
Special Section on Classical Control Systems Engineeringuantum
Transactions onIEEE

Received June 30, 2021; revised December 17, 2021; accepted January 10, 2022; date of publication January 27, 2022;
date of current version February 15, 2022.

Digital Object Identifier 10.1109/TQE.2022.3143997

Versatile and Concurrent FPGA-Based
Architecture for Practical Quantum
Communication Systems
ANDREA STANCO1 , FRANCESCO B. L. SANTAGIUSTINA1,2 ,
LUCA CALDERARO1,3 , MARCO AVESANI1 , TOMMASO BERTAPELLE1 ,
DANIELE DEQUAL4 , GIUSEPPE VALLONE1,5 , AND PAOLO VILLORESI1
1Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova, 35131 Padova, Italy
2Dipartimento di Matematica “Tullio Levi-Civita,”, Università degli Studi di Padova, 35121 Padova, Italy
3ThinkQuantum S.r.l., 36030 Sarcedo, Italy
4Unità Telecomunicazioni e Navigazione, Agenzia Spaziale Italiana, 75100 Matera, Italy
5Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131 Padova, Italy

Corresponding author: Andrea Stanco (e-mail: andrea.stanco@unipd.it).

This work was supported in part by the Italian Ministry of Education, University and Research under the initiative “Departments of
Excellence” (Law 232/2016).

ABSTRACT This article presents a hardware and software architecture, which can be used in those systems
that implement practical quantum key distribution (QKD) and quantum random-number generation (QRNG)
schemes. This architecture fully exploits the capability of a System on a Chip (SoC), which comprehends
both a field-programmable gate array (FPGA) and a dual-core CPU unit. By assigning the time-related tasks
to the FPGA and the management to the CPU, we built a flexible system with optimized resource sharing on
a commercial off-the-shelf (COTS) evaluation board, which includes an SoC. Furthermore, by changing the
dataflow direction, the versatile system architecture can be exploited as a QKD transmitter, QKD receiver,
and QRNG control-acquiring unit. Finally, we exploited the dual-core functionality and realized a concurrent
stream device to implement a practical QKD transmitter, where one core continuously receives fresh data
at a sustained rate from an external QRNG source, while the other operates with the FPGA to drive the
qubit transmission to the QKD receiver. The system was successfully tested on a long-term run proving
its stability and security. This demonstration paves the way toward a more secure QKD implementation,
with fully unconditional security as the QKD states are entirely generated by a true random process and
not by deterministic expansion algorithms. Eventually, this enables the realization of a standalone quantum
transmitter, including both the random numbers and the qubit generation.

INDEX TERMS Commercial off-the-shelf (COTS), embedded system, field-programmable gate array
(FPGA), quantum communication (QC), quantum key distribution (QKD), quantum random number gener-
ator (QRNG), System on a Chip (SoC).

I. INTRODUCTION
Quantum communication (QC) is one of the promising ap-
plications of quantum technology and has recently received
a relevant boost toward commercial applications. Quantum
key distribution (QKD) and quantum random-number gener-
ation (QRNG) are the two leading technologies of QC since
their combination allows us to realize the perfect secrecy
protocol, resistant to any external attack. The realization of
such a system requires the design and development of several
components: from the optical setup to the driving electronics,
from the digital control board to the management software.

Besides the particular quantum implementations, which can
vary according to different security protocols, an essential
component of the whole setup is a supervision board capable
to provide a deterministic behavior, high temporal resolution,
and high-speed computation. Within this framework, a field-
programmable gate array (FPGA) is almost a mandatory
choice for such applications [1], [2]. The FPGA also offers
an advantage in terms of power consumption [3], which can
be a key feature for critical applications, such as CubeSat
missions for satellite QC [4]. However, the literature on the
usage of an FPGA for QC is mostly focused on the QKD

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 6000108

https://orcid.org/0000-0001-8442-9055
https://orcid.org/0000-0002-3057-7551
https://orcid.org/0000-0002-1758-6760
https://orcid.org/0000-0001-5122-992X
https://orcid.org/0000-0001-5453-1075
https://orcid.org/0000-0002-2206-5038
https://orcid.org/0000-0003-4965-5801
https://orcid.org/0000-0002-7977-015X

Engineeringuantum
Transactions onIEEE

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE

postprocessing hardware acceleration [5]–[8] and lacks de-
tailed presentations of control system architectures. More-
over, the exploitation of both FPGA and CPU capabili-
ties was proposed only in [9], which, however, investigated
encryption and network functionalities. In this article, we
present a generalized FPGA-based architecture for control
and readout functions of QC systems. It exploits the inte-
grated CPU counterpart, forming a System on a Chip (SoC),
to improve flexibility and unleash continuous operability of
a QKD scheme fed, without any expansion, by an external
QRNG. The architecture can be easily applied to discrete-
variable QKD (DV-QKD) and discrete-variable QRNG (DV-
QRNG) applications, implementing the control functionali-
ties of those systems. Moreover, the schematic has the po-
tentiality to be used even in continuous-variable QKD (CV-
QKD) and continuous-variable QRNG (CV-QRNG), pro-
vided that an auxiliary digital-to-analog converter (DAC) and
analog-to-digital converter (ADC) should be included. The
architecture was implemented and tested on an entry-level
evaluation board: ZedBoard by Avnet, which mounts the
Zynq-7020 SoC. Besides representing an optimal tradeoff
between costs and performances, the FPGA chip (Artix-7)
showed good results in radiation environments [10], and it
can be considered a good choice for both terrestrial and
satellite QC applications. Moreover, the ZedBoard was also
successfully used in a recent quantum computer scheme [11],
demonstrating excellent reliability. The exploitation of both
the SoC’s layers (FPGA and CPU1) leads to a high level of
flexibility, allowing to scale the application functionalities to
the specific part of the chip. According to the specific appli-
cation, the system can be set in a top-down (dataflow from
the PC/user to the quantum system) or bottom-up (dataflow
from the quantum system to the PC/user) configuration. The
system has the flexibility to be used with several protocol
configurations and successfully contributed to different ex-
periments over the past few years [12]–[21]. Recently, it
has also been tested in the prototype of a QKD transmitter
for CubeSat mission [22], making it suitable for satellite
QCs, a key area of QC. Given the presence of a dual-core
CPU, we also designed, developed, and successfully tested
a dual-core application capable to sustain a continuous data
transfer from an external source to the CPUs and then to the
FPGA. This feature is the key to implement a provably secure
QKD system since it combines a QRNG output streamwith a
QKD streamwithout the need of a random number expansion
(which allowed very high transmission rates at the price of
undermined security [7], [8]), paving the way to commercial
QKD devices with full unconditional security.
The rest of this article is structured as follows. In

