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ABSTRACT We provide evidence that commonly held intuitions when designing quantum circuits can be
misleading. In particular, we show that 1) reducing the T-count can increase the total depth; 2) it may be
beneficial to trade controlled NOTs for measurements in noisy intermediate-scale quantum (NISQ) circuits;
2) measurement-based uncomputation of relative phase Toffoli ancillae can make up to 30% of a circuit’s
depth; and 4) area and volume cost metrics can misreport the resource analysis. Our findings assume that
qubits are andwill remain a very scarce resource. The results are applicable for bothNISQ and quantum error-
corrected protected circuits. Our method uses multiple ways of decomposing Toffoli gates into Clifford+T
gates. We illustrate our method on addition and multiplication circuits using ripple-carry. As a byproduct
result, we show systematically that for a practically significant range of circuit widths, ripple-carry addition
circuits are more resource-efficient than the carry-lookahead addition ones. The methods and circuits were
implemented in the open-source QUANTIFY software.

I. INTRODUCTION
For the foreseeable future, quantum computing will be per-
formed in very resource-restricted environments, where the
number of qubits (e.g., hardware) is the biggest constraint.
Practical problems (e.g., quantum chemistry) are solved by
executing a quantum circuit. The goal is to use the smallest
possible amount of hardware for executing a computation,
error-corrected or not. When assuming only circuit widths,
the decisions are straightforward, but circuit depth has to be
considered too. A circuit’s depth is indicative for the execu-
tion time of the computation and its width is the number of
qubits required.
Recent works concerned with resource estimations of

fault-tolerant computations assumed that Clifford operations
have negligible cost and that the runtime of a quantum com-
puter is dominated by the cost of executing non-Clifford
gates [2], [23]. However, this is not necessarily a realistic
assumption. In asymptotic worst-case estimations, constant
factors are insignificant. Nonetheless, as we will show in this
article, the depth could be underestimated by up to 1/3. Such
ratios impact, for example, the distance of the code required
to protect the quantum error-corrected (QECC) version of the
computation.

It is assumed that the Toffoli+H gate set is at a higher
level than the Clifford+T one. The Clifford+T to Toffoli+H
compilation is not being realized in the literature yet. This
work focuses on the optimization potential when translating
circuits from the Toffoli+H to the Clifford+T gate set. This
kind of translation has, for the moment, a very high classical
cost because very large circuits take a lot of time and energy
to be compiled and optimized [19]. The Clifford+T gate set is
very often used for preparing QECC circuits. To this end, the
Clifford+T form of Toffoli gates has received considerable
attention with respect to QECCs.
When departing from the asymptotic method, how should

realistic worst-case resource estimations be performed? We
argue that significant optimizations can be achieved by mak-
ing appropriate Toffoli gate decomposition choices: We im-
proved the resource analysis of the state-of-the-art arithmetic
circuits from [13] and [16]. We argue that there is more
potential in carefully choosing the Toffoli gate decomposi-
tion when automatically compiling circuits. We find out the
following.

� T-count optimization can be detrimental to a circuit’s
depth: Reducing T-count can increase the overall depth.
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� Due to low connectivity and complexity of noisy
intermediate-scale quantum (NISQ) circuit compila-
tion, it may be useful to replace circuit controlled NOTs
(CNOTs) with measurements;

� Ripple-carry arithmetic is more resource-efficient than
carry-lookahead for particular width ranges (cf. ripple-
carry-based multiplier has the width of a carry-
lookahead adder).

This work is structured as follows. Section II introduces
the circuit types analyzed in this work, as well as the Toffoli
gate decompositions. Section III describes the methodology
of how we optimize resources of the arithmetic circuits. Sec-
tion IV presents the contributions. We conclude by formu-
lating future work related to the automatic optimization of
large-scale quantum circuits.

II. BACKGROUND
Quadratic speedups seem to be not sufficient for achieving
a quantum computing advantage. This observation was first
made by Draper et al. [4] and then extended, for example,
by [23]. The optimization of arithmetic circuits for appli-
cations with an exponential speedup becomes even more
important. Due to their logarithmic depth, carry-lookahead
adders started receiving increased attention. Recent exam-
ples are [16], [28], which consider the adaptation of the cir-
cuits to both NISQ and surface QECC. The cost of a circuit
is generally considered being determined either by the num-
ber of T gates (T-count, for QECC protected circuits, [4]),
or the number of CNOT gates (CNOT-count, for NISQ cir-
cuits [14]).

