
Quantum Computing Engineeringuantum
Transactions onIEEE

Received December 2, 2021; revised April 28, 2022; accepted April 29, 2022; date of publication May 12, 2022;
date of current version June 9, 2022.

Digital Object Identifier 10.1109/TQE.2022.3174547

A Divide-and-Conquer Approach to
Dicke State Preparation
SHAMMINUJ AKTAR1,2 , ANDREAS BÄRTSCHI2 ,
ABDEL-HAMEED A. BADAWY1 (Senior Member, IEEE),
AND STEPHAN EIDENBENZ2
1Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88001 USA
2CCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544 USA

Corresponding authors: Shamminuj Aktar; Andreas Bärtschi (e-mail: saktar@nmsu.edu; baertschi@lanl.gov).

This work was supported in part by the Laboratory Directed Research and Development Program of Los Alamos National Laboratory
under project number 20200671DI. The Los Alamos National Laboratory report number is LA-UR-21-31138.

ABSTRACT We present a divide-and-conquer approach to deterministically prepare Dicke states |Dnk〉 (i.e.,
equal-weight superpositions of all n-qubit states with Hamming weight k) on quantum computers. In an
experimental evaluation for up to n = 6 qubits on IBM Quantum Sydney and Montreal devices, we achieve
significantly higher state fidelity compared to previous results. The fidelity gains are achieved through several
techniques: our circuits first “divide” the Hamming weight between blocks of n/2 qubits, and then “conquer”
those blocks with improved versions of Dicke state unitaries (Bärtschi et al. FCT’2019). Due to the sparse
connectivity on IBM’s heavy-hex-architectures, these circuits are implemented for linear nearest neighbor
topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation
and hardware progress.

INDEX TERMS Circuit, Dicke state, fidelity, IBM Q, noisy intermediate scale quantum (NISQ), QISKIT,
quantum computing, transpiler.

I. INTRODUCTION
In quantum computing, Dicke states [11] are a class of highly
entangled quantum states with the rare feature that they are
of importance as initial states in quantum algorithms, in ad-
dition to their quantum mechanical property of being highly
entangled. The Dicke state |Dnk〉 assigns equal nonzero am-
plitudes of 1/

√(n
k

)
to each computational basis state of Ham-

ming weight k, where n is the number of qubits and a com-
putational basis state has Hamming weight k if exactly k of
the bits take on value 1, e.g., |D4

2〉 = 1√
6 (|1100〉 + |1010〉 +

|1001〉 + |0110〉 + |0101〉 + |0011〉). The combinatorial in-
terpretation of a Dicke state is, for example, the set of all
feasible solutions of a constraint optimization problem, such
as maximum k-densest subgraph, which asks for a subset of
exactly k vertices of a given input graph with a maximum
number of (induced) edges.
In this article, we study how well Dicke states can be

created on present-day noisy intermediate-scale quantum
(NISQ) devices, in particular, several IBM Q devices. In
Section III, we propose a novel divide-and-conquer approach
to designing Dicke state preparation circuits. We present
circuits for Dicke states |Dnk〉 for 1 ≤ 2 k ≤ n ≤ 6 that are

optimized toward minimum circuit depth and cnot gate
counts. These circuits are our first main result. Compared to
earlier work, we achieve reductions in cnot counts of up to
30% for instance our |D4

2〉 circuit requires ten cnot gates and
has a depth of 11 versus previously best known values of 12
cnot gates and a depth of 21 [25].
We test our circuits on two IBM Q backends (Sydney and

Montreal) using several metrics and different compilation
options that IBMs QISKIT environment offers. As our main
measure to assess how close (noisy) these NISQ devices
actually produce the (ideal pure) quantum state, we calcu-
late the quantum fidelity of the state [21] through full state
tomography. This requires the execution of 3n different runs
of our circuits which we measure in all possible Pauli bases,
followed by amaximum-likelihood estimation of the density
matrix representing the prepared mixed state [19], both of
which are natively supported in QISKIT [36]. Each run needs
to be repeated often enough in order to get sufficient statistics
on the sampling frequency.
While we perform the computationally expensive full state

tomography in all our experiments, we also explore alter-
natives. We study how well two simpler classical measures

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 3, 2022 3101816

https://orcid.org/0000-0001-5587-7406
https://orcid.org/0000-0002-9049-0984
https://orcid.org/0000-0001-8027-1449
https://orcid.org/0000-0002-2628-1854

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

TABLE 1. Different Preparation Schemes for Dicke and Related States

W states are Dicke states of Hamming weight 1, while symmetric states are superpositions of Dicke states. They can thus be seen as a subset (superset, respectively) of Dicke
states. Probabilistic state preparation uses a projective measurement of a n-qubit product state into a Hamming weight subspace. Quantum compression is more general and is
used in reverse for state preparation. ε denotes the precision of arithmetic circuits. This work improves circuits and constant factors from the work of Bärtschi and Eidenbenz [3].

that each only require sufficient statistics on a single run
upper bound the quantum fidelity. These two measures are
the measured success probability (informally, how often do
we sample a basis state with a Hamming weight k) and the
Hellinger fidelity [16], an analog to quantum fidelity for clas-
sical probability distributions.
We test several different QISKIT compiler options that

include giving an initial layout of logical to physical qubits,
using noise adaptive transpilation (IBM’s term for compila-
tion [34]), or just a default transpilation, each combined with
and without QISKITs measurement error mitigation [35].
The details of our experimental setup as well as more formal
definitions of our success measures are described in Sec-
tion IV. The contributions of this work can be summarized
as follows, with the details in Section V.

1) Our novel Dicke state circuits lead to the best quantum
fidelity results measured to date on IBM machines,
e.g., a quantum fidelity for |D4

2〉 of 0.87, which outper-
forms the previously measured best result of 0.53 [25].

2) As expected, quantum fidelity for these Dicke states
decreases mostly with increasing circuit complexity; it
appears to be a largely linear decrease with increasing
cnot counts. One particular notable exception to this
rule is the use of noise-adaptive circuit compilation
(which sometimes drastically increases cnot counts).

3) Standard measurement error mitigation techniques in-
crease the calculated quantum fidelity by an absolute
value of around 0.1 with no clear dependence on circuit
complexity. Relative improvements in achieved fidelity
are seen for an increasing number of qubits n and a de-
creasing Hamming weight k (corresponding to circuits
with many measurements but few gates).

4) The two IBMQbackends Sydney andMontreal exhibit
quite different behaviors, with Montreal generally be-
ing much more stable, less susceptible to changes in
compilation settings, and better achieved fidelity.

5) Our two alternative measures of Hellinger fidelity and
measured success probability show a similar, albeit
flatter linear dependence on cnot count. Both mea-
sures upper bound the quantum fidelity with gaps
growing larger with increasing circuit complexity.

Our results show clear technological progress in NISQ
devices toward the ability to create entangled states, particu-
larly when compared to experiments from one year ago. Parts
of these improvements are due to our novel circuit design.

II. RELATED WORK
Due to their high entanglement, Dicke states [11] have been
considered in fields, such as quantum game theory [47],
quantum networking [33], quantum metrology [31], [39],
quantum error correction [28], [29], and quantum stor-
age [30]. Their interpretation as superpositions of all fea-
sible states in Hamming-weight constrained problems have
also made them suitable candidates for initial states of adia-
batic [6] and variational combinatorial algorithms [5], [8],
[13]–[15], [40]. They have been implemented in various
platforms, such as trapped ions [17], [18], [22], atoms [37],
[38], [44], photons [33], [41], superconducting qubits [42],
and others [20], [43]. A Dicke state is defined as an equal
superposition of all n-bit basis states x of Hamming weight
wt(x) = k

|Dnk〉 =
(
n

k

)− 1
2 ∑

x∈{0,1}n, wt(x)=k |x〉. (1)

Proposed state preparation circuits have first relied on
arithmetic operations using ancilla registers [2], [24] until
Plesch and Bužek [32] gave a quantum compression circuit
for symmetric states using O(n2) gates and depth but no
ancillas (see Table 1). This circuit, used in reverse with in-
verse operations, can be used to prepare Dicke states, be-
cause the permutation-invariant symmetric states are sim-
ply superpositions of Dicke states of different Hamming
weight k.
An improved approach by Bärtschi and Eidenbenz [3] led

to state preparation circuits for symmetric states with O(n2)
gates but linear O(n) depth even for linear nearest neighbor
(LNN) architectures. They also observed that by constricting
the symmetric states’ Hamming weights to ≤ k, the number
of gates can be decreased to O(nk) ⊂ O(n2). Mukherjee
et al. [25] later found that narrowing the Hamming weight
constriction to exactly k, (i.e., Dicke states), additional gains
in lower order terms of O(k2) can be made. Unfortunately,
both of these gate reduction techniques result in either the

