@IEEE Transactions on,
Quantum Software uantumEngineering

Received June 1, 2021; revised February 21, 2022; accepted March 2, 2022; date of publication March 23, 2022;
date of current version May 10, 2022.

Digital Object Identifier 10.1109/TQE.2022.3161197

Pauli Error Propagation-Based Gate
Rescheduling for Quantum Circuit Error
Mitigation

VEDIKA SARAVANAN'® (Student Member, IEEE),
AND SAMAH M. SAEED'® (Member, IEEE)

Department of Electrical Engineering, City College of New York, City University of New York, New York, NY 10031 USA

Corresponding author: Samah M. Saeed (e-mail:ssaeed @ccny.cuny.edu).

ABSTRACT Noisy intermediate-scale quantum algorithms, which run on noisy quantum computers, should
be carefully designed to boost the output state fidelity. While several compilation approaches have been
proposed to minimize circuit errors, they often omit the detailed circuit structure information that does
not affect the circuit depth or the gate count. In the presence of spatial variation in the error rate of the
quantum gates, adjusting the circuit structure can play a major role in mitigating errors. In this article, we
exploit the freedom of gate reordering based on the commutation rules to show the impact of gate error
propagation paths on the output state fidelity of the quantum circuit, propose advanced predictive techniques
to project the success rate of the circuit, and develop a new compilation phase postquantum circuit mapping
to improve its reliability. Our proposed approaches have been validated using a variety of quantum circuits
with different success metrics, which are executed on IBM quantum computers. Our results show that
rescheduling quantum gates based on their error propagation paths can significantly improve the fidelity
of the quantum circuit in the presence of variable gate error rates.

INDEX TERMS Commutation rules, error propagation, gate rescheduling, noisy intermediate-scale quan-

tum (NISQ) computer, Pauli errors, quantum circuit, quantum circuit mapping, reliability.

I. INTRODUCTION
Noisy intermediate-scale quantum (NISQ) computers, which
have tens to hundreds of quantum bits (qubits), are antici-
pated to accelerate the computational power of classical com-
puters for certain classes of problems. However, the noisy
nature of their qubits and operations degrades the reliabil-
ity of NISQ systems. Thus, errors should be mitigated to
improve the fidelity of NISQ algorithms, which necessitates
error characterization and circuit design approaches to min-
imize the impact of errors on the quantum circuit output.
Randomized benchmarking is typically used to characterize
different sources of noise in the quantum hardware, including
gate, measurement, and decoherence errors [1]. The com-
puted error rates are used by noise-aware quantum compilers
to generate physical quantum circuits with high fidelity.
While quantum noise is very complex, simplified error
models based on error rates collected during the calibra-
tion process are typically used for quantum circuit compi-
lation [2]. Depending on the permissible access to the quan-
tum computer, more advanced error characterization can be

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 3, 2022

unavailable. A predictive analysis capable of delivering a
projection with reasonable accuracy about the circuit error
rates, despite the lack of a complete and accurate error model
is also required. A predictive technique, which is compu-
tationally fast and applicable to many quantum computing
technologies, and takes into account the circuit structure can
enhance the compilation process [3].

In this article, we propose error propagation-based predic-
tive techniques to project the quantum circuit success rate
primarily based on gate errors. We take into account the
propagation path of different gate errors in the circuit. While
the existing estimated success probability (ESP) typically
used by noise-aware quantum compilers to generate physical
quantum circuits incorporates the gate error rates into its
model, it ignores the order of the gates that do not affect
the circuit depth or the gate count. Our proposed predictive
techniques can differentiate between different physical im-
plementations of the same quantum circuit, which use the
same physical qubits, share the same set of quantum gates,
and have the same depth, but vary in the order of quantum

2500111

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2175-5360
https://orcid.org/0000-0002-8107-3644

@IEEE Transactions on,
uantumEngineering

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

D

N
€U

N
€V

N
U

N
U

1
\J

A\

FIGURE 1. Commutation rules of (a) CNot and (b) R; gates [4].

gates in the circuit and their corresponding error rates. We
experimentally show the advantage of considering the or-
der of the physical quantum circuit gates in the presence of
significant variation in the gate errors. Accordingly, we also
propose gate rescheduling algorithms at different quantum
circuit abstractions to maximize the fidelity of the quan-
tum circuit. Our proposed approaches can be integrated with
other gate rescheduling algorithms that reduce the gate count
and the circuit depth. To the best of our knowledge, no such
analysis has been proposed to incorporate the impact of the
error propagation paths to the quantum gate scheduling pro-
cedure. The main contributions of this article are as follows.

1) We propose a weighted ESP (WESP) metric based on
the quantum circuit structure.

We propose new quantum circuit gate rescheduling
algorithms at different design levels, including com-
plex and elementary gate-level, based on our proposed
WESP metric to boost the fidelity of the quantum cir-
cuit output.

We experimentally validate the effectiveness of our
proposed metrics and gate rescheduling algorithms us-
ing a variety of quantum circuits executed on different
IBM quantum computers.

2)

3)

The rest of this article is organized as follows. Section II
provides a background on the quantum circuit compilation,
quantum hardware errors, an application of NISQ computers,
and different success criteria for quantum circuit evaluation.
Section III discusses related works on quantum circuit map-
ping and gate reordering approaches. Section IV shows the
implication of the gate error propagation path on the output-
state fidelity of the quantum circuit in the presence of differ-
ent gate errors. Section V provides our proposed reliability
metric and rescheduling algorithms. Section VI validates the
effectiveness of our approaches through several experiments.
Finally, Section VII concludes this article.

Il. BACKGROUND

A. QUANTUM CIRCUIT COMPILATION

Quantum algorithms are described using quantum circuits,
which are executed on the quantum computer. A quantum
circuit comprises quantum gates, which change the state of
the qubits. Single-qubit gates operate on a single qubit, such
as the Hadamard gate, which creates a superposition state,

2500111

and the R, gate, which rotates the qubit around the z-axis. A
multiqubit gate, such as controlled Not (CNOT), entangles
two qubits [5]. To enable a quantum circuit execution on the
targeted NISQ computer, the circuit has to go through sev-
eral compilation steps. Complex gates should be constructed
using elementary gates supported by the NISQ architecture.
To reduce the depth and the gate count of the circuit, sev-
eral gate-level optimization techniques are applied, including
template matching- [6] and gate reordering-based [7] tech-
niques. In the former one, a cascade of quantum gates is
substituted with a subcircuit with a lower gate count, while in
the latter one, consecutive gates cancel each other based on
the commutation rules of the quantum gates [4], which are
defined as follows.

Definition 1: Let U; and U, be two unitary matrices. U
and U, are said to be commutative if U;U, = U,U; for any
input state. Commutation rules of different quantum gates are
shown in Fig. 1.

Next, the physical qubits of the quantum circuit are allo-
cated, and their gates are scheduled to meet the constraints
of the quantum architecture. This process is referred to as
quantum circuit mapping. A main challenge in the mapping
process is the restricted qubits connectivity in superconduct-
ing quantum architectures. Two qubit gates can be applied to
certain pairs of physical qubits described using the coupling
graph of the quantum architecture, in which nodes represent
qubits and edges show the connectivity between different
qubits. To enable arbitrary multiqubit gates in the presence
of the coupling constraint, SWAP operations consisting of
three CNOT gates are used for gate scheduling, resulting in an
excessive gate count and a large circuit depth. Efficient map-
ping approaches are used to generate physical quantum cir-
cuits with as a minimum gate count as possible to be executed
on the quantum computer. These approaches often represent
the quantum circuit as a directed acyclic graph, referred to as
a gate dependency graph, where each node represents a gate
and each edge represents a direct dependency between two
gates. The dependency graph is divided into levels, where
each level consists of quantum gates applied simultaneously
in the same circuit layer. All the nodes reachable from a given
node i in the graph are gates, which depend on the g; gate (g;
reachable gates).

