
Quantum Information Engineeringuantum
Transactions onIEEE

Received March 31, 2021; revised August 26, 2021; accepted September 13, 2021; date of publication September 21, 2021;
date of current version October 21, 2021.

Digital Object Identifier 10.1109/TQE.2021.3113936

Log-Domain Decoding of Quantum LDPC
Codes Over Binary Finite Fields
CHING-YI LAI (Member, IEEE), AND KAO-YUEH KUO (Member, IEEE)
Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Ching-Yi Lai (cylai@nycu.edu.tw)

The work of Ching-Yi Lai was supported by the Ministry of Science and Technology (MOST) in Taiwan, under Grant
MOST110-2628-E-A49-007.

ABSTRACT Aquantum stabilizer code over GF(q) corresponds to a classical additive code over GF(q2) that
is self-orthogonal with respect to a symplectic inner product. We study the decoding of quantum low-density
parity-check (LDPC) codes over binary finite fields GF(q = 2l) by the sum-product algorithm, also known
as belief propagation (BP). Conventionally, a message in a nonbinary BP for quantum codes over GF(2l)
represents a probability vector over GF(22l), inducing high decoding complexity. In this article, we explore
the property of the symplectic inner product and show that scalar messages suffice for BP decoding of
nonbinary quantum codes, rather than vector messages necessary for the conventional BP. Consequently,
we propose a BP decoding algorithm for quantum codes over GF(2l) by passing scalar messages so that
it has low computation complexity. The algorithm is specified in log domain by using log-likelihood
ratios of the channel statistics to have a low implementation cost. Moreover, techniques such as message
normalization or offset can be naturally applied in this algorithm to mitigate the effects of short cycles to
improve the BP performance. This is important for nonbinary quantum codes since they may have more
short cycles compared to binary quantum codes. Several computer simulations are provided to demonstrate
these advantages. The scalar-based strategy can also be used to improve the BP decoding of classical linear
codes over GF(2l) with many short cycles.

INDEX TERMS Belief propagation (BP), log-likelihood ratio (LLR), low-density parity-check (LDPC)
codes, quantum stabilizer codes, short cycles, message normalization and offset, sparse-graph codes.

I. INTRODUCTION

Quantum stabilizer codes can be used to protect quantum
information with efficient encoding and decoding procedures
similar to classical error-correcting codes [1]–[6]. Since
quantum coherence decays quickly, an efficient decoding
procedure is particularly important. For this purpose, sparse-
graph quantum codes, similar to classical low-density parity-
check codes [7]–[9], are preferred since they can be effi-
ciently decoded by the sum-product algorithm [10]–[18],
which is usually understood as a realization of belief propa-
gation (BP) [19]. BP is appealing because of its good decod-
ing performance for sparse-graph codes and efficient compu-
tation complexity that is nearly linear in the code length [7]–
[9]. BP decoding is done by iteratively passing messages on
a Tanner graph [20] corresponding to the parity-check matrix
of a code [21]–[25].
The concept of stabilizer codes has been extended from the

binary case (qubits) to nonbinary case (q-ary qudits) [26]–
[31].We assume that a q-ary qudit suffers errors from an error

basis of q2 elements. A quantum stabilizer code over GF(q)
can be considered as a classical additive code over GF(q2).
Although binary quantum codes are most widely studied, a
nonbinary quantum code has its advantages over binary ones.
For example, binary stabilizer codes do not perform as well
as nonbinary codes in spatially correlated noise [32], [33].
To improve, we can group every l qubits that are strongly
correlated together as a qudit and use quantum codes over
GF(2l) at a cost of higher decoding complexity.
In BP decoding of a classical code over GF(q), a message

is a probability vector of length q for a q-ary variable [34].
The complexity of BP is dominant by the check-node com-
plexity per edge for the convolution of messages, which is
O(q log q) per edge for classical codes over GF(q) [35], [36].
For quantum codes over GF(q), the check-node complex-

ity is even higher proportional to q2 log q2. To decode a
length-N quantum code over GF(q) with M parity checks,
one can represent its check matrix H ∈ GF(q2)M×N by a
matrix in GF(q)M×2N and decode the code using q-ary

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 2, 2021 2103615

https://orcid.org/0000-0003-1970-8167
mailto:cylai@nycu.edu.tw

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

BP (BPq), so that the check-node complexity reduces to
O(q log q) per edge. If q = 2l , one can further represent
H by a binary matrix ∈ GF(2)M×2lN to use BP2 and the
check-node complexity reduces to O(1) per edge. However,
these methods ignore some error correlations (such as the
correlations between Pauli X and Z errors), causing perfor-
mance degradation [13]–[16], [37]. Therefore, we would like
to study the BP decoding problem for nonbinary quantum
codes, and we will show that it can be simplified to O(1) for
binary fields GF(2l) without ignoring the error correlations.
This is done by exploring the property of the symplectic inner
product of quantum codes, so that scalar messages suffice for
BP decoding of nonbinary quantum codes, rather than vector
messages necessary for the conventional BP.1

In classical coding theory, BP is usually implemented in
log domain to require only additions and lookup tables for
computation [7], [38]–[41] (see Remark 1 for our case).
Moreover, the required bit-width for each scalar variable is
fewer in log domain compared to linear domain (Remark 7).
These greatly simplify the implementation of BP. We would
like to have a quantum version of efficient log-domain BP.
Previously we proposed a refined BP4 for binary quantum

codes [16], which uses scalar messages with check-node
complexity O(1) per edge and completes a decoding equiv-
alent to the conventional BP4. In this article, we extend this
approach to quantum codes over GF(2l) so that an efficient
22l-ary BP decoding with check-node complexity O(1) per
edge is possible. The central idea is that a message of this BP
concerns whether a qudit error commutes or anticommutes
with a parity-check Pauli operator. Consequently, we are able
to define a scalar message in log domain for quantum codes
(Definition 6) and propose a log-likelihood ratio (LLR) BP
(LLR-BP) decoding algorithm (Algorithm 1). This algorithm
is applicable to any quantum codes over GF(2l).

The proposed algorithm could be extended to quantum
codes over GF(pl) for a prime p. In this case, the check-node
complexity would reduce from O(p2l log p2l) to O(p log p)
per edge (see the discussion in Section V).
Another issue of BP decoding for quantum codes is that

the Tanner graph of a stabilizer code contains many short
cycles.2 This may lead to ineffective message passing [10]–
[18] since short cycles introduce unwanted dependency be-
tween messages to affect the convergence of BP [7, Sec. 4.2].
The problem can be mitigated during code construction [10],
[15], [42]–[44], but this would restrict the code candidates
in applications. Another direction is to improve the BP de-
coding algorithm. BP can be improved by postprocessing
[11]–[15], [17], but this increases the computation com-
plexity and, hence, increases the decoding time. Another
approach is to use a neural BP (NBP) decoder [18]; how-
ever, NBP may not apply to large codes due to the compli-
cated offline training process and more importantly, there is

1In Appendix B, we clarify the complexities of our approach and the
conventional approach, both maintaining the correlations between q2 errors.

2This is caused by the overlaps of the rows in the check matrix, which
cannot be prevented due to the commutation relations of the stabilizers.

less guarantee of low error-floor from training (see Figs. 2
and 3).
As our LLR-BP uses scalar messages, it is straightforward

to apply the techniques of message normalization or off-
set [45]–[47] without incurring much additional cost. These
techniques can suppress overestimated messages caused by
short cycles [47]. Applying these techniques significantly
improves the BP performance on binary quantum codes [16].
For nonbinary quantum codes, the number of rows in a check
matrix becomes more [e.g., see (11) and (12)], which may
cause much more short cycles compared to the case of binary
quantum codes. However, applying message normalization
or offset on the scalar-based nonbinary BP again significantly
improves the performance, and this improvement does not
need a large number of iterations to achieve. Computer sim-
ulations will be conducted to show these advantages.
Since quantum codes are like classical codes with short

cycles, our approach can also be used to improve the BP
decoding of classical codes over GF(2l) with short cycles.
(This will be discussed in Remark 8.)
This article is organized as follows. In Section II, we pro-

vide some basics for binary fields GF(2l) and define stabi-
lizer codes over GF(2l). In Section III, we give a scalar-based
LLR-BP for stabilizer codes over GF(2l). In Section IV,
simulation results for several stabilizer codes are provided.
We conclude and give some discussions in Section V.

II. STABILIZER CODES OVER BINARY FINITE FIELDS
The theory of binary and q-ary quantum stabilizer codes can
be understood as certain classical codes over finite fields
GF(22) and GF(q2), respectively [1]–[6], [26]–[31].We refer
to [48] for the basics of finite fields.
Definition 1: For a finite fieldGF(p) and its extension field

GF(q′ = pm), the trace from GF(q′) to GF(p) is defined as

Trq
′
p (η) = η + ηp + · · · + ηp

m−1 ∈ GF(p)

for any η ∈ GF(q′).
Assume q = 2l in the following if not otherwise specified.

A. SYMPLECTIC INNER PRODUCT VECTOR SPACE
Let tr(·) be the trace from GF(q) to the ground field GF(2) =
{0, 1}, i.e., for η ∈ GF(q),

tr(η) � Trq2(η) = η + η2 + · · · + η2
l−1 ∈ {0, 1}.

For two vectors u = (u1, . . . , uN), v = (v1, . . . , vN) ∈
GF(q)N , their Euclidean inner product is

u · v = ∑
j u jv j.

Let ω be a primitive element of GF(q2). Then, {ω,ωq} is a
basis for GF(q2) over GF(q) [29]–[31], [48]. Consequently,
a vector u in the vector space GF(q2)N can be written as

u = ωu′ + ωqu′′

where u′, u′′ ∈ GF(q)N . That is, GF(q2)N is isomorphic to
GF(q)2N , and a u ∈ GF(q2)N is uniquely represented by a

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

(u′|u′′) ∈ GF(q)2N given {ω,ωq}. To better align with the
notation in Section II-B, we denote u′ by uX and u′′ by uZ .
Equivalently, u ∈ GF(q2)N may be denoted by

u = ωuX + ωquZ ≡ (uX |uZ) ∈ GF(q)2N . (1)

Definition 2: For u, v ∈ GF(q2)N , where q = 2l , the (bi-
nary) symplectic inner product of u and v is defined as

〈u, v〉 = tr(uX · vZ + uZ · vX) ∈ {0, 1}. (2)

Equation (2) is a symplectic {0, 1}-bilinear form, or a sym-
plectic inner product. This form is important in the study of
quantum codes, to link a quantum code over GF(q) as a clas-
sical code C over GF(q2) that is symplectic self-orthogonal
(i.e., 〈u, v〉 = 0 for any two codewords u, v ∈ C).

The Hermitian inner product of u, v ∈ GF(q2)N is

u · v̄ = ∑
j u jv

q
j

where v̄ � (vq1, v
q
2, . . . , v

q
N).

