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ABSTRACT Constraint satisfiability problems, crucial to several applications, are solved on a quantum
computer using Grover’s search algorithm, leading to a quadratic improvement over the classical case. The
solutions are obtained with high probability for several cases and are illustrated for the cases involving two
variables for both 3- and 4-bit numbers. Methods are defined for inequality comparisons, and these are
combined according to the form of the satisfiability formula, to form the oracle for the algorithm. The circuit
is constructed using IBM Qiskit and is verified on an IBM simulator. It is further executed on one of the noisy
intermediate-scale quantum processors from IBM on the cloud. Noise levels in the processor at present are
found to be too high for successful execution. Running the algorithm on the simulator with a custom noise
model lets us identify the noise threshold for successful execution.

INDEX TERMS Constraint satisfiability, Grover’s algorithm, noisy intermediate-scale quantum (NISQ)

processors, Qiskit.

I. INTRODUCTION

The satisfiability problem involving conjunctive inequali-
ties is one of the widely encountered problems in database
systems, forming a central part of several database prob-
lems. Quite a few application areas such as program anal-
ysis, scheduling, planning, testing, and verification rely on
constraint-satisfaction problems [1]. The Boolean satisfiabil-
ity problem plays a vital role in such applications. Solvers for
such formulations, called the satisfiability modulo theories
(SMT-solvers), have thus been an active area of research in
the classical theory of computation [2]-[7]. When quantum
computers also develop to a stage where it can tackle com-
plex real-world problems and applications, it is likely that
solvers for constraint-satisfaction problems, implemented on
quantum computers, would be important as well. In this arti-
cle, we show how some constraint-satisfaction problems can
be solved on small-scale quantum information processors.
We consider conjunctive formulas of arithmetic inequalities
of the form (X op C) and (X op Y), where C is a constant
in the domain of X; X and Y are attributes/variables from
the integer domain; and op € {<, <, =, #, >, >} [8]. A con-
junctive normal form is a product of sums or an AND of ORs.
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Such a formula is satisfiable by an assignment of variables if
it evaluates to true under the particular assignment.

The general satisfiability problem of checking if a formula
evaluates to true under any of the assignments of variables
from its domain has been shown to be NP-hard in the integer
case [9]. However, in the integer domain involving OP—_,
the satisfiability problem has been shown to be solvable
in O(|S]) time, where S is the conjunctive inequality to be
solved and |S] is its size, i.e., the number of inequalities in
S. Here, OP— is the group of operators excluding the #
operator, i.e., OP-. = {<, <, =, >, >} [8]. The proposed
solution in [8] employs an approach using directed graphs
to express the problem and determining if S is satisfiable or
not. In this article, the aim is to find the solutions in addition
to checking for satisfiability, i.e., searching for assignments
of variables satisfying S. This involves searching through all
the possible variable assignments and checking for satisfia-
bility. Hence, the problem translates into a database search
problem.
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Il. CLASSICAL AND QUANTUM APPROACHES

One classical approach involves checking through all the
possible input combinations to see if the inequality is sat-
isfiable by any of them. So, if there are N combinations
to be checked for a case with a single solution, then this
classical approach involves checking each combination until
it is found. In the worst case, all the N cases have to be tried
where the Nth element is the solution. Hence, on average, this
approach requires N/2 operations to find the solution, and
the classical algorithm is of O(N) [10], [11]. While special-
ized approaches based on heuristics can give improvements
for specific search problems with additional structure, the
number of steps required for finding the solutions of generic
search problems using classical approaches scales as O(N)
or faster [12].

In solving several problems, quantum computers have
been shown to be much more efficient than the classical ones.
One of the first examples showing this advantage was in
the early 1990s, which is the Deutsch—Jozsa algorithm [13],
which determines whether a function is constant or balanced
with just one evaluation of the function. This corresponds
to an exponential speedup over the best-known classical al-
gorithm. However, this algorithm solves a problem of not
much practical interest. The Shor’s algorithm [14] in early
1994 showed that quantum computers can efficiently solve
the well-known problem of integer factorization with an ex-
ponential speedup over the classical case. Both algorithms,
Deutsch - Jozsa as well as Shor’s, are based on the quantum
versions of the Fourier transform [11]. Quantum simulations,
wherein a quantum system is simulated using a quantum
computer itself, as proposed by Feynman [11], [15] is another
family of problems for which quantum computers can furnish
an exponential speedup over classical ones.

Another class of problems for which quantum algorithms
can provide an advantage over classical ones is database
search. Although the quantum database search algorithm,
namely Grover’s algorithm [16], [17], provides only a
quadratic speedup over classical ones, it does find use in
much more problems of practical interest and has a wider
range of application [11]. We briefly describe the algorithm
below and show how it can be applied to the satisfiability
problems we are interested in solving.

A. GROVER'S ALGORITHM

The quantum parallelism feature enables a quantum com-
puter to simultaneously evaluate a function on all possible
inputs, thereby contributing to the speed up over classical al-
gorithms. This feature is used in Grover’s algorithm to give a
quadratic speedup over the classical case in database search.
For the case of a search problem over A/ = 27 alternatives,
the quantum processor represented by an n qubit register is
initialized in the uniform superposition state

n>
——= ) %) =1¥)
N i=1
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by performing a Hadamard transform on each qubit. This
can be done using O(log, \') one-qubit gates [17]. Now, the
Grover iteration is performed on this register.