Section II, an overall overview of the architecture is pre-
sented. In Sections III and IV, the FPGA and CPU layers are
described. In Section V, the dual-core architecture for a QKD
transmitter is presented along with the system test results.

1Note that from now on, the term “CPU” always refers to the CPU
counterpart of the SoC.

II. ARCHITECTURE OVERVIEW
Current FPGA-based QKD systems do not exploit the capa-
bility of an SoC architecture and implement a single-layer
architecture on the FPGA chip to execute every operation,
even the ones that can be performed by a CPU processor
and are not time intensive [5], [7]. While this approach may
lead to a higher performance system, realizing the entire
design on an FPGA can reduce flexibility as even trivial
changes require a proper hardware review, increasing the
complexity of the design workflow. On the contrary, our sys-
tem architecture is organized in two different layers thanks
to the SoC capability. The lower layer is the FPGA one,
where all the deterministic and high-resolution operations
are carried out. The higher layer is the CPU(s) one, which
is responsible for the parameters and data management oper-
ations as well as the communication with the outside world.
Besides the functions’ separation, this subdivision is also
a key point for the maintenance and the upgrading of the
architecture since the two layers require different program-
ming languages (VHDL/Verilog versus C/C++) and different
design teams. Two additional layers, i.e., end user/external
source and quantum system, enclose the previous ones com-
pleting the whole practical system. The architecture is de-
signed to control a given quantum apparatus and can be eas-
ily switched between top-down and bottom-up workflows,
which represents the distinction between QKD transmitter
and QKD receiver/QRNG applications. For QKD applica-
tions, the current version of the architecture does not imple-
ment the postprocessing and temporal synchronization be-
tween the transmitter and the receiver. As a matter of fact, an
FPGA-based postprocessing can be considered effective only
if implemented both on Alice and Bob as accelerating the
processing on just one sidemay not bring to practical benefits
due to possible bottlenecks on the other end. Nevertheless,
on DV-QKD, a time-to-digital converter (TDC) is required
to distinguish the time of arrival of the incoming single pho-
ton. Thus, an efficient FPGA implementation of a DV-QKD
receiver should include both the TDC and the postprocess-
ing functionalities. This approach can result in significant
FPGA design efforts without bringing valuable benefits as
a standard commercial personal computer (PC) may be suf-
ficient to keep up with the postprocessing rate, like in our im-
plementations. Furthermore, in an R&D/Academic scenario,
having a PC-based postprocessing can be an advantage as
it allows a more straightforward realization and upgrade of
the software and, thus, an easier adaptation to a given QKD
test, where the goal is to investigate different protocols and
performances. Therefore, we chose to implement a PC-based
postprocessing as it can be easily adapted to different exper-
iments. Nevertheless, while being more targeted to commer-
cial deployment, where higher performances should be pre-
ferred over flexibility, an FPGA-based postprocessing can be
part of future integration and investigation. On the same PC,
we also implement the Qubit4Sync, a recent postprocessing
synchronization method for the temporal alignment of the
two parties [17] making unnecessary any dedicated module

6000108 VOLUME 3, 2022

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE Engineeringuantum
Transactions onIEEE

FIGURE 1. Overview of the four-layer structure of the system. The
embedded architecture is divided into two different layers (FPGA+CPU),
which are enclosed by the two outside-world layers (end user/external
source and quantum system).

on the FPGA. Nevertheless, if required, standard synchro-
nization solutions, such as direct clock transmission, can be
added straightfowardly to our architecture. An overview of
the whole schematic is given in Fig. 1. In the following, we
provide a general description of the top-down and bottom-up
applications.

A. TOP-DOWN APPLICATION
In this configuration, the dataflow starts from an external
device, e.g., a QRNG or PC, goes through the CPU, then to
the FPGA, and finally to the chip input–output (I/O) pins.
This layout is suitable for a QKD transmitter, as the raw
cryptographic key, either generated in real time by a QRNG
or previously stored in a PC, is fed through the CPU to
the FPGA, which drives the hardware dedicated to quantum
state generator accordingly. As detailed in the following, the
first communication step, from the external device to the
CPU, has been performed over Gigabit Ethernet. This choice
provides both a high throughput of the data transfer (>600
Mbit/s) and a great flexibility, being Ethernet a widespread
standard. As there is no encryption of the dataflow, it is of
paramount importance to protect the communication chan-
nel from eavesdropping. This can be done by setting up a
private local area network (LAN), physically disconnected
from other networks, between the SoC and the external de-
vice. The second layer in the stack is from the CPU to the
FPGA. For this step, two solutions have been implemented.
The configuration parameters, e.g., qubit frequency or total
transmission length, which have a very slow refresh rate, are