Theorem 1 (See [29], [31]): For u, v ∈ GF(q2)N , where
q = 2l , their symplectic inner product (2) can be computed
by

〈u, v〉 = tr

(
u · v̄ + v · ū
ω2 + ω2q

)
. (3)

Proof: Write u = ωuX + ωquZ and v = ωvX + ωqvZ .
Then

u · v̄ + v · ū = u · v̄ + u · v̄

= (ω2 + ω2q)(uX · vZ + uZ · vX) (4)

which directly leads to (3).
A consequence of Definition 2 and Theorem 1 is in the

following.
Corollary 1: For q = 2l , two vectors u, v ∈ GF(q2)N sat-

isfy 〈u, v〉 = 0 if one of the following conditions holds.

1) They are Hermitian orthogonal, i.e.,

u · v̄ = 0. (5)

2) They satisfy the Calderbank–Shor–Steane (CSS) con-
ditions [2], [3]

u ≡ (uX |000), v ≡ (vX |000)
or u ≡ (000 |uZ), v ≡ (000 |vZ)
or u ≡ (uX |000), v ≡ (000 |vZ) with uX · vZ = 0. (6)

Example 1: If q = 2, we have ω2 + ω2q = 1 in GF(4) and
tr(·) = Tr22(·) is the identity map. For u, v ∈ GF(4)N

〈u, v〉 = uX · vZ + uZ · vX .

It is well known that 〈u, v〉 = Tr42(u · v̄) [5]. Here, Tr42(0) =
Tr42(1) = 0 and Tr42(ω) = Tr42(ω

2) = 1 by Definition 1.
Given η ∈ GF(q2), define

[η] = {ξ ∈ GF(q2) : 〈η, ξ 〉 = 0}
[η]c = {ξ ∈ GF(q2) : 〈η, ξ 〉 = 1}.

Then, [η] and [η]c are two sets with elements that commute
and anticommute with a certain element η, respectively, and
{[η], [η]c} is a partition of GF(q2).
Example 2: For the special case of q = 2, GF(4) =

{0, 1, ω, ω2} with 1 = ω + ω2. Then, 〈1, ω〉 = 〈ω,ω2〉 =
〈1, ω2〉 = 1. Thus, [ω] = {0, ω} and [ω]c = {1, ω2}.
For two sets A and B, define A \ B = {a ∈ A : a /∈ B}. If

B = {b}, we may write A \ {b} as A \ b for simplicity.
Theorem 2: For q = 2l , there exists an additive subgroup

S ⊂ GF(q) of size q/2 such that for η ∈ S, tr(η) = 0 and for
η′ ∈ GF(q) \ S, tr(η′) = 1.
Proof: All the elements in GF(q) are the roots of x2

l + x,
which has a factorization

x2
l + x = ∏

b∈{0,1}(x+ x2 + · · · + x2
l−1 + b)

where the each factor (x+ x2 + · · · + x2
l−1 + b) contains

2l−1 = q/2 distinct roots in GF(q) for b = 0 or 1. If η is a
root of (x+ x2 + · · · + x2

l−1 + b), then it can be shown that
tr(η) = b. Thus, we have the statement.

Note that Theorem 2 easily extends for GF(pl) by a similar
factorization equality in [48, Th. 8.1(e)].
Corollary 2: Given η �= 0 in GF(q2), where q = 2l , we

have

|[η]| = |[η]c| = q2/2.

Proof: Let η = (ηX |ηZ) ∈ GF(q2) for ηX , ηZ ∈ GF(q).
Since η �= 0, at least ηX �= 0 or ηZ �= 0. Suppose that ηZ �= 0
without loss of generality. For ξ = (ξX |ξZ) ∈ GF(q2)
with ξX , ξZ ∈ GF(q), we have 〈η, ξ 〉 = tr(ηXξZ + ηZξX) =
tr(ηXξZ) + tr(ηZξX). Then, {ηZξX : ξX ∈ GF(q)} is a per-
mutation of {ξX ∈ GF(q)}. By Theorem 2, there exists S ⊂
{ηZξX : ξX ∈ GF(q)} with |S| = q/2 such that for all μ ∈ S,
tr(μ) = 0 and forμ′ ∈ GF(q) \ S, tr(μ′) = 1. If ηX = 0, then
we are done. Consider ηX �= 0. Note that a fixed ν ∈ {ηXξZ :
ξZ ∈ GF(q)} is paired with each χ ∈ {ηZξX : ξX ∈ GF(q)}
such that

tr(ν) + tr(χ) =
{
tr(ν), if χ ∈ S

tr(ν) + 1, if χ ∈ GF(q) \ S.
For a fixed ν, a half of the pairs {(ν, χ)} have tr(ν)+tr(χ)=0,
while the other half have tr(ν) + tr(χ) = 1. This holds for
any ν. Thus, |[η]| = |[η]c| = q2/2.
The property that |[η]| = |[η]c| has its merit in implemen-

tation (for an important operator in Definition 6).

B. STABILIZER CODES OVER GF(2l)
We review some basics of nonbinary quantum codes [26]–
[31] and then define the decoding problem.
LetR be the field of real numbers,Z+ be the set of positive

integers, and C be the field of complex numbers.
Consider a q-ary quantum system with q = 2l , for some

integer l ≥ 1. A qudit is a unit vector in Cq. Without loss of
generality, let {|η〉 : η ∈ GF(q)} be a set of orthonormal basis
for Cq such that there is a set of (generalized) Pauli operators

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

{X (ξ),Z(ξ ′) : ξ, ξ ′ ∈ GF(q)} on Cq, where

X (ξ)|η〉 = |η + ξ〉, Z(ξ)|η〉 = (−1)tr(ηξ)|η〉. (7)

Note that X (0) = Z(0) = I, the identity.
An N-qudit state is a unit vector in (Cq)⊗N = CqN . For

u = (u1, . . . , uN) ∈ GF(q)N , we define the (generalized) N-
fold Pauli operators

X (u) = X (u1) ⊗ · · · ⊗ X (uN),

Z(u) = Z(u1) ⊗ · · · ⊗ Z(uN).

The set {X (uX)Z(uZ) : uX , uZ ∈ GF(q)N} forms a basis for
the linear operators on CqN . It suffices to consider these
discrete errors for error correction according to the error
discretization theorem [6]. To form a group of operators
with closure, we include phases±1 (due to (−1)tr(ηξ) ∈ {±1}
in (7) for q = 2l) and consider the group

GN � {±X (uX)Z(uZ) : uX , uZ ∈ GF(q)N}.
Elements of GN are connected to the elements of the vector
space GF(q2)N by a homomorphism ϕ : GN → GF(q2)N de-
fined as follows. For E = (−1)c ⊗N

n=1 (X (u
X
n)Z(u

Z
n)) ∈ GN ,

where c ∈ {0, 1} and uX , uZ ∈ GF(q)N , we have

ϕ(E) � ωuX + ωquZ ≡ (uX |uZ) (8)

where ω is a primitive element of GF(q2) as discussed in
Section II-A. Note that the kernel of ϕ is {±I⊗N}, i.e., the
phase (−1)c of E does not appear in ϕ(E).
Two operators E,F ∈ GN either commute (EF = FE) or

anticommute (EF = −FE) with each other. Suppose that
ϕ(E) = (uX |uZ) and ϕ(F) = (vX |vZ). Then

EF = (−1)tr(u
X ·vZ+uZ ·vX)FE

= (−1)〈ϕ(E),ϕ(F)〉FE.

Definition 3 (See[30], [31]): A stabilizer group S is an
Abelian subgroup of GN such that −I⊗N /∈ S . The stabilizer
code C(S) defined by S is a subspace of CqN that is the joint
(+1)-eigenspace of all the operators in S , i.e.,

C(S) = {|ψ〉 ∈ CqN : F|ψ〉 = |ψ〉 ∀F ∈ S}.
Every element in S is called a stabilizer.

If an occurred error E ∈ GN anticommutes with certain
stabilizers, it can be detected bymeasuring the eigenvaules of
an independent generating set of S . If any of the eigenvalues
is −1, we know that there is an error. Let S⊥ = {E ′ ∈ GN :
E ′F = FE ′ ∀F ∈ S}. Apparently, if E ∈ S⊥ \ {±S} then it
cannot be detected and will lead to a logical error.
For u ∈ GF(q2)N , let |u| beHamming weight of u. For E ∈

GN , define the weight of E as wt(E) � |ϕ(E)|. The minimum
distance of C(S) is defined as

D � min{wt(F) : F ∈ S⊥ \ {±S}}.
C(S) can correct an arbitrary error E ∈ GN with weight
wt(E) ≤ �D−1

2 �. If S has l(N − K) independent generators,

FIGURE 1. Tanner graph of H =
[

H11
H21

H12
H22

0
H23

]
.

then C(S) has dimension qK . In this case, C(S) is called an
[[N,K,D]]q stabilizer code.
Equivalently we may study quantum stabilizer codes us-

ing the language of finite fields. Let C � ϕ(S) ⊂ GF(q2)N .
Since S is an Abelian group, C is an additive code over
GF(q2) that is self-orthogonal with respect to 〈·, ·〉 in (2), i.e,
C is contained in the symplectic dual C⊥ of C

C ⊆ C⊥ � {u ∈ GF(q2)N : 〈u, v〉 = 0 ∀v ∈ C}.
Thus, ϕ(S⊥) = C⊥ and D = min{|v| : v ∈ C⊥ \C}.
The encoding and decoding procedures of C(S) are

strongly related to C and C⊥. The encoding procedure, as
well as the measurement circuit, can be referred to [6], [49].
We discuss the decoding procedure in the following, which
is similar to the classical syndrome-based decoding of C⊥.

The phase of a Pauli operator can be ignored when dis-
cussing the decoding, so, without loss of generality, in the
following, we consider errors or stabilizers with phase +1.
Suppose that a codeword (state) in C(S) is disturbed by

an unknown error E = E1 ⊗ · · · ⊗ EN ∈ GN . We would like
to infer e = ϕ(E) ∈ GF(q2)N by measuring a sequence of
M stabilizers {Sm}Mm=1, where M ≥ l(N − K) since S has
l(N − K) independent generators. Write

Sm = Sm1 ⊗ · · · ⊗ SmN, (9)

where Smn ∈ G1. Since the error either commutes or anti-
commutes with a stabilizer, measuring a stabilizer returns
outcome+1 or−1, which gives us a bit of error information.
LetH ∈ GF(q2)M×N with (m, n)-entryHmn = ϕ(Smn). Then,
H is called a check matrix of the stabilizer code C(S), andC
is the row space of H, denoted by C = row(H). After the
measurements defined by {Sm}Mm=1, we will obtain a binary
error syndrome z = (z1, . . . , zM) ∈ {0, 1}M , where

zm = 〈ϕ(E), ϕ(Sm)〉 = 〈e,Hm〉 (10)

where Hm ∈ GF(q2)N is the mth row of H, called a check.
The decoding problem is as follows.
Decoding a stabilizer code over GF(q = 2l): Given a

check matrix H ∈ GF(q2)M×N , a binary syndrome z ∈
{0, 1}M of some (unknown) e ∈ GF(q2)N , and certain char-
acteristics of the error model, the decoder has to infer an
ê ∈ GF(q2)N such that 〈ê,Hm〉 = zm for m = 1, 2, . . . ,M
and ê− e ∈ row(H) with probability as high as possible.

