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ABSTRACT Graph coloring is a computationally difficult problem, and currently the best known classical
algorithm for k-coloring of graphs on n vertices has runtimes �(2n) for k ≥ 5. The list coloring problem
asks the following more general question: given a list of available colors for each vertex in a graph, does
it admit a proper coloring? We propose a hybrid classical-quantum algorithm based on Grover search 12
to quadratically speed up exhaustive search. Our algorithm loses in complexity to classical ones in specific
restricted cases, but improves exhaustive search for cases, where the lists and graphs considered are arbitrary
in nature.

INDEX TERMS Graph coloring, Grover search, hybrid algorithm.

I. INTRODUCTION
Graph coloring problems provide for a rich family of NP-
complete problems in theoretical computer science. While
exhaustive search is believed to be the fastest classical ap-
proach for several NP-complete problems including satisfi-
ability and hitting set [8], there are much better classical al-
gorithms using dynamic programming, inclusion–exclusion,
and other structural approaches for problems such as graph
coloring [4], [10], [18], the traveling salesman problem [13],
[24], set cover [15], etc. Several authors have obtained
quantum speedup on these classical algorithms [2], [30],
[33]; however, all of these algorithms have the limitation
that they cannot be easily generalized to the list coloring
problem.
Given a finite graph G = (V,E ), a proper coloring of G

is a function χ : V → N such that for every edge uv ∈ E,
χ (u) �= χ (v). The list coloring problem tries to determine
a proper coloring χ of a graph G = (V,E ), given a list Lv

of available colors for each vertex v. In other words, it is
forced that χ (v) ∈ Lv . When Lv = {1, 2, . . . , k} for every
vertex v this reduces to the well-studied k-coloring problem.
We propose a simple Grover search-based approach to obtain
a quadratic speedup on exhaustive search for the list coloring
problem.
Grover’s algorithm [12] is known to speed up unstructured

search quadratically using the technique of amplitude am-
plification. In its simplest form, to find some marked ele-
ments from a list of N = 2n entries, the algorithm starts with
a uniform quantum superposition of all 2n basis states of
an n-qubit register. It then amplifies the amplitudes of the

searched state and reduces those of the other states, such that
a measurement of the n qubits leads to one of the searched
states with high probability.
Grover’s algorithm has been used to obtain quantum

speedups for various problems in combinatorial optimization
and computer science (see, for example, [16], [17], [19], [22],
[34]). Needless to say, graph coloring problems are also not
an exception in the literature, and have been attacked using
quantum annealing [21], [36], hybrid approaches [6], [35],
as well as using Grover search [32], [33], [39].
In [39], a qutrit-based approach has been used to demon-

strate the cost efficiency of ternary quantum logic; however,
their main algorithm is not realizable right now on NISQ de-
vices. The algorithm of [33] has the same issue as it requires
quantum RAM, which has not been realized at this moment.
On the other hand, the authors of [32] and [31] demon-
strate a quantum algorithm solving the k-coloring problem
onNISQ devices, comparing the efficiency of their algorithm
against the reduction of 3-SAT to 3-coloring approach of Hu
et al. [14].
All of these algorithms use an oracle design, which uses

binary comparators, and provide solutions, where almost all
binary strings have positive probabilities of being selected,
including those that do not represent valid colorings. Our
approach circumvents this problem via a modified initializa-
tion and diffusion operator that restricts the evolution of the
quantum algorithm to the only

∏
v∈Lv

|Lv| plausible states.
Note that, this is the total number of valid colorings when the
underlying graph is empty. We achieve this via the restricted
version of Grover search [11], [12].
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Proposition 1 (Restricted Grover Search): Let S ⊆
{1, 2, . . . , 2n − 1}, and suppose S′ � S is a set of marked
states. LetO be an oracle that marks these states and requires
a ancillas. Then, there is a quantum circuit on n+ a+ 1
qubits, which makes O(

√
2n/|S′|) queries, which when mea-

sured, gives one of the marked states with high probability.
Further, states outside S are never measured.
Additionally, we use an oracle design different from those

in [32] and [39], and give a classical algorithm in Section III
that can reduce the complexity of this oracle in several special
cases (such as for the 3-coloring or 4-coloring problems). As
a corollary of Proposition 1, our main theorem provides an
algorithm for the list coloring problem.
Theorem 2 (Quantum List Coloring Algorithm): Given a

graphG = (V,E ) on n vertices andm edges and lists of avail-
able colors {Lv : v ∈ V }, there exists a (

