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ABSTRACT Machine learning (ML) classification tasks can be carried out on a quantum computer (QC)
using probabilistic quantum memory (PQM) and its extension, parametric PQM (P-PQM), by calculating
the Hamming distance between an input pattern and a database of r patterns containing z features with
a distinct attributes. For PQM and P-PQM to correctly compute the Hamming distance, the feature must
be encoded using one-hot encoding, which is memory intensive for multiattribute datasets with a > 2. We
can represent multiattribute data more compactly by replacing one-hot encoding with label encoding; both
encodings yield the same Hamming distance. Implementing this replacement on a classical computer is
trivial. However, replacing these encoding schemes on a QC is not straightforward because PQM and P-PQM
operate at the bit level, rather than at the feature level (a feature is represented by a binary string of 0’s and
1’s). We present an enhanced P-PQM, called efficient P-PQM (EP-PQM), that allows label encoding of data
stored in a PQM data structure and reduces the circuit depth of the data storage and retrieval procedures.
We show implementations for an ideal QC and a noisy intermediate-scale quantum (NISQ) device. Our
complexity analysis shows that the EP-PQM approach requires O(z log2(a)) qubits as opposed to O(za)
qubits for P-PQM. EP-PQM also requires fewer gates, reducing gate count from O(rza) to O(rz log2(a)).
For five datasets, we demonstrate that training an ML classification model using EP-PQM requires 48% to
77% fewer qubits than P-PQM for datasets with a > 2. EP-PQM reduces circuit depth in the range of 60% to
96%, depending on the dataset. The depth decreases further with a decomposed circuit, ranging between 94%
and 99%. EP-PQM requires less space; thus, it can train on and classify larger datasets than previous PQM
implementations on NISQ devices. Furthermore, reducing the number of gates speeds up the classification
and reduces the noise associated with deep quantum circuits. Thus, EP-PQM brings us closer to scalable ML
on an NISQ device.

INDEX TERMS Efficient encoding, label encoding, quantum memory.

I. INTRODUCTION
Nowadays, classical algorithms play an important role in
finding information in data [1]. However, due to the large
amount of data that we have today, some problems require a
lot of resources to be solved [1]. Recently, quantum comput-
ing has emerged as a promising candidate for solving large-
scale data problems. Quantum computers (QCs) use quantum
mechanical properties, such as superposition and entangle-
ment, to perform computations. Machine learning (ML) is
a promising field where QCs, specifically near-term inter-
mediate scale [noisy intermediate-scale quantum (NISQ)]

devices, can have potential applications. The purpose of
quantum ML is to build quantum-enhanced ML models [2],
[3]. These algorithms have proved to be faster than classical
algorithms for a variety of tasks, including supervised and
unsupervised ML [4]–[6], reinforcement learning [7], and
support vector machine [8]. For a review on quantum ML,
see [9] and [10].
In this article, we propose an enhancement to a quantum

ML model that belongs to the quantum associative memory
family of models [11]–[14]. Specifically, we focus on proba-
bilistic quantum memory (PQM) [12], [13], which computes
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the Hamming distance, deemed D, between an n-bit input
pattern and a database of r patterns of length n.

PQM has strong characteristics, such as storing and simul-
taneously analyzing r patterns while using only n qubits. In
other words, on a QC, one needs O(n) qubits as opposed to
O(rn) bits of associative memory on a classical computer.

Despite this, PQM is not perfect. For example, suppose we
have multiple input patterns to compare to the database of
patterns. The comparison is made one input string at a time.
This means that we need to reload1 the database into a QC
after every comparison because measuring D collapses the
state of the QC [18], [19]. Since the reloading cost isO(rn), it
may outweigh the benefits of PQM, making it more efficient
to compute D on a classical computer.
PQM can be useful for specialized tasks, e.g., one PQM

execution may be sufficient for evaluating the artificial neu-
ral network architectures probabilistically without having to
initialize the weights [20].
PQM can be used in supervised ML for pattern

classification tasks. This is done by computing the
probability that an input pattern belongs to a given database
of patterns [14], [21]. A variety of datasets were used to
demonstrate the applicability of this approach, ranging from
detecting breast cancer to finding winning strategies in
Tic-Tac-Toe [14], [21].
However, the current approach for codifying patterns

as binary strings may be inefficient. Let us look at two
examples.
Example I.1: Suppose that each of the pattern’s features

has only two attributes. In this case, we can efficiently codify
the value of a feature using a single bit per feature. �
Example I.2: What if we have more than two attributes?

Let us use a to represent the number of distinct attributes.
To codify attributes, we can either use one-hot encoding or
label encoding. In one-hot encoding, a single feature is repre-
sented by a binary variables, while label encoding maps the
attributes to a integers. Therefore, one-hot encoding requires
a bits to represent a feature, while label encoding only needs
�log2(a)� bits, where �·� denotes ceiling function. Thus, la-
bel encoding is more memory-efficient than one-hot encod-
ing. This difference is significant as a real-world dataset (e.g.,
NSL-KDD [22]) may contain hundreds of distinct attributes.
For example, one-hot encoding requires 100 bits for a feature
with 100 distinct attributes, whereas label encoding requires
only 7 bits. This exponential decrease in the number of qubits
and gates may make NISQ devices capable of processing
complex multiattribute patterns.
Consider patterns containing three features: an input pat-

tern μ0 = “A A A” and a database with two patterns μ1 =
“B B B” and μ2 = “C C A.” We would like to compute
the distance between μ0 and two patterns in the database. It
is obvious that D(μ0, μ1) = 3 and D(μ0, μ2) = 2.

1This concern may be alleviated by probabilistic cloners for QC [13],
which may create approximate copies of the states for QC. There are cur-
rently no practical probabilistic cloners for QC, but research is ongoing in
this area [15]–[17].

Let us now demonstrate how the above example is im-
plemented using PQM. As PQM operates at the bit level,
the patterns must be converted to bit strings. We will use
the label encoding to represent the three attributes, which
requires two bits per attribute. Suppose that “A” is codified as
“00,” “B” as “01,” and “C” as “11.” This encoding converts
the patterns to the following bit strings: μ0 = “00 00 00,”
μ1 = “01 01 01,” and μ2 = “11 11 00.” PQM
operates on individual bits, thus Dlabel(μ0, μ1) = 3 and
Dlabel(μ0, μ2) = 4.

As we can see, D(μ0, μ1) > D(μ0, μ2), but
Dlabel(μ0, μ1) < Dlabel(μ0, μ2). Consequently, label
encoding, while efficiently utilizing memory, may lead
to erroneous results.
To overcome this problem, we must resort to one-hot

encoding, in which attributes are codified as follows: “A”
as “100,” “B” as “010,” and “C” as “001.” The patterns
will now be represented by μ0 = “100 100 100,” μ1 =
“010 010 010,” and μ2 = “001 001 100.” PQM will
yield Done-hot(μ0, μ1) = 6 and Done-hot(μ0, μ2) = 4. Note
that Done-hot = 2D (see Appendix A for details); thus, one-
hot encoding yields the desired values of D.