Decoding by BP needs a Tanner graph defined by the
check matrix H of the code C(S). The Tanner graph is a
bipartite graph consisting of N variable nodes (represent-
ing {en}Nn=1) andM check nodes (representing {zm}Mm=1), and

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

there is an edge, with type Hmn, connecting variable node n
and check node m if Hmn �= 0. An example is shown in
Fig. 1. Let

N (m) = {n : Hmn �= 0}
M(n) = {m : Hmn �= 0}

which are the neighboring sets of the check node m and the
variable node n, respectively. BP infers {en}Nn=1 by passing
messages between neighboring nodes in the Tanner graph.

C. STABILIZER CODE CONSTRUCTIONS
Wefinish this section with some stabilizer code constructions
that will be used in our discussions and simulations.
A check matrix H ∈ GF(22l)M×N of a 2l-ary quantum

codemay be constructed from an M
2l × N parity-check matrix

H̃ of a classical linear code over GF(22l) such that H̃ is
Hermitian self-orthogonal (cf. Corollary 1). Given such an
H̃, we have a check matrix H by the CSS extension

H =

⎡⎢⎢⎢⎣
H̃
ωH̃
...

ω2l−1H̃

⎤⎥⎥⎥⎦ (11)

where ω is a primitive element of GF(22l). A simple con-
struction of (11) is to find a binary H̃ such that H̃H̃T = O,
where O is a zero matrix of appropriate dimension.3

If H̃ in (11) is replaced by a set of Euclidean orthogonal
binary matrices {H (i)}2l−1

i=0 , whereH (i)(H (j))T = O for i �= j,
then we have the generalized CSS extension4

H =

⎡⎢⎢⎢⎣
H (0)

ωH (1)

...
ω2l−1H (2l−1)

⎤⎥⎥⎥⎦ . (12)

Note that although (11) and (12) are called (generalized)
CSS extension, the rows of H may not necessarily have the
form defined in the CSS conditions (6).

III. BP DECODING OF STABILIZER CODES
In the following discussion, we assume that

GF(q2) = {0, 1, ζ , ζ 2, . . . , ζ q2−2}
where ζ is a primitive root of GF(q2) and q = 2l .
Consider that we want to solve the quantum decoding

problem mentioned after (10). First, express (10) as

zm = 〈e,Hm〉 = ∑N
n=1〈en,Hmn〉 (mod 2). (13)

3If H̃ is binary and H̃H̃T = O, the supports of any two rows u, v of H̃
have an overlap of even size; consequently, any two rows ωiu, ω jv of H in
(11) satisfy (ωiu) · (ω jv) = 0 (i.e., they satisfy (5), as required).

4We do not need H (i)(H (i))T = O, since two rows u, v of H (i) become
two rows ωiu, ωiv of ωiH (i) in (12), with 〈ωiu, ωiv〉 = 0 by Theorem 1.

The addition for syndrome generation will always be mod 2
without further specification.Wemay use z = 〈e,H〉 to mean
that zm = 〈e,Hm〉∀m.
Consider a memoryless error model that each qudit suf-

fers an independent error, i.e., the probability that the error
vector is u ∈ GF(q2)N is P(e = u) = ∏N

n=1 P(en = un) for
some distribution P(en = η) = pη over {η ∈ GF(q2)}, where∑
η pη = 1. In BP, the goal is to find the most probable

value of each en ∈ GF(q2) given z. Initially each en has value
in GF(q2) according to the initial channel characteristics
{P(en = η) = pη}η∈GF(q2). The likelihood of each value of
en is recorded and continuously updated according to (13)
and the initial channel characteristics.

A. LLR-BP FOR STABILIZER CODES OVER GF(2l)
Definition 4: Suppose that we have an (unknown) error vec-
tor e = (e1, . . . , eN) ∈ GF(q2)N . For n = 1, . . . ,N, the ini-
tial belief of en being 0 rather than ζ i �= 0 ∈ GF(q2) for
i ∈ {0, 1, . . . , q2 − 2} is the LLR

(i)
n = ln

P(en = 0)

P(en = ζ i)
∈ R.

The initial belief distribution of en is the LLR vector

n = (
(0)
n ,

(1)
n , . . . ,

(q2−2)
n) ∈ Rq2−1.

Definition 5: A generalized depolarizing channelwith er-
ror rate ε is a memoryless q2-ary symmetric channel that
takes each nonzero error ζ i ∈ GF(q2), i ∈ {0, 1, . . . , q2 − 2},
with probability ε

q2−1
and no error with probability 1 − ε,

i.e.,

(i)
n = ln

(
(1 − ε)(q2 − 1)/ε

)
∀i = 0, 1, . . . , q2 − 2.

The initial beliefs {
n}Nn=1 are the information about the
channel statistics and will be kept constant during decoding.

Given {
n}Nn=1, z ∈ {0, 1}M, and H ∈ GF(q2)M×N , BP
intends to find the most probable value of en for
each n by computing a set of running beliefs {�n =
(�(0)

n , . . . , �
(q2−2)
n) ∈ Rq2−1}Nn=1, where �

(i)
n is to estimate

ln
P(en = 0 | syndrome z)

P(en = ζ i | syndrome z)
= ln

P(en = 0, syndrome z)

P(en = ζ i, syndrome z)

= ln

∑
u∈GF(q2)N :un=0 1(〈u,H〉=z) P(e = u)∑
u∈GF(q2)N :un=ζ i 1(〈u,H〉=z) P(e = u)

(14)

where 1(〈u,H〉=z) = 1, if 〈u,H〉 = z, and 1(〈u,H〉=z) = 0, oth-
erwise. For u ∈ GF(q2)N , let u|N (m) be the restriction of u
to N (m). Note that Hm|N (m) is the vector consisting of the
nonzero entries of Hm. Then, (13) can be written as

zm = 〈e|N (m),Hm|N (m)〉 (15)

or

〈en,Hmn〉 + zm = 〈e|N (m)\n,Hm|N (m)\n〉. (16)

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

By (15) and (16), terms in (14) can be approximated by the
distributive law [23], if the check matrix is sparse, as follows:

P(en = ζ i, syndrome z)

=
∑

u∈GF(q2)N :un=ζ i,
〈u,Hm〉=zm∀m

P(e = u)

=
∑

u∈GF(q2)N :un=ζ i,
〈u|N (m),Hm|N (m)〉=zm∀m

⎛⎝ N∏
j=1

P(e j = u j)

⎞⎠

∝˜
∏

m∈M(n)

(∑
u|N (m)\n:

〈u|N (m)\n,Hm|N (m)\n〉
= 〈ζ i,Hmn〉 + zm

P(e|N (m)\n = u|N (m)\n)
)

× P(en = ζ i) (17)

where P(e|N (m)\n = u|N (m)\n) = ∏
n′∈N (m)\n P(en′ = un′)

after P(en = ζ i) is separated.5 It is similar for approximating
P(en = 0, syndrome z). When the Tanner graph is a tree, the
(proportional) approximation in (17) becomes an equality
after iterative updates [by a flow described after (24)]. The
approximation is usually good for a sparse H, and then we
have the �(i)

n for (14) expressed as in shown (18) and (19) at
the bottom of the page.
The numerator (or denominator) in the logarithm of (19)

is close to the usual sum-product computation of BP over
GF(2), which has efficient hyperbolic tangent rule for com-
putation [7], [25, Sec. 2.5.2]; however, u|N (m)\n here is a
vector in GF(q2)|N (m)|−1, rather than GF(2)|N (m)|−1. Thus,
it needs simplification before we can reach an efficient com-
putation. The trick is to describe the likelihood of commu-
tation and anticommutation of en and Hmn by a Bernoulli
(binary) random variable. At qudit n, if Hmn = η �= 0, then
the required random variable would be 〈en, η〉 ∈ {0, 1}.
Definition 6: For an LLR-type vector, such as
n in

Definition 4, we define a belief-quantization operator λη :

Rq2−1 → R for η ∈ GF(q2) \ {0} by

λη(
n) = ln

∑
ξ∈GF(q2):〈ξ,η〉=0 P(en = ξ)∑
ξ∈GF(q2):〈ξ,η〉=1 P(en = ξ)

5To get the result of (17), one can also start from the Bayes’ theorem:
P(en = ζ i, syndrome z) = P(syndrome z | en = ζ i) × P(en = ζ i).

= ln
1 + ∑

i:〈ζ i,η〉=0 e
−
(i)

n∑
i:〈ζ i,η〉=1 e

−
(i)
n

. (20)

Note that

λη(
n) = ln
P(〈en, η〉 = 0)

P(〈en, η〉 = 1)
(21)

which is the LLR of the binary random variable 〈en, η〉 and
this term features themajor difference between our algorithm
and the classical nonbinary LLR-BP [38].
Having the scalar information λHmn (
n) for each edge

(m, n), where Hmn �= 0, BP completes the update (19) by the
tanh rule mentioned in [24] and [40], [25, Sec. 2.5.2], defined
as follows. For two scalars x, y ∈ R

x� y � 2 tanh−1
(
tanh

x

2
× tanh

y

2

)
. (22)

More generally, for k scalars x1, . . . , xk ∈ R

k
�
n=1

xn � 2 tanh−1
(∏k

n=1 tanh
xn
2

)
. (23)

Then, the update (19) can be computed by the tanh rule

�(i)
n =
(i)

n +
∑

m∈M(n)
〈ζ i,Hmn〉=1

(−1)zm
(

�
n′∈N (m)\n

λHmn′ (
n′)

)
(24)

which completes the computation of the first iteration. We
show that (19) and (24) are equivalent in Appendix A.
To iteratively update �(i)

n , BP performs the message pass-
ing [19], [21] by exchanging two types ofmessages: variable-
to-check messages λHmn (�n→m) and check-to-variable mes-
sages �m→n, where �n→m =
n for the initialization. The
proposed LLR-BP decoding algorithm is shown in Algo-
rithm 1. Note that in the conventional BP, ifH is over GF(q2),
each message is a vector of length q2 [34]–[36], [11]–[13],
but we need only scalar messages in our refined algorithm.
We remark that in (26) and (27), the summation is restricted
to the anticommute part. This is nontrivial and is different
from the conventional approach.
We explain the messages. First, write (16) as

〈en,Hmn〉 = zm + ∑
n′∈N (m)\n〈en′ ,Hmn′ 〉.

