model accuracy comes from the top ten features, ap-
plying different imputation techniques could be explored in
the future.

E. COHORT RESTRICTIONS
The models were built using data from the Optum EHR data
set, which includes deidentified and aggregated clinical and
medical administrative data from over 100 million longitu-
dinal EHR lives. Fields that were used included demograph-
ics, laboratory tests, observations, prescriptions, visits, and
selected subsets of extracts from physicians’ notes pre pro-
cessed using natural language processing methods. A list of
RA International Classification of Diseases diagnosis codes
was used to select a first set of patients, further narrowed
down by the given biologic’s National Drug Codes. The per-
sistence for a given patient was defined as the length of time
from initiation to discontinuation of the biologic therapy.
The therapy start date, i.e., the index date, was set to be the
start date of the first biologic prescription. Inclusion criteria
required at least one year of data before the index date; any
data prior to one year before the index date was truncated,
thus guaranteeing the same interval length for all patients.
Additional inclusion criteria applied were a minimum of 6
months of data after the index date with stable payer insur-
ance and the patient had to be at least 18 years of age and
be in an integrated delivery network (which was indicated by
the flag in the data set). Exclusion criteria were more than one
diagnosis of systemic lupus erythematosus or psoriatic arthri-
tis, combined with prior use of targeted disease-modifying
antirheumatic drugs including biologics and Janus kinase
inhibitors. The inclusion/exclusion process is illustrated in
Fig. 7.

F. CREATION OF TRAIN AND TEST SUBSETS

The full pipeline was developed on AWS/Databricks using
PySpark, Python, and SQL. At the point where all prepro-
cessing, inclusion and exclusion criteria were completed and
the model training started, the data set size was reduced to
16 000 samples, with a relatively balanced target class (52%
of patients persisted, whereas 48% did not). The number of
features in that model exceeded 500, with the top 10 features
accounting for more than 90% of the achieved accuracy of
0.64. The variability of the model metrics within the set of
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100 million patients

Applying inclusion / exclusion criteria
results in 15k-20k patients in the final
model cohorts

Combined random
subsampling and
elimination of patients
with missing data
results in
cohorts with 200-300
samples

FIGURE 7. Cohort restrictions applied to the EHR data.

10 different train/test splits was under 4%. The train/test split
ratio was set at 80/20.

In the preliminary experiments with classical SVMs and
quantum simulations, the range of the explored landscape
was 50-600 in training set size in increments of 50 and the
range in the number of features was from 1 to 20 in incre-
ments of 1. Since it was known that the top 20 features carry
>95% of accuracy, this was deemed sufficient and within the
reach of QSVM, where each feature maps to one qubit, thus
leading to 20-qubit QPU experiments.

To reduce the training set size further from 12 800 (80%
of the original 16000), an additional step was applied to
the 16 000-sample model data. First, the samples with no
missing data in the top 10 features were selected, leaving
the features from 11 to 20 with some missing data. That
reduction yielded a data set of 1300 samples. This resulted
in data sets with minimum missing data while preserving
the top 20 features required for the experiments. Since not
all patients have all the selected laboratory measurements
or other features collected during the year before the start
of the medication, we used imputation to fill in those val-
ues. Using a longer period of 2-3 years of training data
before the index date significantly increases the chance of
a patient having at least some value for the given fea-
tures but reduces the overall number of patients in the co-
hort; therefore, that approach was not utilized in the final
model.

The size of the training set was narrowed down to three
different values—200, 250, and 300. The final choice was to
use 5, 10, 15, and 20 features, that, when combined with 200,
250, and 300 training set sizes, yielded a 12-point configura-
tion space. From the 1300-sample data set, random sampling
was used to create training data sets of 200, 250, and 300
samples. The test set size was kept at 150 to balance the
constraints of reasonable runtimes for simulations and QPU
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while achieving the best stratification of samples under the
circumstances.