Therefore, one-hot encoding allows PQM to compute D
correctly, whereas label encoding does not. However, one-
hot encoding consumes more space: nine qubits will be re-
quired instead of six. �

Based on the above examples, to compute D correctly,
it appears that PQM can only use one-hot encoding for
features with multiple attributes. Consequently, the pattern
must be represented using a large amount of space. Modern
QCs, however, have a small number of qubits and limited
coherence. Therefore, we need to find a way to use label
encoding to reduce space constraints and utilize qubits more
efficiently.
In this article, our contribution is as follows. We gen-

eralize the PQM algorithm to compute the Hamming
distance D for features codified with label encoding. Specif-
ically, we improve the parametric PQM (P-PQM) classifica-
tion algorithm designed for modern NISQ computers [14] to
use fewer qubits and quantum gates. This efficient version of
P-PQM, which we call EP-PQM, results in

1) space savings, as for z features the number of required
qubits reduces from O(za) to O(z log2(a)) for a > 2;

2) improved computational efficiency, as the amount of
quantum gates needed to execute the PQM algorithm is
proportional to the number of bits required to represent
a pattern. The number of gates reduces from O(rza) to
O(rz log2(a)).

With EP-PQM requiring fewer qubits and gates to imple-
ment PQM than P-PQM, it becomes a better candidate for
applications in NISQ devices.
The rest of this article is structured as follows. Section II

recaps the PQM and P-PQM algorithms [14]. In Section III,
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we introduce the EP-PQM. Section IV provides sample ex-
periments withML datasets. Finally, in SectionV,we present
our final remarks and conclusions.

II. PROBABILISTIC QUANTUM MEMORY
In this section, we review the PQM and P-PQM algorithms.
The PQM [12], [13] algorithm introduces a data structure that
allows computing the D distance at the bit level between a
binary input pattern and all other binary patterns stored in a
superposition state. PQM has two parts: storing information
and retrieving information, discussed in Sections II-A and II-
B, respectively. The core quantum computing fundamentals
needed to implement these algorithms are introduced in Ap-
pendix A.
To store information, PQM will take a dataset of r binary

patterns, each of n bits and store them in a superposition
state with equal probability. Given an input, to retrieve in-
formation, the memory quantum state is rotated within the
subspace defined by the stored patterns. The resulting ampli-
tudes are peaked on the stored patterns which are closest in
Hamming distance D to the input.
P-PQM is similar in nature to PQM, but adds an extra

parameter that may improve ML classification.

A. PQM AND P-PQM: STORING INFORMATION
This section recaps the existing PQM and P-PQM data stor-
age processes, leveraging the same algorithm.
Formally, the storing information part of the algorithm

receives a dataset of r binary patterns, each containing n
bits: data = ∪r

i=1{pi}. To store the patterns, three quantum
registers are needed: the input register p, the memory register
m, and the auxiliary two-qubit register u. The input regis-
ter state |p〉 will hold every pattern of length n. |m〉 is the
memory register that will store each pattern pi by the end
of the algorithm. The auxiliary two-qubit register state |u〉 is
used to keep tabs on which patterns are stored in memory
and which ones need to be processed. The first qubit in |u〉
is used to change the second qubit in |u〉. The second qubit
in |u〉 indicates whether a pattern has been already stored or
not. In this case, |u〉 = 1 indicates that the pattern has not
been stored yet. To make a copy of the n bits from the pattern
in |p〉 to the respective register |m〉, the algorithm checks if
the pattern has been stored on |m〉 by checking if the second
qubit in |u〉 is 1. If it is 1, the pattern will be copied to |m〉.
All three quantum registers are initialized in the state |0〉 and
the algorithm initial state is

|ψ0〉1 = | 0102 . . . 0n︸ ︷︷ ︸
|p〉

; 01︸︷︷︸
|u〉

; 0102 . . . 0n︸ ︷︷ ︸
|m〉

〉. (1)

The storage process loads each pattern (represented as
a binary string) into |p〉 and then stores them in |m〉 in a
superposition with equal probabilities. Once the patterns are
loaded into |m〉, they will be processed to find the closest
pattern match, as we will discuss in Section II-B.
The storage process is given in Algorithm 1; see [14] for an

in-depth explanation of the storing algorithm. This algorithm

uses common quantum computing gates recapped in Ap-
pendix A. In addition to these gates, Step 7 of the algorithm
uses a two-qubit control gate cs j, which adds a pattern pi to
the memory register with uniform amplitudes. It is defined
as follows:

cs j = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ S j

where j ∈ Z and j = 1, 2,..., r, and

S j =
⎡
⎣

√
j−1
j

1
j

−1√
j

√
j−1
j

⎤
⎦ .

Thus

cs j =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0
√

j−1
j

1
j

0 0 −1
j

√
j−1
j

⎤
⎥⎥⎥⎥⎥⎦ .

The final result of the algorithm is the state

|ψ r
8〉1 = 1√

r

r∑
k=1

|0102 . . . 0n; 01;mk1mk2 . . .mkn〉. (2)

Note that in the retrieval phase, we are only concerned with
the memory-register state |m〉.

B. PQM AND P-PQM: RETRIEVING INFORMATION
PQM and P-PQM retrieval processes—described in Sec-
tions II-B1 and II-B2, respectively—are similar. PQM re-
trieval algorithm only has an implementation for fault-
tolerant QCs, while P-PQM also has an implementation de-
signed for NISQ devices [14].
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1) PQM: RETRIEVING INFORMATION
The algorithm for retrieving information relies on the mem-
ory register m in state |ψ r

8〉1 (i.e., the output of the storage
algorithm). This state is then further manipulated to perform
pattern analysis as described in the following.
PQM uses the Hamming distance D between a target pat-

tern and all patterns, which are stored in a superposition, to
indicate probabilistically the chances of the target pattern
being in the memory. This algorithm uses three quantum
registers, namely t, m, and c

t1t2 . . . tn︸ ︷︷ ︸
t

;m1m2 . . .mn︸ ︷︷ ︸
m

; c︸︷︷︸
c

. (3)

The target pattern, deemed T and represented by bits
τ1τ2 . . . τn, is loaded into register state |t〉; |m〉 contains all the
stored patterns from the storage algorithm; and |c〉 contains a
control qubit initialized in state |0〉. Once the input has been
loaded on to |t〉 and the stored patterns are in |m〉, the full
initial quantum state is

|ψ0〉2 = 1√
r

r∑
k=1

|t1t2 . . . tn;mk1mk2 . . .mkn; 0〉 (4)

where r is the total number of stored patterns, t1t2 . . . tn are
qubits used to store corresponding bits τ1τ2 . . . τn of the tar-
get pattern T , and mk1m

k
2 . . .m

k
n is the kth stored pattern.