This suggests that the information from a neighboring
check m, together with the syndrome bit zm, will tell us

�(i)
n =
(i)

n +
∑

m∈M(n)

ln

∑
u|N (m)\n:

〈u|N (m)\n,Hm|N (m)\n〉
=〈0,Hmn〉+zm

(∏
n′∈N (m)\n P(en′ = un′)

)
∑

u|N (m)\n:
〈u|N (m)\n,Hm|N (m)\n〉

=〈ζ i,Hmn〉+zm

(∏
n′∈N (m)\n P(en′ = un′)

) (18)

=
(i)
n +

∑
m∈M(n)

〈ζ i,Hmn〉=1

(−1)zm ln

∑
u|N (m)\n:

〈u|N (m)\n,Hm|N (m)\n〉=0

(∏
n′∈N (m)\n P(en′ = un′)

)
∑

u|N (m)\n:
〈u|N (m)\n,Hm|N (m)\n〉=1

(∏
n′∈N (m)\n P(en′ = un′)

) (19)

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

Algorithm 1: LLR-BP for Decoding Quantum Codes
Over GF(q = 2l) With Binary Syndrome.

Input: H ∈ GF(q2)M×N , z ∈ {0, 1}M , Tmax ∈ Z+, and
LLR vectors {
n ∈ Rq2−1}Nn=1.
Initialization: For n = 1 to N and m ∈ M(n), let

�n→m =
n

and compute λHmn (�n→m).
Horizontal step: For m = 1 to M and n ∈ N (m),

compute

�m→n = (−1)zm �
n′∈N (m)\n

λHmn′ (�n′→m). (25)

Vertical step: For n = 1 to N and m ∈ M(n), compute

�(i)
n→m =
(i)

n +
∑

m′∈M(n)\m
〈ζ i,Hm′n〉=1

�m′→n,∀i = 0, . . . , q2 − 2,

(26)
and compute λHmn (�n→m).

Hard-decision step: For n = 1 to N, compute

�(i)
n =
(i)

n +
∑

m∈M(n)
〈ζ i,Hmn〉=1

�m→n,∀i = 0, . . . , q2 − 2.

(27)
• Let ê = (ê1, . . . , êN), where ên = 0, if �(i)

n > 0 for
i = 0, . . . , q2 − 2, and ên = arg minζ i∈GF(q2)�

(i)
n ,

otherwise.
The horizontal, vertical, and hard-decision steps are
iterated until that the inferred ê has syndrome z (i.e.,
〈ê,H〉 = z) or that the maximum number of iterations
Tmax is reached.

the likelihood of the error en commuting with Hmn or not,
which can be quantified by a scalar. Thus, λHmn (�n→m) is
the (scalar) message that variable node n has to send to check
node m, where �n→m initialized to
n. Then, check node m
combines the incoming λHmn′ (�n′→m) and generates �m→n

(25), which is the (scalar) message that check node m has to
send to variable node n.

Consequently, variable node n collects the messages
�m→n for m ∈ M(n), together with the initial belief
n, to
update the running belief �n (27). Updating �n→m (26) can
be simplified by, for each entry i, �(i)

n→m = �
(i)
n −�m→n, if

〈ζ i,Hmn〉 = 1, and �(i)
n→m = �

(i)
n , otherwise. Then, the up-

dated �n→m is used to update the message λHmn (�n→m),
whichwill be sent to check nodem for the next iteration. (The
computations may be further simplified as in Remark 4.) The
two types ofmessage passing (m-to-n and n-to-m) are iterated
until a stop criterion is achieved.
Note that the estimate of �(i)

n by BP is very good if the
neighboring messages incoming to a node are nearly inde-
pendent [7, Sec. 4.2] (e.g., when the parity checks have small
overlap). In particular, if the Tanner graph is a tree, BP is
exact and converges quickly. Quantum codes inevitably have

correlated (dependent) messages due to short cycles. We will
discuss more in the section of simulations (see Section IV).

B. SOME REMARKS
Remark 1: The computations in (20)–(23) can be efficiently
computed by numerical or lookup-table methods [7], such
as the Jacobian logarithm [38]–[41]. The function λη(·) can
be computed by repeatedly using a function f : R2 → R
defined by f (x, y) � ln(ex + ey) = max(x, y) + ln(1 +
e−|x−y|). Since ln(1 + e−|x−y|) ∈ [0, ln(2)] ⊂ [0, 0.69315],
it can be implemented by a lookup-table or any numerical
methods. The multiplications can be avoided if the
lookup-table method is used. As in [40], x� y = ln 1+ex+y

ex+xy
= ln(1 + ex+y) − ln(ex + xy), which can also be computed
by f .
Remark 2: When q = 2, the LLR-BP in Algorithm 1 is

equivalent to the refined linear-domain BP for binary quan-
tum codes [16, Algorithm 3]. The linear-domain algorithm
can also be extended to q = 2l . A linear-domain algorithm is
suitable for a decoder with fast floating-point multiplication.
Remark 3: Algorithm 1 is specified using a parallel sched-

ule. Other schedules can also be used (e.g., a serial schedule
is used in [16, Algorithms 2 and 4]).
Remark 4: The computations in Algorithm 1 may be sim-

plified. First, compute (27) but do not compute (26). Then, it
is not hard to show that (26) can be omitted and

λHmn (�n→m) = λHmn (�n) −�m→n. (28)

Similarly, to compute each�m→n in (25), one can first com-
pute �m � �

n∈N (m)
λHmn (�n→m) and then compute �m→n =

�m � λHmn (�n→m),6 where

x� y = 2 tanh−1
(
tanh

x

2
/ tanh

y

2

)
for x, y ∈ R such that y �= 0 and |x| < |y|.
Remark 5: It is known that using a conventional BP over

GF(q2) has a high check-node complexity O(q2 log q2) per
edge, which dominates the complexity of BP [13], [35], [36].
Since Algorithm 1 uses scalar messages, the check-node
complexity is O(1) per edge, independent of q. Beside the
low complexity, using scalar messages has advantages in
performance as explained in the following.
Since only scalar messages are exchanged in Algorithm 1,

it is straightforward to apply the techniques of message nor-
malization or message offset to improve the performance of
BP when the messages are overestimated [45]–[47].

1) Message normalization by αc > 0: the message�m→n

in (25) is normalized to �m→n/αc prior to the subse-
quent computations of the algorithm.

6This may be an approximation since, before computing �m, a tiny
disturbance needs to be introduced to λHmn (�n→m) if it is zero. Then when
using x� y, it can be guaranteed that y �= 0 and |x| < |y|. This does not affect
the performance in simulations if the disturbance is small enough.

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

2) Message offset by β > 0: the message �m→n in (25)
is offset to sign(�m→n) × max(0, |�m→n| − β) prior
to the subsequent computations of the algorithm.

Messages are overestimated because the overlap between
two parity checks is not small, causing (unreliable) depen-
dent messages passing in the Tanner graph. Quantum stabi-
lizer codes inevitably have this issue and can suffer signifi-
cant BP performance loss or have high error-floors [10]–[18].
Remark 6: In the linear-domain algorithm [16], it needs to

compute (·)1/α for message normalization or (·) × 1/eβ for
message offset. Applying message normalization or offset in
LLR-BP is much simpler as shown earlier.
Remark 7: For the implementation cost, a practical con-

cern is that, compared to a linear-domain algorithm, an LLR
algorithm can be implemented with smaller bit-width (e.g.,
each scalar is represented by the six most significant bits
(MSBs) for decoding classical binary codes as suggested by
Gallager [7]). This will be discussed more in the following
section. Since λη(·) and the operation � can be approxi-
mately computed using looking-up tables (Remark 1), the
LLR algorithm with message normalization or offset does
not need multiplications. (If αc is used, choose 1/αc to be
a value with smaller bit-width and then the computation of
(·) × 1/αc only takes several bitwise-shifts and additions.)
Remark 8: Suppose that H is constructed from H̃ by the

CSS extension (11). If a binary syndrome z ∈ {0, 1}M is ob-

tained according to H, a nonbinary syndrome z̃ ∈ GF(22l)
M
2l

can be derived from z ∈ {0, 1}M .7 Then, the classical nonbi-
nary BP (referred to as CBPq2) can decode the syndrome z̃
according to H̃. (See Appendix B.)

On the other hand, given a parity-check matrix H̃ ∈
GF(2l)M

′×N of a classical linear code over GF(2l) with short
cycles, H̃ can be extended as an additive check matrix H ∈
GF(2l)lM

′×N by a step like (11). Then, we can use a decoding
strategy like Algorithm 1 (possibly with αc or β) to improve
the BP performance on this classical code.
Although (H, z) and (H̃, z̃) in Remark 8 contain the same

amount of information, the results of using Algorithm 1 on
(H, z) and using CBPq2 on (H̃, z̃) would be different. The
major difference is that CBPq2 is more likely to have over-
estimated messages when there are short cycles. This is a
disadvantage of using CBPq2 even if the quantum code is
obtained from a classical linear code. For comparison, we
provide a detailed discussion in Appendix B using Steane’s
code [3]. In the comparison, Algorithm 1 indeed handles the
message-overestimate problem better. In the following sim-
ulations, we will focus on the performance of Algorithm 1.

