
Special Section on Classical Control Systems Engineeringuantum
Transactions onIEEE

Received September 10, 2021; revised February 3, 2022; accepted May 9, 2022; date of publication May 19, 2022;
date of current version June 22, 2022.

Digital Object Identifier 10.1109/TQE.2022.3175587

Timing Constraints Imposed by Classical
Digital Control Systems on Photonic
Implementations of Measurement-Based
Quantum Computing
JOHN R. SCOTT1 AND KRISHNA C. BALRAM2
1Quantum Engineering Centre for Doctoral Training, Department of Physics, University of Bristol, BS8 1UB Bristol, U.K.
2Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1UB
Bristol, U.K.

Corresponding author: John R. Scott (e-mail: john.scott@bristol.ac.uk).

The work of J. R. Scott was supported by the Bristol Quantum Engineering Centre for Doctoral Training, EPSRC under Grant
EP/L015730/1. The work of K. C. Balram was supported by the European Research Council under Grant ERC-StG 758843.
The design and testing system is available in the following repository: https://gitlab.com/johnrscott/mbqc-fpga

ABSTRACT Most of the architectural research on photonic implementations of measurement-based quan-
tum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit
assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” archi-
tecture of photonic MBQC requires specific timing constraints that need to be met by the classical control
system. This classical control includes, for example, the amplification of the signals from single-photon
detectors to voltage levels compatible with digital systems; the implementation of a control system which
converts measurement outcomes into basis settings for measuring subsequent cluster qubits, in accordance
with the quantum algorithm being implemented; and the digital-to-analog converter and amplifier systems
required to set these measurement bases using a fast phase modulator. In this article, we analyze the digital
system needed to implement arbitrary one-qubit rotations and controlled-not gates in discrete-variable
photonic MBQC, in the presence of an ideal cluster state generator, with the main aim of understanding the
timing constraints imposed by the digital logic on the analog system and quantum hardware.We have verified
the design using functional simulations and have used static timing analysis of a Xilinx field-programmable
gate array (7 series) to provide a practical upper bound on the speed at which the adaptive measurement
processing can be performed, in turn constraining the photonic clock rate of the system. The design and
testing system is freely available for use as the basis of analysis of more complex designs, incorporating more
recent proposals for photonic quantum computing. Our work points to the importance of codesigning the
classical control system in tandem with the quantum system in order to meet the challenging specifications
of a photonic quantum computer.

INDEX TERMS Field-programmable gate array (FPGA), measurement and feed-forward, measurement-
based quantum computing (MBQC), photonic quantum computing, timing analysis.

I. INTRODUCTION
Quantum computers are enjoying a period of intense research
activity. This is due to the possibility of very large speed-ups
in finding effective solutions for certain classes of problems
that are hard or impossible to solve using classical comput-
ers. These include, in the near-term, the simulation of other
quantum mechanical systems with applications in quantum
chemistry [1] and, in the longer term, certain kinds of search-
related problems [2].

Currently, only relatively small quantum computers have
been built, containing less than one hundred qubits, in a mul-
titude of competing technologies [3]. However, it is hoped
that with increasing understanding over how to engineer and
control quantum systems at scale, there will be a substantial
increase in the computational power of quantum computers
in the near future.
However, a few hurdles lie in the way of this scaling pro-

cess. Often discussed are the characteristics of the qubits

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 6000220

https://orcid.org/0000-0002-5493-121X
https://orcid.org/ ignorespaces 0000-0002-7132-733X
https://gitlab.com/johnrscott/mbqc-fpga

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

themselves: for example, the difficulty of achieving high
enough fidelity gate operations on physical qubits [4] or how
to fabricate devices at scale [5]. One aspect of the problem,
which is discussed less often, is the classical electronic con-
trol requirements that need to be met for these machines.
At first glance, this is surprising since the common link

between all the platforms for quantum computing is the
need for traditional electronics to control them. However,
there is a general tendency to view classical signal pro-
cessing as a “solved problem,” at least in comparison to
the difficulty of the quantum information processing, and
assume that any requisite performance can be achieved us-
ing custom application-specific integrated circuits (ASICs).
This is understandable, given the high degree of perfor-
mance and sophistication that modern (digital) complemen-
tary metal-oxide semiconductor (CMOS) electronics can
routinely achieve. However, adapting and applying classi-
cal electronics to quantum control problems is not straight-
forward and is an active area of research across all quan-
tum computing platforms. For example, in superconducting
qubit-based quantum computers, it is an open question as to
how best to integrate the microwave control electronics close
to the qubits in order to reduce the number of interfacing
wires that prevent scalability in that architecture [6].
The flip-side to modern CMOS electronics having reached

the level of sophistication that it enjoys today is that there is
not a great deal of room left for improvement in performance.
For example, clock speeds in computers are plateauing [7],
and transistor sizes are reaching their limits [8]. Quantum
devices, on the other hand, being a relatively young technol-
ogy, are expected to see a Moore’s law-like improvement in
the future [4]. Consequently, it is critical to understand the
limitations that classical electronics and control will impose
on current quantum computing platforms.
The majority of the prior work discussing photonic

measurement-based quantum computing (MBQC) has fo-
cused on the quantum resources required and the theoretical
architecture of the system [9]–[13]. Many of these propos-
als seek to address the pervasive issues of photon loss and
lack of deterministic two-qubit entangling gates [14] that all
quantum photonic systems must overcome. Recently, fusion-
based quantum computation (FBQC) has been introduced,
specifically aiming to incorporate the fusion operations nec-
essary for entangling photons into the computation [12].
More generally, many modern schemes take explicit account
of error correction and fault tolerance in order to provide a
candidate system that works in theory [13], [15].
What is not present in the literature, to the best of our

knowledge, are any concrete candidate electronic control
system implementations for these schemes. We define here
what we consider to be a valid implementation.

1) The implementation should clearly define the problem
it solves, including any underlying assumptions, and
provide a design for the electronic control system un-
der discussion.

2) The control system should be tested and verified, so
that there is some assurance that it does in fact do what
it is designed to do.

3) The control system design should be freely available,
so that the previous two criteria can be independently
checked.

The purpose of creating such an implementation is to pro-
vide evidence that a candidate scheme for photonic quantum
computing works or provide reasons why it does not. We be-
lieve that a thorough analysis of concrete control system im-
plementations is critically important if photonics is to com-
pete with superconducting qubit-based quantum computers
as a candidate architecture for quantum computing.
Producing an implementation of the control system for

a photonic quantum computing architecture is a difficult
engineering undertaking, in the same way that the design
of the control system for a superconducting qubit quantum
computer involves the design of a complex cryogenic/RF
electronic system. It is, therefore, challenging to lay out in
one go a full implementation for any scheme for photonic
quantum computing, even in the simplest cases. This is be-
causemost implementations of photonic quantum computing
rely on MBQC, which is a difficult mathematical subject
for electronic engineers to easily understand because it is
highly nonintuitive and lacks the familiarity of the gate-based
model.
The purpose of the current article is twofold. First, we

analyze the timing constraints imposed by classical elec-
tronics on the operation of a photonic quantum computer
based on an ideal cluster state generator. This is the first
architecture that was seriously proposed for the implementa-
tion of photonic quantum computing, which does not suffer
from the unlimited-depth problem of the Knill–Laflamme–
Milburn scheme [16]. We show that even in this highly ide-
alized scenario, classical electronics imposes significant tim-
ing constraints on photonic quantum computers. Based on
this implementation alone, we cannot draw any conclusions
relating to other photonic quantum computing architectures;
rather, we wanted to provide a building block for future
quantum engineers to produce candidate implementations for
more realistic and modern proposals for photonic quantum
computing.
The second purpose of this article is to provide a simple

and graphical presentation of MBQC, which is of the kind
that we would have liked to use while learning this subject.
We believe that an important barrier to entry for electronic
engineers is the abstract nature of the literature describing
the subject.
There are several important constraints the electronic con-

trol system may impose on the implementation of photonic
MBQC. First, the speed at which the electronics can be made
to operate determines the maximum photonic clock cycle of
the system. In particular, the “flying-qubit” architecture of
photonic MBQC (discussed in Section III) requires adaptive
measurement settings to be worked out before the arrival of

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

the next column of photons in the cluster state. Second, the
complexity of the system—particularly the analog parts—
determines how much on-chip area is taken up with classical
processing. This is particularly important because the “unit
cell”1 of the electronic system must be duplicated once per
qubit in photonic MBQC, and signal routing becomes chal-
lenging as the system starts to scale. Third, the noise that is
introduced by the analog stages of the control system will
potentially introduce logical errors that need to be accounted
for.
In this work, we focus on the first of these questions:

Specifically, what timing constraints does the digital part
of the system impose upon the analog and wider photonic
systems, and how does that affect the overall photonic clock
rate of the quantum computer? We perform the analysis for a
system with an ideal cluster state generator and consider the
signal delay in the digital domain (after photon detection and
logic-level amplification to the input of the analog system
which is needed to set the bases for the next measurement
round; details in Fig. 6).
The structure of this article is as follows. In Section II, we

provide a practical description of the parts of MBQC needed
to understand the results of this article. In Section III, we
describe a simple model of photonic MBQC—based on an
ideal cluster state source—showing the analog and digital
subsystems which are necessary for a basic implementation
of the system. In Section IV, we present an example design
for the digital component of the classical processing, target-
ing a Xilinx 7-series field-programmable gate array (FPGA).
In Section V, we describe the functional verification of the
design. In Section VI, we use static timing analysis of the
implemented design to derive constraints on the analog parts
of the system and on the overall photonic clock frequency
of the quantum computer. Section VII contains changes to
the underlying model to make it more realistic, which would
increase the complexity of the digital system. Finally, we
discuss the wider implications of our results in Sections VIII
and IX.

II. INTRODUCTION TO MEASUREMENT-BASED
QUANTUM COMPUTING
Quantum computing in the gate-based model (see Appendix
A for details) consists of the following steps.

1) An initial quantum state |φ〉 is prepared on N qubits.
2) Quantum gates are applied to the qubits.
3) The resulting state |ψ〉 is measured, which constitutes

the output from the quantum circuit.

MBQC is a different way to obtain the same resulting
output state |ψ〉, by performing single-qubit measurements

1Throughout the article, the unit cell refers to the subsystem of the digital
design which reads measurement outcomes for each logical qubit, processes
these outcomes, and drives modulators relating to the basis settings of the
logical qubit. The term “logical qubit” refers to the qubit which would be
available to a user of the system (i.e., it is the qubits that they would use in
performing their quantum algorithms with the quantum computer).

FIGURE 1. (a) The cluster state is made from a rectangular array of
qubits (the white dots), each of which may be entangled with its four
nearest neighbors. When a computation is performed, a specific pattern
of entanglement is required that matches the shape of the circuit. (b)
Quantum computation is performed by measuring the cluster qubits in
bases derived from the measurement pattern. The shaded blue regions
show which cluster qubits are involved in implementing which gates. The
identity gate is included to pad the length of the one-qubit gate
U = Rx (ζ)Rz (η)Rx (ξ) so that it matches the CNOT. (c) Quantum circuit that
is performed by the measurement pattern in (b).

on a more complicated initial state called a cluster state. It
consists of the following steps.