The downside of the training (and test) data set reduction
to a few hundred samples is the reduction in predictive ac-
curacy, originally at 0.64 with 16 000 samples. This decision
was made to explore the very difficult cases where it is hard
to get predictions better than random guesses, whereas we
could have chosen starting models with 15 000-20 000 sam-
ples and accuracies above 0.75, which were available with
somewhat different patient cohort structures, our goal was to
tackle the most difficult problems. This careful consideration
in selecting harder instances has allowed us to observe the
empirical advantage of quantum kernels over classical ker-
nels even though none of the circuits was run with more than
1024 shots. In future work, and as quantum hardware and
software scales further, we would like to explore train/test
data sets with 500-1000 samples, which would allow for
reduced loss of accuracy and smaller variability due to re-
duction in a set size.

Knowing that there will be significant variability in the
performance of different train/test data sets for each coor-
dinate due to the small sample size, the maximum possible
number of sets was evaluated. Given the preliminary run-
times for quantum simulations and QPU, the decision was
made to use two random train/test splits for each configura-
tion space coordinate, resulting in a total of 24 data sets to be
run on QPU, whereas two random splits for each coordinate
do not fully account for the variability resulting from such
small data sets, this had to be limited due to QPU availability
and simulation runtimes. Future work could be done to in-
crease the number of data sets for each coordinate from two
to ten or more.

During subsampling, it was ensured that the target classi-
fication label proportion was kept in the original proportion
within each train and test subset. Different models and class
imbalance ratios ranging from 1:1 to 1:5 were evaluated and
the final decision was to use the aforementioned (almost)
balanced class to reduce the impact of the small data set size.
It was our judgment that more imbalanced cases would be
better addressed in subsequent research.

One of the main challenges with the small data sets is
that when splitting train and test sets and training models
on multiple splits, the resulting model metrics vary widely,
especially with the models where predictive accuracy is not
very high. To explore that, 200 random splits at each of
the 12 coordinates were made. We calculated classical SVM
balanced accuracies for each of the splits, a process that was
executed in less than 1 h.

For each of the 24 subpoints, having already calculated
classical SVM metrics, quantum simulations and QPU runs
were executed, both using the Qiskit framework. In total,
1024 shots were used as that allowed the execution for all
24 points within the time and resources available. The sim-
ulations were run with callback specified to provide addi-
tional insight during the running processes. The optimization
level was set at three, the feature map to the ZZFeatureMap,

2500311



@IEEE Transactions on,
uantumEngineering

Krunic et al.: QUANTUM KERNELS FOR REAL-WORLD PREDICTIONS BASED ON ELECTRONIC HEALTH RECORDS

050 052 054 056 058 060 062 0.64
Balanced accuracy

050 052 054 056 058 060 062 0.64
Balanced accuracy

FIGURE 8. Distribution of balanced accuracy values for the classical
models for different train/test splits for the point with 300 samples and
10 features.

the feature dimension equal to the number of features for
the specific subpoint, the number of reps equal to two, and
the entanglement to linear.

Quantum simulation and QPU processing were used to
calculate custom kernel matrices for the given train and test
set. The train kernel was then saved and used in scikit-
learn on the classical computer to train the SVM model
using a precomputed option. The test kernel was passed to
the model’s predict method to make predictions. This way,
we generated predictions for quantum simulations and QPU
runs. The classical predictions were generated using kernels
in SVMs. The models were trained for 18 different values of
the regularization parameter C, ranging from 0.006 to 1024,
and the best case was used from each model for the clas-
sical to quantum comparison. Every model was regularized
separately for each of the two metrics; thus, the value of
the optimal C parameter for a given set’s balanced accuracy
is generally different than the value of C for the F1 score.
All three predictions were created for each of the 24 sub-
points, whereas the developed framework supports allocating
an independent validation data set for the final model met-
ric assessment, a single validation set is unlikely to provide
useful insights due to the variability in the metrics for the
small data sets in question. Allocating multiple validation
data sets and running them through QPU was not feasible
with the available time and resources, however; therefore,
such a validation step was not included.