A Grover iteration consists of two steps—the oracle and
the diffusion operator [10]. The oracle marks those states
of the quantum processor corresponding to combinations
of variable values that satisfy S with a negative phase by
rotating the phase by 7 radians. Its action can be expressed
as |x) —> (—=1)@|x). The oracle is constructed so that it
can recognize the solution(s) to the search problem without
actually knowing them. Hence, f(x) is equal to 1 for the
solution states and O otherwise. The action of the diffusion
operator can be written as H®7(2|07) (07| — I;)H®", which
is the same as (2|y)(y| — [), where |¢) is the uniform
superposition state. It can be shown that this is essentially
the inversion about the average operation [11], [16]. Com-
bining the oracle operation O and the diffusion operation, the
Grover iteration is G = 2|y) (| — [;)O. Geometrically, G
can be understood as a rotation in the 2-D space spanned
by the state |¢), which is the uniform superposition of the
solutions to the search problem, and the state |¢ ] ), which is
perpendicular to |¢). For a search problem with one solution
and N values to be searched, each Grover iteration increases
the amplitude in the desired state by O(1/+/A). In other
words, the state of the 7i-qubit register is rotated and brought
progressively closer to the subspace containing the solutions
of the search problem. After each iteration, the projection of
the 7i-qubit state on the target state |¢) increases by a factor
of 1/+/N, as explained in more detail in Section III-B. Thus,
the amplitude and hence the probability weight of the desired
state reaches O(1) after O(v/N) repetitions of the Grover
iteration [17]. In general, the number of Grover iterations
(oracle+diffusion) required for obtaining solutions with high
probability is approximately ( /4)/N/M, where N is the
number of items in the search problem and M is the number
of solutions [11].

In the case of the satisfiability problem we are considering,
the variables are first put in a superposition of all the values
they can be in. For example, let the conjunctive formula to
be checked for satisfiability be

S={X<®HOA Y =4HAX >7Y)}. (1)

This is a conjunction of three inequalities, where the first and
the second one involve X and Y alone, respectively, while
the third one involves both. Initially, if we consider X and
Y to be bit strings of the same length, n, we have N = 2"
values for each of these variables. These variables are first
put in a uniform superposition of all these values that they
can take by performing a Hadamard transform on each qubit.
We need n qubits for each variable register to create this equal
superposition of N states. If we consider the domain of X and
Y as all the integers from 0 to 15 (both included), we will need
four qubits in each register. So, in general, for m variables,
we require mnp,x qubits to create all the variable address reg-
isters, where nmax = 108y Nmax, With (Nmax — 1) being the
largest integer value that the variables can take. All the other
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FIG. 1. Grover's algorithm circuit.

integers are also expressed in the same binary string pattern
as (Nmax — 1), by filling in zeroes at the empty places. Hence,
the number of values to be searched is (Npayx )™, which can be
solved in O(+/(Nmax )™ /M) iterations, where M is the number
of solutions. The Grover’s algorithm implementation for the
general case of M solutions is summarized in Fig. 1.

In the present example, it is easy to see that the values
of X and Y for which the given inequality is satisfied are
4, 5), (4, 6), and (4, 7) [(0100, 0101), (0100, 0110), and
(0100, 0111) in binary format], expressed in the form (Y, X).
The total number of values to be searched is 16 = 256, and
out of these, we have three solutions. The states correspond-
ing to these combinations of variable values will be flipped
initially by the oracle. The diffusion or the amplitude am-
plification operator then raises the amplitude of these states
(while diminishing that of the others) by inverting about the
mean, making their probabilities higher so that a measure-
ment yields one of these states preferentially (or with greater
probability), as required.

IIl. IMPLEMENTATION

Considering an example with two variables, the implemen-
tation will consist of a total of five quantum registers. First,
we create the address register to store the variable values. In
the example we are considering, both X and Y are taken to
be 4-bit numbers, and therefore, we require 2 x 4 = 8§ qubits
in total for the two-variable address register. Initially, all the
qubits are in the |0) state. Next, we have the satisfiability
register qubits to store the information regarding each of the
inequalities in the conjunctive formula for satisfiability. The
number of satisfiability register qubits required is equal to the
number of inequalities in the formula, which is 3 in this case.
To store the values of the constants (assumed to take values
in the domain of the variables themselves), a number register
of the same size as the variable registers would be required.
Finally, we need a single flag qubit, whose phase can be
flipped when all the inequalities are satisfied (i.e., the case
when all the satisfiability qubits become |1}). In this way, the
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solution states get marked in the oracle operation. The total
number of qubits required for implementing the example we
have considered is equal to 4 (for the X register)+4 (for the Y
register)+4 (for the number register)+3 (for the satisfiability
register)+1 (flag qubit) = 16. As we see in the following,
the implementation would require additionally » = 4 ancilla
qubits. Adding the four ancilla qubits, we require a total of
20 qubits for this particular example.

In case § is not satisfiable by any of the input combina-
tions, none of the states gets marked, and we get an almost
uniform probability distribution. A similar probability distri-
bution occurs in the case of a tautology too, as all states get
marked by the Grover oracle. These extreme cases can be
distinguished by making appropriate changes in the imple-
mentation so as to finally make a measurement on the answer
qubit (instead of on the variable registers), which will be in
the |1) state for all values in the case of a tautology and the
|0) state if not satisfiable.