Example 1: Fig. 2 shows an example of a quantum circuit
and its corresponding gate dependency graph, in which the

VOLUME 3, 2022

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

@IEEE Transactions on,
uantumEngineering

o W ®

(a) (b)

FIGURE 2. (a) Quantum circuit and (b) its corresponding gate
dependency graph.

(a) (b)

FIGURE 3. Propagation path of (a) X and (b) Z Pauli gate errors through
a CNor gate.

gates in each circuit layer are mapped to the graph nodes
applied at the same level. For each quantum gate, the list of
reachable gates is extracted from the gate dependency graph.
For example, there are four reachable gates from g4 gate,
which are g¢, g7, g9, and gj¢ gates.

B. RELIABILITY OF QUANTUM DEVICES

Different sources of noise contribute to the noise complexity
of NISQ systems. The elevated noise levels endanger the
reliability of quantum circuits. Gate errors are a major source
of quantum computing noise. They are modeled as Pauli
gates that operate on a single qubit. They are represented as
X (a 7 rotation around the x-axis), Y (a 7 rotation around the
y-axis), Z (a m rotation around the z-axis), and / (an identity
matrix) single-qubit gates [8]. The propagation of some of
the Pauli errors through the CNoT gate is shown in Fig. 3.
The measurement/read-out error can occur while measuring
the output state of the quantum circuit. A qubit can lose its
state after a period of time, resulting in decoherence errors.
Quantum gates, which act on different qubits, simultaneously
can cause crosstalk errors.

As NISQ computers do not support quantum error correc-
tion, they often rely on noise-aware quantum compilers to
mitigate errors. The quantum compiler should maximize the
success probability of the physical quantum circuit. An ESP
can be used by a noise-aware quantum compiler to select the
physical qubits of the quantum circuit and schedule the quan-
tum gates. Given the gate (e,,) and measurement (e,,,) errors
for all the quantum circuit gates, and its qubits, ESP is com-
puted as [T7' (1 — eg,) x [1%,' (1 — em,) [2]. Randomized
benchmarking sequences are executed on the quantum hard-
ware to compute single- and two-qubit gate errors based on
the average sequence errors. The qubit measurement/read-
out error is computed as the average measurement errors O

VOLUME 3, 2022

and 1, in which the qubit is initially assigned to states 1 and
0, respectively.

C. QUANTUM APPROXIMATION OPTIMIZATION
ALGORITHM

The quantum approximation optimization algorithm
(QAOA) is a hybrid quantum-classical algorithm for
solving optimization problems. It relies not only on the
output of the quantum circuit but also on the classical
optimizer that updates the circuit parameters to improve the
solution of the optimization problem [9]. The objective of the
algorithm is to minimize/maximize a cost function [C(X)] of
a given problem described using the following Hamiltonian:
H = ero, 1 C0)]x) (x]. A QAOA quantum circuit contains
two main components: 1) phase separation; and 2) mixing
operations, which are applied p times repeatedly with
(71, B1)»--.s (¥p, Bp) parameters. The phase separation can
be represented using ZZ gates while mixing operations
are represented using single-qubit gate rotation around the
x-axis (Ry). An example of a problem to be solved using the
QAOA algorithm is the maximum cut (Max-Cut) problem.
For a graph with n vertices, the solution of the Max-Cut
problem divides the graph into two subsets such that the total
weight of the edges between those subsets is as maximum
as possible. The graph vertices are described as a string of
n qubits, in which each qubit can be measured as O or 1.
The QAOA circuit output provides a candidate solution to
the Max-Cut problem. Using an iterative procedure, we can
find the n-qubit string, which maximizes the total weight of
the edges between the two subsets, referred to as the cost
function.

D. QUANTUM CIRCUIT SUCCESS METRICS

Different success criteria/metrics have been proposed to
show the impact of the quantum compilation approaches
on the quantum circuit output. For a single-output quantum
circuit, the probability of successful trails (PSTs) measures
the probability of the correct output of the quantum cir-
cuit as N“ITI(‘Rzlr gﬁ;‘fgfgg‘ﬂ;{;ak [10]. For hybrid quantum al-
gorithms, application-specific success criteria are used. For
example for QAOA, which maximizes or minimizes a cost
function, the approximation ratio (AR) of the cost func-

tion quantifies the success of the quantum circuit [11], [12].

. Mean of cost function over all sampled output .
It is defined as Maximum cost function value - Given

AR, we can compute the approximation ratio gap (ARG) to
quantify how close is the output of the actual execution of
QAOA circuit to the simulation result [11]. It is computed

AR of simulation - AR of execution :
as AR of simalation x 100. The smaller the gap is,

the more reliable the output of the QAOA circuit is.

IIl. RELATED WORK

A. QUANTUM CIRCUIT MAPPING

Since quantum circuit mapping is an NP-complete
problem [13], traversing the search space is speculative for
quantum architectures with a large number of qubits. Various

2500111

@IEEE Transactions on,
uantumEngineering

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

heuristics-based techniques have been proposed to address
this problem [14]. Some of these techniques target minimiz-
ing the number of circuit SWAP operations [15]-[19], while
others focus on minimizing the circuit error rates [10], [20].
For example, quantum circuit mapping can be achieved by
using BRIDGE and SWAP operations as transformation rules
inserted based on dynamic programming or heuristic-based
look-ahead schemes [15]. The BRIDGE gates are composed
of a sequence of four CNOT gates. SAT solver minimizes the
number of SWAP operations in the physical quantum circuit
at the cost of extensive computation overhead (e.g., [16] and
[17]). The proposed technique in [16] divides the quantum
circuit into subcircuits that require no SWAP operations
within each subcircuit. Next, the SAT solver is used to con-
struct the quantum circuit by inserting a minimum number of
SWAP operations between the subcircuits that share qubits.
In [17], a logical quantum circuit was mapped to a physical
quantum circuit using the SAT solver too. Constraints are
added to the SAT solver based on the coupling graph of the
quantum architecture to reduce its complexity at the expense
of the gate count. An A* algorithm searches for the shortest
path in the coupling graph between qubits to implement a
two-qubit gate, and thus, reduce the number of SWAP oper-
ations in the quantum circuit [18]. To address the difference
in the error rates of various qubits, a mapping technique
has been proposed based the on Dijkstra algorithm, which
schedules quantum gates and allocates physical qubits with
low error rates [10]. The success probability of the physical
quantum circuit can be further improved by searching for
isomorphic subgraphs in the quantum architecture’s coupling
constraint with the highest ESP [20]. Other mapping
approaches address decoherence, correlated, and unexpected
errors (e.g., [21]-[25]). To mitigate crosstalk errors, they
should be characterized first, followed by an efficient map-
ping approach that selectively serializes circuit gates, while
satisfying the required coherence time [26]. Most recently,
quantum circuit mapping approaches that target distributed
quantum architectures have also been proposed [27], [28].