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

TABLE 2. Comparing CNOT Counts in Our |Dn
k〉 Preparation Circuits Versus

Previous Approaches for k = 1 (Cruz et al. 2018 [9]) and for k = 2, 3
(Mukherjee et al. 2020 [25])

Our cnot counts are attained on LNN architectures, with improved counts for ladder
architectures given in parentheses. |Dn

n−K 〉 = X⊗n|Dn
k 〉 gives symmetric values for k >

n/2.

need for much higher than LNN connectivity or the intro-
duction of large constant factors in the gate count [3].
In this article, we circumvent this problem to some

extent by dividing a Dicke state preparation into two parts,
where we first distribute the Hamming weight k over two
contiguous blocks of �n/2	 and
n/2� qubits each, before
conquering each block with the mentioned LNN scheme.
Going forward, we restrict ourselves to Hamming weights
k ≤
n/2�, as a Dicke state |Dnn−k〉 can easily be obtained
by flipping all qubits (applying X⊗n) in the Dicke state |Dnk〉.
Dividing the Hamming weight in general works best on Lad-
der architectures, with an increasing cnot count on LNN
connectivities. For the special case of Dicke states |Dn1〉 with
Hamming weight 1 (known as W states), this method re-
trieves the best-known cnot counts of 2n− 3 (see Table 2).
Previous works [1], [46] have also included divide-and-

conquer strategies for preparing arbitrary quantum states
with reduced circuit depth.
Recently, preparation circuits have been proposed for

sparse quantum states [10], [23], [45] in terms of the number
of nonzero state vector entries, requiring logarithmic depth
but a quasi-linear number of ancillary qubits and gates. Dicke
states can be treated as sparse quantum states for constant
Hammingweight, but the number of nonzero entries in Dicke
states scales exponentially as

(n
k

)
with increasing Hamming

weight k. Hence, sparse state preparation circuits quickly
become infeasible for Dicke states preparation.
Additionally, we note a probabilistic state preparation ap-

proach [6] that yields Dicke states with success probabil-
ity

(n
k

)
(kn)

k(1 − k
n)
n−k by preparing the symmetric n-qubit

product state (
√
1 − k/n|0〉 + √

k/n|1〉)⊗n, followed by the
addition [7] of the Hamming weight into an ancilla register
with log n qubits and a projective measurement thereof. We
use the first part of this idea by using the fidelity between
such a product state and the Dicke state |Dnk〉 (corresponding
to the success probability of the projective measurement) as
an additional benchmark for our quantum fidelity results,
see Fig. 1. We additionally prove that no other pure n-qubit
product state has higher fidelity/squared state overlap with
the corresponding Dicke state.

III. DIVIDE-AND-CONQUER CIRCUITS
In this section, we give an overview of the techniques behind
our Dicke state preparation circuits from Algorithm 1. They

FIGURE 1. Comparison of our highest measured quantum fidelities with
three benchmarks: measured fidelities for five W states |Dn

1〉 (Cruz et al.
2018 [9]) and the Dicke state |D4

2〉 (Mukherjee et al. 2020 [25]), as well
as the best possible fidelity among all n-qubit product states. Dicke
states are distributed horizontally according to our CNOT counts.

can best be described as a divide-and-conquer approach,
where the “Conquer” part is based on improved versions of
Dicke state unitaries [3] and the initial “Divide” part uses
the new idea of distributing the Hamming weight across two
contiguous blocks of qubits. We explain the implementation
of Dicke state unitaries, distinguishing between big-endian
notation (most significant bit—the big end–on the left of
the bit string) and little-endian notation (reversed ordering)
for their input encodings. We first briefly review Dicke state
unitariesUn,k which denote any unitary satisfying

∀ k′ ≤ k : Un,k|0n−k′1k′ 〉 = |Dnk′ 〉. (2)

That is, Un,k takes as possible input a zero-padded unary
encoding of any Hamming weight k′ ≤ k to prepare the
Dicke state |Dnk′ 〉.
Previous approaches to prepare |Dnk〉 simply fed the input

|0n−k1k〉 to Un,k [3], [9]. In this article, we present a new
approach in which we first divide the Hamming weight into
all possible combinations of k1 + k2 = k across two blocks

VOLUME 3, 2022 3101816

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

FIGURE 2. Implementation of the big-endian Dicke state wnitary Ube
3,3 = Ube

3,2, which takes as input |03−k′
1k′ 〉 for any k′ to prepare |D3

k′ 〉. A small-endian

Dicke state unitary Ule
3,3 has the wire order reversed and accepts inputs |1k′

03−k′ 〉 instead. The circuit incorporates SWAPs into the actions on the three
logical qubits q3q2q1: |001〉 �→ √ 1

3 |001〉 + √ 2
3 |010〉and |011〉 �→ √ 2

3 |011〉 + √ 1
3 |110〉, as well as |01.〉 �→ √ 1

2 |01.〉 + √ 1
2 |10.〉 in the unitary Ube

2,2. This
changes the ordering of the logical qubits throughout the circuit as shown, where the final order does not matter due to the symmetry of the final state
|D3

k〉.

FIGURE 3. Implementation of the Dicke state unitary Ube
3,1, which takes

as input the padded big-endian unary encoding of k′ ≤ 1, (i.e.,
|0201−k′

1k′ 〉) to create the Dicke state |D3
k′ 〉. Labeled gates are

Ry-rotations, where θ√
x/y = 2 cos−1 √ x

y . The first half of the circuit

implements |001〉 �→ √ 1
3 |001〉 + √ 2

3 |010〉, the second half the recursively
used unitary Ube

2,1.

of n1 + n2 = n qubits, followed by two parallel Dicke state
unitariesUn1,k, Un2,k on these blocks. By doing so, we must
give the correct weights to the corresponding unary encod-
ings |0n1−k11k1〉|0n2−k21k2〉. Since there are

(n1
k1

)(n2
k2

)
com-

putational basis states with Hamming weight k1 in the n1-
bit-prefix and Hamming weight k2 in the n2-bit-suffix, the
“Divide” part consists of preparing the state

1√(n
k

) ∑
k1+k2=k

√(n1
k1

)(n2
k2

)|0n1−k11k1〉|0n2−k21k2〉. (3)

We next discuss Dicke state unitaries – the “Conquer” part
of our circuits – and our improved implementations thereof
in detail, before giving the “Divide” part for both Ladder and
LNN architectures.

A. “CONQUER”: DICKE STATE UNITARIES
Dicke state unitariesUn,k [3, eq. (2)] implement the induction

|Dn′
k′ 〉 =

√
k′
n′ |Dn′−1

k′−1〉 ⊗ |1〉 +
√

n′−k′
n′ |Dn′−1

k′ 〉 ⊗ |0〉

for all n′ ≤ n, k′ ≤ min{k, n′}. Given that Un,k gets as in-
put |0n−k′1k′ 〉, it is enough to implement for all k′ ≤ k the
gate |0n−k′1k′ 〉 �→ √ k′

n |0n−k′1k′ 〉 + √ n−k′
n |0n−k′−11k

′
0〉 fol-

lowed by a recursive call to the smaller unitary Un−1,k, see
Figs. 2 and 3. For Un,1 and k′ = 0, 1, this involves cnots
and a controlled Ry(2 cos−1 √ 1

n)-rotation, which we compile
down to two single-qubit Ry(± 1

2 · 2 cos−1 √ n−1
n) rotations

and two cnots. This placesUn−1,1 on the lower n− 1 wires,

see Fig. 3, and, thus, can be implemented even on LNN
architectures.
For Un,k with k′ > 1, we have longer blocks of excita-

tions in the state |0n−k′1k′−111〉, which has to be mapped
to

√ k′
n |0n−k′1k′−111〉 + √ n−k′

n |0n−k′−1111k
′−10〉. Still, only

three qubits are necessary for this gate, the two qubits chang-
ing 0/1-values and the leading 1 as a control. The gate can be
compiled to cnots and a doubly controlled Ry(2 cos−1 √ k′

n)-
rotation [3]. In order to implement the gate on three contigu-
ous blocks of qubits, we incorporate SWAPs which move
the lowest-endian qubit from top to bottom, see Fig. 2.
This keeps the cnot count for gates with k′ = 1 intact,
while for k′ > 1 we get an implementation with five cnots
and four Ry(± 1

4 · 2 cos−1 √ k′
n)-rotations. Finally, we recurse

from Un,k to Un−1,k (where in case k = n, we use Un,n =
Un,n−1 to get Un−1,n−1). The detailed shifting-down proce-
dure for the lowest-endian qubit places Un−1,k on the upper
n− 1 wires.