A. GATE PARALLELISM
Wemake the following realistic assumptions. First, gate par-
allelism is possible, but T state distillations are sequential
in time (one at a time). There is a clear distinction between
magic state distillation and T gate application, and the read-
ers may refer to Section A in the Appendix. In this article,
we maintain gate parallelism, but assume distillations are
sequential. This is because parallelizing distillations is truly
a luxury with respect to the available hardware: One will
choose to operate additional logical qubits instead of execut-
ing more distillations in parallel. This does not mean that T
gates cannot be executed in parallel: T states may be distilled
and stored in a queue when T gates are not used [18].
Second, single-control-multiple-target CNOT gates have

depth 1. This kind of CNOT parallelism is not necessar-
ily always possible with all hardware platforms. However,
the lack of CNOT parallelism is one of the least problems,
because of the restricted connectivity: Not all NISQ ma-
chines support all-to-all connectivity between qubits. Con-
nectivity plays a significant role in the success of executing a
quantum circuit: The more the better. In general, all-to-all
(logical) qubit connectivity exists in QECC-protected cir-
cuits. There are hardware proposals where connectivity is

FIGURE 1. Four ancillae T-depth 1 (4AT1) Toffoli gate decomposition. The
upper three wires are for the Toffoli gate.

FIGURE 2. Zero ancilla T-depth 3 (0AT3) Toffoli decomposition [24]. This
circuit has a depth of 9 compared to depth 10 presented in [13].

FIGURE 3. RT3. A relative phase Toffoli decomposition with three CNOT
gates. Running this circuit in reverse is called IRT3, and is the same as
RT3.

better than 2D nearest neighbor, as available in superconduct-
ing circuits [9], [31].

B. TOFFOLI GATE DECOMPOSITIONS
The literature includes two types of Toffoli gate decomposi-
tions: 1) the exact ones having 7 T gates and a various number
of ancillae; 2) the relative phase decompositions using 4 T
gates and various numbers of CNOTs and ancillae. In the
latter case, the number of CNOT gates in the decomposition
influences the implemented relative phase, and there cannot
be less than three CNOTs [25]. The relative phase Toffoli
gate is also known as the Margolus gate, or the simplified
Toffoli gate. It has been presented in different formulations,
for example, by [5], [7], [11], and [24]. The work of [11]
mentions that there is a relation between T-count and CNOT-
count in the Toffoli gate decompositions and conjectures that
the optimization of quantum circuits could benefit from using
it. The standard Toffoli (ST) gate decomposition is the one
from [15] (see Fig. 12 in the Appendix).
The inverse of the relative phase Toffoli gate has been

implemented in two manners. The first is by running in re-
verse the Clifford+T decomposition of the gate. The second
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FIGURE 4. RT4. A relative phase Toffoli decomposition with four CNOT
gates. Running this circuit in reverse is called IRT4.

FIGURE 5. Simple method for replacing exact Toffoli gates with relative
phase Toffoli gates. The double-controlled gates with a triangle are
relative phase Toffoli gates. These come in pairs, and the second gate is
uncomputing the ancilla initialized in |0〉. We call this circuit optimize
depth beneficial (ODB) when the first gate is replaced with one from
Table 1 and the last gate is replaced with a measurement-based
uncomputation. When both gates are replaced with one of the
decompositions from Table 1, the notation is, for example, ST/ST. This
scheme is also known as the Bennett trick.

FIGURE 6. Measurement-based uncomputation for relative phase Toffoli
gates. This circuit can be used to replace the CNOT and the second
relative phase gate from Fig. 5.

FIGURE 7. Four qubit-controlled adder according to [13].

implementation is ameasurement-based circuit appliedwhen
the target of the relative phase gate is treated like an ancilla to
reset the ancilla and to correct the wrong phase on the control
wires. In the Appendix, we show that the same uncomputa-
tion circuit can be used for multiple types of relative phase
Toffoli gates.

FIGURE 8. KQ (depth × width) as a function n for the control-adder
when decomposed. OAT3 and 4AT1 refer to the zero ancilla T-depth
three- and four-ancillae T-depth one Toffoli decompositions, respectively.

FIGURE 9. Four qubit multiplier according to [13].

FIGURE 10. KQT (T-depth × width) as a function n for the control-adder
when decomposed. OAT3 and 4AT1 refer to the zero ancilla T-depth
three- and four-ancillae T-depth one Toffoli decompositions, respectively.

C. QUANTUM ARITHMETIC CIRCUITS
Quantum addition circuits can be classified [22] at least into
1) ripple-carry [30] and 2) carry-lookahead [3]. The first have
a smaller width but are deeper, whereas the latter are wider
and shallower. Carry-lookahead adders are very often used in
classical computers, and have a logarithmic depth at the ex-
pense of introducing more ancillae: O(4n) width. Although
carry-lookahead seems more expensive than a ripple-carry

VOLUME 3, 2022 3101311
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FIGURE 11. Comparison between ripple-carry (RC) and carry lookahead
(CL) using the KQ cost metric that is the product between depth and
width. Blue and orange lines with markers are RC. It can be observed
that RC is more efficient than CL: (a) up to 50 qubits when CL uses
relative phase Toffoli gate decompositions (green); (b) 96 qubits when CL
uses exact Toffoli decompositions (red). The absolute unrealistic worst
case (magenta) is when CL is decomposed with 4AT1 such that T gates
are sequential due to the low distillation rate of T states. This effectively
forces all Toffoli gates to be sequential and the logarithmic depth of the
adder is lost.