exchanged with a direct communication via the Advanced
eXtensible Interface (AXI) protocol. Instead, for the raw
key exchange, which can reach 400 Mb/s of steady data
transmission, we exploited both the onboard DDR-RAM,
accessible from the CPU, and the block RAM (BRAM),
integrated in the FPGA but accessible from the CPU through
the AXI protocol. The BRAM, with a maximum length in
the order of Mbits, has been divided in two halves, so that
while the FPGA is reading from one section, the CPU can
update the contents of the other with the data stored in the
RAM and previously received via Ethernet. This allows for
a continuous and synchronized dataflow from the external
device to the FPGA and, hence, its I/Os. According to the
specific quantum system, the output signals are routed to
either PeripheralModule Interface (LVCMOS33 standard) or
FPGA Mezzanine Card ports (LVCMOS18 standard) of the
ZedBoard and then properly amplified by an external driving
stage.

B. BOTTOM-UP APPLICATION
In this configuration, the dataflow starts from the chip I/Os
controlled by the FPGA and is then transmitted from the
FPGA to the CPU and finally from the CPU to the external
device. This layout can be used either for a QKD receiver
or for a QRNG, where the electrical signal coming from
external devices, i.e., single-photon detectors, is sampled by
the FPGA I/Os. The sampled and stored signal is then trans-
ferred, via the CPU, to an external computer, for the imple-
mentation of the postprocessing phases of the QKD protocol,
i.e., parameter estimation, error correction, and privacy am-
plification. The communication interfaces for the bottom-up
configuration are the same as for the top-down. It must be
mentioned that also in this case, the communication between
the CPU and the external computer must be performed over a
secure LAN, as the data stream at this level is not encrypted.
To guarantee a high level of security, the LAN used for the
PC–CPU communication has to be reserved and, therefore,
physically separated from the one used for communication
between the transmitter and receiver PCs.

III. FPGA LAYER
The FPGA implementation allows us to have a perfect time
control over the optical system. Indeed, the capability to
schedule every operation according to a system clock is a
key feature for the realization of a QKD/QRNG system.
When used in a QKD transmitter configuration, the FPGA
is responsible for the rightful generation of the electrical
pulses, which drive the electrooptical elements of the setup.
When used as a QRNG/QKD receiver, the FPGA takes care
of the read-out operations of the external electrical signals
coming from single-photon detectors. For the sake of com-
pleteness, it is also possible to consider the application of
the architecture for CV-QKD [23] and CV-QRNG [24], [25].
The difference would be that the FPGA needs to interface
with proper external DAC (for the CV-QKD transmitter) and
external ADC (for the CV-QKD receiver and CV-QRNG).

VOLUME 3, 2022 6000108

Engineeringuantum
Transactions onIEEE

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE

FIGURE 2. Schematic view of the FPGA system. The modules in green are
custom VHDL blocks, which control the memory management, the qubit
generation, and the single-photon detector readout. The orange modules
are the AXI-based ones, and they are AXI-CDMA and AXI-GPIO. The
BRAM module has a mixed color since it is controlled both by AXI and by
custom VHDL modules. The CPU part is initialized in the FPGA design
and is identified by the ZYNQ Processing System module, which can also
access to RAM. The versatile schematic is the same over different
applications. The only modification concerns the output interfacing
module: QStates Controller triggers the qubit emission in a QKD
transmitter configuration; SPD Reader implements the sampling function
of the external signal from single-photon detectors in a QRNG/QKD
receiver configuration. In the case of QRNG configuration, the
implementation of random generation protocols is also included.

The general and simplified structure of the FPGA design is
shown in Fig. 2. The schematic shows the versatility of the
architecture as it can be exploited in different QC applica-
tions without changing anything but the output interfacing
module (QStates Controller in the QKD transmitter configu-
ration; SPDReader and QRNG protocols in the QRNG/QKD
receiver one) and the data flow direction. The design uses
AXI-capable blocks for communication and data transfer
to (from) the CPU along with BRAMs and custom VHDL
blocks for FPGAdatamanagement,MemoryManager block,
and external signal generation (readout), QStates Controller,
and SPD Reader blocks. The QRNG application also in-
cludes dedicated modules implementing random generation
protocols [26], [27]. AXI-GPIOs allow us to set parameters
from the CPU and to read out interrupt signals asserted from
customVHDLblocks. AXI-CDMAenables the possibility to
move data to (from) the board RAM from (to) the BRAM(s).
The Memory Manager is responsible for managing the data
transfer between the BRAM(s) and the other custom blocks.
Being the BRAM divided into two halves, the MemoryMan-
ager asserts a signal every time it reaches the end of one of
the two halves (while reading or writing) and, in turn, the
signal is read by an AXI-GPIO and interpreted as an interrupt
from the CPU, which writes (reads) new data to (from) the
BRAM. The system clock was set in a range between 100
and 200 MHz depending on the specific application. Future
improvements will consider pushing further this frequency in
order to increase the overall system speed. Indeed, apart from

tighter timing constraints, a higher frequency clock implies
a higher data throughput to/from the external device, which
may exceed the gigabit range of the board.