∑
v∈V 	log2 |Lv|
 +

m+ 1)-qubit quantum algorithm with query complexity
O(

∏
v∈V |Lv|1/2) that returns a valid list coloring of G with

high probability.
This article is organized as follows. In Section II, we de-

scribe Grover’s algorithm and a gate-level implementation.
Section III is devoted to tackling the list coloring problem,
and proves Theorem 2. In Section IV, we run experiments
on classical simulators as well as real quantum machines,
and compare the outcomes. Finally, Section V concludes this
article.

II. GROVER’S ALGORITHM
In this section, we provide a concise exposition on Grover
search. The main idea behind Grover search is to amplify
the amplitudes of some number of marked states (states that
are being searched for), and consequentially decrease that
of unmarked states. Grover’s algorithm requires three differ-
ent operators: Initialization, oracle, and diffusion. Below we
present two formulations of the algorithm.

A. UNRESTRICTED SEARCH SPACE
When searching for a marked state among the full search
space S = {0, 1}n, the initialization step of the algorithm cre-
ates a uniform superposition of all the possible states of an
n-qubit system. This is achieved via appending Hadamard
gates on each qubit

H⊗n|0〉n = |+〉n = 1√
2n

n∑
i=1

|i〉n.

Here we abuse notation and write |i〉n to denote the state
corresponding to an n-digit binary representation of i.
Next, Grover’s algorithm requires an oracle O that, given

a uniform superposition of all 2n possible states, can change
the sign of the marked states. Let S′ ⊆ {0, 1, . . . 2n − 1} be a
set of marked states. The oracle O then switches the signs of
the states in S′, i.e.,

O|i〉n =
{

|i〉n, i �∈ S

−|i〉n, i ∈ S.

FIGURE 1. Example of Grover search implementation. In this standard
circuit implementation of Grover search, the initialization is achieved by
the Hadamard operator H⊗3. Phase kickback from the fourth qubit
initialized to the state |−〉 is used to negate the amplitudes of |010〉 and
|011〉. Finally, diffusion is achieved via another phase kickback from the
same qubit.

The circuit implementation of the oracle O usually is the
most difficult (and computationally expensive) part of the al-
gorithm, and one of the most basic implementations requires
the usage of phase kickback [7].
The final component of Grover’s algorithm is the diffusion

operatorD, which can be thought of as a reflection around the
vector |0〉n. As an operator, we have

D = 2|0〉n〈0|n − I.

D is usually implemented using phase kickback in the
same fashion as the oracle O.
Grover’s algorithm requires repeated usage of the op-

erator G = H⊗nDH⊗nO, which has the net effect of re-
flecting around |+〉n, amplifying the amplitudes of marked
states and decreases those of other states. Measuring the
state GrH⊗n|0〉n (r ≥ 1) gives one of the marked states with
high probability, and this probability is maximum when r =
�π
4

√
2n/|S′|�. Since |S′| is not known in general, the r is ei-

ther randomly selected [5], [9], or is estimated using quantum
counting algorithms [1], [26].
See Fig. 1 for an example of a circuit implementing un-

restricted Grover search with n = 3, S′ = {|010〉n, |011〉n},
S = {0, 1, . . . , 7}.

B. RESTRICTED SEARCH SPACE
Let us now consider a search space S � {0, 1}n. In this case,
the algorithm is designed to only evolve over the states of S,
and this is achieved via an initialization operator A, such that

A|0〉n = 1√|S|
∑
i∈S

|i〉n,

And the Grover operator is changed to a reflection around
A|0〉n instead of |+〉n

G = ADA†O.

The usage of ADA† instead of H⊗nDH⊗n makes sure that
the evolution of the quantum states remains in the subspace
spanned by S instead of the entire space {0, 1}n, and this leads
to probability distribution of the measured outcomes being
supported on the state S.
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The only detail missing in this formulation is the con-
struction of the initialization operator A. As we shall see in
Section III, for graph coloring problems (and most applica-
tions in general), A can be represented as a block matrix and
can be implemented in time linear in the number of qubits.
We make a remark here that the graph coloring algorithm

of [32] uses the unrestricted formulation of Grover’s algo-
rithm, but modifies the oracle to discard states that represent
invalid colorings. On the other hand, they do not modify their
diffusion operator, leading to states outside the search space
having positive probabilities of being measured.