TABLE 1. Costs of the Different Toffoli Gate Decompositions. For 0AT3,
we consider with respect to the arithmetic circuits the depth of the circuit
from [13], although 0AT3 can have depth 9. RT3 and RT4 do not include
the uncomputation (depth 4). ST is the standard Toffoli decomposition
from [15], and AND is the relative phase Toffoli gate from [5].

circuit, there has been so far no exhaustive quantitative anal-
ysis between the two adder approaches in the literature. In
this article, we perform such an analysis.
Our analysis considers the ripple-carry [13] and the

carry-lookahead [16], [28] adders. The first introduced a
controlled-adder (ripple-carry) that has a total width of 2n+
3 qubits and a depth of 5n− 1. The second optimized the
carry-lookahead circuit from [3] by replacing exact Toffoli
gates with relative phase Toffoli gates similar to how this was
realized by [28].

III. METHODS
We replace Toffoli gates with exact (Figs. 1 and 2) or relative
phase (Figs. 3 and 4) Clifford+T decompositions. We either
replace single or pairs of Toffoli gates (e.g., Fig. 5). We will
call optimize depth beneficial (ODB) the replacement circuit
when the first relative phase Toffoli is replaced with one of
the decompositions from Table 1 and the second with the
measurement-based uncomputation.
The replacement method from Fig. 5 was used, for ex-

ample, in [16] and [28]. The replacement 1) guarantees the
correctness of the resulting circuit without laying it out and
verifying it; 2) introduces, however, an ancilla which controls

a CNOT on the initial target of the Toffoli. This is effectively
the method used by [5] as well: Two Toffoli gates which 1)
share the control wires and 2) their target qubit is used during
its entire lifetime only as control by further operations, can
be simplified to a relative phase gate and measurement-based
uncomputation.
Our method is based on the investigation on the adder and

multiplier circuits, and choosing the best way to compile
the circuit based on its overall depth, T-depth, and width
(e.g., number of qubits). We use QUANTIFY [17] to count
exactly the gates and determine the depth of the circuits. The
work of [16] analyzes the role of Toffoli gate decompositions
for improving carry-lookahead adder circuits. Such circuits
have logarithmic depth but their width is almost double com-
pared to the ripple-carry ones. It is interesting to analyze the
trade-off between these two types of arithmetic circuits and
to determine which one is most compatible with computers
where quantum hardware is definitely the limiting factor to
scalability.
The work of Gidney [6] appeared in parallel and inde-

pendent to our efforts and analysis. The author noticed the
comparison potential opened by the method from [16] and
performed a quantum resource analysis of the space-time
volume of surface code-protected quantum circuits. Com-
pared to [6], we offer an exhaustive and systematic compari-
son of the resources required by the adders, and do not focus
directly on surface code volumes because of the reasons dis-
cussed in Section IV-E.

IV. RESULTS
T-counts are usually reduced because of the requirements of
the QECCs. For NISQ purposes, the T gate does not play any
special role in NISQ and is treated on the same footing as any
other single qubit gate. The CNOT-count is more important
because of the high error rates associated with two qubit
gates. We will show that relative phase Toffoli gates can be
used for reducing the CNOT-count, too.
This section presents the results of optimizing the

controlled-adder and multiplier from [13] using different de-
compositions [24]. We have chosen these circuits because
of their modularity, low resources, and representative ripple-
carry structure. For the circuits, we derive formulas to ex-
press the depth D, the T-depth Td , and the number of qubits
(e.g., wires) Qub. The expressions are used afterward for the
trade-off analysis of using different Toffoli gate decomposi-
tions.

A. REDUCING T-COUNT CAN INCREASE DEPTH
A circuit’s depth increases whenever the gate parallelism is
lost, for example, due to suboptimal baseline decomposi-
tions. In other words, although it looks like the T-count and
the depth have been reduced, only the T-count is reduced but
the depth is actually increased.
This is the case for [16] where the authors have chosen

ST with a depth of 13. They replaced ST/ST decompositions
with RT3/IRT3 and RT4/IRT4 for optimizing their circuits.
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There are two alternative replacements which would have
generated different results. First, if the authors would have
used 0AT3 (depth 9) instead of ST, their depth optimizations
would have been minimal. In particular, the total depth of
RT3/IRT3 equals to the one of 0AT3/0AT3, but RT4/IRT4
(total 20) increases actually the depth by two for each pair
of replaced Toffoli gates (total 18 with 0AT3/0AT3). With-
out further gate-level circuit optimizations, the circuit has a
10% increase in depth. The second scenario is when T-count
reductions are generating an increased T-depth. If in [16] they
would have used 4AT1 as baseline, the T-depth would have
actually increased for Toffoli gate pairs (from 2 to 8), and the
total depth would have increased, as well.
The third example is a particularly inefficient replacement

when ODB is used for a single Toffoli (instead of pair), and
taking 0AT3 as baseline. The T-count is reduced but the total
depth increases from 9 (0AT3) to 12 = 9 + 1 (CNOT) + 2
[Hadamard and controlled-Z gate (CZ)].
The third example is of practical importance, because it

shows that whenever ODB is used for circuit optimization,
at least 30% of the total depth may be generated by measure-
ments and corrective CZ gates (the uncomputation circuit
from Fig. 6 represents 1/3 of the total depth of ODB). In
case the highly parallel 4AT1 would have been used, the
resulting ratio between measurements and depth would be
significantly higher and close to 1/2.