Finally, we note that our descriptions assumed big-endian
inputs |0n′−k′1k′ 〉, and, thus, we further specify the given
Dicke state unitaries byUbe

n,k. A little-endian versionUle
n,k ac-

cepting little-endian inputs |1k′0n′−k′ 〉 is achieved by simply
reversing the wire order. The “Divide” procedure discussed
next will result in an application of both types of Dicke state
unitaries, namely,Ube

n/2�,k andU
le
�n/2	,k.

B. “DIVIDE” FOR LADDER TOPOLOGIES
In hardware with ladder architectures, we have two rows of
qubits which are provided with 2-qubit gates toward their
horizontal nearest neighbors, as well as with their direct
neighbor below, respectively, above. Such topologies can
be found, for example, as subgraphs of Google’s sycamore
processor and until recently, among IBM Q’s devices. The
“Divide” technique in the following can also be applied (with
constant overhead) to sparser connectivities, such as IBMQ’s
heavy-hex lattices or serve as an inspiration for an adaption
to LNN architectures discussed in the next subsection.
Recall that we restrict ourselves to Hamming weight val-

ues k ≤ n/2 due to the symmetry |Dnk〉 = X⊗|Dnk〉. We divide
our n qubits into n1 =
n/2� qubits q1, . . . , qn1 on the upper
row and n2 = �n/2	 qubits qn, . . . , qn1+1 (in this order) on
the lower row, such that qubit qi, i ≤ n1 is vertically con-
nected to qubit q2n1−i+1, see Fig. 4.

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

FIGURE 4. Preparations of Dicke states on ladder topologies with a divide-and-conquer approach: The Hamming weight k is divided between an upper
big-endian row of n1 = �n/2	 qubits and a lower, little-endian row of n2 =
n/2� qubits. The resulting superposed entangled row input weights are
conquered with the unitaries Ube

n1,k and Ule
n2,k , respectively. (LEFT) First we construct the weighted big-endian superposition

√ 1
20 (

√
1|000〉+ √

9|001〉 +√
9|011〉 +

√
1|111〉) in the upper row. Note that the numerators 1,9,9 and the suffix sums 20,19,10 appear as terms in the angle arguments. Next we

subtract these weights from the little-endian Hamming weight k = 3 in the lower row. Finally we use Dicke state unitaries on both rows to construct
|D6

3〉. (RIGHT) Same approach for |D5
2〉, where we first construct

√ 1
10 (

√
3|00〉 +

√
6|01〉 +

√
1|11〉) in the upper row and subtract from Hamming weight

k = 2 in the lower row.

To get the desired state from (3), we first prepare

1√(n
k

) ∑
k1+k2=k

√(n1
k1

)(n2
k2

)|0n1−k11k1〉|0n2−k1k〉.
Let xi = (n1

i

)(n2
k−i
)
denote the number of bitstrings with

Hamming weight i among the first half of n1 digits and Ham-
ming weight k − i among the second half of n2 = n− n1
digits. Of the sequence x0, . . . , xk, let si = xi + . . .+ xk de-
note the suffix sums of the xi-values. Then, we can con-

struct the superposition
∑

k1+k2=k
√(n1

k1

)(n2
k2

)|0n1−k1〉 (mod-

ulo proper normalization) one term at a time with controlled
Ry(2 cos−1 √ xi

si
)-rotations up until i = k − 1; consecutively

rotating qubits one-by-one controlled on the value of previ-
ous, smaller-endian qubits, see Fig. 4. The compilation of a
CRy-gate into single-qubit and cnot gates usually takes two
cnots, however, for a classical 0-or-1 target, it can be done
with one cnot only (with compilation based on knowledge
of the classical value).
We can then subtract (in superposition) the Hamming

weight k1 encoded in big-endian unary in the first half of n1
qubits from the |0n2−k1k〉 unary encoding of k in the second
half of n2 qubits. This can be done with 1 cnot for each pair
(qi, q2n1−i+1). Taking also into account the number of cnots
of a big-endian unitary Ube

n1,k
on the upper n1 qubits and a

little-endian unitaryUbe
n2,k

on the lower, reversely ordered n2
qubits, we get the cnot counts for Ladder architectures (in
parentheses) in Table 2.

C. “DIVIDE-AND-CONQUER” FOR LNN TOPOLOGIES
In our experiments, we are restricted to way sparser archi-
tectures. Hence, we additionally fine-tune the “Divide” tech-
niques for Ladder architectures to LNN architectures. We
utilized two methods for this.
In the simplest way, we start from the Ladder architec-

ture of Fig. 4 and remove vertical connectivities except for
(q1, q2n1). We then exchange for each qubit qi, i < n1 the
order of the CRy and the subtraction cnot it controls. When

adding SWAPs and combining eachCRy gate with one of the
SWAP gates, we get the LNN circuit in Fig. 5. Note that,
in this case, the SWAPs as well as the combination of CRy
and SWAP gates compile to two cnots only, since at the
moment of applying the gates, their target is still in a classical
state.
An additional option is given in Fig. 6. Here the circuits

starts with the qubits (q1, . . . , qn1) and (qn, . . . , qn1+1) in-
terleaved. This approach works best for the Dicke state |D6

2〉
and also decreased the cnot count for the Dicke state |D6

3〉
while simultaneously increasing the cnot depth. Hence we
used this approach in experiments exclusively for |D6

2〉 and
both approaches for |D6

3〉.
For k = 1 the first approach retrieves the circuits

of previous W-state experiments [9]. Interactive
drag-and-drop implementations of our circuits in the
Quirk simulator [12] are behind the following links:
https://algassert.com/quirk#circuit

IV. METHODS
In this section, we discuss our experimental setup, the eval-
uated metrics (quantum state fidelity, Hellinger fidelity, and
measured success probability), as well as relations between
those and existing benchmarks.

A. DEFINITIONS
Informally, our goal is to measure how well our circuits
prepare the Dicke states |Dnk〉 for n ≤ 6, k ≤ n/2 on IBM Q
devices Sydney and Montreal. To make this precise, we first
introduce some notation. On one hand, on an ideal quantum
device, our circuits would prepare the pure quantum state
δ := |Dnk〉〈Dnk |. When measured in the computational basis,
the probability qi to get basis state |i〉 is

qi = tr(|i〉〈i| δ) = 〈i ∣∣Dnk〉〈Dnk∣∣ i〉 =
{

1
nk if wt(i) = k

0 otherwise.
(4)

VOLUME 3, 2022 3101816

https://algassert.com/quirk#circuit

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

FIGURE 5. Implementation of Dicke state |D6
3〉 on LNN starting from a reverse ordering of the qubit blocks (q1, q2, q3) and (q4, q5, q6): We start with

neighboring qubits q1, q6, implement their interaction and then swap them to the far ends of the circuit. While doing so, we use the fact that
controlled-Rys and SWAPs target qubits in a classical state, which reduces implementations of SWAP and CRy + SWAP interactions to two CNOTs each.
For the “Divide” part we get a CNOT count of 15 and a CNOT depth of 8, while for the “Conquer” part in the big-endian unitaries Ube

3,3 we have 9 CNOTs.
Overall we get a CNOT count of 33 and a CNOT depth of 17.

FIGURE 6. Implementation of Dicke state |D6
3〉 on LNN starting from an interleaved ordering of the qubit blocks (q1, q2, q3) and (q4, q5, q6): We use the

interjacently placed qubits q6, q5, q4, while preparing the qubits q1, q2, q3. While doing so, their assignment is flipped compared to the supposed
superposition, hence we apply X -gates in the last step of the “Divide” part. CRy gates still target qubits in a classical state, hence they can be
implemented with 1 CNOT each. Uninterleaving now needs SWAPs to be decomposed into 3 CNOTs each. Furthermore, the circuit parallelizes less than the
method given in Fig. 5. For the “Divide” part we get a CNOT count of 14 and a CNOT depth of 11, while for the “Conquer” part in the big/little-endian
unitaries Ube

3,3, Ule
3,3 we have 9 CNOTs. Overall we get a CNOT count of 32 and a CNOT depth of 20.

On the other hand, due to noise on current NISQ devices,
the circuits prepare a noisymixed state [27], denoted with the
density matrix ρ, a positive semidefinite Hermitian matrix. A
computational basis measurement gives basis state |i〉 with
probability pi := tr(|i〉〈i|ρ) = 〈i|ρ|i〉 = ρii. As we can nei-
ther directly observe the mixed state ρ nor the probabilities
(pi)i, we fit the results of quantum state tomography circuits
with a maximum-likelihood estimation [19], while we use
relative frequencies of sampling |i〉 to estimate the probabil-
ity pi. All of this is natively supported in QISKIT [36].
As an example, we show density matrices δ = |D4

2〉〈D4
2|

and ρ as state city plots in Fig. 7, with two versions of the
experimentally derived ρ: one that we get from the state
tomography circuit results, and one which we get from the
results combined with measurement error mitigation, dis-
cussed in Section IV-C and in more detail in Section V-B.