A. QKD TRANSMITTER
The previously described general architecture is meant to
be protocol blind and can be exploited to set up a QKD-
transmitter controller regardless of the exact QKD protocol
and qubit encoding. The only module that is protocol depen-
dent and that requires a specific design is the one responsible
for encoding the raw key data into electrical output pulses.
This module is the QStates Controller, which, according
to what is usually done in literature (see, for instance, the
quantum state selection module of [8]), operates the qubit
emission by encoding the raw key data into electrical output
pulses, which drive the laser and electrooptical modulators.
We designed several variations of this module according
to the chosen QKD protocol [28]–[31], derived from the
well-known BB84 [32], and implementation [16], [18], [20],
[22]. Here, we give a brief description of one of the most
recent versions, presented in [22]. With a system clock set
to 200 MHz, a pulse of 5 ns can be provided at the output.
The encoding of every qubit requires, nominally, no more
than 15 ns time slot since the polarization encoding describes
three different polarization states and necessitates an output
pulse in three different temporal positions (0–5 ns, 5–10 ns,
and 10–15 ns). The decoy implementation works in a similar
way, describing three different intensity levels [33], [34],
but requests an output pulse in only two temporal position
(0–5 ns and 5–10 ns) in combination with a possible laser
switch off. The pulse for the laser driver is sent at the begin
of every slot (0–5 ns) unless the case of a specific decoy
state. To compensate and synchronize the output signals with
the optical path length, a dedicated time offset can also be
applied to each signal. While similar temporal diagrams,
which belong to specific QKD protocols and qubit encoding,
are well known in the literature [35], the advantage of our
solution is that it requires only two voltage levels, which
are provided by the FPGA itself (and a proper amplification
stage) avoiding the usage of a DAC or multilevel devices.
Two different BRAMs were instantiated: one for the

polarization encoding data and the other for the de-
coy one. Since every qubit requires 2 bits to distinguish
among three polarization states as well as other 2 bits to
discriminate among three decoy states, the BRAMs were
set to the same size and operated with the same interrupt
routine. For the sake of clearness, it is possible to optimize
the overall qubit encoding using just three bits for the po-
larization+decoy encoding. Nevertheless, we chose to use
two+two encoding for mainly two reasons. The first reason is
that a three-bit encoding would have required a quite compli-
cated, and in a certain way inefficient, routine to distinguish
the data within each byte as more than two but less than three
qubits encoding data would have been stored in one byte.
The second reason is that a two+two bit encoding allows us

6000108 VOLUME 3, 2022

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE Engineeringuantum
Transactions onIEEE

to separate the paths, the memories, and, in turn, the trans-
mission control protocol (TCP) sockets of the polarization
and decoy data enhancing the robustness and flexibility of
the overall system.

B. QKD RECEIVER/QRNG
In principle, the FPGA schematic for a QKD receiver is sim-
ilar to the one for a DV-QRNG. In both cases, the I/Os are
connected to the output signals of single-photon detectors,
and the FPGA implements the sampling process to produce
a bitstring containing the digital temporal description of the
single-photon events. First of all, the input signal is translated
to the FPGA clock domain by using a proper async-to-sync
hardware module included in the SPD Reader. Then, in the
case of a QRNG application, the sample bits are temporarily
accumulated and later processed by proper modules, which
apply random generation protocols to a small set of data, as
described in [14]. The random bit is then stored and managed
by the Memory Manager, which, in turn, transfers a 32-bit
array to the ith address of a BRAM and calls an interrupt
whenever it reaches half or the end of it. Moreover, this archi-
tecture was also the perfect option to implement a synchro-
nized QRNG, which was needed for the realization of [21].
This particular application required to output a random num-
ber generated only after a specific trigger event. Therefore,
the QRNG had to be synchronized with the experiment ap-
paratus, which required a modification of the architecture
to allow a resetting of all the random data, including the
SPD samples, at a specific time instant. The resetting was
triggered by an external electrical signal coming from the
experiment setup. The random bit was then used to produce
an auxiliary output port, which set a specific optical com-
ponent of the experiment. To improve the randomness of
the output number, the architecture was also doubled and
produced two random bits, which were xored. For further
details, refer to [21]. As amatter of fact, by removing the gen-
eration protocol modules, the architecture becomes suitable
to be used as a QKD receiver. However, a drawback of this
implementation is the low time resolution provided by the
system clock, which, even in a high-range FPGA-chip case
scenario, does not exceed 1 GHz. For a high-performance
QKD, a subnanosecond time resolution at the receiver is
required. Therefore, this implementation can be a solution
only for low-cost QKD systems. Nevertheless, the design
and integration of a TDC FPGA module (such as [36]–[38])
or the exploitation of an external integrated circuit (such
as [39]) would allow for a subnanosecond time resolution
and, thus, the use in high-performanceQKD systems. Indeed,
future steps will investigate such solutions.

IV. CPU LAYER
The CPU software is implemented as a standalone/bare-
metal application, and no operative system is required. This
has the great advantage of having a very light and fast soft-
ware at a higher design cost. The software, developed in C
and C++ languages, has the role to interface the FPGA layer

with the external source and the final user. It mainly imple-
ments the interrupt routine to move (read) data from (to) the
RAM to (from) the BRAM anytime the Memory Manager
reaches the half of the end of a BRAM. It also implements
the TCP connection sockets to receive commands and data
from the external source or user.

A. TCP CONNECTION
To communicate with the outside world, the TCP protocol
was chosen. Given the robustness of this protocol over any
possibility of losing data packets, this choice has to be pre-
ferred over the user datagram protocol (UDP), which cannot
guarantee a reliable communication to the application layer,
thus undermining the validity of the QKD implementation.
Moreover, TCP can meet the requirement on data synchro-
nization between parties thanks to its acknowledgment and
hand-shaking structure. For a QRNG application, where the
data is output to an external receiver, a UDP protocol might
be suitable in any case since any (negligible) data losses do
not affect the overall quality and performance of the QRNG
device. Nevertheless, for QKD postprocessing purposes, one
can consider to send the random stream to two different
devices, e.g., a QKD transmitter and a computer, and in this
case, a data loss would jeopardize the whole system. More-
over, changing the protocol only for the QRNG application
would reduce the overall system flexibility.
The connection between the PC and the CPU applications

is structured in two or more different TCP server–client sock-
ets: one is for commands and parameters exchange, while
the other(s) is for data exchange. Indeed, the data socket has
the only purpose to receive new data from the external source.
Thus, the required operations and statement conditions in the
data received callback are quite few allowing to have optimal
performance over the TCP bandwidth (>600 Mbit/s).