The retrieval process is summarized in Algorithm 2. In
Step 1, we apply the Hadamard gate on to the control qubit
|c〉 to get

|ψ1〉 = 1√
2r

( r∑
k=1

|t1t2 . . . tn;mk1mk2 . . .mkn; 0〉

+
r∑

k=1

|t1t2 . . . tn;mk1mk2 . . .mkn; 1〉
)
. (5)

Step 2 sets the jth qubit in register |m〉 to |1〉 if the jth
qubit of |t〉 and |m〉 are the same or to |0〉 if they differ.

Step 3 computes D between the target pattern and all
patterns in |m〉. The number of zeros in |m〉 (representing
the qubits that differ between memory and target string) is

computed. Operator Ũ , used in this step, is defined as

Ũ =
[
exp

( iπ
2n

)
0

0 1

]
(6)

where i denotes the unit imaginary number. First, Ũ is applied
to each qubit in |m〉. Then Ũ−2 (which is Ũ to the power of
−2) is applied to each qubit in |m〉 if the qubit is in state
|c〉 = |1〉. This control operator is denoted byG. As per [12],
GŨ−2 is formally defined as

GŨ−2 = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Ũ−2.

Step 4 reverts register |m〉 to its original state and the
Hadamard gate h is applied to the control qubit in |c〉; this
operation is denoted by hc. After Step 4, the state will be

|ψ4〉 = 1√
r

( r∑
k=1

cos
π

2n
dk|t1t2 . . . tn;mk1mk2 . . .mkn; 0〉

+
r∑

k=1

sin
π

2n
dk|t1t2 . . . tn;mk1mk2 . . .mkn; 1〉

)
(7)

where dk is D between the target pattern t and stored pattern
mk.

Step 5 measures register |c〉. A target pattern similar to
the stored patterns increases the probability of measuring
|c〉 = |0〉. Otherwise, if the target pattern is dissimilar, then
the probability of |c〉 = |1〉 increases. If |c〉 is measured in
|0〉 (see Step 6), then measuring the qubits in the memory
register (in Step 7) will return the binary pattern from the
set of stored patterns that produced the minimum D with
the target pattern in a given run of the algorithm, with the
following probability:

P
(
mk

) =
{
0, if |c〉 = |1〉

1
rP(|c〉=|0〉) cos

2
(
π
2ndk

)
, otherwise.

(8)

This probability peaks around the patterns which have small-
est D to t.

2) P-PQM: RETRIEVING INFORMATION
In a nutshell, P-PQM operates as the PQM, but with the addi-
tion of a scale parameter ν ∈ (0, 1] in the retrieval algorithm.
The parameter ν is used to compute weighted D, which may
improve the performance of the classifier [14].
To integrate ν into the retrieval algorithm, (6) is redefined

as

U =
[
exp

( iπ
2nν

)
0

0 1

]
. (9)

Note that the quantum circuit depth and complexity are inde-
pendent of ν, and that P-PQM reduces to PQM when ν = 1.
Let us give a brief summary of both fault-tolerant and NISQ
implementations (see [14] for additional details).
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2) a) Fault-tolerant implementation
The algorithm for the quantum implementation of the P-
PQM retrieval procedure is almost identical to the PQM one
(see Algorithm 2). The only difference is that (6) is replaced
with (9). The input into the algorithm, as in the PQM case, is
given by (5).

2) b) NISQ implementation
The NISQ implementation of the P-PQM retrieval algo-
rithms is shown in Algorithm 3. This implementation re-
quires only two registers, namely, m and c

m1m2 . . .mn︸ ︷︷ ︸
m

; c︸︷︷︸
c

(10)

and the input is stored classically. Once the stored patterns
from the storing part of the algorithm are in |m〉, the full
initial quantum state is

|ψ0〉3 = 1√
r

r∑
k=1

|mk1mk2 . . .mkn; 0〉. (11)

Because the input is stored classically, all the control op-
erators from the input register to the memory register are
removed from the circuit and replaced with a x operator. Es-
sentially, the input pattern is processed dynamically without
the need for a dedicated register. In the NISQ implementa-
tion [14], Steps 2 and 4 of the fault-tolerant implementa-
tion (see Algorithm 2) are modified. Specifically, they are
replaced by Steps 2–4 and 6–8 of Algorithm 3. In this NISQ
implementation, rather than applying x based on cnot to
each qubit, we examine each τ j bit in T on the classical
computer and apply x only if τ j = 1. This leads to “inver-
sion” of logic; thus, we are now interested in measuring |m〉
when c = 1 rather than when c = 0 (compare Steps 6–7 of
Algorithm 2 with Steps 11–12 of the Algorithm 3).

C. POSTPROCESSING ON CLASSICAL COMPUTER
PQM- and P-PQM-based ML have probabilistic nature. To
get N measurements, we need to run the storage and retrieval
algorithms N times (because after the memory registers are
measured, we need to reinitialize the database).
We collect N measurements of |c〉 for PQM-based ML

classification (whether PQM or P-PQM). Suppose we mea-
sureM ≤ N instances when |c〉 = 0 (for fault-tolerant Algo-
rithm 2) or when |c〉 = 1 (for NISQ Algorithm 3). Then the
affinity of an input pattern belonging to a given database of
patterns, deemed ρ, is given by ρ = M/N. The closer ρ is to
1, the closer the input pattern is to the database of patterns.
To infer the class/label of an input pattern, an analyst needs

to construct individual pattern databases for each class/label.
Next, the analyst will compute ρ for each database. Finally,
the analyst will assign a label to the input pattern based on
the label of the database with the highest ρ. In this article, we
do not compute ρ as our goal is to improve the storage and
retrieval process used to obtain individual measurements. To
learn more about PQM-based ML classification, see [14].

Note that the last two steps of Algorithms 2 and 3 suggest
to measure the values of specific patterns in the database.
On an ideal QC, we can get rid of these steps, as all the
required information needed to compute ρ would be given
to us by measuring qubit |c〉. However, for NISQ devices,
the situation is different: we may end up with measuring a
pattern that has not been stored in the database. This happens
due to the noisy nature of NISQ devices. In this case, we may
need to implement an additional postprocessing scheme. For
example, onemay assume that information about the value of
|c〉 is important and should be included in the computation of
ρ independent of the value of the pattern. Another approach
would involve discarding the measurements of patterns that
have not been present in the database. Answering this ques-
tion is outside of the scope of this article.

III. EFFICIENT PARAMETRIC PROBABILISTIC QUANTUM
MEMORY
In this section, we cover our extension of P-PQM. Storing
of information is discussed in Section III-A and retrieval in
Section III-B. For both storage and retrieval, we design fault-
tolerant and NISQ implementations. Both of these imple-
mentations of EP-PQM typically require fewer qubits and
gates than PQM and P-PQM implementations, as we will
demonstrate as follows.