1) QUANTUM FIDELITY
Quantum state fidelity is a quantitative measure on the close-
ness of two quantum states. In our context, it measures how
close the output state ρ of a Dicke state preparation circuit
is to the ideal expected state |Dnk〉. Thus the fidelity signifies
the probability that ρ passes the yes/no test of being the pure

|Dnk〉 (with the test being the measurement of the observable
δ = |Dnk〉〈Dnk |) [21].

More generally, the fidelity between δ and ρ can range
from 0 to 1 and is defined as 1

F (δ, ρ) =
[
tr

(√√
δρ

√
δ

)]2
(5)

where
√
ρ denotes the unique positive semidefinite square

root of ρ such that
√
ρ
√
ρ = √

ρ†
√
ρ = ρ. Since δ in our

case is pure and thus
√
δ = δ, (5) reduces to

F (|Dnk〉, ρ) = 〈Dnk |ρ|Dnk〉. (6)

Finally, if ρ were a pure state as well, ρ = |ψ〉〈ψ |, the fi-
delity would reduce to the squared state overlap

F (|Dnk〉, ψ) = ∣∣〈Dnk |ψ〉∣∣2 . (7)

To determine the density matrix ρ describing the mixed state
prepared by our Dicke state circuits on IBM Q devices, we
run full state tomography with 3n different circuits, each
sampling the prepared state in a particular Pauli basis.

1We note that some authors [27] use the nonsquared trace as an alterna-
tive definition for fidelity, F ′(δ, ρ) = tr(

√
δρ

√
δ).

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

FIGURE 7. State city plots of (left) pure Dicke State |D4
2〉〈D4

2|, (middle) measured state ρ, (right) error-mitigated ρ. In each column, the (top) plot shows
the real value of the corresponding density matrix entry ρi j and the (bottom) plot the imaginary part. The measured states were prepared on IBM Q
Montreal using state tomography circuits with an initial layout provided transpilation, with and without the use of measurement error mitigation.

2) HELLINGER FIDELITY
In the case of classical probabilities (where density matri-
ces reduce to diagonal matrices with δii = qi, ρii = pi), the
quantum fidelity (5) reduces to an analogous measure for the
similarity between two probability distributions p = (pi)i,
q = (qi)i called Hellinger fidelity

H(q, p) =
[

n∑
i=1

√
pi · qi

]2
. (8)

The Hellinger fidelity is related to maybe better known mea-
sures Hellinger distance HD = 1√

2

√∑
(
√
pi − √

qi)2 [16]

and Bhattacharya coefficient BC = ∑√
pi · qi [4] through

HD = BC2 = (1-HD2)2.
The Hellinger fidelity between the ideal Dicke state prob-

ability distribution qi from (4) and the measurement proba-
bilites pi = ρii for Dicke states prepared on IBM Q only de-
pends on the diagonal elements of the state’s density matrix
ρ, thus ignoring information on coherence between different
basis states. On the plus side, this circumvents the high num-
ber of tomography circuits, as pi can be estimated from the
relative frequency of samples |i〉 we get from measuring the
Dicke state preparation circuit in the computational basis.

3) MEASURED SUCCESS PROBABILITY
An even more simplistic measure has been used in the liter-
ature [25], which is to simply estimate the probability that
a measurement in the computational basis yields a state |i〉
with Hamming weight wt(i) = k. We we call this the mea-
surement success probability

Mk(p) =
∑

wt(i)=k pi. (9)

The measurement success probability not only drops the
evaluation of coherence but also does not discriminate be-
tween a uniform distribution over Hamming weight k states
and skewed distributions with the same success probability.
We now explore the relation between the threemeasures from
(6), (8), and (9) and existing benchmarks.

B. RELATIONSHIP OF MEASURES, BENCHMARKS
As we have seen, the measures quantum fidelity F , Hellinger
fidelity H, and measurement success probability Mk intu-
itively are increasingly less strict. This is also true mathe-
matically, i.e., we show the relation F ≤ H ≤ Mk

F (|Dnk〉, ρ) = 〈Dnk |ρ|Dnk〉 = 〈Dnk |Id
√
ρ
†√
ρId|Dnk〉

=
n∑
i=1

n∑
j=1

〈Dnk |i〉〈i| √ρ†√ρ | j〉〈 j|〉Dnk

VOLUME 3, 2022 3101816

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

CS≤
n∑
i=1

n∑
j=1

〈Dnk |i〉︸ ︷︷ ︸√
qi

√
〈i|ρ|i〉︸ ︷︷ ︸√
pi

√
〈 j|ρ| j〉︸ ︷︷ ︸√p j

〈 j|Dnk〉︸ ︷︷ ︸√q j

=
(

n∑
i=1

√
qipi

)2

= H(p, q)

(4)=
⎛
⎝ ∑

wt(i)=k

√
qi

√
pi

⎞
⎠2

CS≤
⎛
⎝ ∑

wt(i)=k
qi

⎞
⎠
⎛
⎝ ∑

wt(i)=k
pi

⎞
⎠ (4)= Mk(p)

where we used the Cauchy–Schwarz inequality (CS) and the
qi definition (4), twice each. �
We will be interested in how well the classical measures

Hellinger fidelty and measurement success probability up-
per bound the classical fidelity. Note that because ρ and pi
are only estimated through a maximum-likelihood fitter and
relative frequencies of samples, respectively, there is a small
chance for statistical fluctuations violating the inequalities.
In lieu of lower bounds, we turn instead to existing bench-

marks for quantum fidelities with Dicke states (see Fig. 1):

1) quantum fidelities ranging from ∼ 0.95 to ∼ 0.75 [9]
for W state preparation of |D2

1〉, |D3
1〉, |D4

1〉, |D5
1〉;

2) quantum fidelity of 0.53 [25] for the |D4
2〉 preparation;

and
3) squared state overlaps (7) ranging from 0.5 to 0.3125

for product states (
√
1 − k/n|0〉 + √

k/n|1〉)⊗n.

The latter is actually the statewith highest quantumfidelity
with |Dnk〉 among all n-qubit product states.Wewill prove this
formally, as it is not clear a priori: based on the symmetry
of Dicke states, we know that any symmetric permutation
of qubits in a product state can not change its squared state
overlap with the Dicke state, however, this does not imply
directly that the best possible product state itself has to be
symmetric. Let |ψ〉 = ⊗n

i=1(ai|0〉 + bi|1〉) be any n-qubit
product state, where |ai|2 + |bi|2 = 1. We are interested in
all terms of the state vector, which have Hamming weight k,
i.e., whose amplitudes consist of n− k as and k bs. Then its
quantum fidelity with |Dnk〉 satisfies |〈Dnk |ψ〉|2

=
∣∣∣∣∣∣

1√(n
k

)ai1 · . . . · ain
∑

1≤i1≤...≤ik≤n

bi1
ai1

· · · bik
aik

∣∣∣∣∣∣
2

CS≤ 1(n
k

)
⎛
⎝ ∑

1≤i1≤...≤in−k≤n
|ai1 |2 · · · |ain−k |2

⎞
⎠

×
⎛
⎝ ∑

1≤i1≤...≤ik≤n
|bi1 |2 · · · |bik |2

⎞
⎠

=
(n
k

)2(n
k

)
(∑ |ai1 |2 · · · |ain−k |2(n

n−k
)

)(∑ |bi1 |2 · · · |bik |2(n
k

)
)

M≤
(
n

k

)(∑n
i=1 |ai|2
n

)n−k (∑n
i=1 |bi|2
n

)k

= (nk)
nnkn−k (n−k)k

(
k
∑

|ai|2
)n−k (

(n− k)
∑

|bi|2
)k

GA≤ (nk)
nnkn−k (n−k)k

(
(n− k)k

∑ |ai|2 + k(n− k)
∑ |bi|2

n

)n

=
(n
k

)
kn(n− k)n

nnkn−k(n− k)k
=
(
n

k

)(
k

n

)k (n− k

n

)n−k

using the CS, the Maclaurin inequality for elementary sym-
metric polynomials (M), and the geometric and arithmetic
mean inequality (GA). In the inequalities, equality holds for
Maclaurin if all |ai|2 are equal (and all |bi|2 are equal, re-
spectively), for the geometric and arithmetic mean if (n−
k)
∑ |bi|2 = k

∑ |ai|2 and for Cauchy–Schwarz if the frac-

tions
bi1 ···bik
ai1 ···aik

have the same value for all index choices

i1, . . . , ik. Equality along the whole chain thus holds if for
all i we have ai = √

1 − k/n and bi = √
k/n. �

C. EXPERIMENTAL SETUP
1) MEASUREMENT ERROR MITIGATION
Noise in gate-level quantum computers generates measure-
ment results that are far away from the results expected from
an ideal quantum computer. Unusual behavior of physical
quantum gates and relaxation of quantum energy over time
are considered the primary source of noise, which repre-
sents a massive challenge in quantum computing. There is
another form of noise that occurs during the final measure-
ment step that affects the perfect output state and outputs
randomly perturbed noisy state. It is possible to understand
the effect of those measurement errors by first generating
circuits for all possible 2n basis states and measuring them
on a real quantum system to find the probability of each
states. Theoretically these perfect basis states becomes noisy
before returning to the user as output, i.e., Outputactual =
Mnoise ∗ Outputideal. If we can compute the matrix that when
multiplied with the ideal state generates the measured state,
it is possible to get the mitigated output. From linear algebra,
the inverse ofMnoise can be applied to mitigate the measure-
ment errors from the Outputactual state, i.e., Outputmitigated =
M−1

noise ∗ Outputactual [35].