V. QKD-TRANSMITTER CONTINUOUS STREAM
IMPLEMENTATION
A fundamental feature of any future commercial QC device
is the capability to continuously sustain the transmission of
fresh random data. That is, the external randomness source,
such as aQRNGdevice or a computer where random keys are
stored, must provide new data with a sufficient bitrate, and
the QKD transmitter must be able to perform at the same time
both the reading/storing of these data and the transmission
of electrical pulses. Nowadays, specific workarounds allow
us to avoid the implementation of such functionality [7] but
necessarily reduce the overall security of the system. For
instance, one can connect a low-bitrate QRNG to the QKD
source, where the random data are expanded to reach the
required bitrate [8]. The expansion process, although imple-
mented via standard cryptographic primitives, does not offer
an unconditional type of security and can represent a security
breach in the entire QKD system. Hence, we developed a
dual-core architecture able to sustain the required data rate
for a secure QKD implementation, allowing a random data
stream generated entirely by a QRNG. This approach has

VOLUME 3, 2022 6000108

Engineeringuantum
Transactions onIEEE

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE

FIGURE 3. Schematic view of the dual-core system, representing the flow of data from the QRNG-PC to the FPGA. The request of new data is triggered
by the FPGA, each time it reads half of the BRAM, by means of an interrupt to CPU1, which then moves the data from the buffer to the RAM. Each time
CPU1 reads 18.75 MiB of data from the buffer it sends an interrupt to CPU0 to update the new block with fresh data from the QRNG-PC.

the advantage of being unconditionally secure. Moreover,
keeping the random data stored on the PC eases the QKD
postprocessing procedure or, alternatively, lowers the mem-
ory resources of the SoC needed to store the transmitted
bitstring until the receiver communicates the detected qubits.
Furthermore, the bias of the random bits, required by some
efficient QKD protocols [30], can be adjusted without the
need of programming or setting the FPGA, allowing to opti-
mize it according to the current quantum channel condition.
The data streamflow is represented in Fig. 3. The data

generated from the QRNG-PC are received by a TCP socket
and then moved by CPU0 into a buffer in the RAM. Mean-
while, CPU1 reads the data from the RAM and moves it
to the BRAM, which can be read by the FPGA. The buffer
size is set to 187.5 MiB and divided into ten blocks, which
are written atomically by CPU0. Hence, when a block has
been moved to the FPGA, an interrupt from CPU1 is sent to
CPU0 to notify that a new block of the buffer can be written.
CPU0 forwards a request of a new block of 18.75 MiB to
the QRNG-PC. CPU1 reads smaller chunks from the buffer,
whose size is half of the BRAM’s size, when it receives an
interrupt from the FPGA. Compared to the BRAM size, the
buffer is larger to avoid an unwanted stop of the continuous
feed of data to the FPGA, which may happen due to the
temporary loss of speed of the TCP channel, or the latency of
CPU0. The whole architecture is doubled in order to manage
both the stream for polarization and decoy data.

A. SYSTEM TESTS
We implemented this system on a QKD transmitter to test
the top-down application in a continuous stream mode. We
performed a double-stress test: the first one was with a real
QRNG device, based on the scheme of [40] offering high se-
curity and bitrate, while the second test was carried out with
a cryptographically secure pseudorandom number generator
(CSPRNG) able to provide a sufficient data rate as well. We
chose to perform the test also with a CSPRNG to show the
system capability in a fallback scenario, where no QRNG
device is available. The (pseudo)random data were stored
in a buffer of the PC, to ease the retrieval of the quantum
states sent to the receiver needed for the raw key sifting.
Indeed, once the QKD transmitter has produced and sent
the quantum states, the QKD receiver measures and detects
a subset of these states due to unavoidable channel losses.
The QKD receiver communicates to the transmitter the list
of states it detected (without revealing the outcome of the
measurement). Hence, theQKD transmitter selects the subset
of random data that will be used for the sifting.
The stream of data at the PC is managed by three threads:

one for the production of blocks of random sequences; one
for the system managing the transfer, upon request, of the
random data from the buffer to the board via TCP; and one for
the selection of the states detected by the QKD receiver. As
anticipated, the (pseudo)random data can either be received
from a QRNG device or generated internally by a CSPRNG.
In the former case, the first thread is used to receive (via

6000108 VOLUME 3, 2022

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE Engineeringuantum
Transactions onIEEE

FIGURE 4. Plot of the TCP traffic from the PC to the Zynq-7020 for the
transmission of the random sequences and control messages, for two
55-h-long tests using either the QRNG or CSPRNG as randomness source.
We plot in red the aggregated traffic of the data and control plane for
the QRNG test, amounting totally to about 208 Mb/s. The transmission of
states and intensities sequences accounts for 200 Mb/s. This stream is
represented in yellow with the data from the PRNG test. Finally, we can
appreciate a small TCP/IP overhead (as seen from the PC OS) due to TCP
segmentation offload.