A. ELEMENTARY OPERATIONS IN THE ORACLE

The oracle is a major component of the Grover’s algorithm.
It picks out the solution(s) from all the input combinations.
Here, the oracle operation consists of recognizing the X and
Y values, which satisfy all the inequalities in S simultane-
ously. In this implementation, methods (functions) are de-
fined for checking for the “less than” (<) and “equal to”
(=) comparisons. The “greater than” (>) comparison can be
performed by reversing the inequality and using the function
for < itself. The < and > relations can also be realized
by simultaneously applying two of these comparisons. The
comparison modules have been elaborated here for the case
of positive integers. Comparisons between positive and neg-
ative integers can be done in the same way by including one
more qubit each for every variable that carries the informa-
tion regarding the sign. Alternatively, the comparisons can
be done in the positive domain alone by providing a constant
offset to the whole problem (and every variable and constant
involved) by the smallest negative value in the particular
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FIG. 2. Circuit for < comparison for 4-bit numbers. The number being
compared with the constant in the number register (the number 11 here)
needs to be encoded onto the X register. Here, each x;(y;), n;, and a;
denote the indices of the qubits in the variable, constant, and ancilla
qubit registers, respectively. The label s, denotes the qubit from the
satisfiability register that is used to store the information about the
satisfiability of this component circuit. The barriers shown in the figure
are only to improve the readability. They are removed before the actual
implementation since optimization does not work across the barriers.

case. After the comparison, the variables and constants can
finally be shifted back to the actual range so that the solu-
tions correspond to the actual problem. In other words, a
problem in the domain (—ny, ny) can be reformulated as one
in (0, n1 + ny), without any loss of generality. In this case,
extra qubits will not be required to encode the information
regarding the signs of the literals.

The oracle itself is constructed by combining together the
elementary functions like < and =. First, we will discuss the
implementation of the elementary functions in detail before
proceeding to see how they can be combined to form the
oracle.

1) < COMPARISON

The circuit used for the < comparison is shown in Fig. 2. This
is one way of comparing if a variable is less than another or a
constant. The IBM Qiskit Circuit Library has an integer com-
parator operator (qiskit.circuit.library.IntegerComparator)
defined [18]. A quantum bit string comparator (QBSC) is
also discussed in [19], which can provide information re-
garding whether the integers are equal, or, if not, which one
is greater or smaller. An application of this QBSC in the
Grover’s search algorithm has also been mentioned. How-
ever, it may be noted that such multipurpose comparison
operators come with their own implementation overheads
and may require additional ancilla qubits. We, therefore, dis-
cuss independent implementations of each of the elementary
functions that use a minimal number of ancilla qubits, which
can be reused as well.

In Fig. 2, the comparison is shown to check for the case
(X < 11). Here, the constant 11 is encoded as 1011 onto
the number register (n;). The X address register contains the
input superposition (an equal superposition of all possible
values (0 to 15) during the first iteration), and the Hadamard
gates that put the register in this state are not shown in the
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figure here. All values of X will be simultaneously checked
for the validity of the inequality, and the ones satisfying it
will be marked. To check for the validity of such a relation
between two variables, as in the case of (X < Y) in S from
(1), the second register used will be the one corresponding
to the second variable (the Y register). The comparison uses
four ancilla qubits as well. Note that the number of ancillary
qubits used does not typically figure in the computation of
the complexity of the algorithm as the analysis involves only
the qubits in the data registers [11]. In our implementation,
the ancilla register adds as many qubits as required to store
one of the input variables.

The logic used in the circuit in Fig. 2 is to compare each
bit in the binary representation of the values. The compari-
son starts from the most significant bit (MSB) position. Let
us consider the instance of comparing 8 (1000 in binary)
and 11 (1011 in binary). An XOR gates checks if two qubits
are different or not. The XOR is implemented by a pair of
“controlled-X” (CX) gates, with the first of the two qubits
being compared as control for the first CX and the second as
the control for the second CX. The ancilla qubit correspond-
ing to the pair of qubits being compared (the MSB qubits in
this case) is the target. A similar procedure for comparison
has been used in an example in [10, Sec. 3.8]. The ancilla
qubit will be set to | 1) only if both the qubits being compared
correspond to different bit values. For our example, the MSB
bit is 1 for both the numbers being compared. The XORr does
not flip the corresponding ancilla, and the comparison shifts
to the next position. As these two bits are again the same,
the bit values in the next position are compared. Since these
are different, the circuit checks if the 1 occurs in the case
of the constant (the number 11), since the required compar-
ison is X < 11. Since inequality holds true for X = 8§, the
corresponding satisfiability register qubit in the oracle im-
plementation (denoted as s in the figure) is set to 1. Setting
the value of the satisfiability qubit is done by multicontrolled
Toffoli (MCT) gates having the corresponding qubits from
the number register and the ancilla qubit register as controls.
The ancilla qubit holding the information regarding whether
the bits are the same or different is inverted after each com-
parison (by applying an X gate, as shown in the figure) so
that its value does not affect the subsequent comparison(s)
that, in turn, are controlled by all the previous ancilla qubits.

The uncomputation part, which takes all the ancilla qubits
back to their initial state (the |0) state), is not shown here,
but it is the same set of operations done in reverse order
because all the operations used here are their own inverses.
The satisfiability register qubits are uncomputed only after
the execution of all the elementary operations in the con-
junctive formula. The information encoded in these qubits
is required to check the simultaneous satisfiability of all the
component circuits, which is an operation done only after
all component circuits are executed. The ancilla qubits may
have gotten entangled with the data qubits during the course
of the computation. If residual, garbage values are allowed
to remain in the ancilla qubits, decoherence of the ancilla
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FIG. 3. Circuit for = comparison for 4-bit numbers. The numbers being
compared are stored in the X and Y registers. Here, each x;, y; (n;), and
a; denote the indices of the qubits in the variable, (constant), and ancilla
qubit registers, respectively. s, denotes the qubit from the satisfiability
register that is used to store the information about the satisfiability of
this component circuit.

qubits measurements done on them subsequently can lead
to a collapse of the superposition in the data qubit registers
also because of their mutual entanglement. Uncomputation
not only removes entanglement between the ancilla qubits
and the data qubits, it also allows for their reuse [20].