III. QUANTUM LIST COLORING ALGORITHM
Our goal in this section is to prove Theorem 2. For the re-
mainder of this section, assume that G = (V,E ) is an arbi-
trary graph with |V | = n, |E| = m. Further, for every vertex
v, let Lv denote the list of admissible colors for vertex v. Then
the ith admissible color of the vertex v is denoted as Lv[i]. As
our algorithm is based on Grover search, we shall discuss the
four basic steps of the algorithm: Circuit setup, initialization,
oracle, and diffusion, each in their respective subsections.

A. SETUP AND QUBIT LABELS
Our algorithm design requires three different qubit registers
as follows.

1) A vertex register to keep track of vertex colors. For
each vertex v, we require the usage of 	log2 |Lv|

qubits to represent each color in Lv . Let us denote
jv := 	log2 |Lv|
, and let the qubits corresponding to
vertex v ∈ V be labeled by q1v, . . . , q

jv
v .

2) An edge register consisting of m qubits, one corre-
sponding to each edge. Let q′

uv denote the qubit cor-
responding to an edge uv ∈ E.

3) A single qubit ancilla register, used for phase kickback
in Grover’s algorithm. Let q∗ denote this ancilla.

The total number of qubits required is
∑

v∈V jv + m+ 1.
Now we take a closer look at our list coloring algorithm.

B. INITIALIZATION
For each v ∈ V , we initialize qubits q1v, . . . , q

jv
v to a uniform

superposition χv = 1√|Lv |
∑|Lv |−1

i=0 |i〉. This can be achieved
via a unitary operatorUv , such that

Uv|0〉 = 1√|Lv|
|Lv |−1∑
i=0

|i〉.

We show one way of constructing the operator Uv . First,
consider the standard basis B = {|i〉 : i ∈ {0, 1, . . . , 2v j −
1}}. We shall replace any one entry |i〉 with χv , where i ∈ Lv:
Let B′ = {χv}

⋃
(B \ {|i〉}). It can be seen that Span(B) =

Span(B′).We can now considerB′ as an ordered basis with its
first entry as χv , and apply the Gram–Schmidt process to turn
B′ into an orthonormal basis B′′ [29]. Note that as ‖χv‖ = 1,
it remains unchanged in B′′. The transpose of the coefficients
of the vectors inB′′ constitutes a change of basis operator that

maps |0〉 to χv , and this is how one can construct the matrix
forUv . It can then be implemented with quantum gates using
the results of [23], [27], and [37], for example.
For the sake of clarity of the above procedure, let us con-

sider an example with jv = 2 and Lv = {0, 1, 2}. Note that
χv = 1√

3
(|0〉 + |1〉 + |2〉). Then, B = {|0〉, |1〉, |2〉, |3〉}, and

we can take B′ = {χv, |1〉, |2〉, |3〉}. After the Gram–Schmidt
process, we obtain

B′′ =
{

1√
3
|0〉 + 1√

3
|1〉 + 1√

3
|2〉

− 1√
6
|0〉 +

√
2√
3
|1〉 − 1√

6
|2〉

− 1√
2
|0〉 + 1√

2
|2〉, |3〉

}
.

Hence, in this case, we get

Uv =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
3

1√
3

0

− 1√
6

√
2√
3

− 1√
6

0

− 1√
2

0 1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

�

.

Observe that by construction, Uv|0〉 =
Uv

[
1 0 0 0

]� =
[

1√
3

1√
3

1√
3

0
]�

, as desired.

Finally, let us denote A = ⊗
v∈V Uv . Then

A⊗
⊗
e∈E

I ⊗ ZH (III.1)

is the full initialization operator applied to the circuit starting
from |0〉∑

v∈V jv ⊗ |0〉m ⊗ |0〉. This creates the quantum state⊗
v∈V χv ⊗ |0〉m ⊗ |−〉.