B. GATE REORDERING OF QUANTUM CIRCUITS

A quantum circuit consists of layers of gates that can
be applied in parallel. Consecutive commuting gates can
be reordered while preserving the state of the quantum
system [4], [29]. The commutation rules of the gates have
been utilized to reduce the quantum circuit depth, gate
count [4], [29]-[31], and optimize the control pulses [32].
A heuristics-based approach has been developed to perform
a gate-level optimization by reordering quantum gates to
reduce the circuit gate count [4]. A two-step approach has
been proposed to reduce the depth of the quantum circuit by
constructing a dependency graph based on the circuit gates
and then swapping the gates that satisfy the commutation
rules to reduce the circuit depth [29]. A compilation
approach has been developed to enhance the performance of
QAOA circuits by reordering the complex gates [11], [30].
Due to the commutation relation, most of the dependencies

2500111

are ignored. Instead, a two-level search process is adopted
to minimize the circuit depth using a breadth-first search
algorithm, which finds a possible two-layer interchanges
in each iteration until the desired depth is achieved. A
layout synthesis algorithm has been proposed to minimize
the circuit depth by reordering complex gates of QAOA
circuits using a satisfiability modulo theories solver [31].
An optimized pulse-level compilation approach has been
proposed to address the inefficiency of the standard gate
compilation process that directly translates the logical
instructions to control pulses [32]. In this approach, the gates
are reordered based on commutation rules, and then a small
set of gates are aggregated to a larger operation by finding the
optimal control pulse based on the gradient descent method.
Gate reordering has also been applied to minimize the impact
of decoherence errors [33]. Faults in the form of additional
gates due to decoherence errors are injected into the
quantum circuit to analyze their impact on the circuit output.
Accordingly, gates are reordered at the circuit locations,
in which decoherence errors significantly affect the circuit
output. In this article, we propose additional compilation
layers applied to the physical quantum circuit postmapping.
We restrict the search space of our gate rescheduling
algorithms to maintain the gate count and the circuit depth of
the optimized quantum circuit using the previously proposed
compilation approaches. Thus, our work can be incorporated
with the other compilation/optimization layers to further
improve the output state fidelity of the quantum circuit.

IV. IMPLICATION OF THE GATE ERROR PROPAGATION
PATH ON THE OUTPUT STATE FIDELITY

Stochastic Pauli noise is a primary factor to estimate the
circuit error rates [2]. While tracking the precise impact of
the error propagation on the circuit can be computationally
expensive in the presence of universal gates [8], two-qubit
gates enable error propagation across different qubits. Thus,
the location of the quantum gates especially the two-qubit
gates can affect the circuit error rates. For the sake of simplic-
ity, we assume that the two-qubit gate (CNOT) error impacts
the control and the target qubits, and thus, propagates to the
gates applied next to these qubits.

Example 2: To illustrate the gate error propagation
through the quantum circuit, let’s consider the example pro-
vided in Fig. 4 . Two equivalent subcircuits using the com-
mutation rules of quantum gates and their corresponding gate
dependency graphs are provided. We use a dotted line to
show the output qubits affected by the gates in the depen-
dency graph. Every gate in the subcircuit can produce Pauli
errors that propagate to the output qubits through the gate
dependency graph [8]. In Fig. 4(a), qo, q1, and g output
qubits are affected by {go}, {go, &1, g2, &3}, and {go, g1, &2}
gate errors, respectively. On the other hand, in Fig. 4(b),
q0, q1, and g» output qubits are affected by {go, g1, g2, &3},
{g0, g1, &2, g3}, and {g1, g2} gate errors, respectively. Thus,
while the two subcircuits in Fig. 4 are equivalent, their output

VOLUME 3, 2022

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

@IEEE Transactions on,
uantumEngineering

(a) (b)

FIGURE 4. (a) Quantum subcircuit and its gate dependency graph and
(b) its corresponding equivalent subcircuit and its gate dependency
graph.

qubits go and g, are susceptible to different sets of gate
errors.

Due to the spatial variation in error rates of the quantum
hardware, gates applied to different qubits result in different
error rates. Although all gate errors affect the output fidelity
of the quantum circuit, the two-qubit gate errors are higher
than the single-qubit gate errors, and thus, have more impact
on the output fidelity of the quantum circuit. Reordering
quantum gates, while maintaining the circuit functionality,
changes not only the error propagation paths but also the
gate error impact on the output state of the circuit. In the
previous example, if gy gate has the highest error rate in the
circuit, which significantly deviates from other gate errors in
the circuit, applying go gate at the first layer of the subcircuit
as shown in Fig. 4(a) will result in spreading gg error to all the
output qubits, unlike the equivalent subcircuit in Fig. 4(b), in
which gq error affects only gg and g output qubits.

Example 3: Fig. 5 shows the impact of gate reordering on
the quantum circuit output fidelity. A four-qubit BV circuit
is mapped to satisfy the coupling constraint of the IBM Q
Santiago architecture. Fig. 5(a) represents the coupling graph
and the error rates of the IBM Q Santiago architecture, in
which the values in the upper and lower part of each node
represent the read-out and single-qubit errors, respectively,
while the edge label is the two-qubit gate error applied to the
corresponding pair of qubits. All error rates are multiplied
by 10~3. Two physical implementations of the BV quantum
circuit: 1) M1 and 2) M2 are provided in Fig. 5(b) and (c),
respectively. The difference between the two physical imple-
mentations of the circuit is the location of the first two CNOT
gates of the quantum circuit, which can be reordered based
on the commutation rules. The CNoT gate highlighted in red
color has the highest two-qubit gate error rate. According to
the order of the quantum gates, the error propagation path
also changes as shown in Fig. 5(b) and (c). We demonstrate
the impact of the gate reordering on the quantum circuit
output by executing both M1 and M2 quantum circuits on
the IBM Q Santiago architecture, and reporting their PST, as
shown in Fig. 5(d). To eliminate the impact of gate reordering
on decoherence errors, we insert barriers before and after ap-
plying all the two-qubit gates in the two circuit implementa-
tions in addition to a barrier after the second CNOT gate of M2
quantum circuit in Fig. 5(c), which ensure that the qubits in
the two implementations are used for the same period of time.

VOLUME 3, 2022

The PST values are 0.784 and 0.861 for the BV quantum cir-
cuit generated using the M1 and M2 mapping, respectively,
and executed for 8192 shots/trials. Our observation indicates
that reordering gates with higher error rates to earlier circuit
layers will result in error propagation to a larger number of
circuit gates, and thus, degrade the output state fidelity. While
PST is different for both mapping, the ESP of both M1 and
M2 mapping is 0.7945, which implies the need to consider
the gate error propagation path for estimating the success rate
of the circuit, and thus refining the quantum circuit mapping
policies.

V. ERROR PROPAGATION-BASED GATE RESCHEDULING
A. WEIGHTED-ESTIMATED SUCCESS PROBABILITY
ESP enables quick and easy estimation of the circuit suc-
cess probability. Yet, it overlooks the circuit structure since
different orders of the quantum gates yield the same ESP.
To account for the penalty of rescheduling the same set of
physical quantum gates with variable error rates on the output
state fidelity of the quantum circuit, we propose a new metric
referred to as WESP, which can be used after generating
physical quantum circuits using ESP. It is defined as
G—1 0—1
WESP = [] (1 — (Ai+eg)) x [] (1 —ep).
i=0 i=0
A; tunes the error rate of the corresponding g; gate to ac-
count for the gate position as

A = wj(e,, — mine,,
i ’(8i pre 81)

where w; and migegl. are the weight of the ith gate and the
8i€
minimum gate error rate in the quantum circuit, respectively.