2) TRANSPILATION
We construct circuits for Dicke states |Dnk〉, where n =
2, 3, 4, 5, 6 and k = 1, 2, 3 using the divide and conquer ap-
proach described in Section III. IBM QISKIT compiler (ver-
sion: 0.26.2) is used to compile the logical circuits onto the
specified hardware using the native gate set. As pre and post
compiled circuits remain in the same language and both are

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

FIGURE 8. Measured fidelity of Dicke states for IBM Q Sydney system without error mitigation (top left) and with error mitigation (top right) and IBM Q
Montreal system without error mitigation (bottom left) and with error mitigation (bottom right) using different transpilation method of QISKIT. We
varied default, noise adaptive and initial layout provided transpilation of QISKIT with optimization level 3. Additionally we applied error mitigation
techniques of QISKIT to reduce measurement noise from the output.

equivalent in terms of unitary representation, the Qiskit com-
piler is termed a “transpiler,” while the compilation is termed
as “transpilation” [34]. QISKIT offers different transpilation
& optimization options that generate custom transpiled cir-
cuits. For this experiment, we set the QISKIT optimization
level to 3 and use three different transpilation options as
follows.

a) Default:We only use the default options.
b) Initial layout provided: We provide a subgraph of the

required number of qubits as the initial layout, where
we choose the qubits focusing on LNN connectivity
and gate error rate.

c) Noise adaptive: We set layout_method argument as
noise_adaptive and depend onQISKIT to select qubits.
In the noise adaptive mapping, the qubits are selected
using the specific machine topology and daily calibra-
tion data from IBM. It avoids qubits with high error
rates and low coherence times to enable maximum re-
liability for cnots and reduce qubit movements [26].

3) EVALUATION
To verify the circuits, we compute the quantum fidelity to
measure the closeness of the prepared state ρ to the Dicke
state |Dnk〉. To calculate ρ, we first generate state tomography
circuits in each measurement combination of the Pauli X, Y,
and Z bases for n-qubits that give a total of 3n measurement
circuits. We run the tomography circuits in IBM Q systems
and calculate fidelity between pure output state and tomog-
raphy circuit measurement. For this experiment, we selected
IBM Q Sydney and IBM QMontreal quantum systems from
the IBM Quantum Experience cloud service. IBM Q Syd-
ney and IBM Q Montreal have the same elongated hexagon
topology on their 27 qubits. The quantum volume (QV) of
IBM Q Sydney is 32 and the QV of IBM QMontreal is 128.
The average cnot gate error in IBM Q Sydney and IBM Q
Montreal is 0.0114 and 0.1522, where the average readout
error is 0.05078 and 0.02028, respectively.
We apply measurement calibration to mitigate noise in

the final measurement steps of the tomography circuits. We
use the QISKIT ignis package to mitigate the noise by first

VOLUME 3, 2022 3101816

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

FIGURE 9. Absolute difference and relative gain of quantum fidelity Dicke states fidelities on IBM Q Sydney (left) and IBM Q Montreal system (right) are
measured using different transpilation method of QISKIT with and without applying error mitigation techniques.

creating a measurement filter object, then applying the filter
to the actual output state. Then we compute fidelity again
between the ideal state and error-mitigated output state to
compare with the previous fidelity.
We also compare quantum fidelity with Hellinger fidelity

and measured success probability for different transpilation
options. For each experiment, we run all 3n tomography
circuits using “qiskit.execute” where all the circuits are exe-
cuted together and “IBMQJobManager.run” where we split
the circuits into multiple jobs and set to execute a fixed num-
ber of circuits in a job.

V. RESULTS
We explain experimental results on IBM Q Sydney and
Montreal systems for the different Dicke states using the
transpilation options described in Section IV-C. We denote
the Dicke state circuits as Dnk-r, where n = {2, 3, 4, 5, 6}
represents the number of qubits, k = {2, 3, 4, 5, 6}
represents the Hamming weight, and r denotes the
number of cnot gates in the circuit. All in all, the Dicke
states |D1

2〉, |D1
3〉, |D1

4〉, |D1
5〉, |D1

6〉, |D2
4〉, |D2

5〉, |D2
6〉, and

|D3
6〉 are prepared by circuits D21 - 1,D31 - 2,D41 - 5,

D51 - 7,D61 - 9,D42 - 10,D52 - 17,D62 - 24,D63 - 32
D63 - 33. The experiments using “qiskit.execute”

are denoted as “All circuit” and experiments with
“IBMQJobManager.run” are denoted as “Split jobs.”

A. QUANTUM STATE FIDELITIES
We first study quantum state fidelities with respect to the
number of cnot gates required for all Dicke state circuits
Dnk-r on different quantum backends. Fig. 8 shows mea-
sured quantum fidelity of all Dicke states on IBM Q Sydney
and IBM Q Montreal system for different transpilation op-
tions of IBM QISKIT. Each plot has six lines representing
different transpilation techniques and job execution methods
outlined in Section IV. The Dicke states are sorted (left to
right) according to the number of required cnot gates in
the untranspiled circuit. The plots show that for almost all
experiments, “Split jobs” is equal to or slightly better than
“All circuit” execution; for these experiments, “Split jobs”
option has fewer circuits than “All circuit” per job.
We present how fidelity changes if we apply measurement

error mitigation techniques to the measurement result for
each experiment. The left two plots show quantum fidelities
on Sydney and Montreal without error mitigation techniques
and the right two plots show quantum fidelities after applying
error mitigation techniques. We observe that for both Sydney
and Montreal, measurement error mitigation reduces noise

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

FIGURE 10. Measured success probability of different Dicke states on IBM Q Sydney without error mitigation (top left) and with error mitigation (top
right) and on IBM Q Montreal without error mitigation (bottom left) and with error mitigation (bottom right) using QISKIT’s different transpilation with
optimization level 3.

from the output and increases quantum state fidelities irre-
spective of circuit length and width.
Theoretically, the number of cnot count and quantum fi-

delity measure should have a negative correlation, i.e., when
cnot count increases, fidelity measure decreases, and vice
versa. We observe that fidelities for Montreal follow this
trend for all states with chosen transpilation methods except
for state D63-32, where the fidelities are less than state D63-
33. From our circuit design, the circuit depth of state D63-33
is (depth = 29) is less than the circuit depth of state D63-32
(depth = 33). So, we can say that reduction in circuit depth
increases parallel execution of gates, and, thus, decreases
the overall error rate. However, we see from the plot that
circuits using default transpilation do not obey this trend for
the Montreal backend. We also note that fidelities for Sydney
are more distorted especially for noise adaptive transpilation
of circuits D41-5, D51-7, D61-9, and D42-10.We investigate
the circuit after noise adaptive transpilation and find that
the chosen qubits are sometimes not connected, which adds
more ancilla qubits, and, thus, increases the number of gates.
Besides, we find almost similar characteristics for IBM Q
Sydney and Montreal using the initial layout provided and
default transpiled circuits.
Overall, IBMQMontreal behaves better with better fideli-

ties than Sydney and there is no irritating ups and down like
Sydney. Thus it can be said that the newer system (Montreal)

is better and it indeed deserves better QV ranking. Fidelity
values of more than 0.5 give us high confidence that the
IBMQ devices indeed manage to create entanglement in the
Dicke states.