1) Prepare a special quantum state, called a cluster state,
on a larger numberM > N of qubits. The main feature
of the cluster state is that adjacent qubits are entangled
together, which is represented using line segments in
Fig. 1(a).

2) Measure qubits from the cluster state one at a time, ac-
cording to rules that correspond to the quantum circuit,
until all but N have been measured.

3) Finally, the resulting state |ψ ′〉 on the N remaining
qubits is measured in the computational basis, which
constitutes the output from the circuit.

The initial state |φ〉 in the gate-based model is a matter
of convention; if each qubit is initially prepared in the |+〉
state, then the output states |ψ〉 and |ψ ′〉 from the gate-based

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

model and MBQC are the same, meaning that any algorithm
expressed in the gate-based model can be equally well per-
formed using MBQC.
For a comprehensive overview ofMBQC, see [17]. A short

pedagogical introduction is contained in [18]. What follows
is a brief description of the main features of MBQC which
are relevant to this article.

1) LOGICAL QUBITS AND GATES IN MBQC
Each horizontal line of entanglement in the cluster state cor-
responds to a single qubit in the gate-based model, which
we will call a logical qubit, to distinguish it from the cluster
qubits that make up the cluster state. One-qubit gates in the
gate-based model involve measurements of the cluster qubits
along a logical qubit row according to rules that determine
the basis settings of each measurement, and define what to
do with the measurement outcomes. Two-qubit gates require
vertical lines of entanglement which join the logical qubit
rows together, as shown in Fig. 1(a) between the second and
third rows.

2) MEASUREMENT PATTERNS FOR GATES
Each gate G that is implemented in MBQC is defined by a
measurement pattern, which is a set of rules describing the
following.

1) How many cluster qubits are needed to realize the gate
G and what pattern of entanglement is necessary be-
tween those cluster qubits.

2) Which basis to use for each cluster qubit measurement.
3) How to process the outcomes from the cluster qubit

measurements.

A given computation involving multiple gates, such as
the one shown in the gate-based model in Fig. 1(c), can be
performed usingMBQC by concatenating2 the measurement
patterns for each gate [the blue shaded regions in Fig. 1(b)].
The resulting pattern contains one row for each qubit in the
gate-based model (here, N = 3), and a number of columns
defined by the length of the concatenated measurement pat-
terns (the total number of cluster qubits is M = 21).

In making the measurements defined by the measurement
patterns, each cluster qubit is removed one by one until only
the rightmost column remains unmeasured. The final column
of the cluster state is measured in the computational basis
as shown in Fig. 1(b), which represents the output from the
quantum circuit.
The arbitrary one-qubit gateU in Fig. 1(c) is realized using

a measurement pattern of four cluster qubits in the top row
of Fig. 1(b), and the controlled not (cnot) gate3 is realized

2In [17], measurement patterns are taken to include the “output” qubits,
which is the first column of qubits directly to the right of the measurement
pattern. In this scheme, measurement patterns must overlap (because the
output qubit column is also the input qubit column for the next gate pattern).
In this article, we associate the output qubit with the next measurement
pattern, so that patterns can be simply concatenated.

3The symbol for a cnot gate shown in Fig. 1 is the same as a classical
xor applied to the target qubit. This is because the cnot gate can be thought

FIGURE 2. The state of a single qubit, represented as a point on the
Bloch sphere. A measurement of a single qubit can be made along any
straight line through the Bloch sphere. In MBQC, measurements in the
purple and green boxes in Fig. 1 are made along lines L in the equator of
the Bloch sphere, parametrized by a single angle φ. Computational basis
measurements (denoted using gray boxes in Fig. 1) are made along the
vertical line through |0〉 and |1〉.

using ameasurement pattern of 12 cluster qubits spanning the
bottom two rows of Fig. 1(b) (note the vertical entanglement
link).
All measurements shown in green and purple boxes in the

figure are performed along lines L that lie in the equator of
the Bloch sphere (Fig. 2). Green boxes containing X or Y
are measurements along the x- or y-axes, respectively. Purple
boxes are measured along a line L with an angle φ derived
from the value in the box andmeasurement outcomes of other
cluster qubits. The gray boxes represent computational basis
measurements, which are made along the z-axis of the Bloch
sphere.

3) PERFORMING THE CLUSTER QUBIT MEASUREMENTS
As described in Appendix A, the only physical measure-
ments that can be performed are computational basis mea-
surements. All the other measurements (in the equator of
the Bloch sphere) are performed by applying a one-qubit
gate to the given cluster qubit and then measuring it in the
computational basis.
It is important to understand that the one-qubit gates that

set the measurement bases in the measurement patterns are
different from the one-qubit gates implemented by MBQC,
such asU in Fig. 1. The former are basic operations that, to-
gether with computational basis measurements, are required
for implementation of MBQC. They are analogous to the
physical layer in a communication system because they must

of as adding the value of the control qubit to the target qubit modulo 2. We
make extensive use of the classical xor operation in subsequent figures in
this article. For clarity, we state here that all instances of the xor symbol
in this article—apart from that in Fig. 1—are classical xor gates, not cnot
gates.

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

FIGURE 3. The two measurement patterns we consider in this article are the CNOT gate and the arbitrary one-qubit gate U = Rx (ζ)Rz (η)Rx (ξ). In each
block, the black line connected to the top of the box is the adaptive measurement setting s. The line connected to the bottom of each box is the
measurement outcome m. For the CNOT gate, on the left, there are no adaptive measurement settings because all the measurement bases are X or Y . The
byproduct operator bits are shown using the lines x and y below each logical qubit row in the figure. The computation of the byproduct operators
(shaded in blue) is more complicated and involves mixing outcomes from the control C and target T rows. On the other hand, for the arbitrary one-qubit
gate, the byproduct operator calculation is simple, but the adaptive measurement settings depend on previous measurement outcomes (shaded purple).
The commutation correction for each gate is enclosed in dashed lines. For the CNOT gate, it involves mixing the byproduct operators before applying the
pattern. For the one-qubit gate, the byproduct operators must be stored because they are used in the adaptive measurement setting calculation. In
Section III, the condition is imposed that columns are measured from left to right, so as to be compatible with photonic MBQC.

be realized by some physical mechanism; for example, using
photonic qubits, as we discuss in Section III. The logical
one-qubit gates U do not correspond to any basic physical
operation and, instead, arise as a result of applying the mea-
surement pattern to the cluster qubits. They are analogous to
the logical data layers in a communication network, which
use the resources of the physical layer to transmit logical
information.
In the following sections, we describe in detail the mea-

surement patterns for the one-qubit gate and the cnot gate,
which includes how to obtain the adaptive measurement set-
tings and what to do with measurement outcomes.

4) MEASUREMENT BASIS ANGLES AND ADAPTIVE
MEASUREMENTS
Every measurement that is part of a measurement pattern is
measured along a line L in the equator of the Bloch sphere,
as shown in Fig. 2. It is, therefore, specified by one real angle
φ. In MBQC measurement patterns, this angle is made up of
a value θ , and a sign bit s, such that φ = (−1)sθ . The value
of θ is shown in the purple boxes in Fig. 1(b). Note that θ
may be negative.
For the green boxes in Fig. 1, the value of θ is 0 for X

and π/2 for Y . In the first case, the value of s does not affect
the basis angle φ at all. In the second case, the roles of |0′〉
and |1′〉 are swapped because L is reversed; however, since
the outcome of the measurement is random, the swapped
measurement outcomes can be corrected in the calculation
of byproduct operators (see Section II-A5). Therefore, the X
and Y measurements are not affected by the value of s.

The value of θ is a characteristic of the quantum circuit
being implemented. The value s, however, depends on the

outcomes of other (prior) measurements in the measure-
ment pattern. The measurement bases in MBQC are, there-
fore, adaptive because the basis in which a cluster qubit is
measured may depend on the outcomes of measurements
of other cluster qubits that have been measured before.
We will refer to s henceforth as the adaptive measurement
setting.
Any measurement pattern, such as the cnot gate, which

contains only X andY measurements, does not involve adap-
tive basis settings because the value of s has no effect. It
can be shown that the set of gates implementable with these
nonadaptive patterns is the Clifford gate set [17], which is
not universal [19]. For universal quantum computing, it is
necessary to include a gate such as the one-qubit gate that
does require adaptive measurement settings.
In Fig. 3(b), the measurement pattern for the arbitrary one-

qubit gate (corresponding to a rotation of the Bloch sphere) is
shown in detail [17]. The shaded purple region (particularly
the blue wires) shows how the adaptive measurement setting
for each measurement is computed from previous measure-
ment outcomes. The dependence between s and measure-
ment outcomes implies that the measurements must be made
from left to right, which is also indicated by the arrow of time
at the bottom of the figure.
The measurement pattern for the cnot gate is shown in

Fig. 3(a). This is not the same pattern as that presented in the
original MBQC paper [17], which uses three logical qubit
rows. The derivation of the cnot pattern in Fig. 3 is contained
in Appendix B. We use this modified cnot measurement
pattern because it considerably simplifies our example digital
implementation in Section IV, which only supports nearest-
neighbor connectivity of logical qubits.

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

5) BYPRODUCT CALCULATIONS
As the measurement pattern proceeds, the random outcomes
of the measurements introduce correctable errors in the com-
putation. These errors are known as byproduct operators be-
cause they are unintended logical operations that occur as a
byproduct of the MBQC measurements.
Specifically, after anyN-qubit gateG has been applied to a

state |ψ〉 using its measurement pattern, the resulting state is
actually BG|ψ〉, rather than simply G|ψ〉, where B is a gate
(called the byproduct operator) given by

B =
N−1∏
i=0

Zzii X
xi
i , xi, zi ∈ {0, 1}.

The byproduct operator for the logical qubit i is specified
by two bits xi and zi, which are updated as the computation
proceeds. By an abuse of notation, we will refer to the pair
(xi, zi) as the byproduct operator as well. ForN logical qubits
(N rows of the cluster state), 2N bits are needed to store the
byproduct operators. At the start of the computation, they are
all initialized to zero, because no gate has been performed;
so no errors have been introduced. As the computation pro-
ceeds, the outcomes of the measurements in the pattern are
xored into the xi and zi according to prescribed rules, de-
scribed below and shown in Fig. 3.
For the one-qubit gate in Fig. 3, the new byproduct opera-

tors (x′, z′) are calculated according to the rule

z′ = z⊕ m0 ⊕ m2

x′ = x⊕ m1 ⊕ m3

where mk is the measurement outcome from the kth qubit,
numbered according to Fig. 3.
For the cnot pattern, two byproduct operators are in-

volved: one for the control qubit row (xc, zc) and one for the
target qubit row (xt , zt). The new byproduct operators (x′c, z′c)
and (x′t , z′t) are calculated using

z′c = zc ⊕ m0 ⊕ m2 ⊕ m3 ⊕ m4 ⊕ m6 ⊕ m8 ⊕ 1

x′c = xc ⊕ m1 ⊕ m2 ⊕ m4 ⊕ m5 (1)

and
z′t = zt ⊕ m6 ⊕ m8 ⊕ m10

x′t = xt ⊕ m1 ⊕ m2 ⊕ m7 ⊕ m9 ⊕ m11. (2)

Unlike for the one-qubit gate, the byproduct operators for
a given logical qubit row are calculated using measurements
from other rows. Note the addition of the constant 1 in the
control qubit byproduct operator.
On the face of it, byproduct operators appear to introduce

errors into the computation because the gate BG is performed
instead of the desired gateG. However, the effect of this error
can be corrected after the final column of Z-measurements in
the MBQC process has been performed: the outcome from
any logical qubit row i where xi = 1 has its outcome flipped
from a zero to a one or vice versa [17]. This action undoes
the effect of the byproduct operators, leaving a circuit that
effectively only implements the gate G as desired. The zi
components are not used because they correspond to a phase

shift which does not affect the probability of measuring a
zero or one in a computational basis measurement. However,
as we describe in the next section, it is necessary to keep
track of their values because they can affect the value of the
xi, through the process of commutation corrections.