Instead of multiplying the weight of each gate by its error
rate, which can significantly reduce the gate error of very
noisy gates applied in later layers of the circuit, we multiply
the weight with the difference between the current gate error
and the minimum gate error in the circuit to account for the
variation in the gate errors. The resulting number is added to
the gate error. To compute w;, the gate dependency graph of
the circuit is constructed first. For each node i in the graph,
we count all the nodes that can be visited from node i in
the dependency graph. In other words, for each gate (g;) in
the circuit (graph), we identify the number of all subsequent
dependent gates (reachable gates) that are applied to the
same qubit or other qubits, which are directly or indirectly
connected to the current gate through two-qubit gates. For
a quantum circuit with G gates, the weight of the ith gate
(w;) is computed as w; = &. We exclude the R, gate since
its error rate is zero. Thus, the term A is used to approximate
the impact of noisy quantum gates on the output state fi-
delity of the quantum circuit, given the number of subsequent
dependent (reachable) gates. To simplify our analysis, we
omit how Pauli errors propagate through different quantum
gates in the circuit. Instead, we assume that for each gate,
Pauli errors will propagate to its corresponding qubits. While
the proposed WESP metric does not accurately characterize

2500111

@IEEE Transactions on,
uantumEngineering

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

(b)

FIGURE 5. (a) IBM Q Santiago architecture, 4-qubit Bernstein-Vazirani (BV) implemented using (b) M1 and (c) M2 mappings and (d) their corresponding

PST value.

T

J'-'ﬂ

\'ﬂ
SIS
Sl
= < <
=]
EN[EN

9
a1 ;0 R Eu\@ @@\Jzi Rz|_-0 (R,]
92 R RS9 Do e R HEHRH]
93 {R xR H——D—-D— R xR}~

(@)

)
=
Nx
1S
;‘U
&
5
]

]
T
5 1
90 {RHVE R H -9, & R HRH A
a1 {RHVX PR DD B
10 19 I©®®2| 0
92 {RHVE R, -8~y (R HVE {R:HA]
43 {RHVE R H—— DD —HRHE R H A

FIGURE 6. Number of reachable gates (S;) for each quantum gate in
(a) M1 and (b) M2 mappings.

the circuit error rate, it can be used to differentiate between
different quantum circuit implementations, which share the
same gate count and circuit depth, and maintain the same
gate parallelism to avoid additional crosstalk or decoherence
errors.

Example 4: Fig. 6(a) and (b) show the physical quantum
circuits implemented using elementary gates supported by
IBM quantum computers for M1 and M2 quantum circuits
in Fig. 5, respectively. The S; values for each single- and
two-qubit gates are shown in red color. For example, in the
physical circuit provided in Fig. 6(a), the v/X gate applied to
qubit g4 in layer 2 is connected to the next +/X gate applied to
the same qubit at a later layer in the gate dependency graph.
Hence, the value of S; for the first v/X gate is 1. Similarly,
the value of S; for all the other gates except R, gates are
computed. The number of erroneous gates (G) is 16. Based
on the device error rates, as shown in Fig. 5(a), the value of
WESP for M1 mapping is 0.7811. On the other hand, WESP
for M2 mapping is 0.7846, which indicates that M2 circuit

2500111

0.8

TH" 0.4

THIZ 02

(c) (d)

provides a higher PST. This observation is aligned with the
PST value of M1 and M2 circuits provided in Fig. 5(d).

B. ELEMENTARY GATE RESCHEDULING BASED ON WESP
We exploit the gate commutation rules to reduce the impact
of Pauli errors while maintaining the depth of the circuit. We
propose a gate rescheduling algorithm postquantum circuit
mapping guided by the proposed WESP metric as a new
optimization layer to reduce the circuit gate errors. Since the
gates of the physical quantum circuit satisfy the coupling
constraint of the quantum hardware, no additional SWAP
operation is required. We develop a greedy approach for
gate rescheduling based on the circuit dependency graph
(D(V, E)) as described in Algorithm 1. The objective of our
rescheduling algorithm is to maximize WESP while main-
taining the circuit depth (Depth) to avoid any additional de-
coherence errors. An important condition is added to ensure
that the updated gate scheduling does not change the depth
of the circuit (No_Change_Depth). For g; gate operating on
gx and gy qubits at layer # and g; gate operating on g, and g,
qubits at layer 7 + k, g; and g; can be reordered if they are
commuting, there is no non-commutable gate in between,
and g, and g, are idle at layers 7 + k and ¢, respectively.
Our evaluation is repeated for every pair of immediate de-
pendent gates in the gate dependency graph. For a quantum
circuit with D(V, E) gate dependency graph, in which V
(nodes) represents the set of quantum circuit gates and E
(edges) shows the dependency between different gates, the
time complexity of calculating WESP is O(|V| 4 |E|). Thus,
the time complexity of our greedy heuristic, which is pro-
vided in Algorithm 1, is O(IV]2- (V| + |E])). Our proposed
gate rescheduling approach is computationally fast compared
to the exhaustive approach that requires checking the entire
search space, which can be very large for quantum circuits
with a large number of commuting gates.

Example 5: To motivate the need and the effectiveness
of our greedy approach, we exhaustively generate all pos-
sible ways of gate scheduling for our BV circuit provided in
Figs. 5 and 6. We pick the circuit with the highest WESP

VOLUME 3, 2022

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

@IEEE Transactions on,
uantumEngineering

Algorithm 1: Gate Rescheduling.
Input: C = The physical quantum circuit
Output: C' =The updated physical quantum circuit
1 Construct the D graph of C;
> Tnitialize C' = C,
3 Initialize L(7) = gates applied at layer i | 0 < ¢ < Depthc;
4 for each layer i do

5 for each gate g; in L(i) do

6 for each immediate dependent gate gj, do
7 if Are_commutative(D, g;, gi.) then
8 if No_Inc_Depth(D, g;, gi) then
9 Compute WESP of C' under

rescheduled gates;

10 end

11 end

12 end

13 Select rescheduling of g; with max. WESP;

14 Update C' /;

15 end

16 end

17 Return C’l;

(b)

FIGURE 7. Subcircuits with different ZZ gate scheduling.

and compare it with the generated circuit using our greedy
approach in terms of WESP and PST. Specifically, we label
each CNot gate in Fig. 6 to list all possible combinations
of gate scheduling. The total number of all possible ways of
gate scheduling, which maintain the depth of the circuit is 14.
Among all the gate scheduling combinations, B-C—D-E-F-
A has the highest WESP of 0.7768, while the resulting circuit
based on our greedy algorithm has a CNOT combination of
B-A-C-D-E-F with a WESP of 0.7764. The PST values of
the quantum circuit based on the exhaustive and our greedy
approach are 0.863 and 0.861, respectively. Accordingly, the
gap between the exhaustive and the greedy solutions is very
small.

C. COMPLEX GATE RESCHEDULING BASED ON WESP
FOR QAOA
QAOA quantum circuits consist of single-qubit rotations and
two-qubit phase gates implemented using ZZ complex gate.
Since ZZ gates are commutative [34], [35], we exploit the
freedom of the ZZ gate placement at higher quantum circuit
design level to further reduce the quantum circuit errors. ZZ
gates are reordered without violating the circuit depth and the
gate count.

Example 6: An example of ZZ gate reordering is shown
in Fig. 7, in which both subcircuits share the same gate count
and circuit depth, but vary in the ZZ gate scheduling.

VOLUME 3, 2022

We propose a look-ahead approach that approximates the
error rate of each complex gate in the circuit. The approxima-
tion entitles the generation of physical quantum circuit first,
using an efficient quantum mapping approach that allocates
physical qubits with minimum error rates and minimizes the
number of SWAP operations. We scan the physical quantum
circuit next to identify the corresponding two-qubit gates
used for building each ZZ complex gate. Given the decom-
posed subcircuit of each complex gate, we compute the error
rate of each complex gate.