2500311

G. VARIABILITY AND ERRORS

For the classical models, Fig. 8. illustrates the distribution of
balanced accuracy values for 200 different train/test splits for
the configuration space coordinate with 300 samples and 10
features.

The scope of the SVM modeling was predicting the labels
in the binary classification. We used scikit-learn and its pre-
dict method to predict labels directly and the predict_proba
method for predicting approximate probabilities. Probabil-
ities are estimated inside the predict_proba method using
five-way cross-validation. As such, the process is subject to
variability depending on the random seed that is provided to
the svm.SVC call. One random value was used for calcula-
tions and comparisons to support reproducibility. In addition,
arange of different random seed values was used in selected
cases to obtain the variability of the predictions. It showed
a 1.5% standard deviation in the predictions obtained with
the predict_proba method, both in the classical and quantum
case, with less distinct values in the quantum domain.

H. RUNTIMES
The QPU runtimes were between 12 and 24 h. During the
QPU runs, both CPU and memory utilization was very low
in the same Linux server as the main processing was executed
on the QPU instance. The QPU processing was sequential.
The QPU processing was executed from a c5.18xlarge
Ubuntu 18.04 cloud instance on Amazon Web Services
(AWS), with 72 vCPUs and 144 GB RAM. We have not
used Amazon Braket; instead, to support managing the whole
process, we developed a Python package that has a code
generation layer to simplify execution of different configu-
ration spaces and management of the results. From within
the package, the Qiskit API calls are made to simulators or
QPUs. We used virtual environments that, over the course of
a year, allowed us to effectively manage different versions of
Qiskit and related software components.

I. SHAPLEY ADDITIVE EXPLANATIONS (SHAP)

SHAP is a game-theoretic approach to explain the output of
any machine learning model. It connects optimal allocation
with local explanations using the classic Shapley values from
game theory and their related extensions. SHAP measures
the impact of variables by considering the interaction with
other variables. Shapley values calculate the importance of a
feature by comparing what a model predicts with and without
the feature (variable) [38], [39].

A starting list of the topmost 20 features was obtained
from the original 16 000-sample data sets by training ma-
chine learning models and then using SHAP to obtain
the top 20 features. Those 20 features were then used in
the aforementioned analysis with reduced size subsets in
the order of SHAP relevance. Each of the points for 5, 10,
15, and 20 features on the configuration space was obtained
by taking that many top features from the full 20-feature list,
preserving the order.

VOLUME 3, 2022



Krunic et al.: QUANTUM KERNELS FOR REAL-WORLD PREDICTIONS BASED ON ELECTRONIC HEALTH RECORDS

@IEEE Transactions on,
uantumEngineering

J. PTRI-SYSTEMATIC IDENTIFICATION OF PROBLEMS
WHERE QUANTUM KERNELS MAY HAVE EMPIRICAL
ADVANTAGES

Consider a set of classification problems where the number
of features is between 1 and M and the number of samples
between 1 and N. There are thus M x N classification prob-
lems. To help address the question which subset of these
problems should be solved with a quantum kernel, we created
a geophysics-inspired approach to identify regions of poten-
tial EQA in data sets. One way to select a suitable subset of
problems involves studying the ruggedness of the manifold
via PTRI, a metric we have adapted from [40] and defined as
follows. We are considering the F1 score only as an instance
of a metric in the formula. In the M x N configuration space
defined before, each point is surrounded by eight other points
except for the boundary points. For the boundary points, the
performance result (F1 score in this case) of the adjacent
points that are beyond the boundary is assumed to be 0.
For the (i,))th interior point, the local PTRI; ; is calculated
according to

PTRI ) = [ (Flij = Flioy j1)* + (Flij = Fli1)?
+ (Fli,j_Fli—l,j+l)2 + (Flij — Flzlj—l)2

+ (Fl;,; — Fli,j+1)2 X (Fli,j_Fli+l,j—1)2

5 511/2
+(F1i’j—Fll‘+1,j) +(F1i,j_Fli+l,j+l) ] :

6]

To determine the PTRI of the full configuration space, we
average across the PTRI; ; values.
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