6) COMMUTATION CORRECTIONS
The byproduct operators are used to correct the outcomes
obtained after the MBQC circuit is finished. However, the
correction only works if the byproduct operators are the
last operation before the final column computational basis
measurement, which is only the case if a single gate G is
performed.
If multiple gates Gk are performed on a state |ψ〉, then the

resulting state |φ〉 will be
|φ〉 = (BKGK) . . . (B1G1)(B0G0)|ψ〉. (3)

These interleaved byproduct operators cannot be corrected
at the end of the circuit. Instead, it is necessary to move all
the byproduct operators to the end (the leftmost side of the
equation). To do that, after each new gate Gk+1 is applied, it
is necessary to commute the current byproduct operators Bk
and the gateGk+1, so that the byproduct operators are always
on the leftmost side of the equation. This is illustrated in the
following for the application of the second gate G1:

B0G0|ψ〉 �→ B1G1B0G0|ψ〉
�→ B1B

′
0G

′
1G0|ψ〉 �→ BrG

′
1G0|ψ〉 (4)

whereG1B0 = B′
0G

′
1, and the prime indicates the change that

may occur in either gate. The byproduct operators B1 and
B′
0 can be combined into a resulting byproduct operator Br

by adding together the values of (xi, zi) bitwise modulo 2
for each operator. The state on the right of (4) is, therefore,
transformed to the same form of the state on the left, so that
on the application of the next gate G2, the process can be
repeated and the byproduct operators are always kept on the
left. We will call the process of commuting B through G a
commutation correction.
In practical terms, the commutation correction is an oper-

ation that is performed before a gate is applied, by manip-
ulating the current value of the byproduct operators and the
upcoming gate so as to have the effect of (4). For the two
measurement patterns we consider in Fig. 3, the commuta-
tion corrections are quite simple. In the case of the cnot
gate G = CNOT, G′ = G, and only the byproduct operator
B changes to B′, according to the rule

z′c = zc ⊕ zt

x′c = xc

z′t = zt

x′t = xt ⊕ xc. (5)

For the one-qubit gate G = U , the byproduct operators re-
main the same,B′ = B, but the gate itselfGmust bemodified.
The modification is made by using the values of the byprod-
uct operators to affect the adaptive measurement settings, by

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

xoring the byproduct operators with previous measurement
outcomes to form the values of s for each cluster qubit [17],
as shown in Fig. 3(b). The calculation of the adaptive mea-
surement settings s j for each cluster qubit j is shown in the
following equations:

s0 = 0

s1 = m0 ⊕ z

s2 = m1 ⊕ x

s3 = m0 ⊕ m2 ⊕ z. (6)

It is necessary to make a copy of the byproduct operators
(x, z) before measuring the cluster qubits because, otherwise,
they will be overwritten during the calculations described in
the previous paragraph. For example, after the measurement
of cluster qubit 1 in the arbitrary one-qubit gate in Fig. 3,
both the x and z values have been updated by measurement
outcomes from cluster qubits 0 and 1. However, the old val-
ues of x and z are necessary in the measurement settings for
cluster qubits 2 and 3.
In addition to the timing constraints imposed by the cal-

culation of the adaptive measurement settings, the need to
track the byproduct operators and calculate commutation
corrections leads to additional timing constraints on digital
implementations of the system because they must be tracked
in real time and may affect adaptive measurement settings.

7) CUTTING OUT THE RIGHT MEASUREMENT PATTERN
FROM THE CLUSTER STATE
In the measurement pattern for the cnot gate in Fig. 3(a),
there are missing links between some of the cluster qubits.
However, a fully connected cluster state does not contain
missing links.4 In order for the cnot measurement pattern
to work, it is necessary to use an ideal cluster state generator,
meaning one which can produce arbitrary patterns of nearest
neighbor entanglement in the cluster state.
In the more general approach to MBQC [17], the com-

putation always begins from the full cluster state. The links
around a cluster qubit can then be removed by performing a
computational basis measurement on that qubit. Using this
method, cluster states containing less entanglement can be
obtained from fully connected cluster states.5

The computational basis measurement that cuts out a clus-
ter qubit incurs an additional step in the calculation of basis
angles for surrounding cluster qubits. If the outcome of this
measurement is a 1, then a rotation Rz(π) must be applied to

4Some authors distinguish a fully connected cluster state from a partial
cluster state, which is an example of the more general “graph state,” because
it has vertices corresponding to cluster qubits and edges corresponding to
entanglement links. In this terminology, a fully connected cluster state is a
graph state whose graph is the fully connected 2-D lattice. To simplify our
discussion, we refer to all graph states of any entanglement pattern as cluster
states.

5This is one reason for using the three-row cnot pattern, as in [17]: It is
necessary to preserve a buffer row of cluster qubits between any two logical
qubit rows that should not be connected. These buffer qubits are measured
so as to remove the links between logical qubit rows.

the surrounding qubits, before they are measured according
to any measurement pattern [17]. This gives rise to a more
general form for the basis angle

φ = πc+ (−1)sθ (7)

where c is a single bit that is formed by xoring the measure-
ment outcomes from any cluster adjacent qubits that have
been removed using computational basis measurements.
Since the cut-out correction caused by removing a given

cluster qubit must be performed before making the measure-
ment of that qubit, the cutting out of cluster qubits introduces
a measurement dependency between the measurement out-
come of the cut-out qubit and the measurement angle φ of
the qubits above and below it in the same column. This is
different from our previous discussion on adaptive settings
where the measurement outcomes had dependencies across
columns in the cluster state and there was no intracolumn
dependence. This can be handled by measuring each column
in two rounds. First, the qubits that must be cut out are
measured; then, the surrounding cluster qubits are measured
using the modified basis angle φ in (7).
This aspect of cutting out the right-shaped pattern from

a fully connected cluster state can be avoided entirely if the
right-shaped cluster state is available from the beginning, us-
ing an ideal cluster state generator that can generate arbitrary
patterns of entanglement. We assume the existence of such a
cluster state generator for the purposes of this article and do
not consider cut-out corrections any further.

III. SIMPLIFIED MODEL OF PHOTONIC QUANTUM
COMPUTING
In this section, we describe how to implement MBQC us-
ing photons as qubits. We do not consider the genera-
tion of photonic cluster states, which is a separate sub-
ject in its own right [9], [12]. Instead, we assume an
ideal photonic cluster state generator, which can gener-
ate arbitrarily shaped rectangular cluster states, and de-
scribe how one can use it to perform photonic MBQC.
We begin by describing how photons can be used as
qubits.

A. QUANTUM COMPUTING USING PHOTONS AS QUBITS
In photonic quantum computing, a qubit is realized using a
single photon. In the dual-rail encoding considered in this
article, a single photon passes through one waveguide or
another depending on whether the qubit it represents is in
the state |0〉 or |1〉, as shown in Fig. 4. A qubit encoded like
this can be measured in the computational basis by placing a
single-photon detector at the end of the pair of waveguides.
It is important to realize that this process destroys the qubit
(by absorbing the photon), unlike a matter-based qubit which
can be reused after measurement.
Modulators and beamsplitters can be used to realize an

arbitrary one-qubit gate, as follows. First, a modulator in
the |1〉 waveguide realizes an arbitrary z-rotation, shown in
Fig. 4(d). Then, the variable beamsplitter shown in Fig. 5

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

FIGURE 4. (a) A single photon in two waveguides can be used as a qubit.
If the photon is in the top waveguide, then the qubit is in the |0〉 state,
whereas if it is in the bottom waveguide, the qubit is in the |1〉 state.
(b) Computational basis measurements can be performed by placing a
single-photon detector at the end of the waveguides. Basic one-qubit
operations can be realized using linear optical elements such as (c)
beamsplitters and (d) modulators. Complex operations can be realized
by placing the elements one after the other.

FIGURE 5. A variable beamsplitter, which realizes an Rx (φ) rotation, is
formed by placing two fixed beamsplitters on either side of a modulator.

realizes an arbitrary x-rotation. Finally, a second modulator
in the |1〉 waveguide realizes another arbitrary z-rotation,
which completes the decomposition Rz(α)Rx(β)Rz(γ).
In contrast to many other physical realizations of quantum

computing, including superconducting qubits and trapped
ions, that have a natural way to implement two-qubit oper-
ations [20], there is no simple deterministic way to imple-
ment the cnot gate, or any other two-qubit entangling gate,
in terms of passive linear optical elements (modulators and
beamsplitters). This is mainly due to the weakness of the
direct photon–photon interaction. While this might appear
to be a key limitation for photonic quantum computing, it
was shown that one can implement an artificial nonlinear
gate that works probabilistically by using additional auxiliary
photons and photodetection [16]. By parallel multiplexing
these entangling gates, one can overcome their inherently
probabilistic operation [11].
One of the arguments in favor of photonic MBQC is the

absence of two-qubit gates in the implementation of a quan-
tum circuit [9]; after the cluster state has been generated,
only one-qubit gates and computational basis measurements
are necessary. Much of the complexity is pushed to the task
of generating the cluster state [10], which is responsible for
all the entanglement between the qubits. As we describe in
the next section, it is possible to generate the cluster state
one column at a time, so that each photon only has to travel

through a fixed length cluster state generating system, fol-
lowed by a fixed length measurement system so that the over-
all photon loss can be bounded irrespective of the length of
the equivalent quantum circuit (in the gate-based model) be-
ing implemented. Given that photon loss is a primary source
of error (and decoherence) for photonic quantum comput-
ing, this represents another important advantage of photonic
MBQC [10].