We adjust the WESP metric to operate on the intermediate
representation of the quantum circuit prior to complex gate
decomposition. In the updated WESP, G is the number of ZZ
gates, e, is the ZZ gate error rate computed as the product
of the error rates of its elementary gates, w; is the ratio of

dependent (reachable) ZZ gates, and migegi is the minimum
8i€
error rate of the ZZ complex gate in the circuit. The ZZ gates

are reordered based on the updated WESP using a similar
rescheduling algorithm as the one provided in Algorithm 1,
in which C is updated to be the intermediate representation
of the quantum circuit, and every pair of quantum gates (g;,
gj) corresponds to a pair of ZZ gates in the quantum cir-
cuit. The look-ahead approach requires scanning the entire
physical circuit, including all its gates. The time complexity
of the look-ahead approach is linear in the number of gates
(O(]V])). The time complexity of our ZZ gate rescheduling
algorithm is O(|V'|? - (|V'| + |E"])) for the D'(V’, E’) com-
plex gate dependency graph, in which V' represents the set
of ZZ complex gates and E’ is the set of edges that show the
dependency between different ZZ gates.

We emphasize that our rescheduling approaches, which
are applied postmapping, can be integrated with other quan-
tum compilation approaches that exploit the gate commu-
tation rules to reduce the circuit depth and the gate count
since our algorithms do not alter the circuit depth nor the gate
count. Furthermore, our proposed approaches can be easily
applied to quantum circuits executed on different quantum
hardware in the presence of a significant variation in the
hardware gate errors.

VI. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
We show the effectiveness of our proposed rescheduling al-
gorithms based on WESP in improving the output state fi-
delity of different quantum circuits executed on NISQ com-
puters. We conduct two experiments. In the first experi-
ment, we use PST to evaluate our proposed elementary gate
rescheduling approach applied to different quantum circuits,
while in the second experiment, we show the impact of our
proposed complex ZZ gate rescheduling on the AR of QAOA
quantum circuits.

We use a total of 12 benchmark circuits with a different
number of qubits and gate counts. The BV algorithm iden-
tifies a hidden string, which is encoded in the circuit [36].

2500111

@IEEE Transactions on,
uantumEngineering

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

TABLE I. Properties of Quantum Circuit Benchmarks

Benc- # # Depth Expected
hmark | Qubits [U | CNOT | M PO Output
BV_3 4 9 2 3 6 110
Adder 3 30 17 2 28 0100
Grover 3 24 7 2 22 10
Toffoli 3 11 6 3 12 111
QFT_3 3 10 6 3 14 000
QFT_4 4 26 18 4 28 0000
Decoder 5 28 21 4 29 00100
QPE_3 3 19 7 2 17 01
QPE_4 4 24 14 3 31 001
QAOA_1 15 437 111 15 176 NA
QAOA_2 15 525 135 15 214 NA
QAOA_3 15 602 156 15 224 NA

TABLE II. Properties of Different IBM Quantum Computers

Quantum Computer # Qubits | QV
IBM Q16 Melbourne 15 8
IBM Q Casablanca 7 32
IBM Q Santiago 5 32
IBM Q Rome 5 32

The discrete Fourier transform is represented using a quan-
tum Fourier transform (QFT) circuit [5]. A shift operation
is carried out for a given input Boolean function using the
hidden shift (HS) algorithm [37]. The Grover search (Grover)
algorithm provides a solution (x) of a function f(x) equal to
1. Given a unitary operator, the eigenvalue of the eigenvector
is estimated using the quantum phase estimation (QPE) al-
gorithm [5]. QAOA solves optimization problems [9]. Other
reversible quantum circuits, such as adder, Toffoli gate, and
decoder, are also used. We obtained QFT and QPE circuits
from Qiskit [38], HS and QAOA circuits from Cirq [39],
adder from [40], decoder from RevLib [41], and BV, Toffoli,
and Grover search by the manual construction. The proper-
ties of all the benchmark circuits are provided in Table 1,
prior to the circuit mapping, which includes the number of
qubits (# Qubits), single-qubit gates (U), CNoT gates (CNOT),
measurement operations (M), the circuit depth (Depth), and
the expected output. We use QAOA to solve the Max-Cut
problem of three different graphs, which consist of 15 nodes
and a different number of edges of random weight per node.
The QAOA quantum circuits are QAOA_1, QAOA_2, and
QAOA_3, which correspond to graphs with at most 5, 6,
and 7 edges per node, respectively. To construct and test the
QAOA circuits, we set p to 1 with default y and § parame-
ters provided by Cirq [39]. Unlike the other abovementioned
quantum circuits, we consider the entire output distribution
of QAOA circuits to evaluate their cost function.

We run our circuits on a variety of quantum architectures
with different numbers of qubits and quantum volume (QV),
as given in Table 2. The QV determines the largest size of
random quantum circuits in terms of the number of qubits
and the circuit depth, which can be successfully executed on
the quantum computer with high fidelity [42]. Each execution
of the quantum circuit consists of 8192 shots/trials.

All the benchmark circuits are mapped to the quantum
architecture using the Qiskit software development kit based

2500111

on the error rates of the quantum hardware [38]. We im-
plement our rescheduling algorithms using Python program-
ming language for easy integration with Qiskit. We run our
algorithms on a 2.10 GHz Intel Xeon CPU E5-2620 proces-
sor with 62.8 GB memory.

We execute 150, 153, 121, and 117 pairs of base and
reordered circuits on IBM Q Melbourne, IBM Q Santiago,
IBM Q Rome, and IBM Q Casablanca, respectively, based
on the availability of these devices. The results of all these
circuits show that the reordered quantum circuits according
to WESP provided in Section V yield a better solution than
the base circuits generated by Qiskit. We select a subset of
these circuits to show the effectiveness of our approach.

B. ELEMENTARY GATE RESCHEDULING RESULTS

In the first experiment, we study the impact of our proposed
elementary gate rescheduling on the PST of different bench-
mark circuits. For each quantum circuit to be executed on a
given quantum computer, we first generate the corresponding
physical quantum circuit using the highest optimization level
of Qiskit based on the calibration data of the quantum hard-
ware. We refer to this approach as a Base. Next, we apply
our proposed elementary gate rescheduling algorithm based
on WESP to the physical quantum circuit to generate a new
optimized physical quantum circuit. We refer to this process
as Prop. 1. We run the two physical quantum circuits on the
quantum computer and evaluate their PST.

Fig. 8 provides a comparison of the PST of quantum
circuits generated using Base and Prop. I and executed on
different quantum computers. We also report the WESP of
quantum circuits generated using Base and Prop. I, the num-
ber of gate reordering using Prop. I (R), and the depth of each
physical quantum circuit (D) executed on different quantum
computers in Table 3. We emphasize that the depth of the
physical quantum circuit prior to and post applying Prop. I
is always the same to avoid additional decoherence errors.

Fig. 8 shows that our proposed rescheduling algorithm
improves the PST, and thus, the fidelity of the quantum
circuit output. We observe significant improvement of PST
for some quantum circuits more than others, such as adder,
Toffoli, and Grover search quantum circuits for most of the
quantum computers, which implies that the circuit structure
can impact the effectiveness of our approach. We also ob-
serve that our proposed approach can also perform well for
quantum computers with a larger QV, and thus, a better fi-
delity, such as IBM Q Santiago, IBM Q Casablanca, and IBM
Q Rome. Furthermore, as our approach exploits the variation
in gate error rates, which can result in different error rates
propagating throughout different circuit paths, it is expected
to perform better in the presence of higher gate error standard
deviation of the quantum hardware. This is further illustrated
in Fig. 8, for which the standard deviation of the two-qubit
gate error of IBM Q16 Melbourne, IBM Q Casablanca, IBM
Q Santiago, and IBM Q Rome on average are 1.31E-02,
1.86E-02, 1.33E-02, and 1.20E-02, respectively, which are
considered relatively high.