A. EP-PQM: STORING INFORMATION
1) FAULT-TOLERANT IMPLEMENTATION
For a fault-tolerant implementation, we will reuse the PQM
and P-PQM storage procedures shown in Algorithm 1.

2) NISQ IMPLEMENTATION
EP-PQM storage procedure suitable for NISQ device is given
in Algorithm 4. The latter requires two registers, the memory

VOLUME 3, 2022 3101514
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register |m〉 with n qubits and an auxiliary two-qubit register
|u〉, as defined in Section II-A. The algorithm starts with the
following initial state:

|ψ0〉4 = | 01︸︷︷︸
|u〉

; 0102 . . . 0n︸ ︷︷ ︸
|m〉

〉 (12)

where all the qubits in memory register are in state |0〉 and
the auxiliary register is in state |0, 1〉. Since in EP-PQM the
input patterns do not require a dedicated register, as they can
be stored in a classical computer, this algorithm requires less
qubits for the storage part. Indeed, comparing (12) and (1),
we see that EP-PQM storage part uses n+ 2 qubits versus
2n+ 2 qubits for PQM and P-PQM. After the execution of
Algorithm 4, the final state is a superposition of the input
patterns with equal probabilities

|ψ r
6〉4 = 1√

r

r∑
k=1

|01;mk1mk2 . . .mkn〉. (13)

In Algorithm 4, since the input pattern is stored classi-
cally, all the control operators acting on the input register
are removed. Instead, we can classically check if the input
pattern consists of 0 or 1. As a result, Steps 4, 5, 9, and 10
of Algorithm 1 are changed. These changes can be seen in
Steps 3–7 and 11–15 of Algorithm 4. Steps 3–7 are used to
make a copy of the n bits of pi to the memory register if the
u2 is flagged as 1, and then fill with 1’s all the bits in the
memory register which are equal to the respective bits in pi.
Steps 11–15 will reverse the work done in Steps 3–7.

B. EP-PQM: RETRIEVING INFORMATION
1) FAULT-TOLERANT IMPLEMENTATION
As explained in Section II-C, after N measurements, PQM
outputs the probability of a target pattern being close to pat-
terns in the database at the bit level. As discussed in Section I,
this approach is ineffective if we compute D for symbols
represented by multiple bits. For this reason, we extend the
information retrieval part of PQM given in Algorithm 2.
Our extension generalizes the PQM algorithm to compute

D for features codified with label encoding. The extension
requires four registers, namely, t, m, c, and h

t1t2 . . . tn︸ ︷︷ ︸
t

;m1m2 . . .mn︸ ︷︷ ︸
m

; c︸︷︷︸
c

; h1h2 . . . hz︸ ︷︷ ︸
h

. (14)

Registers t, m, and c are the same as in (3), i.e., the PQM
case discussed in Section II-B1.
The register h is used to compare features. The number

of qubits in h is equal to the number of features in the pat-
tern, deemed z. Note that z = n/d, where d is the number
of bits required to represent an attribute of a feature, i.e.,
d = �log2(a)�. The jth qubit in register h is set to |1〉 if the
binary string of length d that represents the jth feature of T
is the same as the corresponding binary string in m. With |h〉
included, the initial quantum state for retrieval of information
is

|ψ0〉5 = 1√
r

r∑
k=1

|t1t2 . . . tn;mk1mk2 . . .mkn; 0; 1112 . . . 1z〉

(15)

where all qubits in register |h〉 are initially in state |1〉 and the
register |c〉 in state |0〉.

3101514 VOLUME 3, 2022
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With this extension, the retrieval algorithm is changed, as
shown inAlgorithm 5. The first and second steps are the same
as the original Algorithm 2. In Step 3, results from Step 2
are used to update register |h〉. Given that each symbol is
represented by a binary string of length d and each input is
of length n, Step 3 will set the jth qubit in |h〉 to |0〉. This will
happen if the binary string of length d, which represents the
jth symbol of T , is not the same as the corresponding binary
string in |m〉. With register |h〉 updated in Step 3, |h〉 can be
used in place of |m〉 for Step 4. In Step 4, we use operatorW
instead ofU , which is defined as

W =
[
exp

( iπ
2zν

)
0

0 1

]
.

We useW to calculate D at the feature level. In Steps 5 and
6, inverse transformations of Steps 2 and 3 are applied and h
gate is applied to the control qubit. In Step 7, |c〉 is measured.
If |c〉 is measured in state |0〉, it means that the input is close
to all stored patterns in the dataset. This probability is peaked
around those patterns which have the smallest D to the input
at the feature level. The highest probability of retrieval, thus,
occurs for patterns that are most similar to the input at the
feature level. Finally, Steps 7–9 are identical to Steps 5–7 of
Algorithm 2.

2) NISQ IMPLEMENTATION
Akin to the NISQ implementation [14], we decided to store
the input pattern classically. This implementation requires
only three registers: m, c, and h, with n, 1, and z qubits,
respectively

m1m2 . . .mn︸ ︷︷ ︸
m

; c︸︷︷︸
c

; h1h2 . . . hz︸ ︷︷ ︸
h

. (16)

The initial quantum state for retrieval of information is

|ψ0〉6 = 1√
r

r∑
k=1

|mk1mk2 . . .mkn; 0; h1h2 . . . hz〉. (17)

Also, to further reduce the complexity of the circuit, we
removed the x gates from Steps 3 and 5 of Algorithm 5. As
in Algorithm 3, this results in measuring |m〉 when |c〉 is in
state |1〉. As a result, Algorithm 5 changes to Algorithm 6.

C. POSTPROCESSING ON CLASSICAL COMPUTER
The postprocessing for EP-PQM is the same as that for PQM
and P-PQM. We refer the reader to Section II-C for details.

D. IMPLEMENTATION
NISQ version of the EP-PQM can be implemented on any
modern NISQ architecture. We introduce a reference imple-
mentation on QisKit [23], a Python-based open-source soft-
ware development kit for coding in OpenQASM and lever-
aging the IBM QCs. The code is given in [24]; it is based on
our PQM-based string comparison approach [25].
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Similar to the QisKit Aqua [26] library, we wrap Open-
QASM invocations into a Python class so that a programmer
without any QC coding experience can leverage the algo-
rithm from any Python program. The code can be executed in
a simulator on a personal computer or on the actual IBMQC.

E. COMPLEXITY ANALYSIS
1) SPACE COMPLEXITY (QUBITS COUNT)
As discussed above, all the algorithms operate on n-bit pat-
terns, but n depends on the value of a and the type of encoding
(one-hot or label). Suppose we want to encode a pattern
containing z features with a distinct attributes.