UDP or TCP) the random bits from the QRNG and to bias
them according to the desired Bernoulli distribution. In the
latter case, the thread carries on the generation of the pseu-
dorandom data by using a Chacha20-based CSPRNG, seeded
with the Intel Secure Key hardware random number gener-
ator embedded in the recent generations of Intel CPUs. We
synchronized the write and read operations on the buffer of
these multiple threads by using semaphores. The buffer was
divided in chunks that could be either written or read at a
time. Hence, one semaphore is needed to allow the writing
of new chunks of data by the RNG thread, which can be
done only on those chunks that have been read by the thread
selecting the subset of states arrived at the QKD receiver.
Another semaphore is needed to ensure that the chunks of
data sent to the system are those that have been rewritten by
the RNG thread.
In our test, the QKD repetition rate was set to 50 MHz.

Since the state encoding uses two bits for the state polar-
ization and two bits for the mean photon number, we have
two data streams of 100 Mb/s, plus a third stream for control
communications. The outbound traffic was monitored from
the transmitting PC during the two tests and is reported in
Fig. 4. Given this steady input, the system was able to carry
on all the needed operations seamlessly along all 55 h of
the tests, resulting in a successful execution of the QKD
protocol.
After the completion of the present manuscript, we

became aware of a recent work presenting a similar
scheme [41]. The latter implements the QRNG and QKD
control hardware on a single FPGA chip. While having the
advantage of being a more compact device without the needs
of a continuous stream between parties, this solution is less

flexible as it is not possible to combine a given QRNG with
an arbitrary QKD device.

VI. CONCLUSION
In this article, we presented a versatile architecture based on
FPGA technology exploiting also a CPU counterpart, form-
ing an SoC, for the implementation of practical QC systems.
The SoC architecture was developed in different layers with
different tasks and was easily interchangeable among differ-
ent QC applications, such as DV-QKD transmitter, DV-QKD
receiver, and DV-QRNG. We also implemented and tested a
dual-core functionality performing a TCP continuous stream
between a QRNG source and a QKD transmitter without the
need of data expansion to reach the amount of data required
to encode every qubit. This allows us to strengthen the se-
curity of the QKD implementation, as the random settings
needed by the QKD protocol are guaranteed to be uncon-
ditionally secure, unlike those generated by expansion algo-
rithms. The system was implemented on a low-budget COTS
evaluation board, and it was successfully tested to continu-
ously provide four bits to encode a qubit every 20 ns. Fu-
ture steps will consider higher frequency implementation as
well as continuous-variable applications by including proper
DAC and ADC hardware.

ACKNOWLEDGMENT
The authors Andrea Stanco and Daniele Dequal would like
to thank Dr. S. Gaiarin for useful help and hints in the general
architecture design. The authors Andrea Stanco and Luca
Calderaro would like to thank F. Berra for useful discussions
about dual-core architecture verification. The author Andrea
Stanco would like to thank Dr. D. G. Marangon for useful
help and discussion for the DV-QRNG architecture design.

REFERENCES
[1] D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Ex-

perimental quantum key distribution with finite-key security analysis for
noisy channels,” Nature Commun., vol. 4, no. 1, Sep. 2013, Art. no. 2363,
doi: 10.1038/ncomms3363.

[2] K. Wei et al., “High-speed measurement-device-independent quantum
key distribution with integrated silicon photonics,” Phys. Rev. X, vol. 10,
Aug. 2020, Art. no. 031030, doi: 10.1103/PhysRevX.10.031030.

[3] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
“Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,” in Proc. IEEE Int. Conf. Embedded Softw. Syst., 2019,
pp. 1–8, doi: 10.1109/ICESS.2019.8782524.

[4] D. K. L. Oi et al., “CubeSat quantum communications mission,”
EPJ Quantum Technol., vol. 4, no. 1, Apr. 2017, Art. no. 6,
doi: 10.1140/epjqt/s40507-017-0060-1.

[5] H.-F. Zhang et al., “A real-time QKD system based on FPGA,”
J. Lightw. Technol., vol. 30, no. 20, pp. 3226–3234, Oct. 2012,
doi: 10.1109/JLT.2012.2217394.

[6] A. R. Dixon and H. Sato, “High speed and adaptable error correction
for megabit/s rate quantum key distribution,” Sci. Rep., vol. 4, no. 1,
Dec. 2014, Art. no. 7275, doi: 10.1038/srep07275.

[7] N. Walenta et al., “A fast and versatile quantum key distribu-
tion system with hardware key distillation and wavelength multi-
plexing,” New J. Phys., vol. 16, no. 1, 2014, Art. no. 013047,
doi: 10.1088/1367-2630/16/1/013047.

[8] J. Constantin et al., “An FPGA-based 4Mbps secret key distillation engine
for quantum key distribution systems,” J. Signal Process. Syst., vol. 86,
no. 1, pp. 1–15, Jan. 2017, doi: 10.1007/s11265-015-1086-1.

VOLUME 3, 2022 6000108

https://dx.doi.org/10.1038/ncomms3363
https://dx.doi.org/10.1103/PhysRevX.10.031030
https://dx.doi.org/10.1109/ICESS.2019.8782524
https://dx.doi.org/10.1140/epjqt/s40507-017-0060-1
https://dx.doi.org/10.1109/JLT.2012.2217394
https://dx.doi.org/10.1038/srep07275
https://dx.doi.org/10.1088/1367-2630/16/1/013047
https://dx.doi.org/10.1007/s11265-015-1086-1

Engineeringuantum
Transactions onIEEE

Stanco et al.: VERSATILE AND CONCURRENT FPGA-BASED ARCHITECTURE

[9] T. Lorunser et al., “Security processor with quantum key distribution,” in
Proc. Int. Conf. Appl.-Specific Syst., Archit. Processors, 2008, pp. 37–42,
doi: 10.1109/ASAP.2008.4580151.