IV. SIMULATION RESULTS
Several advantages of using the scalar-based LLR-BP algo-
rithm are suggested in the abovementioned remarks. In this
section, we provide numerical results to show these advan-
tages, focusing on how good performance can be achieved

7See [13, Table 5] for the case of q = 2; this can be generalized to q = 2l .

with low complexity. Algorithm 1 supports q = 2l , so it will
be referred to as LLR-BPq2 , depending on the q used. For

q = 2 (q2 = 4), Algorithm 1 is referred to as LLR-BP4. Its
linear-domain analogue [16, Algorithm 3] is referred to as
linear-BP4.
In decoding, the number of short cycles is positively cor-

related with the (mean) row-density of the check matrix,
κ = 1

M

∑M
m=1 |Hm|/N. We will consider codes with κ from

small to large. The first is a [[129, 28]]2 hypergraph-product
(HP) code with κ ≈ 5.9/129 ≈ 0.0457, the second is a
[[256, 32]]2 bicycle code with κ = 16/256 = 0.0625, and
the third is a [[126, 28]]2 generalized bicycle (GB) code with
κ = 10/126 = 0.0794. Then, we construct [[256, 32]]q=4
and [[126, 28]]q=4 codes by using (11) and (12) from the
second and third codes, respectively. Note that (11) or (12)
will result in much more short cycles.
It is known that the BP performance on quantum codes

may be improved by using a serial schedule [16], [50], [51].
A fully parallel implementation of message passing is pre-
ferred for faster decoding. Herein, we demonstrate LLR-
BPq2 for q = 2 or 4 with the parallel schedule and try to
improve the decoding performance.
A scalar can be represented as a floating-point number

(−1)b0 × 1.(b1b2 . . . bk−1)2 × 2exp

as in the IEEE 754 standard [52], where b0, b1, . . . , bk−1 ∈
{0, 1} and k is called the bit-width. Using a larger k in-
creases the precision (for both additions or multiplications)
but also increases the physical hardware area and computa-
tion time. We use the [[129, 28]] HP code to show that LLR-
BP requires a smaller k compared to linear-domain BP (see
Section IV-A). This is consistent with the classical case, de-
spite that the HP code has many short cycles.
Next, we describe the details of the simulations. We will

evaluate the performance of various decoding setups and
consider the generalized depolarizing errors (Definition 5)
on certain quantum stabilizer codes. Each initial LLR vector

n in {
n}Nn=1 is set to

n =
(
ln (1−ε0)

ε0/(q2−1)
, . . . , ln (1−ε0)

ε0/(q2−1)

)
∈ Rq2−1 (29)

where ε0 is chosen to be the depolarizing error rate ε or a
certain constant independent of ε. The reasons to choose ε0
a constant are related to the performance [53], as well as the
complexity, and will be seen later. Using a constant ε0 also
avoids the need to probe or estimate the channel statistic ε.
For each simulation of a data point, we try to collect at least

100 logical errors, i.e., ê− e /∈ row(H). Let C = row(H). A
logical error occurs when the syndrome is falsely matched
(ê− e ∈ C⊥ \C) or Tmax is reached but the syndrome is mis-
matched (ê− e /∈ C⊥). We will try to minimize the maxi-
mum number of iterations Tmax or match it to the literature.
For comparison, consider a generalized bounded-distance

decoding (BDD) with a lookup-table to have logical error

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

FIGURE 2. Performance curves of various decoders on the [[129, 28, 3]]
HP code. The [LP19] curve is converted from [18], using (31).

rate

Pe,BDD(N, t, γ) = 1 −
(∑t

j=0 γ j
(N
j

)
ε j(1 − ε)N− j

)
(30)

where t is the (error-)correction radius and γ j is the percent-
age of weight- j errors to be corrected. We simply denote it
by Pe,BDD(N, t) if γ j = 100% for all j ≤ t. Also, we redraw
the performance curves given in the literature. If it is based
on independent X–Z channel with a cross probability εb, it
will be rescaled according to a conversion rule in [10]:

ε = 3εb/2. (31)

Using this rule may slightly overestimate the performance in
the depolarizing channel but it is acceptable.
In the following, we may omit q when referring to an

[[N,K,D]]q=2 code. All tested codes are nondegenerate, and
for degenerate codes the readers can refer to [54].

A. [[129, 28, 3]] HP CODE
First, we consider a [[129, 28, 3]] HP code [44], which is
constructed with the [7, 4, 3] and [15, 7, 5] BCH codes,
discussed in [16], [18], and [51]. The performance of BP
decoding on this code is bad with the parallel schedule. It can
be improved by using a serial schedule [16], [51] or using
a neural-network based BP2 (NBP) [18]. Herein, we show
that it can be improved by using message offset with low
complexity, while keeping the parallel schedule.
If a correction radius of t = 2 is considered, this code

is known to have γ0 = 1, γ1 = 1 and γ2 ≈ 98.73% [51].
We plot the performance curves of LLR-BP4, linear-BP4,
NBP, and the lookup-table decoders Pe,BDD(N, t = 1) and
Pe,BDD(N, t = 2, γ2 = 98.73%) in Fig. 2. Due to the many
short cycles in the Tanner graph, LLR-BP4 does not perform
well. However, after applying a message offset with β = 0.5,
its performance is close to the lookup-table decoder. We also
do simulations by truncating all messages to some bit-width

k. The required bit-width is about k = 5 or 6, which is close to
Gallager’s expectation in Remark 7, though sometimes larger
bit-width may be needed due to the short cycles.
When initializing
n (29), we use a fixed ε0 = 0.02 (also

truncated to k MSBs). Otherwise, if ε0 = ε, then |
(i)
n | be-

comes too-large when ε gets small: it will be insensitive to
small |�m→n| when performing (26) or (27), causing inef-
fective message passing. In the simulations, it only needs a
maximum number of iterations Tmax = 3, so the complex-
ity is very low. (The bad performance of LLR-BP4 without
message offset is irrelevant to constant ε0 or Tmax = 3.) On
the other hand, if linear-BP4 is used, then it requires bit-
width k = 11 based on the choice of eβ = 2 for message
offset, which can be implemented by bitwise-shift. In linear
domain, one may also consider eβ = 1.6: this only needs
k = 10 to achieve the same performance but implementing
(·) × 1/eβ ≈ (·) × 0.625 (Remark 6) needs a multiplication
or two bitwise-shifts with one addition.
We choose an offset β (which is like a threshold) and

a constant ε0 (29) by the following criteria, together with
some presimulations like [16, Fig. 11]. We need |�m→n|
large enough to pass the threshold β. The magnitude |�m→n|
would increase with the number of iterations [7]. Since we
use a small Tmax = 3 for this code, β cannot be too large.
(β = 0.5 here is comparatively small than β = 2.75 for the
other cases with larger Tmax that will be discussed later.)
Also, we need small enough ε0 to have large enough |
n|,
so that |�m→n| is large enough to pass the threshold β. Thus
we have large |
n| but relatively smaller |�m→n| due to
small Tmax = 3. Consequently, k should be large enough as
discussed in the last paragraph. (Using a k smaller than the
lower bounds suggested in Fig. 2 can cause large perfor-
mance degradation, due to ineffective message passing.)
On the other hand, using αc (which will be used later) does

not require a fixed ε0 since there is no threshold effect of β.
There is a certain systematic way to choose the normalization
value [54, Sec. III-B and Fig. 3]. To choose a better normal-
ization value, some presimulations are useful [16, Fig. 9].
Finally, we use (31) to redraw the NBP performance curve

given in [18]. (The NBP is also efficient in run-time, but 12
iterations are needed.) The curve shows that using a trained
neural-network decoder is able to have a better performance
for large ε but is hard to achieve a low error-floor for small ε.

B. BINARY QUANTUM BICYCLE CODES
Second, we simulate bicycle codes [10] and GB codes [43]
as in [15, Fig. 5]. We construct the [[126, 28, 8]] GB code
defined in [15] (to be decoded with Tmax = 32) and a [[256,
32]] random bicycle code discussed in [16] (to be decoded
with Tmax = 12). The results are shown in Fig. 3.
For reference, the curve denoted [PK19] is the result

for the GB code given in [15], which is based on a lay-
ered (serial) schedule. We show that BP with parallel
schedule works as well on this GB code. It can be fur-
ther improved by using αc. (Using β with proper ε0 also

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

FIGURE 3. Performance curves of various decoders on the [[126, 28, 8]]
GB code and the [[256, 32]] random bicycle codes. The [PK19] curve is
from [15]. The [LP19] curves are converted from [18], using (31).

works.) Gallager estimated that BP would have performance
close to Pe,BDD(N, t ≈ d) [7], much better than the typical
BDD performance Pe,BDD(N, t ≈ d/2). We draw the case
Pe,BDD(N, t ≈ d) for reference. The simulation results agree
with Gallager’s expectation.
For the [[256, 32]] (random) bicycle code, it has a high

error-floor [16] (due to random construction [55]). We show
that using β = 2.75 with ε0 = 5 × 10−3 significantly im-
proves the error-floor. (Using αc also works.) The code’s
check matrix has a constant row-weight 16, and thus, the
code distanceD ≤ 16, due to a row-deletion step in the bicy-
cle construction [10]. (Increasing the row-weight may lead to
some unwanted side-effects in the BP performance such as
delayed waterfall roll-off [10, Fig. 6].) If D ≈ 16, this code
may have BP performance approaching Pe,BDD(N, t = 16)
by Gallager’s expectation. Increasing Tmax can achieve this
performance. For the convenience of discussion, we will
show this for the case of q = 4 in the following section. [The
qudit-wise error correction capability would be at least the
same as the case of q = 2 by using the CSS extension (11).]

The performance curves (labeled [LP19] BP2 and NBP) of
another random [[256, 32]] bicycle code in [18] are rescaled
by (31) and also plotted in Fig. 3 for comparison. Although
NBP improves from BP2 by several orders of magnitude,
the resultant performance is not good enough because the
original error-floor of [LP19] BP2 is too-high. From our ex-
perience, this is likely because the binary generator vector
used for construction has many consecutive ones, causing
too-many short cycles in the Tanner graph. Using the random
bicycle construction appropriately,8 the curves we obtained
have much lower error-floors.

8Our [[256, 32]] bicycle code is constructed by a binary generator vec-
tor with ones at bits 1, 3, 9, 59, 68, 69, 107, 112; and in the row-deletion
step, rows 1, 2, 12, 59, 60, 68, 70, 73, 74, 76, 91, 92, 100, 115, 117, 120 are
deleted. For this code size, a purely random construction is usually fine to
achieve a good performance by proper message normalization or offset; It is
more important to make sure that there are no more than three consecutive
ones in the generator vector. The row-deletion becomes tricky (to prevent
too irregular Tanner graphs) only when N is large (e.g., N > 3000) [55].

FIG. 4. Performance of Algorithm 1 on the [[256, 32]]q=4 random bicycle
code. D is unknown but ≤ 16. When β is applied, a fixed ε0 = 5 × 10−3 is
used for initializing �n (29) to prevent delayed waterfall roll-off.

C. NONBINARY QUANTUM BICYCLE CODES
Herein, we extend the previous [[256, 32]] bicycle code and
[[126, 28]] GB code to q = 4 by (11) and (12), respectively.

The previous [[256, 32]] code has a check matrix H =[
H̃
ω0H̃

]
, where H̃ is a binary matrix such that H̃H̃T = O and

ω0 is a primitive element of GF(4). By the CSS extension,
we have the following check matrix for a [[256, 32]]4 code

H =

⎡⎢⎢⎣
H̃
ωH̃
ω2H̃
ω3H̃

⎤⎥⎥⎦
where ω is a primitive element of GF(16).
We perform the decoding of this [[256, 32]]4 code

in the q2-ary symmetric channel (Definition 5) by
Algorithm 1 (now LLR-BP16). Different values of Tmax

are considered, and the results are shown in Fig. 4. Using
either αc or β improves the BP performance (to a similar
level), and we show the case of using β. Several BDD
cases are also provided. It can be seen that using β

significantly improves the error-floor performance even
with small Tmax = 6. For Tmax = 12, the performance
trend is similar to the corresponding case in Fig. 3. By
increasing Tmax from 12 to 25, the performance improves
by about half an order of magnitude. With message offset,
there is no significant improvement if Tmax is further
increased to 50. The CSS extension does not increase
D, so the code still has D ≤ 16. With enough Tmax,
Algorithm 1 with message offset may have perfor-
mance close to Pe,BDD(N, t = 16) at logical error rate
around 10−5.