C. ORACLE
Traditionally for the graph coloring problem, each vertex
color is represented using the same number of qubits, and
binary comparator circuits [39] are used to make sure that
the two colors corresponding to two adjacent vertices are
different.
While this approach is very efficient for the k-coloring

problem, where every vertex has the same set of admissible
colors, the list coloring problem may sometimes require a
large number of qubits. In fact, the total number of qubits
required for implementing a comparator-based oracle would
be n · maxv∈V log2	max Lv
 + m+ 1, which can be much
higher than our proposed oracle when the jv’s are not all
equal.
In short, for every edge uv ∈ E, we shall encode all pos-

sible colorings in Lu × Lv via flipping the amplitudes of the
states corresponding to valid colorings

S =
{
|i1〉 ju |i2〉 jv :

0 ≤ i1 < |Lu|, 0 ≤ i2 < |Lv|,
Lu[i1] �= Lv[i2]

}
.
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We propose a classical O(|Lu|2|Lv|2)-time algorithm to
construct an efficient oracle Ou,v for flipping these ampli-
tudes. In short, Ou,v should have the following net effect:

Ou,v

⎛
⎜⎜⎜⎜⎜⎝

1√|Lu||Lv|
∑

0 ≤ i1 < |Lu|
0 ≤ i2 < |Lv|

|i1〉|i2〉|−〉

⎞
⎟⎟⎟⎟⎟⎠

= 1√|Lu||Lv|

⎛
⎝ ∑

|i1〉|i2〉∈S
−|i1〉|i2〉 +

∑
|i1〉|i2〉�∈S

|i1〉|i2〉
⎞
⎠ |−〉.

(III.2)
Given a string s of length � and a subset J =

{ j1, j2, . . . , jr} ⊆ {1, 2, . . . , �} we use sJ to denote the sub-
string s j1s j2 . . . s jr . F2 denotes the finite field of two ele-
ments. Our algorithm for implementing Ou,v (Algorithm 1)
makes use of a subroutine called Algorithm 2 that can signif-
icantly simplify the complexity and the number of controlled
not operations required in many cases.
We shall now demonstrate the correctness of Algorithm 1.
Theorem 3: Algorithm 1 gives a circuit C satisfying

(III.2). Further, assuming that the cost of implementing a
k-controlled NOT operation is k (refer to Remark 4), the cost
ofC is the smallest among all circuits that can be made using
only controlled NOT operations onto the phase flip qubit.
Proof: It is sufficient to verify the action ofC on the states

|i1〉|i2〉|−〉, where i1 < |Lu| and i2 < |Lv|. Notice that a sin-
gle controlled NOT gate corresponding to a pair (J, s) inC ef-
fectively flips the amplitudes of all basis states represented by
{0, 1}-strings x of length ju + jv for which xi = si, i ∈ J. In
other words, all states of the following form are flipped (here
∗ denotes a wildcard, and J = { j1, . . . , jk}, s = s1 · · · sk):

| ∗ · · · ∗ s1
j1’th

∗ · · · ∗ s2
j2’th

· · · · · ···· · · · sk
jk’th

∗ · · · ∗〉.

Thus, after application of all the controlled NOT gates,
only states which appeared in an odd number of (J, s) pairs
in W ′ will survive, and those appearing an even number of
times will not have their amplitudes flipped.
Let us now fix a string t = t1t2 · · · t ju+ jv , where

t1 · · · t ju ∈ Lu and t ju+1 · · · t ju+ jv ∈ Lv , and analyze the
function 2 closely. Recall that A = {0, . . . , |Lu| − 1},
B = {0, . . . , |Lv| − 1}, Y = {ab : a ∈ A, b ∈ B} and
X = {ab : a ∈ A, b ∈ B,Lu[a] �= Lv[b]}. We now make
a crucial observation: The number of times the amplitude of
|t〉 gets flipped by C is∣∣{(J, s) ∈W ′ : tJ = s

}∣∣ = ∣∣{xsJ ∈W : xsJ = 1, tJ = s
}∣∣

= f (W, t )

as xsJ are all {0, 1} valued. Since the linear system L over
F2 exactly contains the equations f (W, t ) = 1, if t ∈ X and
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f (W, t ) = 0 if t ∈ Y \ X , any solution to the system L will
give a correct circuit satisfying (III.2). �
Nowwe come to the second assertion of the theorem. Note

that, for each variable xsJ ∈W with xsJ = 1, we require a |J|-
controlled NOT operation onto the phase flip ancilla. This
means that the cost ofC is exactly