[10] B. LaMeres et al., “Next on the Pad: RadSat—A radiation
tolerant computer system,” in Proc. 31th Annu. AIAA/USU Conf.
Small Satell., 2017, Art. no. SSC17-III-11. [Online]. Available:
https://digitalcommons.usu.edu/smallsat/2017/all2017/87/.

[11] I. Pogorelov et al., “Compact ion-trap quantum computing demonstrator,”
PRXQuantum, vol. 2, Jun. 2021, Art. no. 020343, doi: 10.1103/PRXQuan-
tum.2.020343.

[12] M. Avesani et al., “Deployment-ready quantum key distribution over
a classical network infrastructure in Padua,” J. Lightw. Technol., to be
published, doi: 10.1109/JLT.2021.3130447.

[13] H. Tebyanian, M. Zahidy, M. Avesani, A. Stanco, P. Villoresi, and
G. Vallone, “Semi-device independent randomness generation based on
quantum state’s indistinguishability,”Quantum Sci. Technol., vol. 6, 2021,
Art. no. 045026, doi: 10.1088/2058-9565/ac2047.

[14] A. Stanco, D. G. Marangon, G. Vallone, S. Burri, E. Charbon, and
P. Villoresi, “Efficient random number generation techniques for CMOS
single-photon avalanche diode array exploiting fast time tagging units,”
Phys. Rev. Res., vol. 2, Jun. 2020, Art. no. 023287, doi: 10.1103/Phys-
RevResearch.2.023287.

[15] M. Avesani et al., “Resource-effective quantum key distribution: A field
trial in Padua city center,” Opt. Lett., vol. 46, no. 12, pp. 2848–2851,
Jun. 2021, doi: 10.1364/OL.422890.

[16] M. Avesani, C. Agnesi, A. Stanco, G. Vallone, and P. Villoresi, “Sta-
ble, low-error, and calibration-free polarization encoder for free-space
quantum communication,” Opt. Lett., vol. 45, no. 17, pp. 4706–4709,
Sep. 2020, doi: 10.1364/OL.396412.

[17] L. Calderaro et al., “Fast and simple qubit-based synchronization
for quantum key distribution,” Phys. Rev. Appl., vol. 13, May 2020,
Art. no. 054041, doi: 10.1103/PhysRevApplied.13.054041.

[18] C. Agnesi et al., “Simple quantum key distribution with qubit-based
synchronization and a self-compensating polarization encoder,” Optica,
vol. 7, no. 4, pp. 284–290, Apr. 2020, doi: 10.1364/OPTICA.381013.

[19] M. Avesani et al., “Full daylight quantum-key-distribution at 1550 nm
enabled by integrated silicon photonics,” npj Quantum Inf., vol. 7, no. 1,
Jun. 2021, Art. no. 93, doi: 10.1038/s41534-021-00421-2.

[20] C. Agnesi, M. Avesani, A. Stanco, P. Villoresi, and G. Vallone, “All-
fiber self-compensating polarization encoder for quantum key dis-
tribution,” Opt. Lett., vol. 44, no. 10, pp. 2398–2401, May 2019,
doi: 10.1364/OL.44.002398.

[21] F. Vedovato et al., “Extending wheeler’s delayed-choice experiment to
space,” Sci. Adv., vol. 3, no. 10, 2017, Art. no. e1701180, doi: 10.1126/sci-
adv.1701180.

[22] A. Balossino et al., “SeQBO—A miniaturized system for
quantum key distribution,” in Proc. 71st Int. Astronaut. Congr.,
vol. 2020, Oct. 2020, Art. no. 166680. [Online]. Available:
http://iafastro.directory/iac/paper/id/59867/summary/

[23] F. Laudenbach et al., “Continuous-variable quantum key distribution
with Gaussian modulation—The theory of practical implementations,”
Adv. Quantum Technol., vol. 1, no. 1, Aug. 2018, Art. no. 1800011,
doi: 10.1002/qute.201870011.

[24] D. G.Marangon, G. Vallone, and P. Villoresi, “Source-device-independent
ultrafast quantum random number generation,” Phys. Rev. Lett., vol. 118,
no. 2, 2017, Art. no. 060503, doi: 10.1103/PhysRevLett.118.060503.

[25] M. Avesani, D. G. Marangon, G. Vallone, and P. Villoresi, “Source-
device-independent heterodyne-based quantum random number generator
at 17 Gbps,” Nature Commun., vol. 9, no. 1, Dec. 2018, Art. no. 5365,
doi: 10.1038/s41467-018-07585-0.

[26] H. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer,
and H. Weinfurter, “High speed optical quantum random number
generation,” Opt. Exp., vol. 18, no. 12, pp. 13029–13037, 2010,
doi: 10.1364/OE.18.013029.

[27] M. Stipčević and B. M. Rogina, “Quantum random number generator
based on photonic emission in semiconductors,”Rev. Sci. Instrum., vol. 78,
no. 4, 2007, Art. no. 045104, doi: 10.1063/1.2720728.

[28] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma, “Loss-tolerant
quantum cryptography with imperfect sources,” Phys. Rev. A, vol. 90,
no. 5, Nov. 2014, Art. no. 052314, doi: 10.1103/PhysRevA.90.052314.

[29] W.-Y. Hwang, “Quantum key distribution with high loss: Toward
global secure communication,” Phys. Rev. Lett., vol. 91, Aug. 2003,
Art. no. 057901, doi: 10.1103/PhysRevLett.91.057901.