B. PHOTONIC MEASUREMENT-BASED QUANTUM
COMPUTING
For matter-based implementations of MBQC, the grid of
qubits directly corresponds to a 2-D physical array of atoms.
However, for photonic quantum computing, it is not feasi-
ble to maintain a static array of qubits long enough to per-
form the measurements. This is because a photon is always
moving; so the only way to store it is to place it in a long
waveguide, called a delay line, or keep it circulating in an
on-chip cavity, such as a microring resonator. Both of these
approaches eventually lead to photon decay, primarily due
to scattering and absorption loss in the waveguide which is
exacerbated in an integrated photonics platform (waveguide
loss in a silicon platform is∼ 1 dB cm−1 [21] compared with
∼ 0.2 dB km−1 for optical fibers [22]).
Instead, the cluster state can be generated one column at a

time, and each column can be measured one after the other.
This is opposite to the original presentation of MBQC [17],
where the goal was to separate the processes of generating
the cluster state and making the measurements. The moti-
vation for generating the cluster state all at once was also
due to physical considerations: A matter-based cluster state
can be generated using a tunable Ising interaction that acts
globally on the system [18]. However, it can be shown that
the two approaches are equivalent [17, Section II.D]; there,
the successive column approach is used as a tool for verifying
measurement patterns.
When the cluster state generation and the photonmeasure-

ment is alternated, a single photon only has to travel from its
source, through the cluster state generator, through a fixed
length waveguide, and finish at the measurement block.
For photonic MBQC, in Fig. 3, the horizontal axis can,

therefore, be interpreted as time, and the vertical axis as
space. Each column of the cluster state is generated one at
a time, progressing from left to right. Using this approach
introduces a restriction which is not present in the matter-
based realization of MBQC. The scheme is only viable if the
measurement settings for the currently measured block only
depend on the outcomes of previously measured columns.
This is quite a severe restriction, ruling out many of the mea-
surement patterns originally proposed in [17] (for example,
the CPhase gate, a two-qubit gate that depends on a continu-
ous parameter). However, this requirement is satisfied for the

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

FIGURE 6. One row of the system diagram of the classical control required to implement photonic MBQC. The cluster state generator is assumed to be
ideal, outputting columns of photons at the photon clock frequency Xp. The cluster qubits represented by these photons are measured in bases
specified by the measurement pattern in the measurement block, which is controlled by the voltages α and β from the analog output system. The
measurement results are amplified and processed by the digital system, which uses them to calculate subsequent adaptive measurement settings s and
byproduct operators. A copy of the system shown is required for each logical qubit, but each block is independent apart from the cluster state generator
and the digital system.

one-qubit gate and the cnot gate described here. In the case
of the cnot gate, there are no measurement dependencies.
For the one-qubit gate, all the measurement dependencies
[the blue lines in Fig. 3(b)] point from left to right.6

C. TIMING CONSTRAINTS ON THE CLUSTER STATE
We do not consider the generation of the photonic cluster
state, apart from making the following remark about the
choice of time delay between the generation of columns,
which is crucial for our timing analysis.
In order to entangle photons Pn and Pn+1 from two adja-

cent columns n and n+ 1 of the cluster state, they must be
brought to the same location (for example, a beamsplitter) at
the same time. However, when performing the cluster qubit
measurement for the MBQC measurement pattern, Pn (from
column n) must arrive at the detector a finite time before
Pn+1 (from column n+ 1), to allow time for the processing
of measurement settings, byproduct operators, and commu-
tation corrections. Therefore, Pn+1 must experience a delay
Tp (realized using an on-chip delay line or optical fiber) after
the entangling operation of adjacent columns and the mea-
surement block. The inverse of this delay Xp = 1/Tp is the
photonic clock frequency, which is the rate at which columns
are produced and measured, and which determines the speed
at which the quantum computation progresses.
Two distinct physical mechanisms provide upper and

lower bounds for this delay. An upper bound is given by the
loss of the on-chip delay line, optical fiber, or routing system
involved in the delay of the photon. The lower bound is given
by the time required to process the measurement outcomes.
The object of our analysis is to estimate the lower bound.

6In the context of photonic quantum computing, this is sometimes re-
ferred to as feedforward of measurement results.

D. FULL MBQC SYSTEM
Fig. 6 shows the full system required for processing one row
of the MBQC measurement pattern, which corresponds to
one logical qubit. It consists of the following six parts.

1) The cluster state generator, which outputs the dual-rail
encoded photon in each column of the cluster state one
after the other. The photon has been entangled with the
previous photon in the same row, and with the photons
in the rows above and below as necessary for the mea-
surement pattern.

2) The delay line, described in the previous section, which
is necessary to temporally separate the photons in ad-
jacent columns after they have been entangled.

3) The measurement block, which consists of passive lin-
ear optical elements that apply a configurable one-
qubit operation, followed by a computational basis
measurement.

4) The photon detector amplifier which converts the out-
put from a single-photon detector to a logic level suit-
able for processing by a digital system.

5) The digital system that processes measurement out-
comes into adaptive measurement settings and keeps
track of byproduct operators.

6) The analog output system, controlled by the digital sys-
tem, which produces the analog voltage levels needed
to drive the modulators in the measurement block.

The job of the digital system is to convert the measure-
ment results into adaptive measurement settings for future
measurements, and byproduct operators for interpreting the
final measured outcomes.
The input to the digital system is the output pulse from

the photon detector amplifier. This may be, for example, a

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

TABLE 1. One-Qubit Rotations Generated by Analog System Modulator
Voltages

When z = 1, a regular XY -basis measurement is performed, which accounts for the
majority of cluster state measurements. A computational basis measurement is made
at the end of the computation by setting z = 0.

superconducting-nanowire single-photon detector [23] fol-
lowed by a low-noise amplifier [24].
The output from the digital system includes the digital

form of the angle θ , the adaptive measurement setting output
s, and a signal z which determines whether the measurement
is in the XY -plane of the Bloch sphere, or if it is a computa-
tional basis measurement.
The analog output system is responsible for generating

the voltages that control the modulators in the measurement
block. It may be implemented using a combination of fast
digital-to-analog converters (DACs) and modulator drivers.
Twomodulators are necessary: one (M1 in Fig. 6) chooses be-
tween an XY -measurement and a computational basis mea-
surement; and another (M2) controls the basis angle φ for the
XY -measurement. They are controlled by the voltages α and
β, respectively, defined as follows:7

α = π

2
z

β = π

2
− φ = π

2
− (−1)sθ.

(8)

These modulator voltages realize the one-qubit rotation
Rx(α)Rz(β), which sets the basis for the measurement. The
one-qubit rotations are summarized in Table 1.
The voltage α controls the Rx rotation portion of the mea-

surement setting, which determines whether the measure-
ment is a computational basis measurement (z = 0) or an
XY -measurement (z = 1). The voltage β controls the angle
of the XY -plane measurement φ, which is itself determined
by the fixed value θ and the adaptive measurement setting s.
In this article, we focus on the digital control system and

present a simple reference design capable of performing the
one-qubit gate and cnot gate described in Section II. We
analyze the timing behavior of this design by implementing
it with an FPGA and performing static timing analysis. The
main objective of this analysis is to place timing constraints
on the input and output analog systems and, therefore, on
the overall quantum photonic clock rate of the system. In the
interest of simplicity, we ignore the final computational basis
measurement ofMBQC, which can easily be incorporated by
setting z = 0 for the final column of the pattern.

7Voltages are expressed in modulator-phase units, whereV = 1 is chosen
such that the modulator applies a 1 rad phase shift.

TABLE 2. Summary of the Notation Used in Fig. 8

When a signals is a bus (a bold line in Fig. 8, consisting ofmultiple parallel signals), the
signals are indexed from 0 upwards, and the range is expressed using square brackets
after the signal name. For example, s[3:0] is a bus of four signals. Subsets of the
signals use the same notation (s[2:1] is signal 2 and 1), and a single signal is
identified using one index (s[0] is signal 0).

FIGURE 7. Clocks used in the design, and their phase relationships. The
frequencies of all three clocks are the same and equal to the photonic
clock cycle rate. The relative phases φps and φsr of the clocks are design
parameters, which we investigate in Section VI.

IV. DIGITAL SYSTEM DESIGN
In the following sections, we describe an example digital
system design for processing measurement outcomes into
adaptive measurement settings and byproduct operators. A
schematic overview of the digital system is presented in Fig.
8. A summary of notation used in the diagrams is provided
in Table 2.

A. CLOCK PLANNING
We present a design that can process measurements within a
single clock cycle, by using three out-of-phase clocks. We
consider a system-synchronous design, with the photonic
clock Xp being the system clock in the system.

On the rising edge of Xp, the photon arrives in the mea-
surement block, causing a pulse at the output of the single-
photon detector. This measurement outcome is amplified and
triggers a latch which provides a constant digital signal to the
digital system.
The other two clocks, Xs and Xr, are internal to the digital

system. On the rising edge of the measurement sample clock
Xs, the measurement latch is sampled by the digital system.
The rising edge of Xs must be sufficiently offset from the
rising edge of Xp so that the output from the latch has settled

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

to a steady state. This delay must include the time required
to amplify the photon detector output.
On the rising edge of the reset clock Xr, the latch is re-

set ready for the next measurement round. This event must
occur after the rising edge of Xs, but before the rising edge
of the next photon clock cycle Xp, to satisfy the hold time
requirement of the sampling logic.
The computation of the adaptive measurement setting is

performed using combinational logic at the earliest possible
time that the latch output is valid, on the rising edge of Xs.
The measurement setting for the next measurement is then
computed and becomes available a short amount of time after
the rising edge of Xs, corresponding to the combinational
logic delay.
In addition, the byproduct operators are also computed on

the rising edge of Xs using combinational logic. The com-
mutation correction, which must be applied at the boundary
of a quantum gate, is then computed on the rising edge of Xr
because it requires the value of the byproduct operators com-
puted on Xs. The program which controls the measurement
pattern is loaded from memory on Xp so that it is ready for
the computations that take place on Xs and Xr.

The design of each computational subsystem is described
in detail below.

B. ADAPTIVE MEASUREMENT SETTING GENERATION
The most important feature of the adaptive measurement set-
ting s is that it must be present as soon as possible, ready for
the next measurement round. The earliest possible time that
s can be computed is on the rising edge of Xs. From Fig. 3,
the value of s can depend on previous measurement settings
and stored byproduct operator values from the current qubit.
A shift register is used to store the past three measurement

values,8 m0, m1, and m2, where m0 is the most recent mea-
surement outcome. The shift register is loaded sequentially
with the next measurement on the rising edge of Xs. The out-
put s is then obtained using a combinational circuit from the
shift register; so it is present soon after the rising edge of Xs.

The outputs from the shift register are combined bitwise
with a 3-b mask Am and xored together to produce the mea-
surement contribution to s. The stored byproduct operators
(xs, zs) aremasked using a 2-b valueAb and xored to produce
a second contribution to s. These two contributions are xored
to produce s itself. Putting together these two contributions
gives the following expression for s:

s =
(

2⊕
i=0

Am[i]mi

)
⊕ (Ab[1]xs ⊕ Ab[0]zs)

where square brackets denote bitwise access.
The masks Am and Ab for each measurement round are

chosen in such a way that they combine past measurement
outcomes and byproduct operators correctly to realize the

8For more complicated measurement patterns, it may be necessary to
store more than three measurements. However, for the arbitrary one-qubit
gate and cnot gate, three measurements are sufficient.

one-qubit gate, as shown in Fig. 3(b). The cnot gate has no
adaptive measurement settings; so Am = Ab = 0 in that case.

The mask Am must remain valid through the rising edge of
Xp; so it is registered on the rising edge of Xs. The byproduct
operator contribution due to Ab is also registered on Xs, so
that the byproduct term persists through Xp. These registers
are necessary because the program word, which contains the
masks (see Section IV-E), is updated on the rising edge Xp.