B. INFLUENCE OF MEASUREMENT ERROR MITIGATION
To investigate the effect of measurement error mitigation on
output, first, we present the absolute difference of quantumfi-
delities before and after applying error mitigation techniques
on IBMQ Sydney andMontreal backend in Fig. 9. Similarly,
Fig. 9 shows the gain of quantum fidelities before and af-
ter applying error mitigation techniques on those backends.
Six lines are representing different transpilation options and
execution methods. All Dicke states denoted using the form
Dnk-r are sorted according to number of cnot gates of un-
transpiled circuit.
From Fig. 9, we observe that in most of the cases, with the

increasing number of the qubits, the gain of quantum fidelity
increases. Additionally, for the same value of n, fidelity gain
is higher for smaller k. This is expected because, for the same
n, the higher value of k represents a more complex circuit
that hasmore circuit noise thanmeasurement noise. So, when
we apply measurement error mitigation on a less complex
circuit (smaller k) for the same n, we get a higher fidelity
gain. In general, circuits with an increasing number of qubits
get more benefited from measurement error mitigation. For

VOLUME 3, 2022 3101816

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

FIGURE 11. Hellinger fidelity of Dicke States for IBM Q Sydney system without error mitigation (top left) and with error mitigation (top right) and IBM Q
Montreal system without error mitigation (bottom left) and with error mitigation (bottom right) using different transpilation method of QISKIT.

FIGURE 12. Measured success probability, Hellinger fidelity, and quantum fidelity of different Dicke states on IBM Q Sydney (upper three) and on IBM Q
Montreal (bottom three) with error mitigation using QISKIT’s different transpilation with optimization level 3.

3101816 VOLUME 3, 2022

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

FIGURE 13. Measured probability of correct Hamming weights versus incorrect Hamming weight distribution for Dicke states for n = 2, 3, 4, 5 and
k = 1, 2, 3 using initial layout provided transpilation with optimization level 3. The results are obtained from our experiments in IBM Q Montreal device.
Here, “ND” denotes the distribution of incorrect Hamming weight states (non-Dicke). The “blue” bar represents success rate without error mitigation
while “red” bar represents success rate with error mitigation. The horizontal line in each plot shows ideal probability of dicke states with correct
Hamming weight.

states with the same circuit length, circuit noise dominates
over measurement noise in a more complex circuit. However,
we observe some exceptions in IBMQ Sydney and Montreal
for noise adaptive and initial layout provided transpilation
option.

C. INFORMATION FROM CLASSICAL DISTRIBUTION
Theoretically, quantum fidelity is upper bounded by the
Hellinger fidelity, which in turn is upper bounded by the suc-
cess probability of output states, i.e., Quantum Fidelity ≤
Hellinger Fidelity ≤ Measured Success Probability. Aswe
discussed before, quantum fidelity requires 3n tomography

circuits, which can be costly and time-consuming. Another
approach could be to calculate Hellinger fidelity and mea-
sured success probability to get an estimation of quantum
fidelity of our circuit. In this section, we will explore a com-
parative study of measured success probability, Hellinger
fidelity, and quantum fidelity for our proposed Dicke state
preparation circuits. From this section, we only present re-
sults from our “All Circuit” execution to avoid complexity.
Figs. 10 and 11 shows measured success probability and

Hellinger fidelity of different Dicke states on IBM Q Syd-
ney and Montreal backend. We observe that measurement
error mitigation increases measured success probability and

VOLUME 3, 2022 3101816

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

Hellinger fidelity for both backends. We can find a linear
decrease of success rate and Hellinger fidelity in the plot
for states sorted (left to right) according to the number of
required cnot gates. However, there are some outlier points
in both the plots especially for noise adaptive transpilation
on the IBM Q Sydney backend. Recall that noise adaptive
transpilation prioritizes error rates for selecting qubits that
sometimes choose nonneighboring qubits. This induces over-
head of ancilla qubits in the circuit for multiqubits gates,
such as cnot, which leads to the lower count of the correct
output state. By definition, success probability depends on
the number of correct states among a total number of shots,
and Hellinger distance is calculated using the probabilities
from correct and incorrect states.
In Fig. 12, we present all three measures, i.e., measured

success probability, Hellinger fidelity, and quantum fidelity
for Dicke states D21-1, D31-3, D41-5, D51-7, D61-9, D42-
10, D52-17, D62-24, D63-32, and D63-33 using our pro-
posed optimized circuits. We observe that measured success
probability is close to Hellinger fidelity for all transpiled
circuits on IBM Q Sydney and Montreal. While quantum
fidelity is close to the other two measures for the smaller
circuits, with increasing circuit length and depth quantum
fidelity starts to drop significantly. In summary, we find
from our experiment that measured success probability and
Hellinger fidelity follows theoretical expectation, and quan-
tum fidelity increases gap with other two measure for a com-
plex circuit. Also, the computationally inexpensive Hellinger
fidelity and measured success probability are good approxi-
mations for quantum fidelity, particularly up to 4 qubits and
ten cnots; unfortunately, the gap becomes larger for larger
circuits, but the inexpensive measure still capture all the
interesting trends. Note in particular, how Hellinger fidelity
replicates the behavior of quantum fidelity for the |D6

3〉 inver-
sions under different transpilation schemes.
The measured success probability shown in Fig. 10 repre-

sents the probability of generating the Dicke states with cor-
rect Hamming weight. It would be intriguing to observe the
success probabilities of the correct and incorrect Hamming
weight of a Dicke states. Fig. 13 shows the measured success
probability of correct Hamming weight states as well as a
boxplot of incorrect Hammingweight states for our proposed
Dicke states. For each plot, we show both device-generated
probabilities and measurement error-mitigated probabilities.
The horizontal bar in each plot represents the expected prob-
ability of correct Hamming weight states, i.e., 1/

(n
k

)
. We plot

the Dicke states with the sameHammingweight (k = 1, 2, 3)
in a row. For Hamming weight k = 1, we see the probabil-
ities of correct Hamming weight to be almost equal to the
theoretical expectation while the incorrect Hamming weight
states have a small distribution. We find almost similar char-
acteristics for Hammingweight k = 2 although themeasured
probability decreases with increasing n. The success prob-
abilities of correct Hamming weight states for Hamming
weight k = 3 are much less than the expected probabilities
because circuit noise dominates over measurement noise for

a complex circuit. However, the probability distribution of
incorrect Hamming weight states is still very small. The plots
in Fig. 13 are totally in line with our results from Fig. 10–12
and justifies our findings.

VI. CONCLUSION
We have presented a new divide-and-conquer-style quantum
algorithm for creating Dicke states, which are by definition
highly entangled quantum states. Our algorithms leverage the
underlying topology of the actual quantum hardware, such as
LNN. As an additional theoretical contribution, we showed
a bound of how close any product state can get to a Dicke
state in terms of quantum fidelity. Our main experimental
results show that present-day NISQ devices (namely, two of
the IBMQ backends) are indeed able to create Dicke states
at very high quantum fidelity levels of more than 0.5 at six
qubits, which we verified through full state tomography, thus
outperforming previously reported results. This improved
performance is due to both improvements in NISQ hardware
as well as our algorithmic improvements. In addition, we
have examined the suitability of simpler measures of suc-
cess probability and Hellinger fidelity as approximations for
quantum fidelity; we found that these measures match the
trends for quantum fidelity. We have also explored the IBM
QISKIT software stack with respect to different compiler
options and found that no single setting finds the optimum
solutions in each case, thus forcing the user to experiment
with different settings for their own experiments.
We see the following future directions.

1) The cost of the “Divide” part scales well on Ladder
architectures but not for LNN architectures. What is
the tradeoff of the divide-and-conquer approach versus
architectural constraints? Can we get sublinear circuit
depths o(n) for full connectivity or small constant fac-
tors for the cnot count in LNN connectivities?

2) The cost of full state tomography gets prohibitively
large even for small n ≥ 6. Can we approximate ρ and
the quantum fidelity from below with fewer tomogra-
phy circuits in addition to the upper bound given by the
Hellinger fidelity?

3) The divide-and-conquer approach presented in this ar-
ticle improved on constants in the running time [3] and
on connectivity requirements [25]. To get an asymp-
totic improvement in the circuit depth, one may recur-
sively apply the divide-and-conquer approach, which
is active work in progress [48].

4) Dicke states live in the symmetric subspace of the full
Hilbert space. By considering the symmetry of Dicke
states, there might be more error mitigation potential
that can be developed to further improve the fidelity.

REFERENCES
[1] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-

and-conquer algorithm for quantum state preparation,” Sci. Rep., vol. 11,
Oct. 2006, Art. no. 6329, doi: 10.7171038/s41598-021-85474-1.

3101816 VOLUME 3, 2022

https://dx.doi.org/10.7171038/s41598-021-85474-1

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION Engineeringuantum
Transactions onIEEE

[2] D. Bacon, I. L. Chuang, and A.W. Harrow, “Efficient quantum circuits for
Schur and Clebsch-Gordan transforms,” Phys. Rev. Lett., vol. 97, no. 17,
Oct. 2006, Art. no. 170502, doi: 10.1103/PhysRevLett.97.170502.