∑
xsJ∈W |J| · xsJ . As we have

minimized this cost via a linear program in Step 20 of 2, this
proves the second claim. �
Remark 4: Suppose that the actual cost of implementing

k-controlled operations is f (k). In the construction of 2, we
could use any f (k) by modifying the objective function in
the linear program of Step 20 to

∑
xsJ∈W f (|J|) · xsJ . For an

increasing function f (k), the optimization problem discour-
ages usage of gates with high number of controls. It can
be seen in Barenco et al. [3, Corollary 7.4], that f (k) ≤
48k − 204 for k ≥ 7. This implies f (k) = O(k), hence our
choice of f (k) = k since the presence of constants does not
change the optimization problem in Step 20. Finding the best
f (k) is still an active area of research (see, e.g., [20], [28]).
We now have all the ingredients required to implement

our full oracle, which is presented as Algorithm 3 in the
following.

D. DIFFUSION
Our diffusion operator is very straightforward, and is a direct
application of the restricted search space diffusionmentioned
in Section II-B. Let A be the initialization operator we im-
plemented in (III.1), then a diffusion is achieved by A D A†,
where D = 2|0〉〈0| − I can be implemented by a controlled
NOTwith anticontrols on each of the vertex qubits and target
the phase flip ancilla.
Refer to Fig. 2 for an illustration of the full list coloring

algorithm.

IV. RESULTS
We implement our list coloring algorithm in python 3.8
usingblueqat-sdk. In order to gauge the efficiency of our

FIGURE 2. Outline of our list coloring circuit for a single Grover iteration.

result, we run experiments for the 3- and 4-coloring problems
used in [32] on the the Amazon Statevector Simulator.

A. 3-COLORING K3

3-coloring the triangle graph G = ({1, 2, 3}, {12, 23, 13}) is
equivalent to the list-coloring problem on G with L1 = L2 =
L3 = {|00〉, |01〉, |10〉}. In this case, our oracle component
Ouv obtained from Algorithm 1 is

The initialization operatorUv can be written as the follow-
ing circuit:

Each Toffoli gate can be decomposed into two-qubit gates
using the standard decomposition

To implement a cccx gate, we use a clean ancilla qubit to
reduce circuit depth as demonstrated in the following:

VOLUME 3, 2022 3101008
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FIGURE 3. Observed frequencies for 2000 shots for 3-coloring K3.

TABLE 1 Theoretical Probability Density for 3-Coloring K3

TABLE 2 Theoretical Probability Density for 4-Coloring K4

Finally, we are able to run our circuit on the Amazon Stat-
evector Simulator after decomposing into these elementary
single and two-qubit operations. Our resulting histogram for
one Grover iteration is shown in Fig. 3.
It is seen that states in the set A = {|000110〉, |001001〉,

|011000〉, |011000〉, |100001〉, |100100〉} are all mas-
sively amplified. Each state of A represents a valid 3-
coloring of K3. Let B = {|00〉, |01〉, |10〉}⊗3. The statevector
at the end of our algorithm can be calculated theoretically,
and we present the probability density function over the
6-qubit states in Table 1. In particular, each state in A
has a probability pA of 0.165066 to be measured, and
states containing |11〉 as a color have probability 0 of be-
ing observed. Our algorithm has a single-shot accuracy
of pA · |A| ≈ 0.9904.

B. 4-COLORING K4

Let G = ({1, 2, 3, 4}, {12, 13, 14, 23, 24, 34, 14}) be the
complete graph on four vertices, and suppose L1 = L2 =
L3 = L4 = {|00〉, |01〉, |10〉, |11〉}. In this case, the simple
Hadamard operator H⊗2 initializes each vertex register to a
uniform superposition of its valid colors, and we can then run
Algorithm 1 to figure out the componentOuv . It turns out that
one of the valid solutions minimizing the cost of gates used
is the following circuit:

FIGURE 4. Observed frequencies for 2000 shots for 4-coloring K4.

FIGURE 5. Observed probabilities for 2000 shots for 3-coloring K3 using
the algorithm of [32].

Fig. 4 shows the results of running our circuit with one
Grover iteration on the statevector simulator.
In this case, the result of a statevector computation after

one Grover iteration is shown in Table 2. Here A′ denotes
the set of all 4! = 24 marked states corresponding to valid
colorings of K4, and B′ = {|0〉, |1〉}⊗8 is the full state space.
The result of our experiment can also be seen to follow this

distribution.