A disadvantage of this design is that the output s may
contain function hazards [25], due to the propagation delays
from each of the flip-flops to the output s. These hazards do
not affect the digital function of the (synchronous) digital
system; however, they may contribute to the power dissipa-
tion of the system and/or noise in the analog output, depend-
ing on how it is implemented. In order to avoid the hazards,
the output s could be registered; however, this would require
another clock edge soon after Xs to preserve the setup time
of the analog output stage.
The adaptive system is shaded in purple in Fig. 8(b).

C. BYPRODUCT OPERATOR CALCULATION
The byproduct operators must be updated after each mea-
surement round. Since they only depend on the measurement
outcomes, they can also be computed on the rising edge of
Xs.

The byproduct operators comprise two bits (x, z), which
are updated according to the measurement outcomes from
the current logical qubit, m(1)

0 , and the two neighboring log-

ical qubits, m(2)
0 above and m(0)

0 below. Any of these three
measurements may be xored in any combination, together
with the old byproduct operator values (x, z), to produce
new (x′, z′). Two 3-b masks Bx and Bz control of which the
three measurement outcomes should be xored together to
produce the updated x and z, so that the byproduct operators
are obtained using the following equations:

x′ = x⊕
⎛
⎝ 2⊕

j=0

Bx[j]m
(j)
0

⎞
⎠

z′ = z⊕
⎛
⎝ 2⊕

j=0

Bz[j]m
(j)
0

⎞
⎠ .

The masks Bx and Bz for each measurement round are
chosen in such a way that they combine measurement out-
comes from the current and surrounding logical qubit rows
to form the updates to the byproduct operators that are shown
in Fig. 3.
It is sometimes necessary to add a constant [the 1 in (1) for

z′c] to the byproduct operators, as in the case of the cnot pat-
tern. This constant addition is controlled by the commutation
correction program, as described in the following section.
The main byproduct operator calculation is shaded in

Fig. 8(b).

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

(a)

(b)

FIGURE 8. (a) Digital system diagram for multiple qubits. The “unit cell” for each logical qubit (shaded green) has a measurement latch, a program
memory, and a control system for calculating measurement settings and byproduct operators. (b) Design of the control system. In the high level
schematic diagram of the control system, buses are denoted with bold lines, and the bus width is written next to the wire. The circles apply bitwise
operations between their inputs: the cross stands for XOR and the dot stands for AND. The right port of the circle is the output, and all other ports are
inputs. The logic gates are multi-input, with inputs from all the buses and wires connected on their left (i.e., wires inside a bus will be combined in the
logic operation). Each part of the diagram is shaded according to its function, using the same coloring as in Fig. 3. Flip-flops are clocked on the rising
edge of their clock input, and elements whose output is LUT represent combinational logic. Reset signaling is omitted from the diagram for simplicity.

D. COMMUTATION CORRECTIONS
For the cnot gate, the commutation correction is performed
by mixing the values of the byproduct operators between the
control and target logical qubits, as described in (5).
For an arbitrary one-qubit gate, the correction is more

complicated, requiring the use of the byproduct operators

in the calculation of the measurement settings. However, in
order to avoid overwriting these correctional byproduct op-
erators prematurely, it is necessary to store them in a separate
register, called the stored byproduct operator register. The
correction for the one-qubit gate then amounts to loading this
register from the current byproduct operators.

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

TABLE 3. Interpretation of the Bit Fields of C, Which Controls the
Commutation Correction for the Arbitrary One-Qubit Gate and CNOT Gate,
and Also Controls the Addition of Constants to the Byproduct Operator

The meaning of bits 2 and 3 depend on whether bits 1 or 4 are set, which are mutually
exclusive. IfC = 0, then no operation is performed.

TABLE 4. Example Two-Qubit Computation Comprising a One-Qubit Gate
U = Rx (0.3)Rz (0.2)Rx (0.1) on Qubit 0, Followed by a CNOT Between
Qubits 0 and 1 (Qubit 0 is the Control)

The program Pi (written in hexadecimal in the table) combines the measurement out-
comes mi (randomly generated) to produce the adaptive measurement setting si and
the byproduct operators bi (the least significant bit is z) for the ith qubit. The basis
measurement angles θi are included for completeness (si is combined with θi to produce
the measurement angle φi).

Both these corrections, for the cnot and the one-qubit
gate, require the byproduct operator values and must there-
fore be calculated on the rising edge of Xr rather than Xs.
The behavior of this correction is controlled by a 5-b value
C, whose interpretation is shown in Table 3.

Most of the time, C = 0 and the commutation correction
does nothing. It is only directly before gate boundaries that a
commutation correction must be performed.
The commutation corrections are shaded in orange in

Fig. 8(b).

E. PROGRAM WORD
The digital system is controlled using a 16-b program word
P which is formed by concatenating the masks and control
bits in the previous sections as follows:

P = CAbAmBxBz. (9)

Each logical qubit requires its own set of programwords, one
per measurement round.
Table 4 shows an example calculation for the two

qubit circuit containing an arbitrary one-qubit gate
U = Rx(0.3)Rz(0.2)Rx(0.1) on the first qubit, followed
by a cnot gate between the first and second qubit. The
table contains randomly chosen measurement outcomes and
the resulting adaptive measurement settings and byproduct

TABLE 5. Utilization of Flip-Flops, Lookup Tables and Input/Output Pads
(I/O) in the Design, for N = 1 Logical Qubit and N = 20 Logical Qubits,
for the Control System (CS) in Fig. 8 and the Full Design

The proportion of device resources is included in the utilization (Util.) columns.

operators that result from themeasurement pattern, including
the program word that is used to make the calculations.
It is clear that the program word could be compressed

to save on memory usage. In our example design, we have
prioritized program simplicity over memory usage.

F. FPGA IMPLEMENTATION OF THE DESIGN
In order to analyze the timing characteristics of the system,
we wrote an FPGA implementation of the design using the
VHSIC Hardware Description Language very high-speed
integrated circuit hardware description language (VHDL),
targeting a Xilinx Kintex-7 FPGA (part no. xc7k70tfbg484-
2). We used the synthesis tool Xilinx Vivado 2020.2 to im-
plement the design and perform static timing analysis.
We used the mixed-mode clock manager (MMCM) [26] to

generate the two out-of-phase clocks Xs and Xr from the (ex-
ternal) system clock Xp. The program was stored in memory
generated by an instance of the distributed memory gener-
ator IP [27], configured as ROM so that we could store the
program in a coefficient file for the purpose of verifying the
design.
The utilization of logic and input/output (I/O) pads in the

design is provided for 1 logical qubit and 20 logical qubits
in Table 5. The data were obtained from the utilization re-
port generated by Vivado after implementing the system for
each number of logical qubits. The number of logic elements
scales more than linearly between 1 and 20 logical qubits
because the synthesis tool optimizes away logical qubit inter-
connects in the single logical qubit case. However, the overall
utilization of flip-flops and lookup tables in the design is
very low (< 1%of device resources) because the calculations
involved in the design are quite simple.
The use of I/O pads is quite high, due to the need for one

measurement input m, one adaptive measurement setting s,
and two byproduct operator lines per logical qubit. In our
design, the total number of I/O pads required is

K = 4N + 4

where N is the number of logical qubits. This includes four
common signals: the input clock Xp; the clock-is-locked out-
put signal from theMMCM; a reset signal; and an enable sig-
nal. By accessing the byproduct operators via a low speed se-
rial interface, it would be possible to reduce this pin count to

K ∼ 2N

which includes only the measurement inputs m and adaptive
measurement setting outputs s. On the largest FPGA in the
7-series family [28], the Virtex-7 xc7v2000t device (which

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

has 1200 user I/O pads), this provides an upper bound on the
number of logical qubits (cluster state rows) of N ∼ 600.

Input/output delays are also a bottleneck for performance
in the FPGA design, as we show in Section VI. The Xil-
inx 7-series devices were chosen because they have a level-
sensitive latch built into their input logic slice (LCDE) [29],
which forms the first stage of the digital system. In our de-
sign, the availability of I/O resources on the FPGA device
places a greater restriction on the scalability of the design
than the utilization of logical resources does. However, when
the system is scaled to maximally utilize the I/O resources
of the target device, it is likely that timing constraints in
addition to those shown in Section VI would follow from
routing delays inherent in managing this I/O bottleneck at
large numbers of qubits.
A disadvantage of the design is that it is not possible to

place the output s in the output logic slice because there is
combinational logic between the final register and the out-
put port [29]. It is also not possible to place the byproduct
operator registers in output logic slices because the output is
rerouted to the internal FPGA fabric for use in updating the
byproduct operators [see the feedback loop in Fig. 8(b)].
As we show in Section VI, the clock frequency is not a

bottleneck in the system; so it may be possible to create
another design with multicycle latency, where the outputs
are stored in separate registers and eligible for placing in the
output logic slice. This may remove some of the output delay
and allow a slightly higher clock frequency. It would also
remove the logic hazards present in the output s.

V. VERIFICATION OF THE DESIGN
Due to the nonintuitive nature of the measurement patterns
and the complexity of the digital hardware design, it is not
possible to verify the functional correctness of the design
simply by looking at the output of simulations. This section
describes the verification of the measurement patterns and
the program logic, and also the hardware design.

A. MEASUREMENT-BASED QUANTUM COMPUTING
SIMULATOR
Wewrote anMBQC simulator in C++ for the purpose of gen-
erating data to verify the digital system design. The program
can simulate a cluster state containing up to 14 logical qubits
by only holding two columns of the cluster state in memory
at any one time.
The program is designed to mimic the operation of the

hardware, using the programword P to process measurement
outcomes and apply quantum operations to the simulated
quantum state according to the resulting adaptive measure-
ment settings. At the end of the quantum circuit, the byprod-
uct operators are applied to the state to obtain the result from
the quantum computation.
The quantum circuit is also performed in the gate-based

model on a state vector containing the same number of logi-
cal qubits. At the end, this state vector is compared with that

obtained from the cluster state computation, to check that
they agree with each other.
The state of the cluster state simulator at each measure-

ment round is written to a file, which is used as the input to
the hardware simulator. It contains the program word and the
measurement outcomes, which are the inputs to the digital
system. It also contains the value of the adaptive measure-
ment settings, the byproduct operators and the stored byprod-
uct operators, which are the outputs from the digital system.

B. VHDL TESTBENCHES
The function of the digital system was verified using test-
benches written in VHDL. The testbenches read stimulus and
output data from the simulation output file described in the
previous section.
The output from the system, the adaptive measurement

setting, and the byproduct operators are compared with the
values from the simulation file. The simulation passes if all
the values are equal, which is tested automatically. An exam-
ple waveform output from the testbench, for a single logical
qubit, is shown in Fig. 9.

VI. TIMING ANALYSIS
We used static timing analysis to establish the maximum op-
erating frequency of the design and to obtain the input/output
delays associated with the system. The critical path is made
up of two components:

1) the path from the input port m (clocked on the rising
edge of Xp) to the byproduct operator register (loaded
on the rising edge of Xs);

2) the path from the shift register output (loaded on the
rising edge of Xs) to the output port s (clocked on the
rising edge of Xp).