[3] A. Bärtschi and S. Eidenbenz, “Deterministic preparation of Dicke states,”
in Proc. 22nd Int. Symp. Fundamentals Computation Theory, 2019,
pp. 126–139, doi: 10.1007/978-3-030-25027-0_9.

[4] A. K. Bhattacharyya, “On a measure of divergence between two multino-
mial populations,” Sankhyā: Indian J. Statist., vol. 7, no. 4, pp. 401–406
1946. [Online]. Available: https://www.jstor.org/stable/25047882

[5] A. Bärtschi and S. Eidenbenz, “Grover mixers for QAOA:
Shifting complexity from mixer design to state preparation,” in
Proc. IEEE Int. Conf. Quantum Comput. Eng., 2020, pp. 72–82,
doi: 10.1109/733QCE49297.2020.00020.

[6] A. M. Childs, E. Farhi, J. Goldstone, and S. Gutmann, “Finding cliques
by quantum adiabatic evolution,” Quantum Inf. Comput., vol. 2, no. 3,
pp. 181–191, Apr. 2002, doi: 10.26421/QIC2.3.

[7] I. L. Chuang and D. S. Modha, “Reversible arithmetic coding for quantum
data compression,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp 1104–1116,
May. 2000, doi: 10.1109/18.841192.

[8] J. Cook, S. Eidenbenz, and A. Bärtschi, “The quantum alternating op-
erator Ansatz on maximum k-vertex cover,” in Proc. IEEE Int. Conf.
Quantum Comput. Eng., 2020, pp. 83–92, doi: 10.1109/QCE49297.2020.
00021.

[9] D. Cruz et al., “Efficient quantum algorithms for GHZ andW states, and
implementation on the IBM quantum computer,” Adv. Quantum Technol.,
vol. 2, no. 5/6, 2019, Art. no. 1900015, doi: 10.1002/qute.201900015.

[10] Tiago ML de Veras, Leon D. da Silva, and Adenilton J. da Silva,
“Double sparse quantum state preparation,” 2021, arXiv:2108.13527,
doi: 10.48550/arXiv.2108.13527.

[11] R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev.,
vol. 93, no. 1, pp 99–110, Jan. 1954, doi: 10.1103/PhysRev.93.99.

[12] C. Gidney, “Quirk: Quantum circuit simulator. A drag-and-drop quantum
circuit simulator,” [Online]. Available: https://algassert.com/quirk

[13] J. Golden, A. Bärtschi, S. Eidenbenz, and D. O’Malley, “Evidence for
super-polynomial advantage of QAOA over unstructured search,” 2022,
arXiv:2202.00648, doi: 10.48550/arXiv.2202.00648.

[14] J. Golden, A. Bärtschi, Daniel O’Malley, and S. Eidenbenz, “Threshold-
based quantum optimization,” in Proc. IEEE Int. Conf. Quantum Comput.
Eng., 2021, pp. 137–147, doi: 10.1109/QCE52317.2021.00030.

[15] S. Hadfield et al., “From the quantum approximate optimization algorithm
to a quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, 2019,
Art. no. 34, doi: 10.3390/a12020034.

[16] E. Hellinger, “Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen,” J. für die reine und angewandte Mathe-
matik, vol. 136, pp. 210–271, 1909, doi: 10.1515/crll.1909.136.210.

[17] D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation
of Dicke states in an ion chain,” Phys. Rev. A, vol. 80, no. 5, Nov. 2009,
Art. no. 052302, doi: 10.1103/PhysRevA.80.052302.

[18] S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary
Dicke and NOON states of trapped-ion qubits by global addressing with
composite pulses,”New J. Phys., vol. 15, no. 2, Feb. 2013, Art. no. 023039,
doi: 10.1088/1367-2630/15/2/023039.

[19] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of
qubits,” Phys. Rev. A, vol. 64, 2001, Art. no. 052312, doi: 10.1103/Phys-
RevA.64.052312.

[20] M. T. Johnsson, N. R. Mukty, D. Burgarth, T. Volz, and G. K. Bren-
nen, “Geometric pathway to scalable quantum sensing,” Phys. Rev.
Lett., vol. 125, no. 19, 2020, Art. no. 190403, doi: 10.1103/Phys-
RevLett.125.190403.

[21] R. Jozsa, “Fidelity for mixed quantum states,” J. Modern Opt., vol. 41,
no. 12, pp. 2315–2323, 1994, doi: 10.1080/09500349414552171.

[22] L. Lamata, C. E. López, B. P. Lanyon, T. Bastin, J. C. Retamal, and E.
Solano, “Deterministic generation of arbitrary symmetric states and entan-
glement classes,” Phys. Rev. A, vol. 87, no. 3, Mar. 2013, Art. no. 032325,
doi: 10.1103/PhysRevA.87.032325.

[23] E. Malvetti, R. Iten, and R. Colbeck, “Quantum circuits for
sparse isometries,” Quantum, vol. 5, 2021, Art. no. 412,
doi: 10.22331/q-2021-03-15-412.

[24] M. Mosca and P. Kaye, “Quantum networks for generating arbitrary quan-
tum states,” in Proc. Opt. Fiber Commun. Conf. Int. Quantum Inf., 2001,
Art. no. PB28, doi: 10.1364/ICQI.8062001.PB28.

[25] C. S. Mukherjee, S. Maitra, V. Gaurav, and D. Roy, “Preparing Dicke
states on a quantum computer,” IEEE Trans. Quantum Eng., vol. 1, 2020,
Art. no. 3102517, doi: 10.1109/810TQE.2020.3041479.

[26] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” in Proc. 24th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2019, pp. 1015–1029, doi: 10.1145/3297858.3304075.

[27] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[28] Y. Ouyang, “Permutation-invariant quantum codes,” Phys. Rev. A, vol. 90,
no. 6, 2014, Art. no. 062317, doi: 10.1103/PhysRevA.90.062317.

[29] Y. Ouyang, “Permutation-invariant quantum coding for quantum deletion
channels,” in Proc. IEEE Int. Symp. Inf. Theory, 2021, pp. 1499–1503.
doi: 10.1109/ISIT45174.2021.9518078.

[30] Y. Ouyang, “Quantum storage in quantum ferromagnets,” Phys. Rev.
B, vol. 103, no. 14, 2021, Art. no. 144417, doi: 10.1103/Phys-
RevB.103.144417.

[31] Y. Ouyang, N. Shettell, and D. Markham, “Robust quantum metrology
with explicit symmetric states,” IEEE Trans. Inf. Theory, vol. 68, no. 3,
pp. 1809–1821, Mar. 2022, doi: 10.1109/TIT.2021.3132634.

[32] M. Plesch and V. Bužek, “Efficient compression of quantum information,”
Phys. Rev. A, vol. 81, no. 3,Mar. 2010, Art. no. 032317, doi: 10.1103/Phys-
RevA.81.032317.

[33] R. Prevedel et al., “Experimental realization of Dicke states of up
to six qubits for multiparty quantum networking,” Phys. Rev. Lett.,
vol. 103, no. 2, Jul. 2009, Art. no. 020503, doi: 10.1103/PhysRevLett.103.
020503.

[34] Qiskit, “How does the qiskit transpiler work.” [Online]. Available:
https://medium.com/qiskit/how-does-the-qiskit-transpiler-work-6710863
beaac

[35] Qiskit Development, “Qiskit documentation: Measurement error
mitigation,” [Online]. Available: https://qiskit.org/documentation/
tutorials/noise/3_measurement_error_mitigation.html

[36] Qiskit Development Team, “Qiskit documentation: Quantum tomog-
raphy,” [Online]. Available: https://qiskit.org/documentation/tutorials/
noise/8_tomography.html

[37] X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “De-
terministic generation of arbitrary multi-atom symmetric Dicke states
by a combination of quantum zeno dynamics and adiabatic passage,”
EPL (Europhysics Lett.), vol. 90, no. 5, Jun. 2010, Art. no. 50003,
doi: 10.1209/0295-5075/90/50003.

[38] J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic Dicke-
state preparation with continuous measurement and control,” Phys. Rev.
A, vol. 70, no. 2, Art. no. 022106, Aug. 2004, doi: 10.1103/Phys-
RevA.70.022106.

[39] G. Tóth, “Multipartite entanglement and high-precision metrology,” Phys.
Rev. A, vol. 85, no. 2, Feb. 2012, Art. no. 022322, doi: 10.1103/Phys-
RevA.85.022322.

[40] Z. Wang, N. C. Rubin, J. M. Dominy, and E. G. Rieffel, “XY mixers: Ana-
lytical and numerical results for the quantum alternating operator ansatz,”
Phys. Rev. A, vol. 101, no. 1, 2020, Art. no. 012320, doi: 10.1103/Phys-
RevA.101.012320.