2) = AND # COMPARISON
Fig. 3 shows the circuit used for the “equal-to” (and by
extension “not-equal-to”) comparison. We have shown the
comparison between values in two variable registers (i.e., the
comparison (X =Y)). The values of X and Y being com-
pared need to be encoded into the respective registers. They
can also be in a superposition of all the possible states. The
number of ancilla qubits required is equal to the length of a
variable address register (4 in this case). As in the < com-
parison, the corresponding bits in each variable are checked
for equality using XOR gates. In the cases where the bits are
the same, the ancilla qubit corresponding to that particular
position will remain in the |0) state itself. We invert all the
ancilla qubits in the last step (so that they are all in the state
|1) for the solution case) and then implement an MCT gate
with all these qubits as controls and the satisfiability qubit
as the target. The uncomputation is again the same set of
operations done in the reversed order. Note that the circuit
for # comparison will require an additional X gate on the
answer qubit after the equality comparison so that the cases
in which the values are not equal will get marked.

Checking if a variable is equal to a constant can be done
without using a separate register to hold the value of the
constant. For instance, suppose we want to check if X =4
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of the X-register is converted to |1111) by the NOT gates we
added, and the MCT, in turn, has a nontrivial action on the
target only when the control qubits are in the |1111) state,
thereby implementing the comparison of the variable with
the specified constant. A similar comparison had been shown
in [21].

3) TOFFOLI GATE

The Toffoli gate (see Fig. 4) is a controlled-controlled-NoT
gate (or the CCX gate) [10]. It is a unitary operation acting on
three qubits. The first two qubits are the control qubits, and
the third one is the target qubit, which is flipped if both the
control qubits are set to |1). It is a reversible gate, being its
own inverse [11]. The Toffoli gate action can be extended
to multiple controls and multiple targets. The MCT gate,
performing the C®"*X operation, has been used extensively
in the circuits described here. In this case, the target qubit is
flipped if all the control qubits are set to |1).

In general, for two n-qubit numbers, the “<” comparison
would require 2n CX gates and (n — 1) X gates in addition
to C®"X gates, where m € Z and ranges from 2 to (n + 1).
Without using any imperfect relative-phase Toffoli (RTOF)
gates or ancillary qubits, decomposing these MCT gates
(C®™X gates) into elementary gates would require O(m?)
basic operations [11], [22], [23]. Similarly, the “=" com-
parison would require 2n CX gates, n X gates, and a C®"X
gate. For instance, the oracle for the “<” operation shown
in Fig. 2 for two four-qubit numbers can be implemented
using 160 U3 gates and 156 CX gates, when unrolled using
the U3+CX gateset. (U3 is the generic single qubit rotation
gate in Qiskit.) Calculating the cost by setting the cost of the
CX gate to be ten times that of the general unitary gate, the
cost for this operation is 1720. Similarly, the “=" comparison
(see Fig. 3) will require 44 U3 gates as well as 44 CX gates
(cost: 484). However, the cost was calculated for the case
of using ideal gates without employing any cost reduction
techniques. The implementation of the C®"X operation using
the limited gate set of real noisy intermediate-scale quantum
(NISQ) [24] devices has been discussed in Section IV. For
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instance, the optimization strategies for various MCT gates
using ancilla and relative-phase gates have been elaborated
in [25], employing roughly O(n) basic operations.

B. GROVER ITERATION

The first step of the Grover iteration, namely, the oracle, is
constructed by combining the elementary operations in the
formula S in series. The registers holding the variables, con-
stants, and the ancilla qubits are common to all elementary
operation circuits. Component circuits do not alter the quan-
tum states of the registers holding the variables and constants
since the corresponding qubits are only used as controls in
the implementation of the respective operations. This means
that these registers can be used as it is in all the component
circuits, with appropriate reinitialization of the qubits storing
the constants. Ancilla qubits, on the other hand, are changed
by each component circuit, but the uncomputation that is
built into each such operation allows for their reuse. The sat-
isfiability qubits of each component circuit cannot be reused
since it contains the information about which components of
the input superposition state of the data registers satisfy the
particular operation that is part of S.

In those cases where components of the superposition in
the variable registers satisfy an elementary constituent in-
equality of S, the satisfiability qubit of that circuit is set to the
state | 1). Whenever the satisfiability qubits of all the elemen-
tary circuits that constitute the conjunctive formula are set to
[1), it means that the formula is satisfied. A flag qubit is now
added, which is initialized in the state |—) = (]0) — |1))/\/§.
The quantum state of the registers at this point can be written
as

1

W =Y I xa)ly . yadln . na)

X;,yi=0
® [ancilla)|sy™") sy [s5") | = )r (©))

where |x1...x4) and |y;...ys) denote the variable regis-
ters, which are in a superposition of all possible values, and
|ng ...ng) denotes the register holding the values of the con-
stants. The ancilla register is also shown explicitly in the state
given above even if at the end of the computation, the state
of this register is restored to its initial one and is, therefore,
irrelevant. The satisfiability qubits from each component cir-
cuit, assuming that there are three such circuits, are shown
as |s;) with their dependence on the values x; and y; of the
input register shown explicitly in superscript. The last qubit
is the flag qubit initially in the state |—).

The final step in the oracle action is the application of an
MCT gate with all the satisfiability qubits |s ;) as controls and
the flag qubit as the target. When all s; = 1, the Toffoli gate
acts as

|=)e = —|=)e = (=1)""25| =)y

where 515253 denotes the product of the bit values corre-
sponding to the satisfiability qubit states. This converts the

3104013

state in (2) to

1
W) = 3 D xgdy - vadln )

x;,y7=0
® fancilla)|s) 5% 5% | -)r. 3)

In writing the state above, we have explicitly shown the phase
kickback produced by the final Toffoli gate that marks the
solution states with a phase of —1, thereby completing the
oracle action. Alternatively, the flag qubit can be set to the |1)
state initially, instead of the |—) state, and the multicontrolled
Z (MCZ) gate can be used instead of the MCT gate to check
for the simultaneous satisfiability of all the inequalities. This
also has the similar phase kickback effect on the solution
states.