The case when a = 1 is trivial because D = 0 for any
string. For the case when a > 1, formalizing Examples I.1
and I.2, we may say that for PQM and P-PQM, which have
to use one-hot encoding

n = no =
{
z if a = 2

za if a > 2
(18)

and for EP-PQM, which can use label encoding

n = nl = z
⌈
log2(a)

⌉
if a ≥ 2. (19)

In other words, when a = 2, all algorithms require n = z bits
to represent a pattern, and when a > 2, EP-PQM requires
fewer bits and qubits.

1) a) Fault-tolerant implementation
On an ideal QC, based on (1) and (3), PQM and P-PQM
require 2n+ 2 qubits for storage and 2n+ 1 qubits for re-
trieval, making a total of 4n+ 3 qubits [12]. In practice, one
can perform the storage and retrieval algorithms for PQM
and P-PQM on a single circuit. This will lead to a reduction
in the number of qubits to 2n+ 2 [14].
In EP-PQM, we stick to the conceptually similar ap-

proach and, based on (12) and (14), use 2n+ z+ 1 qubits. In
the fault-tolerant implementation, EP-PQM requires 2n+ 2
qubits for storage and 2n+ z+ 1 for retrieval. During the
storage procedure, we need register |u〉with two qubits. Dur-
ing retrieval, register |u〉 is not needed, thus its qubits can be
reassigned. We can reuse one of these qubits for register |c〉
and one qubit as part of the register |h〉. Thus, we need only
2n+ z+ 1 qubits in total.

Based on (18) and (19), in the a = 2 case, PQM and
P-PQM will require 2z+ 2 bits, while EP-PQM will need
3z+ 1 bits. When a > 2, the savings start to emerge. EP-
PQM needs z(2�log2(a)� + 1) + 1 qubits, while PQM and
P-PQM encoding need 2za+ 2 qubits. Asymptotically, this
gives a reduction fromO(za), in the PQM and P-PQM cases,
to O(z log2(a)), in the EP-PQM case.

1) b) NISQ implementation
If we use one circuit for both the storage and retrieval
algorithms, P-PQM’s NISQ implementation,2 based on (1)

2As mentioned in Section II-B, PQM does not have an NISQ implemen-
tation.

and (10), requires 2n+ 2 qubits. EP-PQM, based on (12)
and (16), uses n+ z+ 1 qubits (as in the fault-tolerant im-
plementation above, we reassign qubits).
Based on (18) and (19), if a = 2, EP-PQMwill require one

less qubit than P-PQM: 2z+ 1 instead of 2z+ 2. And when
a > 2, P-PQM require 2za+ 2 qubits, while EP-PQM needs
only z(�log2(a)� + 1) + 1. Asymptotically, this again gives
a reduction from O(za) to O(z log2(a)).

1) c) Summary
In the fault-tolerant implementation, EP-PQM requires a
lesser number of bits and qubits than PQM and P-PQMwhen
a > 2. In the NISQ implementation, EP-PQM is more effi-
cient than PQM and P-PQM for all values of a.

2) TIME COMPLEXITY—OVERALL NUMBER OF GATES
Our algorithm’s time complexity is proportional to the depth
of the circuit for storage and retrieval. For now, we assume
that different gates have the same time complexity (we will
examine each gate type in Section III-E3).

2) a) Fault-tolerant implementation
In the fault-tolerant implementation, all three algorithms use
Algorithm 1 to store the data, which requires O(rn) gates.

PQM and P-PQM retrieval, based on Algorithm 2, needs
O(n) gates. EP-PQM retrieval, based on Algorithm 5, needs
O(n+ z) gates.

Consequently, the combined number of gates for storage
and retrieval is O(rn) for all three algorithms. As in the case
of space complexity, discussed above, the savings are driven
by the encoding schema. Since for one-hot encoding n = za
and for label encoding n = z�log2(a)�, the number of gates
for PQM and P-PQM is O(rza), while for EP-PQM it is only
O(rz log2(a)).

2) b) NISQ implementation
PQM does not have an NISQ implementation, thus we focus
on P-PQM and EP-PQM. The storage part of P-PQM, as in
the fault-tolerant case, is governed by Algorithm 1, which,
as discussed above, requires O(rn) gates. EP-PQM storage
is given in Algorithm 4; it still needs O(rn) gates. As in the
fault-tolerant case, the savings will come from the encoding
schema, yielding O(rza) gates for P-PQM and O(rz log2(a))
gates for EP-PQM.

2) c) Summary.
In both fault-tolerant and NISQ cases, EP-PQM becomes
more efficient than PQM and P-PQM with the growth of a.

3) SPECIFIC GATES
Complexitywise, not all gates are created equal. Some gates
increase complexity more than others. For example, on an
NISQ device, c2not gate requires more native gates than x
gate, which increases complexity.
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TABLE 1. Gate Count for Storage Algorithms

3) a) Storage
Algorithm 1 governs the data storage procedures for all three
algorithms, except for the EP-PQM NISQ implementation,
which is governed by Algorithm 4. Table 1 lists how many
gates are required to implement these algorithms. When
comparing the number of individual gates, we have to be
mindful of the encoding, as n varies as per (18) and (19),
where no and nl denote n in one-hot and label encoding cases,
respectively.
The parameter γ ∈ [0, 1] denotes a fraction of 1 bits in the

database. The largest number of gates will be needed when
γ = 1.

Algorithm 4 requires fewer control gates thanAlgorithm 1.
Table 1 lists that it does not need any c2not gates. The
number of cnot gates will vary with n, r, and γ . Let us
analyze this variation by exploring under what conditions the
number of cnot gates of EP-PQM is smaller than the number
of P-PQM gates. That is, when does the following inequality
holds?

2nor > 2γ nlr (20)

For a = 2 and using (18) and (19), the inequality (20)
becomes

2nor > 2γ nlr ⇒ 2zr > 2γ zr ⇒ 1 > γ .

This inequality never holds, as γ ≤ 1. However, P-PQM and
EP-PQM have the same number of cnot gates when γ = 1.

In the a > 2 case, (20) becomes

2nor > 2γ nlr ⇒ za > γ z
⌈
log2(a)

⌉
⇒ a > γ

⌈
log2(a)

⌉ ⇒ a⌈
log2(a)

⌉ > γ .

This inequality holds when a > 2 for all γ . Thus, EP-PQM
requires a lesser number of cnot gates when a > 2.

To understand x gates count, we need to analyze the fol-
lowing inequality:

2nor > 2(1 − γ )nlr. (21)

When a = 2, using (18) and (19), (21) simplifies to

2nor > 2(1 − γ )nlr ⇒ 2zr > 2(1 − γ )zr ⇒ 1 > 1 − γ .

This implies that P-PQM and EP-PQM have the same num-
ber of x gates when γ = 0. For other values of γ EP-PQM
outperforms P-PQM (when a = 2).