C. COMPARISON WITH PREVIOUS WORK:
3-COLORING K3

We take [32] as the state-of-the-art result for the k-coloring
problem.We compare the performance of our algorithmwith
theirs for k = 3. Fig. 5 depicts the empirical probability dis-
tribution obtained via implementing their algorithm for one
Grover rotation and running on the Amazon Statevector Sim-
ulator. We observe that our algorithm has much higher prob-
ability of selecting a correct state (around 0.9904), whereas
their method has an empirical success rate of 0.5965 for 2000
shots.
Finally, we compare the gate count of their circuit versus

ours for the 3-coloring K3 problem for one Grover iteration
in Table 3.
The code we used for this comparison is

available at the following GitHub repository:
https://github.com/Potla1995/Grover-ListColoring.

D. EXPERIMENTS ON NISQ DEVICES AND LIMITATIONS
We also ran our circuits on the IonQ physical device. How-
ever, reasonable results were not obtained. There might be
several possible reasons behind this as follows.

3101008 VOLUME 3, 2022
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TABLE 3 Comparison of Gate Counts for One Grover Iteration

1) cx is not a gate natively implemented on the IonQ pro-
cessor. Although its fully connected topology is ideal
for the circuits we construct, controlled operations
need to be expressed in terms of Mølmer–Sørensen
gates [25], which makes them expensive.

2) Our circuit has a depth of 30 when expressed in terms
of the elementary gates (including cx). This makes the
circuit much more susceptible to errors from noise and
decoherence. Although we can implement and run our
algorithm on quantum devices currently available, the
results suggest that devices with lesser intrinsic noise
are needed for practical use of our algorithm.

These limitations suggest that while our algorithm is de-
signed for running onNISQdevices, the circuits generated by
it are too complex, giving unusable results due to the intrinsic
noise in the currently available quantum devices. In any case,
classical computers can brute force the list coloring problem
for the small-sized graphs that can be currently encoded on
an NISQ device using our encoding scheme.

V. CONCLUSION
The list coloring problem is ubiquitous in real life, as it not
only generalizes an already well-appearing problem of graph
coloring (scheduling, satisfiability, etc.) but is also applicable
to several other scenarios, as follows.

1) Wireless Network Allocation [38]: In a wireless net-
work, each radio is allocated special frequencies which
it can connect to. Suppose that radios in close prox-
imity cannot operate on the same frequency due to
interference. The problem of which radio is connected
to which network frequency can be modeled as a
list coloring problem in the following graph: Let the
radios be represented by vertices, and add an edge
between two radios if they are in close proximity of
each other. The lists for each vertex will be the set of
available frequencies for its corresponding radio.

2) Register Allocation: In compiler optimization, register
allocation is the process of assigning a large number
of target program variables (n) onto a small number
of CPU registers (k), which reduces to a k-coloring
problem on an n-vertex graph.

3) Sudoku: We can represent every cell in a sudoku prob-
lem with a vertex, and join two vertices with an edge
if they are in same row or same column or same block.

Given x already filled cells, we can formulate the su-
doku problem as a list-coloring problem on 81 − x
vertices and at most nine colors.

We proposed a Grover search-based quantum algorithm
that achieves quadratic speedup in query complexity com-
pared to a classical brute-force search, and also proposed a
classical algorithm that can simplify the oracle design for
several special instances of the list coloring problem. We
demonstrate the efficiency of our method in comparison with
previous work by running our algorithm on the Amazon Stat-
evector Simulator for the 3- and 4-coloring problems.
Unfortunately, the list coloring problem is difficult to solve

both classically and using quantum algorithms; as for generic
lists with no known structure, brute force seems to be the only
way to attack the problem. As our algorithm is basically a
brute-force quantum search with some optimizations in the
oracle, it is expected to perform better in general cases, where
the structure of the lists are unknown. However, the existence
of clever hybrid algorithms exploiting specific structures for
known lists cannot be ignored, and is a very promising future
direction.
Finally, we note that, one can obtain an improvement on

our algorithm by just changing a given list coloring problem
to a reduced problem. For example, if G = (V,E ) has a ver-
tex v with |Lv| = 1, we can color v first and remove its color
from each Lu, such that uv ∈ E, and iterate until all lists have
at least two colors.
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