Since the register holding the constants and the ancilla
register qubits were reused at each stage by uncomputing
them, the total number of qubits required will not scale with
the number of inequalities in S (provided that the number
of variables remains the same). This has the advantage of
reducing the number of qubits used, but the qubits belonging
to the number register and the ancillary register must both
be uncomputed after each operation (since they are used as
a common resource for all the operations). Reusing these
registers means that computation of each of the qubits in
the satisfiability register cannot be done in parallel, and there
will also be a small cost involved in reinitializing the number
register at each step for each constraint. After all these op-
erations and the phase kickback operation, the satisfiability
register qubits alone remains to be uncomputed. The opera-
tions (used for checking for the validity of the inequalities),
which were performed earlier, can be repeated to uncompute
the satisfiability register qubits and bring them back to their
initial state (the |0) state). After this uncomputation of the
satisfiability register qubits, the state in (3) becomes

1
") =Y (=125 xy LX)y yadm - na)

x;,yi=0
® |ancilla) luncomputed satisfiability)|—)¢ @

where |uncomputed satisfiability) is the state of the satisfia-
bility register qubits after uncomputation.

In all the operations here, the variables and constants were
expressed as binary strings having the same length by filling
in zeroes in empty places for numbers with a smaller length
since the comparison circuits we use call for registers of
equal length.

The second step of the Grover iteration is the diffusion (or
the amplitude amplification) operator that is applied on the
variable registers. This operation, H®"(2]0")(0"| — 1,,)H®",
can be implemented as shown in Fig. 5 for a four-qubit
case [11]. In general, the number, n, of qubits on which the
diffusion operator acts is the total number of qubits in all the
variable registers put together. Here, the first set of Hadamard
gates would have converted the initial uniform superposition
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register.

state |) of the variable registers to one in which all qubits
are in the |0) state. The oracle has, however, marked certain
components of the superposition (the solutions) with a phase
of —1 in the state |"”) from (4). This difference between |1/)
and |v"") is amplified by the diffusion [11]. The conditional
phase shift operation (2|0")(0"| — I,,) is carried out by the
part of the circuit in the dotted box [11]. The gate operations
in the shaded part comprise the MCZ operation, where the
identity HXH = Z has been used. After a sufficient number
of iterations, measurement of the variable register leads to
one of the solution states with high probability. Each such
solution is stored in a classical register. By repeating this
whole process, all the solutions can be identified, provided
that the number of solutions is small compared to the total
number of possible inputs (M < N).

Returning to the specific example we were considering
with N = 256 and M = 3, the expected number of iterations
for sufficiently amplifying the amplitude of the solutions is
approximately 8. However, the solutions were obtained with
considerably high probability (total probability of finding a
solution, P = 0.107) in just one iteration itself. Although
only a single iteration was performed, the circuit execution
was repeated 8192 times, making the solution states easily
distinguishable in the final probability distribution. Increas-
ing the number of iterations leads to a circuit of greater depth
and greater cost as well, which is not desirable. Still, without
incorporating this high cost circuit, it is possible to easily
obtain the solutions in a single iteration alone, by increasing
the number of execution repetition shots. Fig. 6 shows the
final probability distribution after one of the implementa-
tions of the circuit on the ibmq_qasm_simulator (provided
by the IBM Quantum Experience [26]), which supports up
to 32 qubits. The coding had been done in Python using
QisKIT v0.26.0—IBM’s quantum computing SDK, using
IBM Quantum Experience cloud-based access.
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FIG. 6. Final probability distribution for the case

S ={(X <8) A (Y =4) A (X > Y)}, giving high probabilities for the three
solutions. The execution was performed on the ibmq_qasm_simulator
and was run 8192 times to get the probability distribution. Pt = 0.107.

IV. CIRCUIT COST REDUCTION AND OPTIMIZATION

The circuit we have designed for the conjunctive formula in
(1) works very well on the IBM simulator giving a sharp
increase in the probability for measuring the solution states at
the output, as seen in Fig. 6, after only one Grover iteration.
However, the circuit still tests the limits of computations that
can be implemented in the NISQ processors available today.
In order to successfully implement, we need to consider var-
ious circuit optimization and error mitigation steps. A survey
on synthesis and optimization of reversible circuits has been
done in [27], wherein several algorithmic techniques have
been reviewed. It also discusses the need to devise and use
methods suitable for a particular device (technology map-
ping), by taking into account its specific limitations, since
the physical implementation on a device is dependent on its
Hamiltonian. Several benchmarking and software tools have
also been elaborated. Noise-adaptive compiler mappings for
NISQ computers, based on several comparative studies, are
discussed in [28].

One approach to reducing circuit cost is to use alterna-
tive gates, sometimes at the cost of introducing more ancilla
qubits. The circuit cost can be brought down considerably by
replacing the MCT gates we have used with alternate low-
cost options. Variants of the Toffoli gates that involve imper-
fect phases may be used instead of the usual Toffoli gates
in cases where they are uncomputed, so that these phases do
not affect the circuit implementation [18], [25], [29]-[31].
These gates fall under the general class of RTOF gates. The
RTOF j; gate by Margolus [22] has been proven to be optimal
in [32]. This Margolus gate, available in the Qiskit Circuit
Library [18] as the RCCX gate (a relative-phase alternative to
the controlled-controlled X gate), can be used as an imperfect
Toffoli gate. Another realization of an imperfect Toffoli gate
is by sandwiching a CZ gate (between the second control
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and the target) between controlled-Hadamard (from the first
control to the target) gates [10], [33]. Both these alternative
realizations reduce the cost of the Toffoli gate by half, as can
be checked by unrolling them into the general unitary gate
and the CX gate basis. The Qiskit Circuit Library also in-
cludes the C3XGate (for C®3 X operation) and the C4XGate
(for C®*X) methods for performing similar operations, with
the C4XGate based on an implementation given in [22]. The
RCCCX gate, based on the implementation discussed in [25],
belongs to the RC3XGate class.