B. TRADING CNOT FOR MEASUREMENTS IS BENEFICIAL
The ODB scheme is not considered being NISQ compat-
ible, because physical measurement gates have high error
rates. We show that, as long NISQ circuit compilers have the
efficiencies observed, for example, in [27], replacing CNOTs
with measurements can be beneficial for depth and total cir-
cuit error rate.
We assume that measurements have a 40 times higher

probability of failure compared to CNOTs (assuming single
qubit gates with errors about 0.1%, two qubit gates ten times
higher at about 1%, such that a worst case is having mea-
surements almost random at 40% error rate). This may be a
very pessimistic overestimation of the error rates for some
NISQ architectures such as [31]. Furthermore, we assume
that CNOTs have an overhead: NISQ chips have a reduced
connectivity and these gates have to be routed/compiled to
the underlying hardware. Next, we show that it could be
a good idea to replace at least 40 physical CNOTs with a
measurement.
Connectivity of the hardware plays an important role. Tof-

foli gate decompositions seem to be close to compatibility
with 2-D nearest neighbor interactions. However, for the ex-
ample in Figs. 7 and 9, the compilation of the very long range
Toffoli gates will be expected to significantly increase the
total depth. Moreover, the CNOT gate set is not native for ion
traps and has to be compiled to MS gates [12]. Although the
translation between CNOT andMS is direct, the optimization
of the circuit gate counts and depths is not.

We consider a best case CNOT overhead of five physical
CNOTs. This is to say that a circuit’s CNOT is compiled to
five CNOTs on the NISQ device. The CNOT overhead value
was estimated after calculating the characteristic path length
(CPL, cf. Appendix) for the graphs of the most common
NISQ devices. The CPL for Sycamore is 5, and Humming-
bird has a CPL of almost 8. According to [27], circuits which
are structurally similar to Toffoli circuits (called TFL circuits
in [27]) get compiled with an increased depth by a factor
between 5 and 20 depending on the used compiler. Thus, we
consider the pessimistic and optimistic cases for the failure
rate of measurements and CNOT overhead, respectively.
Whenever pairs of Toffoli gates can be replaced, one of the

Toffoli gates is replaced with a measurement-based uncom-
putation, and this is effectively the ODB scheme from Fig. 5.
If the pair is 0AT3/0AT3, and counting themiddle CNOT too,
there are 15 CNOTs in total. If the ST decomposition would
have been used, the total would have been 13 CNOTs. Using
the ODB circuit with RT3 reduces the number of CNOTs to
5, because we assume the worst case that CZs are always
applied. Thus, the ODB circuit has cut by 10 the CNOT-count
per pair of Toffoli gate pair (eight in case of ST).
Reducing 8–10 circuit CNOTs means that about 40–50

physical CNOTs are replaced with a measurement gate (8 ×
5 = 40). If the measurement error rate is lower, it may be
possible to directly replace any Toffoli with a relative phase
one. As a result, there may be situations where the ODB
scheme is compatible with NISQ circuits. This could be the
case for topologies with low values of CPL.

C. LOWER DEPTH CONTROLLED-ADDER
In the previous section, if we would have used 4AT1 (16
CNOTs) instead of 0AT3 (7 CNOTs), the CNOT-count op-
timization would have been even more dramatic. One should
not consider 4AT1 for arbitrary circuits without making sure
that it is a realistic worst case: Comparing ODB against 4AT1
would skew themagnitude of the optimization.When design-
ing circuits and estimating the worst case, the estimations
should not be too pessimistic, but realistic. We will show that
this was not the case for the ripple-carry arithmetic circuits
from [13].
We assume that the number of wires (e.g., qubits/width)

cannot be reduced in a ripple-carry adder, and the next op-
timization goal is the depth. All the Toffoli gates in the
adder are sequential and not parallel. This property favors
Clifford+T circuits with shorter depths even at the cost of
additional ancillae. Because the Toffoli gates are sequential,
the ancillae can be reused without losing any Toffoli gate
parallelism (there is no parallelism anyway). The original
work of [13] used the 0AT3 decomposition, but we propose
to use the 4AT1 decomposition. The extra four ancillae can
be reused in favor of a shorter depth. Further optimizations
may be possible by using ODB like in [5], [11] and [16].
For n-bit integers, the adder has: 1) 3n+ 2 sequential Tof-

foli gates; 2) n− 1 parallel CNOT gates at the beginning of
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the circuit which contribute to the depth by 1 only, 3) n− 2
sequential CNOT gates in the first half of the circuit.
As a result, the sequence of CNOT gates has an overall

depth of n− 1. At the end of the circuit, these CNOT gates
are used again to reset the qubit of the first input integer to
its original value and one of the CNOTs is parallel with the
last Toffoli gate. Hence, the total depth of the CNOT gates is
2(n− 1) − 1 and the depth of the adder circuit is the sum of
the depth of the Toffoli gates and the CNOT gates.
Since the Toffoli gates are all sequential, the T-depth

equals the T-depth of the used Toffoli decomposition multi-
plied by the number of Toffolis, which is 3n+ 2. Concerning
the width, a constant number of ancillae will be added to the
original width of 2n+ 3, namely the number of ancillae in
the used Toffoli decomposition. The general depth, T-depth,
and total number of qubits formulas are the following:

Dadd = (3n+ 2)Dt + 2n− 3 (1)

Tadd = (3n+ 2)Td (2)

Qubadd = 2n+ 3 + A (3)

CNOTcount = 2(2n+ 3) +C(3n+ 2) (4)

where Dt , Td , A, and C are the depth, T-depth, additional
ancillae, and the CNOT-count of the chosen Toffoli decom-
position, respectively. After replacingC with the values from
the CNOTc column of Table 1, we obtain the following:

CNOT4AT1 = 52n+ 26 (5)

CNOT0AT3 = 25n+ 8. (6)

Our choice of the 4AT1 decomposition performs better
than 0AT3, because it reduces the circuit depth by approx-
imately 30% and the T-depth by 66.6% at the cost of four
additional qubits only (cf. the ratio between the depth and
T-count of the decompositions in Table 1).

D. MULTIPLIER USING HYBRID DECOMPOSITIONS
The multiplier from [13] is built using the controlled-adder
from Section IV-C. Themultiplier includes 1) a sequence of n
Toffoli gates; and 2) a succession of n− 1 controlled-adders.
There are n− 1 adders, and each adder has 3n+ 2 Toffoli
and 2n− 3 CNOTs. They contribute to the depth of the mul-
tiplier by n+ (3n+ 2)(n− 1) and (2n− 3)(n− 1). For the
general case, we have

Dmult = (3n2 − 2)Dt + (n− 1)(2n− 3) (7)

Tmult = (3n2 − n− 2)Td (8)

Qubmult = 4n+ 1 + A (9)

where Dt , Td , and A have the same meaning like in Sec-
tion IV-C. Note that the sequence of n Toffoli gates at the
beginning is considered not to be parallel in (7). This is
because, it cannot be ensured that after the decomposition,
those still remain parallel. Hence, the choice of the correct
decomposition plays an essential role in the optimization, as
we will show it next.

The structure of the multiplication circuit allows us to
consider two distinct Toffoli gate decompositions, one type
for each region. We will use the formulas from Section IV-C
to determine the costs of the multiplier. We decompose the
first set of parallel n Toffoli gates using the 0AT3 decom-
position. We maintain the parallelism of these gates without
introducing ancillae. If we use a Toffoli decomposition with
ancillae, we then have to introduce a linear number of an-
cillae to maintain the parallelism. Otherwise, we introduce a
constant number of ancillae but increase the depth to linear.
The 0AT3 is an optimal choice in this case since we maintain
the parallelism (a constant depth of 10) and don’t introduce
any ancilla. The second part of the circuit consisting of n− 1
controlled-adder is decomposed using 4AT1, similar to how
it was performed in Section IV-C.
Due to the parallel decomposition of the first n Toffoli

gates, the corresponding T-depth is constant and equals 3.
The T-depth of the rest of the circuit is equal to the prod-
uct between the number of controlled-adders, n− 1, and the
T-depth of the 4AT1. Lastly, we add four ancillae to the
original width of the multiplier when undecomposed. One
can observe that ripple-carry multiplier has the same width
as a carry-lookahead adder, namelyO(4n) [13], [16] (cf. (12)
for multiplier width).

Dmult = 10 + 7(3n2 − n− 2) + (2n− 3)(n− 1) (10)

Tmult = 3 + (3n2 − n− 2) (11)

Q = 4n+ 1 + 4. (12)

E. AREA AND SPACE-TIME VOLUME VERSUS WORST CASE
The worst case space-time volume of large computations
is not trivial to estimate correctly. This holds even when
distillations are sequentialized like in [18]. The best option
is to compile the space-time volumes using [20] and [21],
schedule the distillation procedures [18] and then check the
resulting worst case depth. However, those compilers take
the circuit-level description as input, such that worst-case
volume estimations are as good as the worst-case circuit-
level estimations. Furthermore, there are different tricks that
can be applied to worsen or improve the volumes or other
volume-related costs, such that space-time volume estima-
tions may be misleading. We illustrate this with a simple
example, in the following.
We analyze the applicability of the KQ metric [16]: the

product of the number of qubits and the depth of the circuit.
There are variations of the metric such as KQCX for the
CNOT-depth, and KQT for the T-depth.
We are interested in the relevance of KQT . While com-

paring Figs. 8 with 10, we notice the drastic improvements
(blue vs. orange—our choice) when comparing KQT with
the generic KQ (the distance between blue and orange lines
is not drastic). The KQT metric does not necessarily reflect
the amount of improvements or degradation of the adopted
decomposition methods.
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The same effect will be obtained when the worst-case
space-time volume of surface code computations is opti-
mized when considering the T-count as an approximation of
the depth after using ODB. Clifford gates and measurements
have to be accounted when estimating the area and space-
time volumes of a circuit. Otherwise, optimization results are
misinterpreted.