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

FIG. 5. Performance of Algorithm 1 on the [[126, 28, 8]]q=4 GB code.

We remark that the high error-floor problem can be im-
proved by carefully doing the row-deletion during the bi-
cycle construction [10], [55]. However, as D ≤ 16, the per-
formance limit is still about Pe,BDD(N, t = 16), and this
is roughly achieved by using αc or β even with ran-
dom construction. Thus, Algorithm 1 (with proper message
normalization or offset) has stable performance regardless
of the code construction. This provides more code can-
didates in applications and more flexibility when design-
ing the stabilizer measurements (rows of H) for physical
implementations.
The previous [[126, 28, 8]] GB code has a binary check

matrix H ≡
[
HX O
O HZ

]
with HX �= HZ , and we generalize it

as a [[126, 28, 8]]q=4 code by the generalized CSS exten-
sion (12). The decoding performance of LLR-BP16 on this
code is shown in Fig. 5. Compared to the corresponding case
in Fig. 3 ([[126, 28]] curves therein), the raw BP does not
perform well here. Using either αc or β improves the perfor-
mance (to a similar level). Here, we demonstrate the case of
using αc. The generalized CSS extension (12) induces more
short cycles, causing more overestimated messages and de-
grading the raw BP performance. Applying message normal-
ization significantly improves BP even with small Tmax = 6.
For large Tmax ≥ 25, using message normalization achieves
much better performance close to Pe,BDD(N, t = 12) at log-
ical error rate 10−6, which means that most errors of weight
≤ 12 are corrected, despite that the minimum distanceD = 8
only.

V. CONCLUSION AND DISCUSSIONS
We proposed an efficient scalar-based LLR-BP algorithm for
decoding quantum codes over GF(2l), which extended our
previous work [16]. This is especially useful when many
qubits are grouped into a qudit and a nonbinary decoder is

used; our demonstrations showed that correlated noise can
be well handled by the nonbinary BP.
The check-node complexity in our scalar-based LLR-BP

reduces from O(22l log 22l) to O(1) per edge. This saves
the decoding time and keep the quantum coherence better.
Moreover, the LLR algorithm can be implemented with ad-
ditions and lookup-tables without multiplications. It also has
other advantages, such as the smaller bit-width and the con-
venience for message normalization or offset. Using mes-
sage normalization or offset to improve the performance of
decoding nonbinary quantum codes is very important since
they may have more check rows and more short cycles. Com-
puter simulations were conducted, showing that good perfor-
mances can be achieved by this low-complexity approach.
The algorithm has stable performance for various quantum
codes and constructions.
Our LLR method naturally extends to a joint decoding of

data-syndrome errors by BP [51].
Although our criterion of a successful decoding is ê− e ∈

row(H), ê rarely converges to a degenerate error that is not e
when the decoding succeeds in the simulations of this article.
This is because the tested codes are nondegenerate, so BP
converges in a way more like classical decoding.
Topological codes are highly degenerate and have stabi-

lizers of low weight around 4 to 6 [56], [57] (causing the
classical minimum distance ≤ 4 or 6 because the code is
self-orthogonal). Using the proposed BP algorithm on these
degenerate codes has a bad decoding performance. However,
further modification on BP to handle these degenerate codes
is possible and this is addressed in [54].9

A quantum BCH/RS code [58]–[61] has numerous short
cycles in its Tanner graph since its parity-check ma-
trix is of high density. We tested two MDS Hermitian-
orthogonal BCH codes [[17, 9, 5]]4 and [[17, 13, 3]]4 in
[61] and found that message normalization can improve
the scalar-based BP by roughly an order of magnitude.
However, it is still far from any good BDD benchmark
due to the many short cycles. Preprocessing on the parity-
check matrix [62], [63] or postprocessing by ordered statis-
tics decoding [64], [65] improve BP on classical BCH/RS
codes. Our decoder may also be improved through these
techniques.
Our approach could be extended to quantum codes over

GF(pl) for a prime p. This would reduce the check-node
complexity from O(p2l log p2l) to O(p log p) per edge and
such nonbinary BP still maintains the correlations between
the p2l errors in the error basis. The measurement (trace
inner product) outcomes would be in GF(p) as in Defini-
tion 1. Given nonzero η ∈ GF(q2 = p2l), Corollary 2 should
be generalized that the q2 elements of GF(q2) are partitioned
into p groups (each with q2/p elements). Each BP message
is a probability vector over GF(p) in linear domain, where
each entry is the sum of the probabilities of q2/p elements.

9The achieved threshold is roughly 16% and 17.5% for decoding surface
codes and toric codes, respectively, as shown in [54, Figs. 14 and 21].

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

The check-node computation (convolution of two probability
vectors over GF(p)) can be done by FFT [35], [36].

APPENDIX A
BASIC VARIABLE-NODE AND CHECK-NODE UPDATE
RULES
Herein we show that (19) is equivalent to (24) by using
Definition 6 and the tanh rule (22), (23). The derivation is
similar to the BP2 case [25, Sec. 2.5.2]. It suffices to fo-
cus on the update for n = 1 with one row Hm. We assume
thatN (m) = {1, 2, . . . , |Hm|} without loss of generality and
prove by induction on |Hm|. The strategy is to go through
the basic variable-node and check-node update rules [24,
Sec. V-E].
If the row is with |Hm| = 1, it is trivial that �(i)

n =

(i)
n .

If the row is with two nonzero entries, consider

Hm|N (m)={1,2} = [η, ξ].

For n = 1, (19) becomes

�
(i)
1 =

(i)
1 + 〈ζ i, η〉(−1)zmλξ (
2) (32)

by using (21). The result is identical to (24) for |Hm| = 2.
Equation (32) is called the basic variable-node update rule.
Now suppose that the belief of n = 1 is to be updated by

one weight-three row Hm with

Hm|N (m)={1,2,3} = [η, ξ, ξ ′].

For ζ i ∈ GF(q2) such that 〈ζ i, η〉 = 0, both (19) and (24)
have the same result

�
(i)
1 =

(i)
1 (i.e., no update is needed if 〈ζ i, η〉 = 0).

For ζ i ∈ GF(q2) such that 〈ζ i, η〉 = 1, if zm = 0 in (19)

�
(i)
1 =

(i)
1 + ln

∑
τ,τ ′:〈τ,ξ〉+〈τ ′,ξ ′〉=0 P(e2=τ)P(e3=τ ′)∑
τ,τ ′:〈τ,ξ〉+〈τ ′,ξ ′〉=1 P(e2=τ)P(e3=τ ′)

=

(i)
1 + lnP(〈e2,ξ〉=0)P(〈e3,ξ ′〉=0)+P(〈e2,ξ〉=1)P(〈e3,ξ ′〉=1)

P(〈e2,ξ〉=0)P(〈e3,ξ ′〉=1)+P(〈e2,ξ〉=1)P(〈e3,ξ ′〉=0)

where the log term equals the LLR of 〈e2, ξ 〉 + 〈e3, ξ ′〉
(mod 2)

=

(i)
1 + ln (P(〈e2,ξ〉=0)/P(〈e2,ξ〉=1))(P(〈e3,ξ ′〉=0)/P(〈e3,ξ ′〉=1))+1

P(〈e2,ξ〉=0)/P(〈e2,ξ〉=1)+P(〈e3,ξ ′〉=0)/P(〈e3,ξ ′〉=1)

=

(i)
1 + ln e

xey+1
ex+ey , where x = λξ (
2), y = λξ ′ (
3)

=

(i)
1 + ln (ex+1)(ey+1)+(ex−1)(ey−1)

(ex+1)(ey+1)−(ex−1)(ey−1)

=

(i)
1 + 2 tanh−1

(
ex−1
ex+1 × ey−1

ey+1

)
=

(i)
1 + (λξ (
2)� λξ ′ (
3)) by (22).

In general, we have for 〈ζ i, η〉 ∈ {0, 1} and zm ∈ {0, 1}
�
(i)
1 =

(i)
1 + 〈ζ i, η〉(−1)zm (λξ (
2)� λξ ′ (
3)) (33)

which is identical to (24) for |Hm| = 3. The combining
(λξ (
2), λξ ′ (
3)) �→ λξ (
2)� λξ ′ (
3) is called the basic
check-node update rule.

Now assume that the belief of n = 1 is to be updated
by one weight-four row Hm with Hm|N (m) = [η, ξ, ξ ′, ξ ′′].
Consider 〈e2, ξ 〉 + 〈e3, ξ ′〉 (mod 2) as a binary random vari-
able; then its LLR is λξ (
2)� λξ ′ (
3) by the abovemen-
tioned derivation. We can further consider a binary random
variable (〈e2, ξ 〉 + 〈e3, ξ ′〉) + 〈e4, ξ ′′〉 (mod 2); then its LLR
is (λξ (
2)� λξ ′ (
3))� λξ ′′ (
4) by the same reason. Thus,
similar to (33) we have

�
(i)
1 =

(i)
1 + 〈ζ i, η〉(−1)zm

(
λξ (
2)� λξ ′ (
3)

)
� λξ ′′ (
4)

=

(i)
n=1 + 〈ζ i,Hmn〉(−1)zm

4
�
n′=2

λHmn′ (
n′) by (23).

That is, (19) and (24) are equivalent for |Hm| = 4. By in-
ducion on |Hm| using the same trick and by joining more
rows, we have that (19) and (24) are equivalent.

APPENDIX B
COMPARISON OF ALGORITHM 1 AND THE CLASSICAL
NONBINARY BP
Conventionally one would like to use classical nonbinary BP
to decode quantum codes since they can be considered as
special nonbinary codes. We will compare this direct use of
classical nonbinary BP with our LLR-BP in Algorithm 1.
We first describe the decoding of binary quantum codes

(q = 2). Suppose that H ∈ GF(4)M×N and z ∈ {0, 1}M
are given. For convenience, we describe the BP in linear
domain with initial beliefs {pn = (pIn, p

X
n , p

Y
n , p

Z
n) ∈ R4}Nn=1

and running beliefs {qn = (qIn, q
X
n , q

Y
n , q

Z
n) ∈ R4}Nn=1. Also,

the variable-to-check and check-to-variable messages
are denoted by {qnm = qn→m ∈ R4}(m,n):Hmn �=0 and
{rmn = rm→n ∈ R4}(m,n):Hmn �=0, respectively. Initially,
qnm = pn for each edge (m, n). The following methods
are considered in [12] and [13].