For performing general C ®" X gates, the Qiskit library
has the MCXVChain gate, which uses a V-chain of CX gates.
However, this requires additional qubits as ancilla. Alterna-
tive methods on realizing Toffoli gates with no ancilla have
been discussed in [23] and [34]. Although these have been
shown to be beneficial, implementing these gates on actual
quantum processors may be both difficult and imperfect, as
already mentioned in [23] itself. This is due to the com-
plications involved in decomposing the rotation gates with
small angles used in this implementation into fault-tolerant
gates. Linear phase-depth (where phase depth is defined as
the minimum number of cycles required to execute all the
Zy gates) ancilla-free decomposition methodology for the
MCT gate using the (Clifford+Zy) quantum gate library (Zy
being the Nth root of the Pauli’s Z-gate, whose action is to
flip the phase of the qubit by an angle of 7 /N) has been
proposed in [35]. However, for achieving low phase depth,
this proposal also has to use ancilla qubits. The blog post
by Gidney [36] also briefly discusses some methods of con-
structing such large cNOT gates. Using ancilla or workspace
qubits is one of the more efficient ways of reducing circuit
cost effectively. However, with the limitations on the num-
ber of qubits available in NISQ processors, further advances
and improvements in the hardware are required before these
strategies can be employed.

We chose to unroll the circuit into the basis composed of
the general unitary gate (U(0, ¢, A)) and the CX gate for
the cost calculation. The optimization level of the Qiskit
transpiler was set to the maximum level of 3. The circuit
transformations (or equivalently, transpiler passes) vary with
each level of optimization with each level containing all the
previous level optimizations also. At each optimization level,
the passes vary, due to the corresponding, predefined pass
managers. Level 0 is a special case compatibility only pass
and does not involve any explicit optimizations, and it just
maps the circuit to the backend. It is used mainly in char-
acterization experiments, where it is desirable to have no
optimizations applied by the transpiler. Level 1 (the default
level) is for lightweight optimization that collapses adjacent
gates wherever possible. Level 2 is a medium-weight opti-
mization in which by exploiting gate commutation relation-
ships, cancellation of as many gates as possible is done. It
also generates a layout of gates that is optimized for the noise
in each device. Level 3 is for heavy-weight optimization,
which includes the block collection and optimal resynthesis
pass and redundant gate removal passes as well. Generally,
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higher fidelity and lower depth are achieved with higher lev-
els of optimizations, but at the expense of longer transpilation
time [37], [38]. The cost of the circuit was roughly calculated
by setting the cost of the CX gate to be ten times that of the
general unitary gate. Several cost reduction techniques had
been discussed in some of the IBM Quantum Challenge Fall
2020 participants’ write-ups [39], [40]. In the cost reduction
we used, all the MCT gates except the one checking for the
satisfiability of all the clauses were replaced with imperfect
ones, since these were uncomputed later on. The MCT gates
with two and three controls were replaced with the RCCX
and RC3X gates. The flag qubit was used as an ancilla for
the decomposition of the C®4X and C® X gates. The MCT
gate used in the diffusion was also replaced with a low-cost
variant composed of RCCX and RC3X gates and a single
Toffoli gate, using the ancillary qubits for the decomposi-
tion. This kind of decomposition was found to be more cost
efficient than the V-Chain of CX gates, which uses more
ancilla. The inverses of these imperfect gates were used in the
uncomputation of all these operations. With these optimiza-
tions done, the circuit cost reduced significantly, by roughly
53-56% for the specific case of 3-bit numbers. For the case
of § = {(X < 5) A (Y = 6)}, the cost came down from 2889
(289 U3 gates + 260 CX gates) to 1351 (151 U3 gates + 120
CX gates), which is a reduction by around 53%. Similarly,
for § = {(X > 3) A (Y = X)}, the initial cost was 2761 (281
U3 gates + 248 CX gates), which reduced by roughly 56%
to 1221 (141 U3 gates + 108 CX gates) after optimization.
Table I displays the qubit and gate count comparison for
conjunctive formulas involving two variables for different
number of clauses and bit strings of different lengths. Further
optimizations can also be done for a specific conjunctive
formula S, taking into consideration the unused qubits in that
particular case and using them as ancilla. It may be noted that
since the control of quantum hardware is via analog pulses,
pulse control techniques can show improvements over the
gate-based compilation in processor error reduction. Such
optimizations using Qiskit Pulse have been discussed in [41].

V. DEVICE RUN AND NOISE ANALYSIS
Due to the constraints on the quantum volume (QV) and the
number of qubits available in NISQ processors available over
the cloud from IBM, our trials on real quantum processors
were limited to satisfiability circuits for 3-bit numbers. The
circuit was run on ibmq_16_melbourne v2.3.23, belonging
to the Canary Processors from IBM Quantum and having a
QV [42] of 8. The conjunctive inequality S = {(X < 5) A
(Y = 6)} was checked for solutions. This implementation
requires 15 qubits, same as the number of qubits available
in the processor that was used. The optimizations mentioned
in the previous section were done on the circuit, and the
optimization level of the transpiler was also set to 3 in all
the executions.