TABLE 2. Gate Count for Retrieval Algorithms

2(P-)PQM stands for “PQM and P-PQM.”

Let us now explore a > 2 case, where (21) becomes

2nor > 2(1 − γ )nlr ⇒ za > (1 − γ )z
⌈
log2(a)

⌉
⇒ a⌈

log2(a)
⌉ + γ > 1.

(22)

This inequality will hold for all γ . Thus, EP-PQM needs a
lesser number of x gates than P-PQM (when a > 2).
In summary, we can say that EP-PQM will use the same

number of gates as P-PQM when a = 2 and γ = 0 (which is
an extreme and rare case). For all other scenarios, EP-PQM
will need a lesser number of x gates than P-PQM.

3) b) Retrieval
The comparison of the number of specific gate required to
retrieve data based on Algorithms 2, 3, 5, and 6 is given in
Table 2. The parameter δ ∈ [0, 1] denotes the fraction of the
bits in the input pattern that are 1’s.
A few observations of Table 2 suggest that the retrieval

phase requires a lesser number of gates than the storage phase
(as it is independent of r). NISQ versions of the algorithms
require the same or lesser number of gates than their fault-
tolerant counterparts; this is expected as NISQ approaches
are designed with the focus on performance.
For both fault-tolerant and NISQ, EP-PQM requires 2z

additional cdnot gates than PQM and P-PQM. EP-PQM
needs a times lessW andGW gates than corresponding PQM
and P-PQM counterparts (U and GU) for a > 2.

For the fault-tolerant implementations, when a = 2, PQM
and EP-PQM will need the same number of cnot gates
[based on (18) and (19)]. When a > 2, EP-PQM will need
a lesser number of cnot gates

2no > 2nl ⇒ 2za > 2z
⌈
log2(a)

⌉ ⇒ a >
⌈
log2(a)

⌉
.

For the x gates, when a = 2, based on (18) and (19), P-
PQM is more efficient than EP-PQM

2no > 2nl + 2z ⇒ 2z > 4z.

When a > 2, the inequality becomes

2no > 2nl + 2z ⇒ 2za > 2z
⌈
log2(a)

⌉ + 2z

⇒ a− ⌈
log2(a)

⌉
> 1.

This inequality holds for a < 4. Thus, EP-PQM needs a
lesser number of x gates when a ≥ 4.
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FIGURE 1. z-axis of this contour plot depicts the values of ω, defined in
(23). Blue line denotes the boundary where ω = 1. Above the blue line,
P-PQM requires more x gates than EP-PQM; below it, P-PQM requires
fewer x gates.

For the NISQ implementations, the number of x gates will
vary with δ. For the a = 2 case

2δno > 2(1 − δ)nl ⇒ 2δz > 2(1 − δ)z ⇒ δ > (1 − δ).

Thus, for a = 2, if δ < 0.5, then P-PQM needs a lesser num-
ber of gates than EP-PQM, and if δ > 0.5, vice versa. If
δ = 0.5, the number of gates is identical.

For the a > 2 case, EP-PQM will need lesser number of x
gates than P-PQM when

2δno > 2(1 − δ)nl ⇒ δa > (1 − δ)
⌈
log2(a)

⌉
⇒ δ

1 − δ

a⌈
log2(a)

⌉︸ ︷︷ ︸
ω

> 1. (23)

The values of the inequality’s left-hand side are given in
Fig. 1. The inequality holds for different values of δ (in
general, δ nonmonotonically decreases with the increase of
a). In other words, as a increases, EP-PQMwill require fewer
x gates for a wider variety of input patterns. For example,
when a = 3, EP-PQMwill require fewer x gates for any input
pattern with more than 40% of bits set to 1, and when a = 16,
for any input pattern with more than 20% of bits set to 1.

F. REMARKS
1) LABEL ENCODING
The principles of label encoding on a classical or a QC are the
same. Label encoding can, for instance, be applied directly
to nominal and ordinal data. This method can also be applied
to numeric data if they are mapped to labeled intervals.

2) ATTRIBUTES
So far, we were operating under the implicit assumption that
each feature in an input dataset has the same number of
attributes. However, in practice, this is often not the case.
Our current (implicit) workaround is to set the number of

TABLE 3. Datasets’ Description (Based on 90% of the Observations) of
the Class/Label Having the Maximum Number of Observations

characters in the alphabet to the maximum distinct number
of attributes of any feature in the dataset.
For example, one feature may have two distinct attributes

and another feature—100 distinct attributes. In this case, we
will use seven bits (i.e., �log2(100)�) to represent each of the
features.
To use only theminimal number of bits needed to represent

each feature, we need to alter Steps 5 and 7 of Algorithms 4.
Specifically, we need to replace3 the cdnot gate for the jth
feature with cdjnot, where d j is the number of bits needed
to represent an attribute of the jth feature.

3) OTHER USE CASES
In this article, we focus on the quantumML classification use
case. However, the same principles can be applied to any use
case requiring the encoding of data with multiple attributes.
For example, by using this approach, we can efficiently

codify strings where characters are drawn from an alphabet
with a large number of characters. A string may represent
anything from mRNA sequences in bioinformatics to soft-
ware log records in software engineering [25].

IV. EXPERIMENTS
In order to compare P-PQM with EP-PQM, we show the
number of qubits and gates necessary to perform classi-
fication on five datasets from the UCI Machine Learning
Repository [27] (which were also used by the authors of
P-PQM [14]). Summary statistics for the datasets are given
in Table 3. Data are encoded using one-hot encoding in the
P-PQM case, whereas label encoding is used in the EP-PQM
case. We do not measure the accuracy of the models in our
experiments because PQM and EP-PQM yield the same ac-
curacy (since D is the same in both cases).
Sousa et al. [14] tested the performance of ML models

using a tenfold cross-validation approach, which assesses
how well the training results generalize to previously
unexplored data. In this approach, a dataset is divided into
ten equal subsets. Then, nine subsets are used to train the
model and one to validate the training results. The process
is repeated ten times, with each of the subsets being used for
validation only once.
In order to mimic this approach, we sample 90% of obser-

vations (i.e., patterns) from each dataset, referred to as b. The

3Gate replacement is all that is needed for the ML classification task. To
use this approach for computing the value of D on a classical computer, we
also need to alter the trigonometric formulas [25, (2) and (3)].
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TABLE 4. Comparison of the Number of Qubits and Quantum Circuit Depth for Class/Label With the Maximum Number of Observations

A comma separates groups of thousands.