1) [12, (13)–(16)] or [13, (31)–(34)]: If the binary quan-
tum code corresponds to an additive code over GF(4),
convert the syndrome z ∈ {0, 1}M to a syndrome z̃ ∈
GF(4)M such that each zm = tr(z̃m). Thus, {rmn} can be
generated from {qnm} using the classical nonbinary BP.
Suppose that each rmn = (rImn, r

X
mn, r

Y
mn, r

Z
mn) is gener-

ated, where
∑

W rWmn = 1. According to the properties
in Example 1, do a post average as specified in [12]
and [13]. For example, if zm = 0 and the edge (m, n) is
of type X , then the post average rescales the vector as

r̃mn =
(
rImn+rXmn

2 ,
rImn+rXmn

2 ,
rYmn+rZmn

2 ,
rYmn+rZmn

2

)
.

Then, qWn = anpWn
∏

m∈M(n) r̃
W
mn for allW and n, where

an is a scalar such that
∑

W qWn = 1.
2) [13, (44)–(47)] (only for linear codes): If the bi-

nary quantum code corresponds to a linear classi-
cal code over GF(4), assume that the given H =

2103615 VOLUME 2, 2021

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

[
H̃
ωH̃

]
, where H̃ ∈ GF(4)

M
2 ×N is a parity-check ma-

trix of the linear code. Then, one can treat M syn-
drome bits {zm ∈ {0, 1}}Mm=1 as M/2 quaternary dig-

its {z̃m ∈ GF(4)}M/2m=1, and z̃ ∈ GF(4)M/2 is regarded as
the syndrome generated by the unknown error and the
parity-check matrix H̃. Using the classical nonbinary
BP can decode the syndrome. Note that there is no
post average on rmn = (

rImn, r
X
mn, r

Y
mn, r

Z
mn

)
, and qWn is

updated by qWn = anpWn
∏

m∈M(n) r
W
mn for allW and n,

where an is a scalar such that
∑

W qWn = 1.

Both methods can be generalized to q = 2l , and the check-
node complexity is O(22l log 22l) per edge. By a deriva-
tion like (17)–(24), it can be shown that method 1, after
generalized, is equivalent to Algorithm 1 in the sense that
they have the same decoding output if no message nor-
malization or offset is considered. However, Algorithm 1
has a check-node complexity O(1) per edge and is more
efficient.
If the code is linear, a generalized method 2 for q = 2l

is also efficient since the number of checks becomes M
2l .

However, method 2 tends to have more biased messages rmn,
while method 1 and Algorithm 1 tend to have more fair
messages r̃mn. Consequently, method 2 may have overesti-
mated messages. For comparison, we generalize method 2
for q = 2l . Let CBPq2 be the classical nonbinary BP (such

as [38]) with input: H̃ ∈ GF(q2)
M
2l ×N , z̃ ∈ GF(q2)

M
2l , Tmax ∈

Z+, and {
n ∈ Rq2−1}Nn=1; and with output ê ∈ GF(q2)N .
Then, we can impose on CBPq2 with method 2 to solve the

decoding problem, as in Algorithm 2.10

The complexity of each algorithm (or method) is as fol-
lows. Let |H| be the number of nonzero entries in H. The
variable-node complexity is O(q2) per edge for each algo-
rithm. Consider the computation flow as in Remark 4.
Algorithm 1 has complexity |H|O(q2) + |H|O(1) =

O(|H|q2).
A generalized method 1 has complexity |H|O(q2) +

|H|O(q2 log q2) = O(|H|q2 log q2).
Algorithm 2 has |H̃| = |H|/2l, where 2l = log2(q

2).
Thus, Algorithm 2 has complexity |H̃|O(q2) +
|H̃|O(q2 log2(q2)) = O(|H|q2) but is only applicable to
linear codes.
In [13], method 1 is called standard nonbinary BP (though

with additional post average) and method 2 is calledmodified
nonbinary BP (though it is the check matrix that is modified,
not CBP). The authors in [13] recommended to use method 2
for linear codes because of fewer short cycles in H̃. How-
ever, we take issue on method 2 since it may have many
overestimated messages to perform less well as shown as
follows.

10CBPq2 therein is assumed with Hermitian inner product. If it is with

Euclidean inner product, simply do conjugate [H̃q
mn] before using CBPq2 .

Algorithm 2 : A Decoding Method for Quantum Codes
Over GF(q) That Correspond to Classical Linear Codes
Over GF(q2)

Input: H ∈ GF(q2)M×N (where q = 2l), z ∈ {0, 1}M ,
Tmax ∈ Z+, {
n ∈ Rq2−1}Nn=1, and a BP oracle
CBPq2 .
Initialization:
• Derive H̃ ∈ GF(q2)

M
2l ×N from H.

• Convert z to z̃ ∈ GF(q2)
M
2l according to the relation

between H and H̃.
Decoding: run ê = CBPq2 (H̃, z̃, Tmax, {
n}Nn=1).

A. COMPARING ALGORITHMS 1 AND 2 BY USING
[[7, 1, 3]]q

Steane’s code [3] is a [[7, 1, 3]]2 code with a check ma-
trixH ∈ GF(4)6×7 extended from a classical Hamming code
with a binary parity-check matrix H̃ ∈ GF(2)3×7 by (11).

We consider to generalize Steane’s code by writing
H̃ = H̃ (r) to mean that the (binary) H̃ has r rows (checks);
then the corresponding (q2-ary) H = H (r) has 2lr rows for
q = 2l as in (11). The (binary) H̃ (3) can be cyclicly generated
by the vector (1011100) with three rows as

H̃ (3) =
⎡⎣1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦

which has an irregular Tanner graph. If we cyclicly generate
seven rows, then the resultant (binary) H̃ (7) has a regular
Tanner graph, which provides the same error-correction ca-
pability for each qudit. BP on H̃ (7) still has overestimated
messages but the incorrect dependency may cancel out.
First, consider the case of q = 2. The (q2-ary) H (3) and

H (7) have 6 and 14 rows, respectively (i.e., Algorithm 1 on
H (r) encounters more short cycles than CBPq2 on H̃

(r)). The
decoding results of Algorithms 1 and 2 are shown in Fig. 6. If
the input matrix has (r = 3), both algorithms do not perform
well since the Tanner graph is irregular. For a particular error
e = (0000ω200), both decoders converge to a large-weight
ê = (00ω2ω2ω2ω20) due to overestimated messages. This is
improved if the decoding is based on (r = 7). Babar et al.
[13] considered a fixed initialization ε0 = 0.26 for (29). We
adopt a similar value ε0 ≈ 0.24 and it indeed improves for
the case of (r = 3) when q = 2, as also shown in Fig. 6.

Note that, when q = 2, the code has 26 different error
syndromes, corresponding to the zero vector (no error), 21
weight-one errors, and 42 weight-two errors. Thus, γ2 =

42
(72)×32

≈ 22.22% in (30). Algorithm 1 is able to achieve

this (optimum) correction capability, while Algorithm 2
cannot. This is indicated by two BDD curves in Fig. 6.

VOLUME 2, 2021 2103615

Engineeringuantum
Transactions onIEEE

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields

FIG. 6. Decoding [[7, 1, 3]]q codes for q = 2 and q = 4 with a maximum
number of 10 iterations, over the channel in Definition 5. When q = 4,
the curves are similar to those of q = 2, except for one case as shown in
the figure.

FIG. 7. Decoding on error (100000ω) by Algorithm 1 with q = 2:
successful.

FIG. 8. Decoding on error (100000ω) by Algorithm 2 with q = 2: failed.
The convention of labels is the same as that in Fig. 7. The decoder runs
to a large-weight state (111111ω) at iteration 10 after hard-decision, and
will be trapped around (0000000) after iteration 10.

Note that for large ε, Algorithm 1 with (r = 7) has perfor-
mance better than Pe,BDD(N, t = 2, γ2 = 22.22%) because
of degeneracy.11

For a specific weight-two error (100000ω), we plot the
decoding output probabilities based on (r = 7) and ε0 = 0.1
in Figs. 7 and 8 for Algorithms 1 and 2, respectively. Algo-
rithm 1 successfully converges, while Algorithm 2 is trapped
around the zero vector. (Algorithm 2 runs into a large-weight
error before trapped, due to overestimated messages.)

11Given a specific syndrome, the decoder may always output the same
low-weight error, but for large ε, many high-weight degenerate errors occur
with high probabilities and will be counted as decoding success.

Next, consider the case of q = 4. The (binary) H̃ (r) still
has r rows, but the (q2-ary) H (r) has 4r rows and has much
more short cycles compared to the case of q = 2 (2r rows).
However, the results are similar except that Algorithm 2 with
(r = 3) and ε0 ≈ 0.24 does not perform well. We plot this
case in Fig. 6. (We scan many values of ε0, including the
value 0.26 used in [13], and also try ε0 = ε, but none of the
values provide the improvement like the case of q = 2.)

REFERENCES
[1] P. W. Shor, “Scheme for reducing decoherence in quantum computer

memory,” Phys. Rev. A, vol. 52, pp. 2493–2496, 1995, doi: 10.1103/Phys-
RevA.52.R2493.

[2] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, vol. 54, 1996, Art. no. 1098, doi: 10.1103/Phys-
RevA.54.1098.

[3] A.M. Steane, “Error correcting codes in quantum theory,”Phys. Rev. Lett.,
vol. 77, 1996, Art. no. 793, doi: 10.1103/PhysRevLett.77.793.

[4] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D.
dissertation, California Inst. Technol., Pasadena, CA, USA, 1997, doi:
10.7907/rzr7-dt72.

[5] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum
error correction via codes over GF(4),” IEEE Trans. Inf. Theory, vol. 44,
no. 4, pp. 1369–1387, Jul. 1998, doi: 10.1109/18.681315.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information. Cambridge, U.K.: Cambridge Univ. Press, 2000,
doi: 10.1017/CBO9780511976667.

[7] R. G. Gallager, Low-Density Parity-Check Codes (Research Monograph,
no. 21). Cambridge, MA, USA: MIT Press, 1963, doi: 10.7551/mit-
press/4347.001.0001.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” Electron. Lett., vol. 32, no. 18,
pp. 1645–1646, 1996, doi: 10.1049/el:19961141.

[9] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431,Mar. 1999,
doi: 10.1109/18.748992.

[10] D. J. C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-graph codes
for quantum error correction,” IEEE Trans. Inf. Theory, vol. 50, no. 10,
pp. 2315–2330, Oct. 2004, doi: 10.1109/TIT.2004.834737.

[11] D. Poulin and Y. Chung, “On the iterative decoding of sparse
quantum codes,” Quant. Inf. Comput., vol. 8, pp. 987–1000, 2008,
doi: 10.26421/QIC8.10-8.

[12] Y.-J. Wang, B. C. Sanders, B.-M. Bai, and X.-M. Wang, “Enhanced feed-
back iterative decoding of sparse quantum codes,” IEEE Trans. Inf. The-
ory, vol. 58, pp. 1231–1241, Feb. 2012, doi: 10.1109/TIT.2011.2169534.