VOLUME 3, 2022

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

IEEE Transactigons on,
uantumEngineering

Q

PST of quantum circuits executed on IBM Q16 Melbourne

0.8 0.8
0.6 0.6
0.4 0.4
0.2 r{ 0.2
0 0
BV_3 Adder Grover Toffoli QFT_3 QFT_4 Decoder QPE_3 QPE_4
@ Base MProp.|
(@)
PST of quantum circuits executed on IBM Q Santiago .
1
0.8 0.8
0.6 0.6
o3 ﬂ ED os
~ ED w02
; ol
BV_3 Adder Grover Toffoli QFT_3 QFT_4 Decoder QPE_3 QPE_4 0
@ Base M Prop.|
©

FIGURE 8. PSTs for different benchmarks executed on various IBMQ architectu
of quantum circuits executed on IBM Q Casablanca. (c) PST of quantum circuits
IBM Q Rome.

PST of quantum circuits executed on IBM Q Casablanca

baddna. o

BV_3 Adder Grover Toffoli QFT_3 QFT_4 Decoder QPE_3 QPE_4

@ Base HProp.|

(b)

PST of quantum circuits executed on IBM Q Rome

11]

BV_3 Adder

‘T

Grover Toffoli QFT_3 QFT_4 Decoder QPE_3 QPE_4

@Base M Prop.|
(d)

res. (a) PST of quantum circuits executed on IBM Q16 Melbourne. (b) PST
executed on IBM Q Santiago. (d) PST of quantum circuits executed on

TABLE IIl. WESP of Quantum Circuits Generated Using Prop. | Gate Rescheduling With R Reordered Gates and D Circuit Depth

Benc- WEI\éI;lbourne - ECsal;ablanca WE SS;mtiago WES}l}ome

hmark Base Prop. 1 Ri D Base Prop. 1 R D Base Prop. 1 R D Base Prop. 1 Ri D
BV_3 | 6.666E-1 | 6.672E-1 | 1| 34 | 7.064E-1 | 7.071E-1 | 1| 16 | 8.590E-1 | 8.591E-1 1 15 | 9.078E-1 | 9.079E-1 | 1| 15
Adder | 4.243E-1 | 4945E-1 | 7| 74 | 5.992E-1 | 6.442E-1 | 4| 102| 4.662E-1 | 5.339E-1 5| 69| 7.330E-1 | 7.743E-1 | 3| 74
Grover | 3.909E-1 | 3.940E-1 | 3| 51 | 8.312E-1 | 8.432E-1 | 2| 56 | 8.052E-1 | 8.218E-1 | 10| 73 | 8.756E-1 | 8.831E-1 | 1| 65
Toffoli | 4.246E-1 | 4.292E-1 | 2| 16 | 7.516E-1 | 7.870E-1 | 2| 51 | 7.820E-1 | 7.998E-1 3| 45| 9.006E-1 | 9.107E-1 | 2| 44
QFT_3 | 5.940E-1 | 6.278E-1 | 3| 65 | 7.942E-1 | 8.127E-1 | 2| 68 | 7.146E-1 | 7.284E-1 7| 71| 8.681E-1 | 8.833E-1 | 4| 65
QFT_4 | 4.784E-1 | 4789E-1 | 3| 94 | 6.978E-1 | 7.235E-1 | 2| 137| 4.271E-1 | 4.572E-1 41 150 | 7.604E-1 | 7.800E-1 | 2| 76
Decoder | 2.886E-2 | 4.869E-2 | 5| 141| 2.648E-1 | 3.059E-1 | 3| 200| 2.117E-1 | 2.824E-1 6 | 215| 5.079E-1 | 5.705E-1 | 6| 229
QPE_3 | 3430E-1 | 3438E-1 | 1| 77 | 7.664E-1 | 7911E-1 | 2| 71 | 7.422E-1 | 7.635E-1 9| 92| 8374E-1 | 8377E-1 | 1| 92
QPE_4 | 1.528E-1 | 1.705E-1 | 3| 127| 6.691E-1 | 7.096E-1 | 3| 134| 3.467E-1 | 4.034E-1 5| 117| 6.842E-1 | 7.232E-1 | 8| 102

As given in [33], the output state fidelity of the quantum
circuit can be improved by rescheduling quantum gates as
late as possible in the circuit to reduce the usage time of
the qubit, and thus, reduce the qubit decoherence errors. To
ensure that the improvement in PST shown in Fig. 8 is not
due to a reduction in the qubit lifetime, and thus, decoherence
errors, we identify the first layer in which each physical qubit
is being used in each pair of quantum circuits generated using
the Base and the Prop. I approach. For nonmeasured qubits,
we also identify the last layer being used in both physical
quantum circuits. For measured qubits, all measurement op-
erations will be at the end of the circuit according to IBM
quantum computers. We observe that none of the circuits
used in Fig. 8 exhibits any reduction in their physical qubit
lifetime after running the rescheduling algorithm, which con-
firms the effectiveness of our approach in reducing the impact
of Pauli errors on the output state fidelity of the quantum
circuit.

The run time of our proposed elementary gate reschedul-
ing algorithm for each benchmark circuit to be executed on
various quantum architectures is given in Table 4. Each quan-
tum circuit requires only a small fraction of a second for gate
rescheduling time.

VOLUME 3, 2022

TABLE IV. Run Time of the Prop. I Algorithm Applied to Different
Quantum Circuits Mapped to Different IBM Q Computers

Prop. I Execution Time (msec)

Benc- e T Casa- | San-
hmark . Rome

ourne | blanca | tiago
BV_3 0.54 0.17 | 0.17 0.23
Adder 1.25 2.17 1.37 1.52
Grover 1.14 1.27 1.52 1.34
Toffoli 0.20 0.53 | 0.85 0.90
QFT_3 1.12 1.38 1.49 1.26
QFT_4 1.47 259 | 292 1.57
Decoder 2.52 327 | 3.11 3.28
QPE_3 1.57 1.51 1.93 1.72
QPE_4 2.51 1.86 | 2.32 1.89

C. COMPLEX GATE RESCHEDULING RESULTS

In the second experiment, we show the effectiveness of
our proposed ZZ complex gate rescheduling algorithm with
respect to AR, and the corresponding ARG of different
QAOA quantum circuits, namely QAOA_1, QAOA_2, and
QAOA_3, executed on the IBM Q16 Melbourne quantum
computer. We refer to the complex gate rescheduling al-
gorithm as Prop. II. We also study the impact of applying
Prop. II followed by the Prop. I approach to generate the
physical QAOA quantum circuit, which implies the use of

2500111

@IEEE Transactions on,
uantumEngineering

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

AR of QAOA circuits executed on IBM Q16 Melbourne
0.72

0.7

0.68

0.66
0.64
0.62

0.6
0.58

QAOA_1 QAOA_2 QAOA_3
Sim [@Base HEProp.! EProp.ll EProp.l+Il
(a)
ARG of QAOA circuits executed on IBM Q16 Melbourne
12%
10.8% 10.9% 11.0%
10% 9.5%
9.1%
8% 7.9%)
6.2%
6%
56% 53y
4%
3.2%)
2.4% 2.3%
2% —
QAOA_1 QAOA_2 QAOA_3
EBase HEProp.| EProp.Il EProp.l+Il
(b)

FIGURE 9. (a) AR of QAOA circuits. (b) Corresponding ARG of QAOA
circuits.