By modifying the phase shift of Xs relative to Xp (φps in
Fig. 7), it is possible to allocate more time to one path or the
other. The phase of Xr (φpr in Fig. 7) must also be adjusted
to allow timing closure of paths between the Xs and Xr clock
domains. We established the maximum operating frequency
Fmax of the system by manually adjusting the phase of Xs and
Xr to balance the worst negative setup slack between the crit-
ical paths, while increasing the frequency of the design, until
both paths fail to meet timing. Using this method, we ob-
tained Fmax = 190 MHz using φps = 220◦ and φpr = 300◦.
The phase difference 80◦ between Xs and Xr represents the
amount of the time taken for the internal FPGA logic to
process the latched measurement outcome before it is reset.
We then performed the timing analysis at each frequency

between 10 and 190 MHz, in steps of 10 MHz, to establish
the most generous input and output constraints that still allow
timing closure at each frequency. All input/output constraints
are expressed with respect to the external clock Xp (the sys-
tem clock).
The input constraint is specified by the clock-to-out time

tco of the input signal m, which is equal to the time delay
between the rising edge of Xp and the pulse generated by the

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

FIGURE 9. Example of the verification method we used to establish the working of the system. The outputs s and b are compared with the true values s′
and b′ from the simulation file. It is clear from the figure that the output from the digital system agrees with the simulation file in each clock cycle. The
numbers in the rows b and b′ are the result of concatenating the two byproduct operator bits in the format xz and interpreting the result as an integer.
(The hardware outputs slightly lag the true values because the file is loaded on Xp in the testbench, whereas the design outputs the measurement
settings and byproduct operators on the rising edge of Xs.)

FIGURE 10. Most generous input and output delay constraints that allow
implementation of the design at each frequency. The total delay, which
can be apportioned between input and output analog systems by
adjusting the phase of Xs, represents the maximum amount of time
available to the analog system shown in Fig. 6.

input analog system at m. This time constrains the analog
characteristics of the single-photon detector amplifier.
The output constraint is the setup time tsu of the output

signal s with respect to the system clock Xp, which is the de-
lay between the time that s transitions at the boundary of the
FPGA and the next rising edge of Xp. This time determines
the required operating speed of the output DAC system and
modulator drivers, which must be able to set the voltages of
the modulators before the next photon arrives on the rising
edge of Xp.
The input/output timing constraints are plotted as a func-

tion of frequency in Fig. 10. The input constraint is system-
atically more generous than the output constraint because of
the choice of phase of Xs. The sum of the input and output
constraints must be less than the total input/output slack, also
shown in the figure.
Fig. 11 shows a graph of the proportion of the clock cy-

cle Xp taken up with digital processing, as a function of
frequency. It is clear that at higher frequencies, the digital

FIGURE 11. Proportion of the clock cycle devoted to processing the
adaptive measurement settings and the byproduct operators, as a
function of photon clock frequency. At the higher frequencies, nearly all
of the cycle is spent processing the measurements, leaving almost no
time for the analog amplification at the input and output (shown in
green and red).

processing dominates the clock cycle, leaving very little time
for the analog amplifier systems.
At a representative clock frequency of 150 MHz, the pho-

tons would need to be delayed for 6.67 ns in either an op-
tical fiber or a waveguide delay line. Assuming a standard
silicon-on-insulator (SOI) platform, the delay line must be
approximately 83 cm, assuming a mode index of ∼ 2.4 [21].
We reimplemented the design targeting a higher

end FPGA (Xilinx Kintex Ultrascale+, part no.
xcku5p-ffvd900-3-e) to see whether the maximum clock
frequency could be improved. We found that the maximum
clock frequency increased to Fmax = 220 MHz using
φps = 140◦ and φpr = 230◦. In this case, at the maximum
clock frequency, less time is allocated to the input analog
system compared with the 7-series FPGA. The phase
difference of 90◦ between Xs and Xr indicates that

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

approximately the same time (1.125 ns) is taken by the
internal digital system compared with the 7-series FPGA
(1.152 ns).

VII. EXTENDING THE DESIGN
There are several improvements that could be made to the
implementation we have presented in this article.
It is likely that a performance improvement could be ob-

tained by implementing the digital design using an ASIC.
Critical path delays due to logic have been found to decrease
by 3–4 times in standard-cell ASIC designs [30]. However,
this may not translate to a performance improvement in this
design because the majority of the critical path delays come
from the input/output buffers, not the logic. To improve this,
it may be possible to utilize very high speed latches and out-
put buffer designs, with delays on the order of 100 ps [31]. A
full analysis of the input/output buffer delays should be per-
formed in tandem with the design of the input/output analog
systems, to ensure compatibility between the two systems.
At this point, the requirement for absolute synchronization
between the cluster state generator and the digital control
system, using a system synchronous architecture [32] may
become the bottleneck to the design. Such schemes are often
limited to speed up to 200–300 MHz, due to clock skew and
data path delays [33].
For measurement patterns like the CPhase gate [17, Sec-

tion IV-C], it is necessary to be able to arbitrarily reorder
the measurements between pairs of columns. This is to sat-
isfy the requirement that measurement outcomes are always
available before any dependent adaptive measurement set-
tings are required. Depending on the complexity of the mea-
surement pattern, it may be necessary to merge more than
twomeasurement columns. Extending the implementation to
support these situations would increase the number of gates
(measurement patterns) that are realizable with the system.
The design could be extended to support nonlocality of

the byproduct operator calculation. In the design discussed in
this article, the byproduct operators depend only onmeasure-
ment outcomes from adjacent logical qubits. However, there
are measurement patterns for which byproduct operators for
a given logical qubit may depend on cluster qubits that are
further away [17, Section IV-C]. This may lead to a routing
problem in FPGA and ASIC designs, especially as the num-
ber of qubits increases, which are important to quantify.
It is clear that there aremany realistic features of the design

that we could have incorporated into our model, but have not.
For example, a realistic system would have to account for
the finite efficiency and dead-time inherent in single photon
detectors [34]. This dead time would place a lower bound
on the photonic cycle time of the system, and the nonunit
efficiency would introduce the need for error correction even
in our simple model.
Ultimately, although the architecture we have analyzed in

this article is highly idealized, it still shows that, even in
this simple scenario, classical electronics places significant
constraints on the design of photonic quantum computers. A

more realistic implementation would incorporate the effects
of fault-tolerance, error correction, photon loss, and detec-
tor deficiencies. Producing such an implementation would
require the specification of the architecture, the error models,
and the device models, as part of its underlying assumptions.
A much more thorough and wide-ranging design analysis
would, therefore, be necessary to understand how all ele-
ments of the resulting design interact to place constraints on
the operation of the photonic quantum computer.

VIII. DISCUSSION
Although we have analyzed a highly simplified scenario,
there are important takeaways which we believe will apply
to any implementation of photonic quantum computing.
In contrast to every other approach to building quantum

computers, photonicMBQC relies onmanipulating andmea-
suring flying-qubit states. This means that the effective “life-
time” of a qubit in these platforms is ultimately bounded
by the length of time that photons can be kept circulating
inside an optical delay line, either on- or off-chip. The fact
that the spatial and temporal properties of the system cannot
be decoupled is at the root of many of the unique timing
constraints that photonic approaches need to satisfy. This is
in contrast to other matter-based systems where the qubit
lifetime is, to first order, unrelated to its spatial footprint.
In an integrated photonic approach, the only way to get

longer qubit lifetimes is by increasing the length of the on-
chip delay line. Even with a high index contrast platform
like SOI, which allows low-loss bend radii < 5μm, getting
realistic delays beyond 2–3 ns is extremely challenging, both
due to the increasing insertion loss (1–2 dB cm−1) and the
increasing on-chip footprint (spiral delay lines with lengths
∼ 10 cm) [21]. One solution to the timing constraints is
to use an integrated photonic quantum memory [35] which
wouldmake photonicMBQC implementations closer to their
matter-based counterparts by allowing one to map quantum
information on to a long-lived spin/hyperfine transition.
Longer delays can be obtained in principle by using low-

loss (less than 0.2 dB km−1) optical fibers off-chip, which is
being currently considered in the context of FBQC [15], al-
though this approach is not without its own tradeoffs. Losses
in the grating couplers involved in getting the light on and
off the chip must be accounted for, in addition to losses
involved in the optical switching network needed to get the
cluster states to the grating couplers. These requirements can,
in principle, be satisfied by state-of-the-art lithium niobate
modulators; however, the size and form factors are not really
suitable for very large-scale integration, which is a critical
requirement from a systems perspective. State-of-the-art sil-
icon modulators are very far from ideal, especially in terms
of insertion loss (∼ 6dB/device) [36]. Often, architectural
proposals for photonic quantum computing are highly the-
oretical [12], [13], [15], by which we mean that it is often
quite difficult for an engineer to see how to construct the
hardware components required for the architecture. It is our
belief that a thorough study of the implementation details of

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

these schemes is necessary to fully establish the feasibility
of these proposals for the realization of quantum computers.
In the design we consider here, there is almost no algo-

rithmic complexity involved. The systemmust perform a few
arithmetic operations per clock cycle, which are hardcoded
using a program word. In every other approach to photonic
quantum computing, there is a substantial increase in algo-
rithmic complexity, for example, due to the need to either
search for paths in an incomplete cluster state (using breadth-
first search, or some equivalent search process) [37], [38] or
perform calculations relating to error correction [39]. We be-
lieve it is highly likely that these systems will be constrained
by digital system imposed timing constraints, arising solely
due to the increased complexity of performing the algorithms
involved in real time. Any difficulties of this kind involved in
implementing these approaches can only be understood by
analyzing candidate implementations, in a similar manner to
the way we have analyzed our simple system.

IX. CONCLUSION
We have provided a practical description of the measurement
patterns for one-qubit gates and the cnot gate and shown in
detail how to implement a digital control system for photonic
MBQC, in the presence of an ideal path-encoded photonic
cluster state generator. It is clear from the timing analysis of
our FPGA implementation of this system that it places sub-
stantial constraints on the input and output analog systems
needed at the interface between the classical and quantum
subsystems. For example, at a photon clock frequency of
150 MHz, the total time available for the input and output
analog processing is 1.59 ns out of the total period of 6.67 ns.
The remaining 5.08 ns is consumed by the logic delays inside
the FPGA design. At the same time, a photon clock period
of 6.67 ns corresponds to a long delay line (∼ 83 cm), which
will occupy quite a large footprint in an integrated implemen-
tation of photonic MBQC.
While in this work we have implemented a proof-of-

principle design to study the constraints, it is clear that the
digital system and implementation can be further optimized.
For example, since the maximum frequency of our design is
less than 200 MHz and the maximum clock frequency of the
target FPGA is greater than 600 MHz, it may be possible to
create amulticycle digital design so as to properly register the
inputs and outputs and place them in dedicated input/output
slices. This would likely increase the maximum clock fre-
quency somewhat while maintaining the input/output delay
constraints.
Incorporating the features of a realistic photonic quantum

computing system, based on any of the modern approaches
to photonic quantum computing, adds further algorithmic
complexity to the design. Our work provides a building block
for quantum engineers to produce detailed, verifiable, and
open-source implementations of these systems to establish
what electronic control system constraints are present in
those cases.