F. RIPPLE-CARRY VERSUS CARRY-LOOKAHEAD
Considering the fact that distillations are sequential, and that
qubits are very scarce, ripple-carry is with respect to hard-
ware more efficient than carry-lookahead. Nevertheless, de-
spite the fact that the carry-lookahead has logarithmic depth,
there has to be a width range for which ripple-carry is with
respect to the KQ metric also efficient. We use the following
scenarios to compare the two different adders.

1) RC: 4AT1 (Thaplyal Ctrl-Adder) is the controlled-
adder discussed in Section IV-C from [13] which we
decompose using 4AT1.

2) RC: 4AT1 (Takahashi) from [26] is the adder used in
the construction of the controlled-adder, and we de-
compose it with 4AT1 too.

3) CL: RT3 and RT4 (Oonishi/Draper) is the carry-
lookahead from [3] adder decomposedwith the relative
phase decompositions like in [16].

4) CL: 4AT1 (Oonishi/Draper) is the original adder
from [3] which we penalize with four ancillae per Tof-
foli (4AT1) in order to minimize the T-depth.

5) CL: 4AT1 (Draper with all Toffoli gates sequence)
is the absolute unrealistic worst case when taking
the 4AT1 adder and executing it in a very resource-
restricted environment where a single distillation can
be executed at a time—this is to show that circuit de-
signs have to be adapted to the environment.

Fig. 11 illustrates the obtained results of our analysis,
where the X-axis denotes the size of the integer and the Y-
axis presents the KQ (width times depth) metric. Among the
five different scenarios, “CL:4AT1” of Draper is not efficient
with respect to KQ metric for more than eight qubits. Practi-
cally, as expected, carry-lookahead does not seem viable for
less than eight qubits.
In realistic worse-case scenarios, where hardware is scarce

and distillations can be performed only sequentially, ripple-
carry addition (“RC:4AT1” of Takahashi) is more efficient
for up to approximately 50 qubits.
The carry-lookahead adder has on the order of 10n Toffoli

gates [3] which are executed to a high level of parallelism. It
is very unfortunate if the circuit is compiled in such a way
that distillations need to be sequentialized. This is the case
for RT3 and RT4. The extreme situation is when all T-gate
parallelism is lost because of sequential distillations.
Regarding the QECC cost of the adders, one should con-

sider that connecting distillations to the main computa-
tion [8], [10], [21] uses also hardware. Another aspect is that

the volume of the distillation procedures could be further
lowered, or in the extreme case may be even embedded into
empty regions of the main computation space-time volume.
Moreover, distillation space-time volume costs are a function
of the total space-time, but which is difficult to estimate
correctly (see Section IV-E). Therefore, the plot from Fig. 11
should be seen as a recommendation.

V. CONCLUSION
The constants in asymptotic worst-case estimations play a
role when computing a circuit’s execution time or failure
rate. We have showed that relative phase Toffoli gate de-
compositions are optimal in specific contexts. Inappropriate
usage of optimizations may result in worsening other costs
in unexpected ways. More precisely, reducing T-depth in-
creases the depth of the circuit and we exemplified this us-
ing the carry-lookahead adder from [16]. Compiling CNOTs
to NISQ architectures can be very costly and we showed
this through a simple analysis of chip topologies and worst-
case measurement error rates. We showed that when using
measurement-based uncomputations, at least one-third of the
circuit’s depth is occupied by classical processing.
Our argument is based on a structural analysis of the arith-

metic circuits and selecting the appropriate Toffoli decom-
position. We collected some of the most used Toffoli gate
decompositions and described these in terms of gate depths
and counts. In the Appendix, we show that practically for
compilation purposes, there is actually a continuum of Tof-
foli gate decompositions that can be used. Subcircuits, such
as Toffoli gate decompositions, should be seen as having
a maleable structure that can be adapted for optimization
purposes. On the one hand, the presented results may seem
obvious if one makes reasonable assumptions and builds
correct worst cases. On the other hand, the results are not
that obvious—we were able to improve state-of-the-art arith-
metic circuits such as the ones from [13] and [16]. This is
not to say that those circuits are inefficient, but to argue that
there is more potential in carefully choosing the Toffoli gate
decomposition when automatically compiling circuits.
Future work will include a focus on investigating how

the techniques from [29], where the and uncompute was
replaced with its reverse circuit instead of the measurements-
based circuit, influence the optimality of the compiled
space-time volume. We assume that the NISQ version of
the circuits from [28] will benefit from measurements-
uncompute instead of the reverse and.
In this article, we lowered the depth of a controlled-

adder by replacing the Toffoli gate decomposition. Using
the controlled-adder, we showed that area and volume cost
metrics can be sometimes misleading. We went one step fur-
ther and reduced the resources needed for multiplication by
using two types of Toffoli gate decompositions. Finally, we
illustrated that for up to 50-bit numbers, ripple-carry adders
are more resource-efficient than carry-lookahead.
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FIGURE 12. Standard Toffoli gate decomposition from [15]. The depth is
13, but considering CNOT parallelism and by commuting some of the T
gates, the depth can be reduced to 11. It can be seen that this is the RT4
gate decomposition, followed by an implementation of a controlled-S
gate that uses three T gates. The last S gate can be removed if the phase
of the previous controlled-S is adapted.