In Fig. 7(a), the output obtained from running the circuit
in the ibmq_qasm_simulator is shown. The circuit was
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TABLE I Qubit and Gate Count for Conjunctive Formulas Involving Two Variables for Different Number of Clauses and Bit Strings of Different Lengths

Bitstring
length
of t%le No.  of NO-. of | No. of U3 gates No. of CX gates Cost
vari. | clauses | qubits (Nus) (Nex) (Nus +10 x Nex)
ables
3-bit 2 15 85-193 54 - 166 625 - 1853
3 16 212-272 182 - 248 2032 - 2752
Abit 2 9 162 - 565 114 - 498 1302 - 5545
3 20 607 - 810 536 - 722 5967 - 8030

The values of circuit cost were obtained for randomly chosen conjunctive formulas (S) and these values must be taken as rough estimates. Gate cancellation
and further optimizations depend on the exact gates used, which, in turn, depend on the exact form of S. The cost for inequalities of the form (X Op C)

will differ from those of the form (X Op Y). Since the cost for the “=" operation is lower than that for the “<” or “>" operations, the minimum cost is
obtained for cases with the maximum number of “=" clauses and the maximum cost for the cases with maximum “<” or “>" clauses in S, preserving the
validity of S.

unrolled into the general unitary gate and the CX gate ba-
sis while implementing on the simulator. The correct solu-
tions were obtained with high probability on the simulator.
Fig. 7(b) shows the results of the same computation run on
the ibmq_16_melbourne device. We see that the actual de-
vice fails to give the desired output and performs rather badly.
In order to put the performance of the ibmq_16_melbourne
device in context, we look at its QV relative to the QV
required to run a typical circuit we consider. The QV of a
device is the measure of the largest random circuit of equal
width and depth that it can implement successfully. IBM’s
definition of QV [42] takes into account not only the number
of qubits available for computation, but also their connectiv-
ity, qubit and gate noise, which are all factors limiting the
computations that can be performed on a NISQ processor.
To compute the QV of a device, the minimum of the number
of qubits m and depth of the circuit, d(m), that can be run
with at least two-thirds probability of success given the noise
in the circuit is computed first. This minimum is maximized
over all possible proper and improper subsets of qubits in
the device to obtain the logarithm of the QV. Qiskit provides
for the necessary routines for estimating the QV of a given
device. For a model circuit of m qubits and depth d(m), it
has been estimated in [42] that the computation fails with
high probability when the model circuit volume satisfies the
condition md =~ 1/eqfr, where €. is an estimate of the mean
effective error probability per two-qubit gate.

Two examples of conjunctive inequalities for 3-bit num-
bers were checked for solution. Out of these two examples,
the case S = {(X < 5) A (Y = 6)} has a depth (d) of 240
when unrolled into the most common device basis of the IBM
Q systems (that includes the gates Rz, VX , X, and CX). Since
the circuit requires a minimum 15 qubits, in the absence
of noise in the qubits or the gates and without connectivity
restrictions (so that allowed circuit depth is unconstrained),
the QV of the device required to run this circuit would be
at least 219 = 32768. The ibmq_16_melbourne device has
15 accessible qubits, but it has a QV of only 8 due to the
significant noise levels present in the NISQ device. Hence,
the large circuit being implemented here using all 15 qubits is
bound to fail, and this is seen to be so. In the execution on the
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ibmq_16_melbourne device, the circuit was unrolled into
the device’s specific set of basis gates (I, Rz, VX, X, and CX).
The layout option of the Qiskit transpiler was also set to the
“noise_adaptive” option. Since noise constrains the QV of
ibmq_16_melbourne device even if it has sufficient number
of qubits to run our circuits successfully, in the following, we
estimate the threshold noise levels below which the processor
can, in principle, execute the circuits.

To analyze the noisy result, the device noise parameters
were included in the simulator, and the execution was done
on this noisy simulator. Here, the same transpiled circuit as
the one in the actual device run was used in the execution.
A noise model having parameters matching those of the de-
vice backend and the basis gates and corresponding coupling
map for this configuration were used. These were automat-
ically generated from the device backend properties using
the Qiskit NoiseModel class. This is an approximate model
comprising the gate error probability and the gate length of
each basis gate on each qubit, in addition to the relaxation
time constants and the readout error probabilities of each
qubit [38]. The noisy result obtained [as shown in Fig. 7(c)]
confirms that the erroneous result on the actual processor can
be attributed to the noise in the device.

Errors on the device were further studied to find a thresh-
old for the noise below which the execution gives rela-
tively better results. For this, a custom noise model was
created with a thermal relaxation error and a depolariz-
ing error channel. Using the device-specific compiled cir-
cuit as before, the circuit with error was simulated on the
ibmq_gasm_simulator. The single-qubit gate error, com-
prising the single-qubit depolarizing error followed by the
single-qubit thermal relaxation error, was applied on all the
single-qubit gates in the device basis (I, Rz, VX ,and X). The
two-qubit gate error in the form of two-qubit depolarizing
error followed by single-qubit relaxation errors on the indi-
vidual qubits coupled by the gate was applied on all the CX
gates [38]. No other errors were considered for this custom
noise model.

The parameters for the single-qubit thermal relax-
ation error were chosen to match those of the device
(ibmq_16_melbourne). The average values of the thermal
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) FIG. 8. Probability distributions on solving S = {(X < 5) A (Y = 6)} on the
ibmq_qasm_simulator with the custom noise model. The circuit was run
8192 times in all the executions. Improvements in various noise
Probability parameters by factors ranging from 10 to 20 are required for
0.025¢ ibmq_16_melbourne to start giving solutions for the three bit problems
we have considered. (a) Result of the noisy simulation with the
parameters of the thermal relaxation error channel matching those of
0.02F ibmq_16_melbourne (T; = 55.72us, T, = 60.51us, and £ = 928 ns), as on
May 24, 2021, and those of the single and two qubit gate depolarizing
errors as A1 = 1073 and 1, = 1072, respectively. P,t = 0.080. (b) Result of
0.015) the noisy simulation with the parameters of the thermal relaxation error
channel as T, = 1155.72us, T, = 1160.51us, and t = 598 ns, and those of
the single and two qubit gate depolarizing errors as 1; =2.7 x 10~* and
001l A2 = 2.7 x 1073, respectively. Pot = 0.179.
0,005}
< < < S < < g relaxation time constant (77 ) and the dephasing time constant
5 s = s = S = (T») were set to be 55.72 and 60.51 s, respectively. The gate
© time (¢) for relaxation error was set to 928 ns. These parame-
c