TABLE V. WESP of QAOA Quantum Circuits Generated Using the Base,
Prop.i, Prop. 11, and Prop. I+l and Their Corresponding ESP Value

Benc- ESP WESP (complex) WESP (elementary)
hmark Base | Prop. II Base [Prop.1 [Prop. I+l
QAOA_1 [1.03E-04 [5.01E-05 | 6.32E-05 |1.69E-05 |5.09E-05 |7.19E-05
QAOA_2 (6.81E-07 [2.49E-07 | 4.58E-07 [5.61E-08 [2.31E-07|5.36E-07

QAOA_3 9.05E-10 3.78E-10|5.63E-10 (1.66E-11 [4.98E-10|7.92E-10

77 complex gate rescheduling algorithm first followed by
the elementary gate rescheduling algorithm after complex
gate decomposition based on the commutation rules in Fig. 1.
This process is referred to as Prop. I+11.

Fig. 9(a) and (b) show a comparison of the AR and the
corresponding ARG, respectively, of different QAOA cir-
cuits generated using Base, Prop. I, Prop. II, and Prop. I+I1.
The depth of physical QAOA_1, QAOA_2, and QAOA_3
quantum circuits are 315, 375, and 412, respectively, for
all the proposed rescheduling approaches. The range of the
number of reordering for QAOA_1, QAOA_2, and QAOA_3
quantum circuits are 3-35, 5-39, and 7-53, respectively.

The WESP computed at the complex and the elementary
levels of the base and reordered QAOA quantum circuits
as described in Section V and their corresponding ESP are
provided in Table 5.

Our results show that while the ZZ gates rescheduling
algorithm improves the AR of the QAOA circuits, and thus,
reduces the ARG, applying elementary gate rescheduling
provides a better output state fidelity. Our results also show
that using both rescheduling algorithms at the complex and
the elementary gate level delivers the best reduction in the

2500111

TABLE VI. Run Time of Prop. I, Prop. II, and Prop. I+11 Algorithms for
QAOA Circuits Mapped to IBM Q16 Melbourne

Benc- Execution Time (msec)

hmark Prop.1 | Prop.II | Prop. I+II
QAOA_1 3.15 3.01 6.17
QAOA_2 3.22 3.11 6.35
QAOA_3 3.53 3.37 7.26

ARG, and therefore, the best output state fidelity. Since both
decoherence and gate errors contribute to the quantum circuit
noise, by incorporating our gate rescheduling approaches
that push very noisy gates to as later circuit layers as possible,
we can improve the output state fidelity even for QAOA
circuits with large depth. As we do not directly compare the
output distribution of the simulated and the executed quan-
tum circuits but their cost functions, we can achieve a good
reduction in the ARG even with a small value of ESP and
WESP.

The run time of our proposed rescheduling approaches for
QAOA_1, QAOA_2, and QAOA_3 quantum circuits to be
executed on the IBM Q16 Melbourne quantum computer is
given in Table 6. Our proposed approaches consume only a
small fraction of a second despite the large circuit depth and
the number of qubits.

VII. CONCLUSION

In this article, we proposed gate rescheduling algorithms
based on the gate error propagation paths in the quantum
circuits. Given the variation in the error rates of NISQ com-
puters, we show that the location of the quantum gate can
significantly affect the output state fidelity of the quantum
circuit. Our proposed approaches can be easily integrated
with other quantum compilation approaches, which ensure
that the quantum circuit mapping process maximizes ESP.
We also anticipated further improvements in the output state
fidelity when applying our approaches with other compila-
tion approaches that target decoherence and correlated er-
rors. Our future work will further investigate the quantum
circuit structures that benefit the most from our proposed
rescheduling algorithms.

ACKNOWLEDGMENT

The authors would like to acknowledge the use of IBM Quan-
tum services for this work. The views expressed are those of
the authors and do not reflect the official policy or position
of IBM or the IBM Quantum team.

REFERENCES

[1] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing quan-
tum gates via randomized benchmarking,” Phys. Rev. A, vol. 85, 2012,
Art. no. 042311, doi: 10.1103/PhysRevA.85.042311.

[2] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. van Meter, “Extracting
success from IBM’s 20-qubit machines using error-aware compilation,”
ACM J. Emerg. Technol. Comput. Syst., vol. 16, no. 3, pp. 1-25, 2020,
doi: 10.1145/3386162.

[3] S.T.Flammia and J. J. Wallman, “Efficient estimation of Pauli channels,”
ACM Trans. Quantum Comput., vol. 1, no. 1, Dec. 2020, Art. no. 3,
doi: 10.1145/3408039.

VOLUME 3, 2022

https://dx.doi.org/10.1103/PhysRevA.85.042311
https://dx.doi.org/10.1145/3386162
https://dx.doi.org/10.1145/3408039

Saravanan and Saeed: PAULI ERROR PROPAGATION-BASED GATE RESCHEDULING

@IEEE Transactions on,
uantumEngineering

(41

(5]

[6

(71

(81

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Au-
tomated optimization of large quantum circuits with continuous pa-
rameters,” npj Quantum Inf., vol. 4, no. 23, 2018, Art. no. 23,
doi: 10.1038/s41534018-0072-4.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2019.

D. Maslov, G. W. Dueck, and D. M. Miller, “Toffoli network synthesis
with templates,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 24, no. 6, pp. 807-817, Jun. 2005, doi: 10.1109/TCAD.2005.847911.
K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks, “A verified opti-
mizer for quantum circuits,” Proc. ACM Program. Lang., vol. 5,no. POPL,
Jan. 2021, Art. no. 37, doi: 10.1145/3434318.

S. Janardan, Y. Tomita, M. Gutierrez, and K. R. Brown, “An-
alytical error analysis of clifford gates by the fault-path tracer
method,” Quantum Inf. Process., vol. 15, no. 8, pp. 3065-3079, 2016,
doi: 10.1007/s11128016-1330-z.

E. Farhi, J. Goldstone, and S. Gutmann,
proximate optimization algorithm,” 2014,
doi: 10.48550/arXiv.1411.4028.

S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case
for variability-aware policies for NISQ-era quantum computers,” in Proc.
24th ACM Int. Conf. Architectural Support Program. Lang. Oper. Syst.,
2019, pp. 987-999, doi: 10.1145/3297858.3304007.

M. Alam, A. Ash-Saki, and S. Ghosh, “Circuit compilation methodologies
for quantum approximate optimization algorithm,” in Proc. 53rd Annu.
IEEE/ACM Int. Symp. Microarchit., 2020, pp. 215-228, doi: 10.1109/MI-
CR0O50266.2020.00029.

L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Phys. Rev. X, vol. 10, Jun. 2020,
Art. no. 021067, doi: 10.1103/PhysRevX.10.021067.

M. Y. Siraichi, V. FE. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proc. 2018 Int. Symp. Code Gener. Optim., 2018,
pp. 113-125, doi: 10.1145/3168822.

J. Kusyk, S. M. Saeed, and M. U. Uyar, “Survey on quantum circuit
compilation for noisy intermediate-scale quantum computers: Artificial
intelligence to heuristics,” IEEE Trans. Quantum Eng., vol. 2, 2021,
Art. no. 2501616, doi: 10.1109/TQE.2021.3068355.

T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of
quantum circuit mapping using gate transformation and commutation,” In-
tegration, vol. 70, pp. 43-50, Jan. 2020, doi: 10.1016/j.v1si.2019.10.004.
A. Matsuo, W. Hattori, and S. Yamashita, “Reducing the overhead of
mapping quantum circuits to IBM Q system,” in Proc. IEEE Int. Symp.
Circuits Syst., 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702439.

R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and
H operations,” in 56th ACM/EDAC/IEEE Des. Automat. Conf., 2019,
Art. no. 142, doi: 10.1145/3316781.3317859.

A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 7, pp. 1226-1236,
Jul. 2019, doi: 10.1109/TCAD.2018.2846658.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping prob-
lem for NISQ-era quantum devices,” in Proc. 24th Int. Conf. Archi-
tectural Support Program. Lang. Oper. Syst., 2019, pp. 1001-1014,
doi: 10.1145/3297858.3304023.