FIGURE 13. Example of a logical qubit layout where computations
protected by the surface code implemented by lattice surgery are
implemented. Each patch is abstracting a set of physical qubits. The red
patches marked with Q are used to store logical (computational) qubits,
the grey A patches are for ancillae, the yellow S patch is where distilled
states are stored. In this layout a single state can be stored, and more
could be stored if the size of the yellow region would span a multiple of
single patches. The green D region spans multiple patches and is where
states are distilled before being stored in the S region.

APPENDIX
A. DISTILLATION VERSUS GATE APPLICATION
Distillations are conceptually not the same as the application
of the gate that uses the distilled state. This is a common mis-
conception, but the reality of compilation is that distillations
are performed separately from the gate applications.
Sequential distillations do not imply that the correspond-

ing gates are sequential. From the perspective of error-
corrected circuit layouts, such as the one from Fig. 13 which
is influenced by the ones presented in [10], distillations
(sequentialized or not) are performed in one or multiple
regions specialized for this particular task. Each time a state
has been successfully distilled, it is either being stored in a
queue or used immediately. Gate parallelism is achieved if
the average distillation rate is higher than the average con-
sumption rate—this is most of the times possible, because
T gates are not uniformly distributed along the timeline of
the circuit. There are bursts of T gates being executed (e.g.,
seven per Toffoli in some cases), but also regions dominated
by Clifford gates and measurements (cf. Section IV-B where
the unerror-corrected case was discussed, but the starting
observation is valid for surface codes, too). Moreover, the
size of the S region can be adapted to buffer the maximum
number of necessary distilled states.

B. NISQ CONNECTIVITY ANALYSIS
We consider the most relevant hardware topologies proposed
and realized in practice. We take into account graphs having
different number of nodes (e.g., qubits). For instance, 20

nodes for the case of a regular grid and IBM’s Tokyo each
having 4 rows and 5 columns, 54 nodes for the case of IBM’s
Rochester and Google’s Sycamore, and 64 nodes for IBM’s
Hummingbird structure.
To provide an evidence on the most appropriate topol-

ogy in practice regarding the abovementioned structures, we
adopt the CPLmetric. Such ametric is used in the literature to
assess qualitatively the characteristics of network topologies.
CPL indicates the average shortest distance (lowest value of
1 and largest value of n) between any pair of nodes in the
network. Briefly, it is calculated by finding for each node of
the network 1) the shortest path to all other nodes, and using
this information to 2) calculate the average of the shortest
paths of the corresponding node to all other nodes. Then, the
average of the shortest paths of each node is summed up to
calculate the overall average shortest distance of the whole
network.
Among the two structures with 20 nodes, IBM’s Tokyo

(thanks to the additional connectivity) has a CPL value of
2.25 against 3 for the regular grid. Regarding the two topolo-
gies with 54 nodes, Sycamore has the edge over Rochester
with a CPL of 4.98 and 7.39 for the former and latter, re-
spectively. Finally, Hummingbird having a similar structure
as the one of Rochester, however with 10 nodes more, has a
CPL of 7.89.
To justify our belief that Tokyo’s structure has more con-

nectivity than the others, we adopted the second metric of
clustering coefficient (CC) from the literature. Such a metric
has a value between 0 and 1 and is used to denote the proba-
bility that the neighborhoods of each node in the network are
connected to each other. For the abovementioned five struc-
tures, we found out that Tokyo has a CC of 0.47 (i.e., 50%
of the neighbors are connected with each other), whereas the
others have a CC of 0.
Based on those results, we can notice that the regular grid,

IBM’s Tokyo, and Google’s Sycamore have similar charac-
teristics with respect to the CPL. To assess this, we config-
ured a regular grid of 56 nodes (7 rows and 8 columns) and
obtained a CPL of 5. Since we showed above that Tokyo,
thanks to the additional link between nodes, has a smaller
CPL value than the regular grid, this leads us to the conclu-
sion that among the abovementioned five topologies, Tokyo
has a slight edge over regular grid and Sycamore structures,
and has almost the half of the CPL with respect to Rochester
and Hummingbird.

C. CONTROLLED ADDER WITH RELATIVE PHASE
We report costs when making very inefficient replacements
of single Toffoli gates with pairs of relative phase
Toffoli gates. This is because it could happen that for
particular NISQ architectures, it makes more sense to use
seemingly inefficient decompositions in order to reduce the
mapping/routing overhead per CNOT. In the following, we
consider that the controlled-adder used the parallel 0AT1
decomposition.
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FIGURE 14. Relative phase Toffoli gate presented in [1] uses Y rotations
instead of Z rotations of π/4 (T gates).