[30] H.-K. Lo, H. F. Chau, andM.Ardehali, “Efficient quantumkey distribution
scheme and a proof of its unconditional security,” J. Cryptol., vol. 18, no. 2,
pp. 133–165, Apr. 2005, doi: 10.1007/s00145-004-0142-y.

[31] D. Rusca, A. Boaron, F. Grünenfelder, A.Martin, and H. Zbinden, “Finite-
key analysis for the 1-decoy state QKD protocol,” Appl. Phys. Lett.,
vol. 112, no. 17, 2018, Art. no. 171104, doi: 10.1063/1.5023340.

[32] H. C. Bennett and G. Brassard, “Quantum cryptography: Public key distri-
bution and coin tossing,” Theor. Comput. Sci., vol. 560, no. P1, pp. 7–11,
Dec. 2014, doi: 10.1016/j.tcs.2011.08.039.

[33] H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,”
Phys. Rev. Lett., vol. 94, Jun. 2005, Art. no. 230504, doi: 10.1103/Phys-
RevLett.94.230504.

[34] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quan-
tum key distribution,” Phys. Rev. A, vol. 72, Jul. 2005, Art. no. 012326,
doi: 10.1103/PhysRevA.72.012326.

[35] B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed
multi-protocol quantum key distribution transmitter based on a dual-drive
modulator,” Opt. Exp., vol. 21, no. 17, pp. 19579–19592, Aug. 2013,
doi: 10.1364/OE.21.019579.

[36] J. Song, Q. An, and S. Liu, “A high-resolution time-to-digital converter
implemented in field-programmable-gate-arrays,” IEEE Trans. Nucl. Sci.,
vol. 53, no. 1, pp. 236–241, Feb. 2006, doi: 10.1109/TNS.2006.869820.

[37] M. Fishburn, L. H. Menninga, C. Favi, and E. Charbon, “A 19.6 ps,
FPGA-based TDC with multiple channels for open source applica-
tions,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2203–2208, Jun. 2013,
doi: 10.1109/TNS.2013.2241789.

[38] H. Chen and D. D.-U. Li, “Multichannel, low nonlinearity time-to-digital
converters based on 20 and 28 nm FPGAS,” IEEE Trans. Ind. Electron.,
vol. 66, no. 4, pp. 3265–3274, Apr. 2019, doi: 10.1109/TIE.2018.2842787.

[39] TDC-GPX High-End Time-to-Digital Converter, ScioSense, Eindhoven,
The Netherlands. Accessed: Feb. 7, 2022. [Online]. Available:
https://www.sciosense.com/products/time-to-digital-converters/tdc-gpx-
high-end-time-to-digital-converter/

[40] C. Gabriel et al., “A generator for unique quantum random numbers based
on vacuum states,”Nature Photon., vol. 4, no. 10, pp. 711–715, Oct. 2010,
doi: 10.1038/nphoton.2010.197.

[41] K. Taofiq et al., “A photonic integrated quantum secure communica-
tion system,” Nature Photon., vol. 15, no. 11, pp. 850–856, Nov. 2021,
doi: 10.1038/s41566-021-00873-0.

6000108 VOLUME 3, 2022

https://dx.doi.org/10.1109/ASAP.2008.4580151
https://digitalcommons.usu.edu/smallsat/2017/all2017/87/
https://dx.doi.org/10.1103/PRXQuantum.2.020343
https://dx.doi.org/10.1103/PRXQuantum.2.020343
https://dx.doi.org/10.1109/JLT.2021.3130447
https://dx.doi.org/10.1088/2058-9565/ac2047
https://dx.doi.org/10.1103/PhysRevResearch.2.023287
https://dx.doi.org/10.1103/PhysRevResearch.2.023287
https://dx.doi.org/10.1364/OL.422890
https://dx.doi.org/10.1364/OL.396412
https://dx.doi.org/10.1103/PhysRevApplied.13.054041
https://dx.doi.org/10.1364/OPTICA.381013
https://dx.doi.org/10.1038/s41534-021-00421-2
https://dx.doi.org/10.1364/OL.44.002398
https://dx.doi.org/10.1126/sciadv.1701180
https://dx.doi.org/10.1126/sciadv.1701180
http://iafastro.directory/iac/paper/id/59867/summary/
https://dx.doi.org/10.1002/qute.201870011
https://dx.doi.org/10.1103/PhysRevLett.118.060503
https://dx.doi.org/10.1038/s41467-018-07585-0
https://dx.doi.org/10.1364/OE.18.013029
https://dx.doi.org/10.1063/1.2720728
https://dx.doi.org/10.1103/PhysRevA.90.052314
https://dx.doi.org/10.1103/PhysRevLett.91.057901
https://dx.doi.org/10.1007/s00145-004-0142-y
https://dx.doi.org/10.1063/1.5023340
https://dx.doi.org/10.1016/j.tcs.2011.08.039
https://dx.doi.org/10.1103/PhysRevLett.94.230504
https://dx.doi.org/10.1103/PhysRevLett.94.230504
https://dx.doi.org/10.1103/PhysRevA.72.012326
https://dx.doi.org/10.1364/OE.21.019579
https://dx.doi.org/10.1109/TNS.2006.869820
https://dx.doi.org/10.1109/TNS.2013.2241789
https://dx.doi.org/10.1109/TIE.2018.2842787
https://www.sciosense.com/products/time-to-digital-converters/tdc-gpx-high-end-time-to-digital-converter/
https://www.sciosense.com/products/time-to-digital-converters/tdc-gpx-high-end-time-to-digital-converter/
https://dx.doi.org/10.1038/nphoton.2010.197
https://dx.doi.org/10.1038/s41566-021-00873-0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