FIG. 7. Probability distributions on solving S = {(X < 5) A (Y = 6)}. The
circuit was run 8192 times in all the implementations. (a) Results
obtained on the ibmq_qasm_simulator with the probabilities of the five
solutions [(6, 0), (6, 1), (6, 2), (6, 3), and (6, 4)] correctly amplified.

Piot = 0.569. (b) Erroneous results (giving a random probability
distribution) obtained on the ibmq_16_melbourne processor.

Pyt = 0.081. (c) Results obtained on the ibmq_qasm_simulator with the
noise model, basis gate set and layout matching those of the
ibmq_16_melbourne processor. Pt = 0.076.
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ter values are as obtained from the calibration information of
the device from [26] as on May 24, 2021. The executions
on the real device in Fig. 7 were also performed on the
same date, so that the comparisons done would be meaning-
ful. The depolarizing error channel parameters were chosen
arbitrarily to be 1073 and 1072, respectively, for the single-
and two-qubit gates (1] and A,, respectively). With the ini-
tially chosen parameter values, the obtained result was noisy,
as seen in Fig. 8(a), with significant errors involved. The
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FIG. 10. S={(X <7) A (X > 3) A (Y < X)} with the probabilities of the
15 solutions [(0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3,
4), (3, 5), (3, 6), (4, 5), (4, 6), and (5, 6)] amplified. Pox = 0.449.
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noise parameters were progressively changed by increas-
ing 77 and 7, by 10 us, reducing ¢ by 3 ns, and reduc-
ing A1 and A, by 6.6 x 107 and 6.6 x 107, respectively,
in each step. The results were seen to get better, and sat-
isfactory results were obtained with high probability for
T, = 1155.72 us, T, = 1160.51 us,t =598 ns, A} = 2.7 X
1074, and A» = 2.7 x 1073, as shown in Fig. 8(b). The total
success probability, Py, in this case is not as high as that
for the ideal simulation. This is because of the noise present,
which increases the probabilities of the other states as well.
However, it is still good enough to clearly determine the
solutions, when repeated several times. Another conjunctive
formula S = {(X > 3) A (Y = X)} was also checked for so-
lution with these parameters, and again, the desired results
were obtained at these noise levels.
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FIG. 12. S = {(X < 12) A (Y = X))} with the probabilities of the 12
solutions [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9),
(10, 10), and (11, 11)] amplified. Pt = 0.373.

The simulation with noise is an approximate study to em-
phasize the fact that better results can be obtained by reduc-
ing the noise. Since all types of errors were not considered
in this model, the actual device run may require different
ranges of values of these parameters. The values of the pa-
rameters obtained here is just one example giving reason-
able results. In reality, the ease of mitigating some kinds of
errors can be leveraged to obtain better results by mainly
controlling such errors. The circuits can also be altered with
different approximation mechanisms to obtain sufficiently
accurate results on these NISQ devices, instead of target-
ing a significant improvement in the hardware calibration
alone.

Figs. 9— 12 show some more examples solved using the al-
gorithm implementation on the ibmq_qasm_simulator with
the circuits optimized, as described in Section I'V. The solu-

tion pairs are ordered as (Y, X). All the circuits were run 8192
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times to obtain the final probability distributions. The ex-
pected probability distributions were obtained in one Grover
iteration itself in all these cases.

V1. DISCUSSION AND CONCLUSION

Motivated by the importance of finding solutions for con-
junctive formulas in classical computation problems of prac-
tical importance, we explored the solution of such formu-
las in NISQ devices. Specifically, we looked at conjunctive
formulas on the integer domain. Casting the problem as a
database search, we employed Grover’s algorithm for finding
the solutions. The individual component circuits for various
comparison operators were worked out. We showed how they
can be combined to form the oracle for the Grover’s algo-
rithm corresponding to the search of solutions for various
conjunctive formulas. Our approach not only checks for the
satisfiability of conjunctive formulas but seeks out the vari-
able values that satisfy them as well. Combining the oracle
with the diffusion operation, we constructed the full Grover
iteration. We also showed how the cost of implementing the
circuits can be reduced by optimizing the gates.

Worked out examples showed that for conjunctive formu-
las involving two variable and constants that are all 3- or
4-bit numbers, our implementation of Grover’s algorithm can
find the solutions within one iteration when running on the
noise-free classical simulators of IBM Q devices. On real
devices, we see that while the QV is sufficient to run some of
the simpler cases, the noise levels are still too high to obtain
usable results. We verify that the noise is indeed the main
impediment in implementation on NISQ devices by running
the simulation with added noise and seeing the degradation
in performance. We are able to establish noise thresholds
below which actual devices can lead to good results, thereby
setting targets for noise reduction and augmenting the case
for quantum error correction.

Our implementation provides the framework for solving
an important class of problems in the short term on real
devices. With the QV of available devices expected to im-
prove rapidly with noise levels going down and further gate
optimizations possible, successful execution and identifica-
tion of the solutions of large classes of conjunctive formulas
on the integer domain will come within reach. Extension of
our approach to constraint satisfiability problems on the real
domain is also quite straightforward. Multiple applications of
the available gates like H and T can approximate the required
rotation gates [10] to facilitate such an extension.
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