When using RT3/IRT3 in the controlled adder, each of the
3n+ 2 exact Toffoli gates costs 7 CNOT gates, 8 T-gates, and
has a depth of 19. In a similar fashion, the RT4 costs 8 CNOT
gates, 8 T-gates, and a depth of 21. The total number of T-
gates, when using RT3 or RT4 in the adder, yields a better
cost compared to the standard Toffoli decomposition.

Tcount = 4 × (3n+ 2) = 12n+ 8.

As for the number of CNOT, each Toffoli when decom-
posed with RT3/IRT3 and RT4/IRT4 contributes with 5 and
6, respectively. Furthermore, we have 2(2n− 3) CNOT gates
from the original adder. The resulting CNOT counts are

CNOTRT3 = (3 + 1 + 3)(3n+ 2) + 2(2n− 3) = 25n+ 8

CNOTRT4 = (4 + 1 + 4)(3n+ 2) + 2(2n− 3) = 31n+ 12.

Compared to the 4AT1 [cf. (5)], we reduce around one half
of the total number of CNOT gates when using the RT3 and
RT4 instead of 4AT1.

CNOTRT3
CNOT4AT1

= 25n+ 8

52n− 26
∼ 50%

CNOTRT4
CNOT4AT1

= 31n+ 12

52n− 26
∼ 60%.

Even more interesting, compared to the original circuit
from [13], using RT3/RT4, the CNOT count is not reduced
at all. So we can make a very inefficient replacement that
introduces T gates and the CNOT-count is still not changed.

CNOTRT3
CNOT0AT3

= 25n+ 8

25n+ 8
∼ 100%.

D. RELATIVE PHASE TOFFOLI: CIRCUIT IDENTITIES
Computations with relative phase Toffoli gates can be un-
computed in a measurement-based manner. In the following,
we show that the relative phase Toffoli gate described in [5] is
equivalent to 1) the one presented by [11], and 2) the original
presented by [1] (i.e., Figs. 14, 16–28). The ancilla is uncom-
puted after the controlling a NOT gate. If the ancilla would be
initialized in an arbitrary state, then for each relative-phase
Toffoli gate, there would be a distinct uncomputation circuit.
However, most of the times, the ancilla is initialized in |0〉,
such that the same uncomputation circuit, namely the one
from [5], can be used for other inverse relative phase Toffoli
gate uncomputations.
The following circuit equivalence can also be shown by

looking at the matrices of the relative phase Toffoli gates

FIGURE 15. To derive the measurement pattern of other relative phase
Toffoli gates, we start from the circuit proposed in [5]. The first region of
the circuit that is applied to the upper three qubits implements the
relative phase Toffoli gate. The CNOT between the third and fourth qubits
is copying the bit to the target qubit of the Toffoli gate. Uncomputation
of the ancilla starts at the rightmost H gate on the third wire.

FIGURE 16. CNOTs and the T gates are moved such that parallelism is
lost.

FIGURE 17. CNOTs and the T gate are flipped between the wires. This is
possible due to the diagonal nature of the Z rotation gates. Afterward,
two CNOTs cancel.

FIGURE 18. One of the CNOTs is replaced with four other CNOTs. This
transformation is similar to approaches used in the linear nearest
neighbor compilation of quantum circuits.

FIGURE 19. Three of the previous four CNOTs are commuted through the
H and S gates. The result is that the CZ and two CNOTs can be commuted
past the CNOT that copies the bit information to the Toffoli target.
Consequently, the uncomputation circuit.

FIGURE 20. After using CNOT and H circuit identities, the result is that
the third qubit controls the application of two CZ gates. However,
considering that the qubit is initialized to |0〉, it can be |1〉 (with a
relative phase) only iff the upper two qubits are |1〉. In this situation,
whenever the two CZs are applied, the state is actually left unchanged.
Therefore, the CZs can be removed.
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FIGURE 21. RT4 relative phase circuit with the simple uncomputation
from Fig. 15.

FIGURE 22. Two CNOTs are inserted before the leftmost T−1; the
leftmost CNOT is commuted to the right, and the CNOTs between the
second and third qubits are flipped together with the T−1.

FIGURE 23. Rightmost T gates are commuted through the long range
CNOT gates. One of the T gates is commuted to the leftmost possible
position after commuting on the third wire with other CNOT controls.

FIGURE 24. After flipping back CNOTs and the T−1 gate.

FIGURE 25. Commute the pair of T/T−1 with the short-range CNOTs, and
cancel two CNOTs afterward.

FIGURE 26. Commute a long-range CNOT through the H and S gates. The
resulting CZ is controlled by the third wire.

FIGURE 27. Using a similar argument to Fig. 21, the CZ can be removed
and be replaced with a single Z gate.

FIGURE 28. RT3, after S and Z gates are replaced with S−1.

and considering that when the ancilla (third qubit) is initial-
ized to |0〉, the resulting state vectors are equal. However,
we derive the circuits, in order to highlight the potential of
automatic optimization of circuits using a large dictionary of
Clifford+T decompositions of relative phase Toffoli gates.
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