observations in the dataset belong to different classes. Let us
assume the dataset has l distinct classes/labels. We group b
observations by l labels, creating l databases of observations.
We then focus on the l databases with the most observations
(as it represents the hardest task) since it will require the
deepest quantum circuit for a given dataset. Let us look at
a toy example.
Example IV.1: Consider a dataset with three classes/labels

and 1000 observations. We sample 90% of observations, i.e.,
b = 900. Suppose 500 observations belong to label 1, 300
observations to label 2, and 100 observations to label 3. We
will focus only on the database of observations for label 1,
as it is the largest. �
We implement the quantum circuit needed to store

and retrieve data using P-PQM (Algorithms 1 and 3) and
EP-PQM (Algorithms 4 and 6). All quantum algorithms are
implemented using Qiskit v0.33.1 [23]. The results for the
quantum-circuit-based implementation are as follows; the
results for the quantum simulator backend can be found in
Appendix C.
For each dataset’s database with the most observations, we

compute the quantum circuit depth and the number of gates
needed to execute NISQ storage and retrieval algorithms.
Finally, we perform a shallow decomposition of this circuit
(by calling “decompose()” methods of the QisKit quantum
circuit) and obtain the set of gates (see Table 4).
Table 3 contains high-level statistics for the datasets under

study. The datasets have a diverse structure. For instance,
SPECTHeart dataset has only two features and will be stored
using binary variables for both P-PQM and EP-PQM. The
rest of the algorithms have a between 3 and 11. Thus, for P-
PQM, we will encode the attributes using one-hot encoding
and for EP-PQM using label encoding.
Table 4 lists the number of qubits and quantum circuit

depths. In addition, we compute relative resource savings
while treating the resources needed for P-PQM as a base-
line. The number of qubits used by P-PQM and EP-PQM in
SPECTHeart is the same,4 which is expected as a = 2. Label
encoding reduces the number of qubits required by 48% to
77% in the rest of the datasets.

4For this implementation of P-PQM and EP-PQM, to simplify the code,
one qubit from |u〉 was reassigned to |c〉, but the second qubit of |u〉 was not
reassigned to |h〉. EP-PQM, therefore, requires one extra qubit in comparison
with the theoretical requirement: 2n+ 2 instead of 2n+ 1.

Peculiarly, quantum circuit depth is reduced for all
datasets by 60% to 96%, showing the effectiveness of EP-
PQM even for datasets with a = 2. The savings are even
more evident after decomposition: the decomposed quantum
circuit depth is reduced by 94% to 99%. These additional
savings can be explained by the fact that many gate types (es-
pecially multicontrolled ones) require a lot of native gates to
be implemented, thus increasing the quantum circuit depth.
As discussed in Section III-E3, to understand the effi-

ciency of the algorithms, we need to assess the count of
specific gates. This information is given in Table 5.
We will use typewriter font to reference the gates

used in the QisKit’s implementation of the circuit. A number
of gates are readily available. The cnot gate is implemented
using cx. The c/upalphanot gates, where α is the num-
ber of control qubits, will be implemented using cx when
there is one control qubit, ccx when there are two control
qubits, mcx when there are three or four control qubits, and
mcx_graywhen there are more than or equal to five control
qubits. The h gate is implemented using h, and x gate is
implemented using x.
According to the table, EP-PQM significantly reduces the

number of control gates cx, ccx, and mcx_gray by 58.7%
to 100.0%. For three datasets in EP-PQMwith a ≥ 4, a small
number of mcx control gates (2z, from 8 to 32) were added to
implement cdnot for three datasets with a ≥ 4; for P-PQM,
no mcx gates were required.

The EP-PQM approach results in significant reductions
in other gates (namely, unitary and cunitary5 QisKit
simulator gates which cover algorithmic U , GU , W , CW ,
and cs gates) from 3.1% to 90.9% for all datasets except
for SPECT Heart dataset where the number of gates was
identical to the P-PQM algorithm.
For all datasets, EP-PQM reduces the number of x gates

by 53.2% to 76.2%.
The count of gates obtained using shallow decomposition

of the quantum circuit is given in Table 6. Decomposition of
the circuit of the Breast Cancer dataset yielded gates c3sx,
cu1, rcccx, and rcccx_dg not found in circuits of other
datasets. To facilitate comparison with other datasets, we
further decomposed these gates using “decompose([‘c3sx,’

5unitary denotes a custom unitary gate and cunitary is a controlled
version of a custom unitary gate.
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TABLE 5. Gate Count in the Quantum Circuit

P stands for P-PQM, EP for EP-PQM, and S for relative savings computed as (P-EP)/P. The gates used in QisKit’s implementation of the quantum circuit are as follows: ccx
is a Toffoli gate c2not; cunitary and unitary are custom unitary gates (which ourU , GU ,W ,CW , and cs gates translated to); cx is a cnot gate; h is an h gate; mcx is a
cαnot gate where α is 3 or 4; mcx_gray is a cαnot gate where α ≥ 5; measure is the measurement of the qubit into classical bit; x is an x gate; see QisKit documentation
for details [23]. We deliberately leave QisKit gate names as-is to differentiate “algorithmic gates” from “implementation gates.”

TABLE 6. Gate Count in the Decomposed Quantum Circuit

P stands for P-PQM, EP for EP-PQM, and S for relative savings.
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‘rcccx,’ ‘rcccx_dg’]).decompose(‘cu1’).” This results in all
datasets containing the same gates.
The savings are even more pronounced. For cu, cx, h,

measure, t, tdg, and u3, the number of gates reduced by
32.1% to 100.0%. Also, the number of phase gates, p, re-
duced by 66.7% and 90.9% for Tic-Tac-Toe Endgame dataset
and Breast Cancer dataset, respectively.
The number of gates for p in the Balance Scale dataset and

Zoo dataset increased by 520.0% and 416.7%, respectively,
and the number of u2 gates (where u2 is a single qubit gate)
increased by 7200.0% for the Breast Cancer dataset. While
the relative increase is significant, the absolute increase is
relatively small—there are only a few hundred gates added.
The number of single qubit gates u1 increased from 0 to 774
(as above, this number is small).
Overall, our experiments confirm our theoretical analysis

and show that EP-PQM leads to a significant reduction in
gate count compared to P-PQM. Consequently, EP-PQM is
more applicable for NISQ devices due to a reduction in quan-
tum circuit depth.

V. SUMMARY
In this article, we extend the PQM-based ML classification
algorithm designed for use in NISQ devices. The original ap-
proach provided correct classification using one-hot encod-
ing.We extend this approach to enable label encoding, which
reduces space complexity (i.e., qubit count) from O(za) to
O(z log2(a)) and decreases the number of gates in the quan-
tum circuit from O(rza) to O(rz log2(a)).

By simulating ML classification on five datasets (using
QisKit QC Simulator) and analyzing the resulting circuit, we
verified our theoretical analysis. Depending on the dataset,
EP-PQM quantum circuit depth saving ranges between 60%
and 96%. Similarly, EP-PQM reduces the corresponding de-
composed quantum circuit depth between 94% and 99%.
Qubit count was reduced by 48% to 77% for datasets with
a > 2.