APPENDIX A
GATE-BASED QUANTUM COMPUTING
This appendix contains a brief overview of quantum com-
puting in the gate-based model. The basic unit of quantum
computation is the qubit, which is a two-state system, anal-
ogous to a bit, except complex linear combinations of the
zero-state (denoted |0〉) and the one-state (denoted |1〉) are
also valid states. The states |ψ〉 of a qubit can be expressed
as

|ψ〉 = a|0〉 + b|1〉, a ∈ R, b ∈ C. (10)

The qubit can only ever be observed in the state |0〉 or |1〉,
with probabilities given by the ratio of |a|2 to |b|2. The act
of observing the qubit is called a measurement. The absolute
values of a and b have no independent physical meaning; so
the condition |a|2 + |b|2 = 1 is imposed so that the proba-
bilities are equal to |a|2 and |b|2. Likewise, the arguments of
the complex numbers a and b have no physical meaning; so
it is possible to impose a ∈ R without loss of generality. The
argument of b is then the relative phase between |0〉 and |1〉.

The states of a single qubit can be identified with points on
the surface of a sphere, called the Bloch sphere, as shown in
Fig. 2. The mapping between the a and b and the real number
angles θ and φ is given by the following identity:

a|0〉 + b|1〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉.
The angle φ in the equator of the Bloch sphere is the rela-
tive phase between |0〉 and |1〉, and the angle θ controls the
probability of observing |0〉 or |1〉 upon measurement.

1) ONE-QUBIT GATES
The state of the qubit can be changed by applying a quantum
gate. The valid gates on a single qubit, called one-qubit gates,
are those which correspond to a rotation of the points on the
Bloch sphere about any axis, by any angle. The gates that
perform rotations of the state about the x, y, and z axes are
denoted as Rx(α), Ry(α), and Rz(α), where α is the angle of
rotation according to the right-hand rule. An arbitrary one-
qubit rotation can be formed by applying x- and z-rotations
in sequence as Rx(ζ)Rz(η)Rx(ξ) (applied from right to left).
This follows from the decomposition using Euler angles of
an arbitrary rotation into x- and z-rotations.

2) MEASUREMENT
When a qubit is measured, it always collapses to either the
state |0〉, with probability |a|2, or the state |1〉, with probabil-
ity |b|2. This is called a computational basis measurement.
However, it is possible to generalize the concept of mea-

surement so that an “observation” causes the qubit to col-
lapse into the state |0′〉 or the state |1′〉, which are any two
antipodal points on the Bloch sphere, joined by a line L. This
observation is made by using one-qubit gates to transform
the line L to the line through |0〉 and |1〉, and then making a
computational basis measurement. For example, to measure
along the line denoted by L in Fig. 2, it is necessary to apply
a z-rotation Rz(−φ + π/2) to align the state |0′〉 with the

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

positive y-axis, followed by an x-rotation Rx(π/2) to obtain
|0〉.

It is possible to measure along any line in this way by
applying an arbitrary one-qubit gate Rz(α)Rx(β)Rz(γ) and
then measuring in the computational basis. It is important
to realize that general measurements involve the application
of a one-qubit gate before making a computational basis
measurement.

3) TWO-QUBIT GATES
The states of two qubits can be expressed analogously to (10)
as

|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 (11)

where a ∈ R and b, c, d ∈ C. The sum is over all the four
possible states that the two qubits could be observed in. As
with the single-qubit case, |a|2 + |b|2 + |c|2 + |d|2 = 1 is
imposed, and the probability of obtaining, for example, |01〉,
is given by |b|2.
There is no equivalent of the Bloch sphere for graphically

presenting the states of two qubits. An example of a two-
qubit gate is the cnot gate. The action of this gate on the
state (11) above is

|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉
�→ |ψ〉 = a|00〉 + b|01〉 + c|11〉 + d|10〉 (12)

that is, the states |10〉 and |11〉 are reversed. The interpre-
tation of this gate is that the first (leftmost) qubit controls
whether a NOT gate is applied to the second (rightmost)
qubit. The first qubit is called the control qubit, and the
second qubit the target.
Analogously to the way that a nand gate is universal for

digital logic, the cnot gate combined with the basic rotations
Rx(α), Ry(α), and Rz(α) are universal for quantum compu-
tation. To build up any complicated computation, all that is
required is to apply the correct string of one- and two-qubit
gates, one after the other, to a set of qubits. For example, in
Fig. 1(c), an arbitrary one-qubit gate U = Rx(ζ)Rz(η)Rx(ξ)
is applied to the top qubit, and a cnot gate is applied between
the bottom two qubits.

APPENDIX B
CNOT MEASUREMENT PATTERN
We use a reduced measurement pattern for the cnot gate that
only uses two rows of cluster qubits, instead of the three row
pattern in [17]. The pattern is derived using the same method
outlined in Section II-G7 of that paper for the calculation of
the three-row cnot gate. In order to explain the derivation,
we begin by discussing some technical aspects of cluster
states and describe what it means for a measurement pattern
to realize a gate.
A cluster state |φC〉 onN qubits is created by placing all the

qubits in the |+〉 state, and then applying CZ gates between
each pair of qubits that should have an entanglement link
(shown as red line segments in Fig. 12). It can be shown [17]

FIGURE 12. Labeling of the cluster qubits for the purpose of deriving the
CNOT measurement pattern. When a gate is realized in MBQC, the input
state starts on the IN column and is teleported to the OUT column R and
S by applying the measurement pattern. The black dots show the
location of the correlation operators Ka in (20).

that cluster states satisfy the eigenvalue equations

Ka|φC〉 =
(
Xa
∏
b∼a

Zb

)
|φC〉 = |φC〉 (13)

where the first equality defines the correlation operator Ka
on the cluster qubit a. There is one such equation for each
cluster qubit a, and in each equation, the product is over all
other neighboring cluster qubits b joined by red line segments
to a (denoted as b ∼ a).

To state what it means for a measurement pattern to realize
a gate G, we use the arrangement of qubits shown in Fig. 12,
on which the cnot measurement pattern is defined. Instead
of placing all the qubits in the |+〉 state, assume qubits 0 and
6 (the IN qubits) are in an arbitrary state |φ〉. As before, place
all the other qubits (including theOUTqubits) in the |+〉 state
and apply CZ gates wherever there are red line segments in
Fig. 12. Now, after themeasurement pattern for the cnot gate
has been applied, meaning that all the IN and INTERNAL
qubits have been measured out, there remains a two-qubit
state |ψ〉 on the OUT qubits R and S. The sense in which the
measurement pattern has realized the gateG is that input and
output states are related by

|φ〉 = BG|ψ〉 (14)

where B is the byproduct operator for the measurement pat-
tern. In other words, the measurement pattern has the effect
of moving the state of the IN column to the OUT column, and
transforming it according to the gate which is being realized
by the measurement pattern.
The measurement pattern for the cnot gate is obtained

by using a theorem [17, Theorem 1] that relates eigenvalue
equations derived from (13) and a given measurement pat-
tern, to the gate G which that measurement pattern realizes.
The content of the theorem is that it is only necessary to
check how a cluster state |φC〉 is affected by the measurement
pattern (where the state of qubits 0 and 6 are |+〉) in order to
establish that themeasurement patternworks for any other IN
state |φ〉. In the interest of simplicity, We state the theorem
for the case of a two-qubit gate G like the cnot gate.
Theorem 1: Suppose that a cluster state |φC〉 is prepared

on the pattern of 14 qubits shown in Fig. 12, for the pur-
pose of realizing a two-qubit gate G acting on logical qubits
labeled C and T . Suppose that a set of measurements M is

6000220 VOLUME 3, 2022

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS Engineeringuantum
Transactions onIEEE

performed on the INTERNAL cluster qubits 1–5 and 7–11,
resulting in a state |ψC〉 on the remaining qubits (0, 6, R, and
S), which satisfies the following sets of eigenvalue equations:

X0
[
GXCG

†
]
R,S

|ψC〉 = (−1)λx |ψC〉

Z0
[
GZCG

†
]
R,S

|ψC〉 = (−1)λz |ψC〉 (15)

and

X6
[
GXTG

†
]
R,S

|ψC〉 = (−1)μx |ψC〉

Z6
[
GZTG

†
]
R,S

|ψC〉 = (−1)μz |ψC〉. (16)

Then the measurement pattern in which the inner qubits are
measured according to M, and the IN cluster qubits 0 and
6 are measured in the X-basis, realizes the gate GB, where
the byproduct operators B for the logical qubits C and T are
given by

(xC, zC) = (λz,m0 + λx)

(xT , zT) = (μz,m6 + μx) (17)

where ma is the outcome of the measurement of the ath
cluster qubit. �
The square bracketed terms in (15) and (16) are computed

in terms of the logical qubits C and T , without reference to
cluster qubits. Any terms involving C and T are then inter-
preted as applying to the cluster qubits R and S. For example,
when G = CNOT[

GXTG
†
]
R,S

= [XCXT]R,S = XRXS.

To apply the theorem to the cnot gate, it is therefore neces-
sary to obtain the following eigenvalue equations:

X0 (XRXS) |ψC〉 = (−1)λx |ψC〉
Z0 (ZR) |ψC〉 = (−1)λz |ψC〉 (18)

and

X6 (XS) |ψC〉 = (−1)μx |ψC〉
Z6 (ZRZS) |ψC〉 = (−1)μz |ψC〉. (19)

To obtain these equations, begin with the cluster state |φC〉
on the two-row cnot shape shown in Fig. 12, and multiply
together the correlation operators in (13) so as to obtain the
following four equations:

|φC〉 = K0K2K3K4KRK10KS|φC〉
= −X0Y2X3Y4XRX10XS|φC〉

|φC〉 = K1K2K4K5|φC〉
= Z0Y1Y2Y4Y5ZR|φC〉

|φC〉 = K6K8K10KS|φC〉
= X6X8X10XS|φC〉

|φC〉 = K4K5K7K9K11|φC〉
= Y4Y5ZRZ6X7X9X11ZS|φC〉. (20)

The right-hand sides are obtained by repeated application
of the equation XaZa = iYa = −ZaXa. Note that Pauli opera-
tors on different qubits commute.
As with any pattern derived using this method, the choice

of operators Ka in the above equations is motivated by two
goals.

1) The equations must contain the correct IN and OUT
terms in (18) and (19). These terms are colored red in
the equations.

2) The Pauli operators on the INTERNAL cluster qubits
agree between all the equations. That is, for each clus-
ter qubit a, only Xa or Ya appears across all the equa-
tions. For example, when a = 4, onlyY4 appears (three
times, shown in blue), and there are no instances of X4.
It is these operators that define the measurement bases
M for each qubit a in the INTERNAL group of cluster
qubits.

When the INTERNAL qubits are measured according to
M, the Pauli terms disappear [19, Section 10.5.3], and each
one contributes a sign according to its measurement outcome
ma, to give the following equations on the reduced state |ψC〉:

X0XRXS|ψC〉 = (−1)1+m2+m3+m4+m10 |ψC〉
Z0ZR|ψC〉 = (−1)m1+m2+m4+m5 |ψC〉
X6XS|ψC〉 = (−1)m8+m10 |ψC〉

Z6ZRZS|ψC〉 = (−1)m4+m5+m7+m9+m11 |ψC〉.
These equations are in the form of (18) and (19), and define
the values of λx, λx, μx, μz in terms of the measurement out-
comesma. As a result, it follows from the theorem above that
the measurement pattern consisting of M, plus X measure-
ments on the IN qubits, realizes the gate (CNOT)B, where
the byproduct operator B found using (17) to be

(xC, zC) = (m1 + m2 + m4 + m5,

1 + m0 + m2 + m3 + m4 + m10)

(xT , zT) = (m4 + m5 + m7 + m9 + m11,

m6 + m8 + m10) . (21)

Finally, the byproduct operator can be commuted past the
cnot gate to obtain(

Z1+m0+m2+m3+m4+m6+m8
C Xm1+m2+m4+m5

C

Zm6+m8+m10
T Xm1+m2+m7+m9+m11

T

)
CNOT. (22)

The contributions to the byproduct operators given in this
formula are depicted in Fig. 3 and stated in (1) and (2).