A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Proc. ACM/IEEE Des.
Automat. Conf., 2019, Art. no. 141, doi: 10.1145/3316781.3317888.

M. Alam, A. Ash-Saki, and S. Ghosh, “Addressing temporal varia-
tions in qubit quality metrics for parameterized quantum circuits,” in
Proc. IEEE/ACM Int. Symp. Low Power Electron. Des., 2019, pp. 1-6,
doi: 10.1109/ISLPED.2019.8824907.

S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving
reliability of quantum computers by orchestrating dissimilar mistakes,” in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019, pp. 253-265,
doi: 10.1145/3352460.3358257.

“A quantum ap-
arXiv:1411.4028,

VOLUME 3, 2022

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

N. Acharya and S. M. Saeed, “A lightweight approach to detect
malicious/unexpected changes in the error rates of NISQ comput-
ers,” in Proc. 39th Int. Conf. Comput.-Aided Des., 2020, pp. 1-9,
doi: 10.1145/3400302.3415684.

S. M. Saeed, N. Mahendran, A. Zulehner, R. Wille, and R. Karri, “Iden-
tification of synthesis approaches for IP/IC piracy of reversible cir-
cuits,” ACM J. Emerg. Technol. Comput. Syst., vol. 15, no. 3, pp. 1-17,
Apr. 2019, doi: 10.1145/3289392.

N. Acharya and S. M. Saeed, “Automated flag qubit insertion for reliable
quantum circuit output,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI,
2021, pp. 431-436, doi: 10.1109/ISVLSI51109.2021.00085.

P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proc. Int. Conf. Architectural Support Program. Lang. Oper. Syst., 2020,
pp. 1001-1016, doi: 10.1145/3373376.3378477.

D. Cuomo et al., “Optimized compiler for distributed quantum comput-
ing,” 2021, arXiv:2112.14139, doi: 10.48550/arXiv.2112.14139.

D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi, “Compiler
design for distributed quantum computing,” IEEE Trans. Quantum Eng.,
vol. 2, 2021, Art. no. 4100720, doi: 10.1109/TQE.2021.3053921.

G. G. Guerreschi and J. Park, “Two-step approach to scheduling quantum
circuits,” Quantum Sci. Technol., vol. 3, no. 4, Jul. 2018, Art. no. 045003,
doi: 10.1088/2058-9565/aacfOb.

M. Alam, A. A. Saki, and S. Ghosh, “An efficient -circuit
compilation flow for quantum approximate optimization algorithm,”
in Proc. 57th ACM/IEEE Des. Automat. Conf., 2020, pp. 1-6,
doi: 10.1109/DAC18072.2020.9218558.

B. Tan and J. Cong, “Optimal layout synthesis for quantum comput-
ing,” in Proc. 39th Int. Conf. Comput.-Aided Des., 2020, Art. no. 137,
doi: 10.1145/3400302.3415620.

Y. Shi et al., “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proc. 24th Int. Conf. Archi-
tectural Support Program. Lang. Oper. Syst., 2019, pp. 1031-1044,
doi: 10.1145/3297858.3304018.

S. Resch, S. Tannu, U. R. Karpuzcu, and M. Qureshi, “A day in the life of
a quantum error,” IEEE Comput. Archit. Lett., vol. 20, no. 1, pp. 13-16,
Jan.—Jun. 2021, doi: 10.1109/LCA.2020.3045628.

G. E. Crooks, “Performance of the quantum approximate optimiza-
tion algorithm on the maximum cut problem,” 2018, arXiv:1811.08419,
doi: 10.48550/arXiv.1811.08419.

D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Sci. Technol., vol. 3, no. 2, Feb. 2018, Art. no. 025004,
doi: 10.1088/2058-9565/aaa331.

E. Bernstein and U. Vazirani, “Quantum complexity
SIAM J. Comput., vol. 26, no. 5, pp.1411-1473, Oct.
doi: 10.1137/S0097539796300921.

W. van Dam, S. Hallgren, and L. Ip, “Quantum algorithms for some
hidden shift problems,” in Proc. 14th Annu. ACM-SIAM Symp. Discrete
Algorithms, 2003, pp. 489—498, doi: 10.1137/S009753970343141X.

M. Treinish et al., “Qiskit: An open-source framework for quantum com-
puting,” 2019, doi: 10.5281/zenodo0.2573505.

Cirq Developers, “quantumlib/Cirq: Cirq v0.9.1,” Zenodo, Oct. 2020,
doi: 10.5281/zenodo.4064322.

S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. Petrie Moulton,
“A new quantum ripple-carry addition circuit,” Oct. 2004, arXiv:quant-
ph/0410184, doi: 10.48550/arXiv.quant-ph/0410184.

R. Wille, D. Grosse, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
Proc. Int. Symp. Mult. Valued Log., 2008, pp. 220-225, doi: 10.1109/IS-
MVL.2008.43.

A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,
“Validating quantum computers using randomized model circuits,” Phys.
Rev. A, vol. 100, no. 3, Sep. 2019, Art. no. 032328, doi: 10.1103/Phys-
RevA.100.032328.

theory,”
1997,

2500111

https://dx.doi.org/10.1038/s41534018-0072-4
https://dx.doi.org/10.1109/TCAD.2005.847911
https://dx.doi.org/10.1145/3434318
https://dx.doi.org/10.1007/s11128016-1330-z
https://dx.doi.org/10.48550/arXiv.1411.4028
https://dx.doi.org/10.1145/3297858.3304007
https://dx.doi.org/10.1109/MICRO50266.2020.00029
https://dx.doi.org/10.1109/MICRO50266.2020.00029
https://dx.doi.org/10.1103/PhysRevX.10.021067
https://dx.doi.org/10.1145/3168822
https://dx.doi.org/10.1109/TQE.2021.3068355
https://dx.doi.org/10.1016/j.vlsi.2019.10.004
https://dx.doi.org/10.1109/ISCAS.2019.8702439
https://dx.doi.org/10.1145/3316781.3317859
https://dx.doi.org/10.1109/TCAD.2018.2846658
https://dx.doi.org/10.1145/3297858.3304023
https://dx.doi.org/10.1145/3316781.3317888
https://dx.doi.org/10.1109/ISLPED.2019.8824907
https://dx.doi.org/10.1145/3352460.3358257
https://dx.doi.org/10.1145/3400302.3415684
https://dx.doi.org/10.1145/3289392
https://dx.doi.org/10.1109/ISVLSI51109.2021.00085
https://dx.doi.org/10.1145/3373376.3378477
https://dx.doi.org/10.48550/arXiv.2112.14139
https://dx.doi.org/10.1109/TQE.2021.3053921
https://dx.doi.org/10.1088/2058-9565/aacf0b
https://dx.doi.org/10.1109/DAC18072.2020.9218558
https://dx.doi.org/10.1145/3400302.3415620
https://dx.doi.org/10.1145/3297858.3304018
https://dx.doi.org/10.1109/LCA.2020.3045628
https://dx.doi.org/10.48550/arXiv.1811.08419
https://dx.doi.org/10.1088/2058-9565/aaa331
https://dx.doi.org/10.1137/S0097539796300921
https://dx.doi.org/10.1137/S009753970343141X
https://dx.doi.org/10.5281/zenodo.2573505
https://dx.doi.org/10.5281/zenodo.4064322
https://dx.doi.org/10.48550/arXiv.quant-ph/0410184
https://dx.doi.org/10.1109/ISMVL.2008.43
https://dx.doi.org/10.1109/ISMVL.2008.43
https://dx.doi.org/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1103/PhysRevA.100.032328

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