A reduction in space requirements makes it possible to
load larger datasets into a QC. Furthermore, reducing the
number of gates helps speed up classification and decrease
noise associated with deep quantum circuits.

APPENDIX A ONE HOT ENCODING AND D:
RELATIONSHIP
Suppose there are two patterns X = x1, x2, . . . , xz and Y =
y1, y2, . . . , yz, containing z features with a attributes. Further,
suppose that X and Y represented using one-hot encoding.
Thus, the ith feature will be represented by a-bit string.
Let the Hamming distance be denoted by D and the

Hamming distance computed when comparing patterns en-
coded using one-hot encoding be denoted by Done-hot.
When performing the pairwise comparison, D(xi, yi) =
Done-hot(xi, yi) = 0, when xi and yi are identical. The simi-
larity ends when xi 
= yi. By definition

D(xi, yi) = 1, when xi 
= yi. (24)

However, by construction of the one-hot encoding

Done-hot(xi, yi) = 2, when xi 
= yi. (25)

That is, xi and yi will have a single bit set to 1 at different
positions, which requires two operations to convert xi into yi.

Extrapolating (24) and (25) to X and Y , given that k
features are different, D(X,Y ) = ∑k

i=1D(xi, yi) = k, while
Done-hot(X,Y ) = ∑k

i=1Done-hot(xi, yi) = 2 k. This implies
that

D(X,Y ) = 1

2
Done-hot(X,Y ).

APPENDIX B QUANTUM COMPUTING: FUNDAMENTALS
Here, we review the fundamentals of quantum computing
needed to implement the algorithms described in this article.
See [38] for more information about quantum computing.
In quantum computing, a qubit represents the basic unit

of information. It is formed by two-quantum states: one con-

stitute the state |0〉 =
[
1 0

]ᵀ
and the other the state |1〉 =[

0 1
]ᵀ

. The vectors |0〉 and |1〉 that are the eigenvectors of
the Pauli-Z matrix are known as the computational basis. The
other well-known bases are the Pauli-X and Pauli-Y eigen-
vectors. Differently from a classical bit, a qubit can exist in

a superposition state |ψ〉 = α|0〉 + β|1〉 =
[
α β

]ᵀ
, where

α and β are, respectively, the amplitude of the qubit in state
|0〉 and |1〉. The amplitudes are complex numbers that satisfy
the normalization condition |α|2 + |β|2 = 1. The state |ψ〉
is said to be in a superposition of states |0〉 and |1〉, which
reflects the fact that the qubit can be in more than one basis
state at a particular time with a given probability.
To process quantum information, a sequence of quantum

gates and measurements must be performed on the qubits.
The quantum circuit is formed by these operations. Quantum
gates are unitary operations acting on single or multiple
qubits. Quantum gates are responsible for evolving the state
of the QC and forming the quantum algorithm solution. To
learn the QC state, qubits are measured. The measurement
operation transforms the qubit state |ψ〉 in a classical bit
0 or 1, which are measured with probability |α|2 or |β|2,
respectively. The quantum gates used in this article are
defined as follows.
The Hadamard gate, given by

h = 1√
2

[
1 1

1 −1

]

transforms the state |0〉 → 1√
2
(|0〉 + |1〉) and |1〉 →

1√
2
(|0〉 − |1〉), which are both superpositions. If the state is

already in a superposition, applying the Hadamard gate on it
will revert it to |0〉 or |1〉, respectively.

Pauli-X gate is defined as

x =
[
0 1

1 0

]
.
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TABLE 7 Gate Count in the Quantum Circuit for QasmSimulator When r = 2

P stands for P-PQM, EP for EP-PQM, and S for relative savings.

TABLE 8 Gate Count in the Decomposed Quantum Circuit for QasmSimulator When r = 2

P stands for P-PQM, EP for EP-PQM, and S for relative savings.

It is the x gate that flips the qubit state, transforming the state
|0〉 into |1〉 and the state |1〉 into |0〉.

Controlled-not (cnot) gate, given by

cnot =

⎡
⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦

is a two-qubit gate, operating on control and target qubits. It
applies the x gate to a target qubit whenever its control qubit
is in state |1〉. In this context, we can interpret the cnot as
the classic xor gate. cnot gate can be extended to having
α control qubits (cαnot). In this case, the x gate is applied
to the target qubit whenever each of the α control qubits
is in state |1〉. The cαnot is 2α+1 × 2α+1 unitary operator.
All control gates have subscripts indicating the qubits on
which they are applied, with the control qubits listed first. For
example, in control gate cαnotm1···mn,u1 qubits m1 · · ·mn act
as controls and qubit u1 is a target.
Finally, the last operation in a quantum circuit is the qubit-

state measurement. Indeed, when a quantum system is not
measured, a qubit can be in a superposition of states of |0〉
and |1〉. However, after measurement, the qubit state col-
lapses into either the state |0〉 or |1〉 with a probability of the
absolute value of the amplitude squared.

APPENDIX C CIRCUIT FOR QUANTUM SIMULATOR
We have also tried to transpile the circuit for the QisKit Sim-
ulator backend (namely, “QasmSimulator”). To minimize
computation efforts, no optimization of the circuit is per-
formed (“optimization_level = 0”). The transpilation, how-
ever, requires a substantial amount of memory: empirically,
we found that 1 TB of memory was insufficient for tran-
spiling the circuits for our datasets. This was not expected,
as the generation of data in Tables 4–6 required ≈ 3 GB of
memory.
Therefore, to get a feel for the QasmSimulator-based cir-

cuits, we reduced the number of observations to two in each
dataset, i.e., r = 2. In spite of this simplification, we still
ran out of memory for the Breast-Cancer-, Tic-Tac-Toe-, and
Zoo-based circuits. However, we could produce the circuits
for the Balance Scale and SPECT Heart datasets.
Table 7 lists the results of transpilation without optimiza-

tion, and Table 8 lists stats for decomposed versions of these
circuits. According to the tables, the results are mixed. For
Balance Scale dataset, the quantum circuit depth is three
orders of magnitude smaller, resulting in overall savings of
99.6%. In the original circuit, the biggest savings are asso-
ciated with gates cx and u1, while in the decomposed case,
the biggest savings are associated with cx and u3. Savings
would be even greater with the increase in r.
For SPECT Heart dataset, the quantum circuit depth is

reduced, but the reduction is marginal: 0.001%, because the
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number of cx and u1 gates are almost identical for both
approaches. This differs from the results that we saw in Ta-
bles 4–6: there the quantum circuit depth was reduced by
60% and 94% for quantum circuit and decomposed quantum
circuit, respectively.
We conjecture that this stark difference may be due to inef-

ficiencies in the Quantum Simulator’s optimizer. Significant
memory requirements indirectly support this conjecture.
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