ACKNOWLEDGMENT
J. R. Scott would like to thank L. Mineh for help working out
the reduced cnot measurement pattern, and for assistance in
programming the C++ MBQC simulator, and O. Thomas for
many interesting discussions regarding the implementation
of photonic quantum computing. The authors would like to

VOLUME 3, 2022 6000220

Engineeringuantum
Transactions onIEEE

Scott and Balram: TIMING CONSTRAINTS IMPOSED BY CLASSICAL DIGITAL CONTROL SYSTEMS

thank J. Nunez-Yanez for very helpful discussions regarding
FPGA design.

REFERENCES
[1] K. Bharti et al., “Noisy intermediate-scale quantum (NISQ) algorithms,”

Rev. Mod. Phys., vol. 94, 2021, Art. no. 015004, doi: 10.1103/RevMod-
Phys.94.015004.

[2] A. Montanaro, “Quantum algorithms: An overview,” NPJ Quantum Inf.,
vol. 2, no. 1, Jan. 2016, Art. no. 15023, doi: 10.1038/npjqi.2015.23.

[3] L. Gyongyosi and S. Imre, “A survey on quantum computing
technology,” Comput. Sci. Rev., vol. 31, pp. 51–71, Feb. 2019,
doi: 10.1016/j.cosrev.2018.11.002.

[4] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019,
doi: 10.1038/s41586-019-1666-5.

[5] A. Osman et al., “Simplified Josephson-junction fabrication process for re-
producibly high-performance superconducting qubits,” Appl. Phys. Lett.,
vol. 118, no. 6, 2021, Art. no. 064002, doi: 10.1063/5.0037093.

[6] F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S. A. Diddams, and
J. D. Teufel, “Control and readout of a superconducting qubit using
a photonic link,” Nature, vol. 591, no. 7851, pp. 575–579, Mar. 2021,
doi: 10.1038/s41586-021-03268-x.

[7] P. E. Ross, “Why CPU frequency stalled,” IEEE Spectr., vol. 45, no. 4,
pp. 72–72, Apr. 2008, doi: 10.1109/MSPEC.2008.4476447.

[8] T. N. Theis and H.-S. P. Wong, “The end of Moores law: A new beginning
for information technology,” Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50,
Mar. 2017, doi: 10.1109/MCSE.2017.29.

[9] D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum
computation,” Phys. Rev. Lett., vol. 95, no. 1, Jun. 2005, Art. no. 010501,
doi: 10.1103/PhysRevLett.95.010501.

[10] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From
three-photon Greenberger-Horne-Zeilinger states to ballistic universal
quantum computation,” Phys. Rev. Lett., vol. 115, no. 2, Jul. 2015,
Art. no. 020502, doi: 10.1103/PhysRevLett.115.020502.

[11] T. Rudolph, “Why I am optimistic about the silicon-photonic route
to quantum computing,” APL Photon., vol. 2, no. 3, Mar. 2017,
Art. no. 030901, doi: 10.1063/1.4976737.

[12] S. Bartolucci et al., “Fusion-based quantum computation,” 2021,
arXiv:2101.09310, doi: 10.48550/arXiv.2101.09310.

[13] J. E. Bourassa et al., “Blueprint for a scalable photonic fault-
tolerant quantum computer,” Quantum, vol. 5, p. 392, Feb. 2021,
doi: 10.22331/q-2021-02-04-392.

[14] S. Morley-Short, M. Gimeno-Segovia, T. Rudolph, and H. Cable, “Loss-
tolerant teleportation on large stabilizer states,” Quantum Sci. Technol.,
vol. 4, no. 2, 2019, Art. no. 025014, doi: 10.1088/2058-9565/aaf6c4.

[15] H. Bombin et al., “Interleaving: Modular architectures for
fault-tolerant photonic quantum computing,” 2021, arXiv:2103.08612,
doi: 10.48550/arXiv.2103.08612.

[16] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum
computation with linear optics,” Nature, vol. 409, no. 6816, pp. 46–52,
Jan. 2001, doi: 10.1038/35051009.

[17] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based
quantum computation on cluster states,” Phys. Rev. A, vol. 68, no. 2,
Aug. 2003, Art. no. 022312, doi: 10.1103/PhysRevA.68.022312.

[18] D. E. Browne and H. J. Briegel, “One-way quantum
computation—A tutorial introduction,” 2006, arXiv:0603226,
doi: 10.48550/arXiv.quant-ph/0603226.

[19] M. Nielsen, Quantum Computation and Quantum Information, 10th ed.
Cambridge, NY, USA: Cambridge Univ. Press, 2010.

[20] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, “A quantum engineers guide to superconducting
qubits,” Appl. Phys. Rev., vol. 6, no. 2, Jun. 2019, Art. no. 021318,
doi: 10.1063/1.5089550.

[21] L. Chrostowski, Silicon Photonics Design. Cambridge, U.K.: Cambridge
Univ. Press, 2015.

[22] Y. Tamura et al., “The first 0.14-dB/km loss optical fiber and its impact
on submarine transmission,” J. Lightw. Technol., vol. 36, no. 1, pp. 44–49,
Jan. 2018, doi: 10.1109/JLT.2018.2796647.

[23] C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconduct-
ing nanowire single-photon detectors: Physics and applications,” Su-
percond. Sci. Technol., vol. 25, no. 6, Apr. 2012, Art. no. 063001,
doi: 10.1088/0953-2048/25/6/063001.

[24] C. Cahall, D. J. Gauthier, and J. Kim, “Scalable cryogenic read-
out circuit for a superconducting nanowire single-photon detector sys-
tem,” Rev. Sci. Instrum., vol. 89, no. 6, Jun. 2018, Art. no. 063117,
doi: 10.1063/1.5018179.

[25] E. B. Eichelberger, “Hazard detection in combinational and sequential
switching circuits,” IBM J. Res. Dev., vol. 9, no. 2, pp. 90–99, Mar. 1965,
doi: 10.1147/rd.92.0090.

[26] “7 Series FPGAs Clocking Resources User Guide,” Jul. 30, 2018, UG472
(v1.14).

[27] “Distributed Memory Generator v8.0 Product Guide,” Nov. 18, 2015,
PG063.

[28] “7 Series FPGAs Data Sheet: Overview,” Sep. 8, 2020, DS180 (v2.6.1).
[29] “7 Series FPGAs SelectIO Resources User Guide,” May 8, 2018, UG471

(v1.10).
[30] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007, doi: 10.1109/TCAD.2006.884574.

[31] P. Heydari and R. Mohavavelu, “Design of ultra high-speed CMOS
CML buffers and latches,” in Proc. Int. Symp. Circuits Syst., 2003,
doi: 10.1109/iscas.2003.1205938.

[32] A. Athavale, High-Speed Serial I/O Made Simple: A Designers’ Guide,
With FPGA Applications, 1st ed. San Jose, CA, USA: Xilinx, 2005.

[33] S. H. Hall, G. W. Hall, and J. A. McCall, High Speed Digital System
Design: A Handbook of Interconnect Theory and Design Practices. New
York, NY, USA: Wiley, 2000.

[34] I. Holzman andY. Ivry, “Superconducting nanowires for single-photon de-
tection: Progress, challenges, and opportunities,” Adv. Quantum Technol.,
vol. 2, no. 3/4, 2019, Art. no. 1800058, doi: 10.1002/qute.201800058.

[35] L. Ma, O. Slattery, and X. Tang, “Optical quantum memory and its appli-
cations in quantum communication systems,” J. Res. Nat. Inst. Standards
Technol., vol. 125, Jan. 2020, Art. no. 125002, doi: 10.6028/jres.125.002.

[36] J. Witzens, “High-speed silicon photonics modulators,”
Proc. IEEE, vol. 106, no. 12, pp. 2158–2182, Dec. 2018,
doi: 10.1109/JPROC.2018.2877636.

[37] S. Morley-Short, S. Bartolucci, M. Gimeno-Segovia, P. Shadbolt, H. Ca-
ble, and T. Rudolph, “Physical-depth architectural requirements for gen-
erating universal photonic cluster states,” Quantum Sci. Technol., vol. 3,
no. 1, 2017, Art. no. 015005, doi: 10.1088/2058-9565/aa913b.

[38] D. Herr, A. Paler, S. J. Devitt, and F. Nori, “A local and scalable lattice
renormalization method for ballistic quantum computation,” NPJ Quan-
tum Inf., vol. 4, no. 1, pp. 1–8, 2018, doi: 10.1038/s41534-018-0076-0.

[39] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding al-
gorithm for topological codes,” Quantum, vol. 5, p. 595, 2021,
doi: 10.22331/q-2021-12-02-595.

6000220 VOLUME 3, 2022

https://dx.doi.org/10.1103/RevModPhys.94.015004
https://dx.doi.org/10.1103/RevModPhys.94.015004
https://dx.doi.org/10.1038/npjqi.2015.23
https://dx.doi.org/10.1016/j.cosrev.2018.11.002
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1063/5.0037093
https://dx.doi.org/10.1038/s41586-021-03268-x
https://dx.doi.org/10.1109/MSPEC.2008.4476447
https://dx.doi.org/10.1109/MCSE.2017.29
https://dx.doi.org/10.1103/PhysRevLett.95.010501
https://dx.doi.org/10.1103/PhysRevLett.115.020502
https://dx.doi.org/10.1063/1.4976737
https://dx.doi.org/10.48550/arXiv.2101.09310
https://dx.doi.org/10.22331/q-2021-02-04-392
https://dx.doi.org/10.1088/2058-9565/aaf6c4
https://dx.doi.org/10.48550/arXiv.2103.08612
https://dx.doi.org/10.1038/35051009
https://dx.doi.org/10.1103/PhysRevA.68.022312
https://dx.doi.org/10.48550/arXiv.quant-ph/0603226
https://dx.doi.org/10.1063/1.5089550
https://dx.doi.org/10.1109/JLT.2018.2796647
https://dx.doi.org/10.1088/0953-2048/25/6/063001
https://dx.doi.org/10.1063/1.5018179
https://dx.doi.org/10.1147/rd.92.0090
https://dx.doi.org/10.1109/TCAD.2006.884574
https://dx.doi.org/10.1109/iscas.2003.1205938
https://dx.doi.org/10.1002/qute.201800058
https://dx.doi.org/10.6028/jres.125.002
https://dx.doi.org/10.1109/JPROC.2018.2877636
https://dx.doi.org/10.1088/2058-9565/aa913b
https://dx.doi.org/10.1038/s41534-018-0076-0
https://dx.doi.org/10.22331/q-2021-12-02-595

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