[41] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and
H. Weinfurter, “Experimental entanglement of a six-photon symmetric
Dicke state,” Phys. Rev. Lett., vol. 103, no. 2, Jul. 2009, Art. no. 020504,
doi: 10.1103/PhysRevLett.103.020504.

[42] C. Wu, C. Guo, Y. Wang, G. Wang, X.-L. Feng, and J.-L. Chen, “Gener-
ation of Dicke states in the ultrastrong-coupling regime of circuit QED
systems,” Phys. Rev. A, vol. 95, no. 1, Jan. 2017, Art. no. 013845,
doi: 10.1103/PhysRevA.95.013845.

[43] C. Wu, Y. Wang, C. Guo, Y. Ouyang, G. Wang, and X.-L. Feng, “Ini-
tializing a permutation-invariant quantum error-correction code,” Phys.
Rev. A, vol. 99, no. 1, 2019, Art. no. 012335, doi: 10.1103/PhysRevA.99.
012335.

[44] Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entan-
gled states with selective resonant interaction in cavity quantum elec-
trodynamics,” Phys. Rev. A, vol. 75, no. 1, Jan. 2007, Art. no. 012310,
doi: 10.1103/PhysRevA.75.012310.

[45] X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation
with optimal circuit depth: Implementations and applications,”2022,
arXiv:2201.11495, doi: 10.48550/arXiv.2201.11495.

VOLUME 3, 2022 3101816

https://dx.doi.org/10.1103/PhysRevLett.97.170502
https://dx.doi.org/10.1007/978-3-030-25027-0_9
https://www.jstor.org/stable/25047882
https://dx.doi.org/10.1109/733QCE49297.2020.00020
https://dx.doi.org/10.26421/QIC2.3
https://dx.doi.org/10.1109/18.841192
https://dx.doi.org/10.1109/QCE49297.2020.penalty -@M 00021
https://dx.doi.org/10.1109/QCE49297.2020.penalty -@M 00021
https://dx.doi.org/10.1002/qute.201900015
https://dx.doi.org/10.48550/arXiv.2108.13527
https://dx.doi.org/10.1103/PhysRev.93.99
https://algassert.com/quirk
https://dx.doi.org/10.48550/arXiv.2202.00648
https://dx.doi.org/10.1109/QCE52317.2021.00030
https://dx.doi.org/10.3390/a12020034
https://dx.doi.org/10.1515/crll.1909.136.210
https://dx.doi.org/10.1103/PhysRevA.80.052302
https://dx.doi.org/10.1088/1367-2630/15/2/023039
https://dx.doi.org/10.1103/PhysRevA.64.052312
https://dx.doi.org/10.1103/PhysRevA.64.052312
https://dx.doi.org/10.1103/PhysRevLett.125.190403
https://dx.doi.org/10.1103/PhysRevLett.125.190403
https://dx.doi.org/10.1080/09500349414552171
https://dx.doi.org/10.1103/PhysRevA.87.032325
https://dx.doi.org/10.22331/q-2021-03-15-412
https://dx.doi.org/10.1364/ICQI.8062001.PB28
https://dx.doi.org/10.1109/810TQE.2020.3041479
https://dx.doi.org/10.1145/3297858.3304075
https://dx.doi.org/10.1103/PhysRevA.90.062317.
https://dx.doi.org/10.1109/ISIT45174.2021.9518078
https://dx.doi.org/10.1103/PhysRevB.103.144417
https://dx.doi.org/10.1103/PhysRevB.103.144417
https://dx.doi.org/10.1109/TIT.2021.3132634
https://dx.doi.org/10.1103/PhysRevA.81.032317
https://dx.doi.org/10.1103/PhysRevA.81.032317
https://dx.doi.org/10.1103/PhysRevLett.103.penalty -@M 020503
https://dx.doi.org/10.1103/PhysRevLett.103.penalty -@M 020503
https://medium.com/qiskit/how-does-the-qiskit-transpiler-work-6710863penalty -@M beaac
https://medium.com/qiskit/how-does-the-qiskit-transpiler-work-6710863penalty -@M beaac
https://qiskit.org/documentation/penalty -@M tutorials/noise/3_measurement_error_mitigation.html
https://qiskit.org/documentation/penalty -@M tutorials/noise/3_measurement_error_mitigation.html
https://qiskit.org/documentation/tutorials/penalty -@M noise/8_tomography.html
https://qiskit.org/documentation/tutorials/penalty -@M noise/8_tomography.html
https://dx.doi.org/10.1209/0295-5075/90/50003
https://dx.doi.org/10.1103/PhysRevA.70.022106
https://dx.doi.org/10.1103/PhysRevA.70.022106
https://dx.doi.org/10.1103/PhysRevA.85.022322
https://dx.doi.org/10.1103/PhysRevA.85.022322
https://dx.doi.org/10.1103/PhysRevA.101.012320
https://dx.doi.org/10.1103/PhysRevA.101.012320
https://dx.doi.org/10.1103/PhysRevLett.103.020504
https://dx.doi.org/10.1103/PhysRevA.95.013845
https://dx.doi.org/10.1103/PhysRevA.99.penalty -@M 012335
https://dx.doi.org/10.1103/PhysRevA.99.penalty -@M 012335
https://dx.doi.org/10.1103/PhysRevA.75.012310
https://dx.doi.org/10.48550/arXiv.2201.11495

Engineeringuantum
Transactions onIEEE

Aktar et al.: DIVIDE-AND-CONQUER APPROACH TO DICKE STATE PREPARATION

[46] X.-M. Zhang, M.-H. Yung, and X. Yuan, “Low-depth quantum state
preparation,” Phys. Rev. Res., vol. 3, no. 4, 2021, Art. no. 043200,
doi: 10.1103/PhysRevResearch.3.043200.

[47] S. K. Özdemir, J. Shimamura, and N. Imoto, “A necessary and sufficient
condition to play games in quantum mechanical settings,” New J. Phys.,
vol. 9, no. 2, pp 43–43, Feb. 2007, doi: 10.1088/1367-2630/9/2/043.

[48] A. Bärtschi and S. Eidenbenz, “Short-depth circuits for dicke state prepa-
ration,” unpublished.

Shamminuj Aktar received the B.Sc. de-
gree in computer science and engineering from
Khulna University of Engineering and Technol-
ogy, Khulna, Bangladesh, in 2015. She is cur-
rently working toward the Ph.D. degree in electri-
cal and computer engineering with New Mexico
State University, Las Cruces, NM, USA.

Her research interests include quantum com-
puting, high-performance computing, and ma-
chine learning.

Andreas Bärtschi received the Ph.D. degree in
computer science and the M.Sc. degree in math-
ematics from the Swiss Federal Institute of Tech-
nology (ETHZ), Zurich, Switzerland.

He is a Computer Scientist with Information
Sciences Group (CCS-3), Los Alamos National
Laboratory (LANL), Los Alamos, NM, USA.
Prior to that, he was a Postdoctoral Researcher
with LANL’s Center for Nonlinear Studies and
with ETHZ. His research interests include the de-
sign and analysis of quantum algorithms for com-

binatorial optimization problems, as well as theoretical computer science
and quantum computing in general.

Abdel-Hameed A. Badawy (Senior Member,
IEEE) received the B.Sc. degree (Hons.) in elec-
tronics engineering from Mansoura University,
Mansoura, Egypt, and the M.Sc. and Ph.D. de-
grees in computer engineering from the Univer-
sity of Maryland, College Park, MD, USA.

He is an Associate Professor with the Klipsch
School of Electrical and Computer Engineering,
New Mexico State University, Las Cruces, NM,
USA. He is also a Los Alamos Joint Faculty with
the New Mexico Consortium, Los Alamos, NM,

USA. He has been a Visiting Research Scientist with the New Mexico Con-
sortium.Hewas a LeadResearch Scientist with theHigh-Performance Com-
puting Laboratory, George Washington University, Washington, DC, USA.
His research interests include computer architecture, high-performance
computing, performance modeling and prediction, green computing, hard-
ware security, and optical computing.

Stephan Eidenbenz received the Ph.D. degree
in computer science from the Swiss Federal Insti-
tute of Technology, Zurich, Switzerland.

He is a Senior Computer Scientist with the In-
formation Sciences Group (CCS-3), Los Alamos
National Laboratory (LANL), Los Alamos, NM,
USA. He was the Director of the Information
Science and Technology Institute, LANL. His re-
search interests include quantum computing, the-
oretical computer science and scalable modeling
and simulation, as well as cybersecurity, compu-

tational codesign, and communication networks.

3101816 VOLUME 3, 2022

https://dx.doi.org/10.1103/PhysRevResearch.3.043200
https://dx.doi.org/10.1088/1367-2630/9/2/043

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