[13] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen years of
quantum LDPC coding and improved decoding strategies,” IEEE Access,
vol. 3, pp. 2492–2519, 2015, doi: 10.1109/ACCESS.2015.2503267.

[14] A. Rigby, J. C. Olivier, and P. Jarvis, “Modified belief propagation
decoders for quantum low-density parity-check codes,” Phys. Rev. A,
vol. 100, 2019, Art. no. 012330, doi: 10.1103/PhysRevA.100.012330.

[15] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with
good finite length performance,” 2019, arXiv:1904.02703.

[16] K.-Y. Kuo and C.-Y. Lai, “Refined belief propagation decoding of sparse-
graph quantum codes,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2,
pp. 487–498, Aug. 2020, doi: 10.1109/JSAIT.2020.3011758.

[17] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding
across the quantum LDPC code landscape,” Phy. Rev. Res., vol. 2, 2020,
Art. no. 043423, doi: 10.1103/PhysRevResearch.2.043423.

[18] Y.-H. Liu and D. Poulin, “Neural belief-propagation decoders for quantum
error-correcting codes,” Phys. Rev. Lett., vol. 122, 2019, Art. no. 200501,
doi: 10.1103/PhysRevLett.122.200501.

[19] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Mateo, CA, USA: Morgan Kaufmann, 1988, doi:
10.1016/C2009-0-27609-4.

[20] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981,
doi: 10.1109/TIT.1981.1056404.

2103615 VOLUME 2, 2021

https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1103/PhysRevA.54.1098
https://dx.doi.org/10.1103/PhysRevA.54.1098
https://dx.doi.org/10.1103/PhysRevLett.77.793
https://dx.doi.org/10.7907/rzr7-dt72
https://dx.doi.org/10.1109/18.681315
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.7551/mitpress/4347.001.0001
https://dx.doi.org/10.7551/mitpress/4347.001.0001
https://dx.doi.org/10.1049/el:19961141
https://dx.doi.org/10.1109/18.748992
https://dx.doi.org/10.1109/TIT.2004.834737
https://dx.doi.org/10.26421/QIC8.10-8
https://dx.doi.org/10.1109/TIT.2011.2169534
https://dx.doi.org/10.1109/ACCESS.2015.2503267
https://dx.doi.org/10.1103/PhysRevA.100.012330
https://dx.doi.org/10.1109/JSAIT.2020.3011758
https://dx.doi.org/10.1103/PhysRevResearch.2.043423
https://dx.doi.org/10.1103/PhysRevLett.122.200501
https://dx.doi.org/10.1016/C2009-0-27609-4
https://dx.doi.org/10.1109/TIT.1981.1056404

Lai and Kuo: Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields Engineeringuantum
Transactions onIEEE

[21] N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding
on general graphs,” Eur. Trans. Telecommun., vol. 6, no. 5, pp. 513–525,
1995, doi: 10.1109/ISIT.1995.550455.

[22] R. J. McEliece, D. J. C. MacKay, and Jung-Fu Cheng, “Turbo decoding as
an instance of Pearl’s ‘belief propagation’ algorithm,” IEEE J. Sel. Areas
Commun., vol. 16, no. 2, pp. 140–152, Feb. 1998, doi: 10.1109/49.661103.

[23] S. M. Aji and R. J. McEliece, “The generalized distributive law,”
IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 325–343, Mar. 2000,
doi: 10.1109/18.825794.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 1,
pp. 498–519, Feb. 2001, doi: 10.1109/18.910572.

[25] T. Richardson and R. Urbanke,Modern Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2008, doi: 10.1017/CBO9780511791338.

[26] E. Knill, “Non-binary unitary error bases and quantum codes,” 1996,
arXiv:quant-ph/9608048.

[27] E. Knill, “Group representations, error bases and quantum codes,” 1996,
arXiv:quant-ph/9608049.

[28] E. M. Rains, “Nonbinary quantum codes,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 1827–1832, Sep. 1999, doi: 10.1109/18.782103.

[29] R. Matsumoto and T. Uyematsu, “Constructing quantum error-correcting
codes for pm-state systems from classical error-correcting codes,”
IEICE Trans. Fundam. Electron., Commun., Comput. Sci., vol. 83,
pp. 1878–1883, 2000, arXiv:quant-ph/9911011.

[30] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,”
IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 3065–3072, Nov. 2001,
doi: 10.1109/18.959288.

[31] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, “Nonbinary
stabilizer codes over finite fields,” IEEE Trans. Inf. Theory, vol. 52, no. 11,
pp. 4892–4914, Nov. 2006, doi: 10.1109/TIT.2006.883612.

[32] R. Klesse and S. Frank, “Quantum error correction in spatially corre-
lated quantum noise,” Phys. Rev. Lett., vol. 95, 2005, Art. no. 230503,
doi: 10.1103/PhysRevLett.95.230503.

[33] E. Novais and H. U. Baranger, “Decoherence by correlated noise and
quantum error correction,” Phys. Rev. Lett., vol. 97, 2006, Art. no. 040501,
doi: 10.1103/PhysRevLett.97.040501.

[34] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” in Proc. IEEE Inf. Theory Workshop, 1998, pp. 70–71,
doi: 10.1109/ITW.1998.706440.

[35] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for
short block length and high rate applications,” in Codes, Systems, and
Graphical Models. Berlin, Germany: Springer, 2001, pp. 113–130, doi:
10.1007/978-1-4613-0165-3_6.

[36] D. Declercq and M. P. C. Fossorier, “Decoding algorithms for nonbi-
nary LDPC codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4,
pp. 633–643, Apr. 2007, doi: 10.1109/TCOMM.2007.894088.

[37] N. Delfosse and J.-P. Tillich, “A decoding algorithm for CSS codes us-
ing the X/Z correlations,” in Proc. IEEE Int. Symp. Inf. Theory, 2014,
pp. 1071–1075, doi: 10.1109/ISIT.2014.6874997.

[38] H.Wymeersch, H. Steendam, andM.Moeneclaey, “Log-domain decoding
of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. Commun., 2004,
vol. 2, pp. 772–776, doi: 10.1109/ICC.2004.1312606.

[39] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log do-
main,” in Proc. IEEE Int. Conf. Commun., 1995, vol. 2, pp. 1009–1013,
doi: 10.1109/ICC.1995.524253.

[40] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2,
pp. 429–445, Mar. 1996, doi: 10.1109/18.485714.

[41] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient im-
plementations of the sum-product algorithm for decoding LDPC codes,”
in Proc. IEEE Global Telcom. Conf., vol. 2, 2001, pp. 1036–1036E,
doi: 10.1109/GLOCOM.2001.965575.

[42] K. Kasai, M. Hagiwara, H. Imai, and K. Sakaniwa, “Quantum
error correction beyond the bounded distance decoding limit,”
IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1223–1230, Feb. 2011,
doi: 10.1109/TIT.2011.2167593.

[43] A. A. Kovalev and L. P. Pryadko, “Quantum Kronecker sum-product low-
density parity-check codes with finite rate,” Phys. Rev. A, vol. 88, 2013,
Art. no. 012311, doi: 10.1103/PhysRevA.88.012311.

[44] J.-P. Tillich and G. Zémor, “Quantum LDPC codes with positive rate
and minimum distance proportional to the square root of the block-
length,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 1193–1202, Feb. 2014,
doi: 10.1109/TIT.2013.2292061.

[45] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propaga-
tion based decoding of low-density parity check codes,” IEEE Trans. Com-
mun., vol. 50, no. 3, pp. 406–414, Mar. 2002, doi: 10.1109/26.990903.

[46] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and
X.-Y. Hu, “Reduced-complexity decoding of LDPC codes,” IEEE
Trans. Commun., vol. 53, no. 8, pp. 1288–1299, Aug. 2005,
doi: 10.1109/TCOMM.2005.852852.

[47] M. R. Yazdani, S. Hemati, and A. H. Banihashemi, “Improving belief
propagation on graphs with cycles,” IEEE Commun. Lett., vol. 8, no. 1,
pp. 57–59, Jan. 2004, doi: 10.1109/LCOMM.2003.822499.

[48] R. J. McEliece, Finite Fields for Computer Scientists and
Engineers. Norwell, MA, USA: Kluwer Academic, 1987, doi:
10.1007/978-1-4613-1983-2.

[49] M. Grassl, M. Rötteler, and T. Beth, “Efficient quantum circuits for non-
qubit quantum error-correcting codes,” Int. J. Found. Comput. Sci., vol. 14,
pp. 757–775, 2003, doi: 10.1142/S0129054103002011.

[50] N. Raveendran and B. Vasić, “Trapping sets of quantum LDPC codes,”
2020, arXiv:2012.15297.

[51] K.-Y. Kuo, I.-C. Chern, and C.-Y. Lai, “Decoding of quantum data-
syndrome codes via belief propagation,” in Proc. IEEE Int. Symp. Inf.
Theory, 2021, pp. 1552–1557, doi: 10.1109/ISIT45174.2021.9518018.

[52] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985,
1985, doi: 10.1109/IEEESTD.1985.82928.

[53] M. Hagiwara, M. P. C. Fossorier, and H. Imai, “Fixed initializa-
tion decoding of LDPC codes over a binary symmetric channel,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2321–2329, Apr. 2012,
doi: 10.1109/TIT.2011.2177440.

[54] K.-Y. Kuo and C.-Y. Lai, “Exploiting degeneracy in belief propagation
decoding of quantum codes,” 2021, arXiv:2104.13659.

[55] K.-Y. Kuo and C.-Y. Lai, “Refined belief-propagation decoding of quan-
tum codes with scalar messages,” in Proc. IEEE Globecom Workshops,
2020, pp. 1–6, doi: 10.1109/GCWkshps50303.2020.9367482.

[56] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann.
Phys., vol. 303, pp. 2–30, 2003, doi: 10.1016/S0003-4916(02)00018-0.

[57] H. Bombin and M. A. Martin-Delgado, “Topological quantum distilla-
tion,” Phys. Rev. Lett., vol. 97, 2006, Art. no. 180501, doi: 10.1103/Phys-
RevLett.97.180501.

[58] M. Grassl, W. Geiselmann, and T. Beth, “Quantum Reed-Solomon codes,”
in Proc. Int. Symp. Appl. Algebra, Algebr. Algorithms, Error-Correcting
Codes, 1999, pp. 231–244, doi: 10.1007/3-540-46796-3_23.

[59] M. Grassl and T. Beth, “Quantum BCH codes,” in Proc. X. Int. Symp. The-
oretic. Elec. Eng., Magdeburg, Germany, 1999, pp. 207–212, arXiv:quant-
ph/9910060.

[60] S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On quantum and clas-
sical BCH codes,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1183–1188,
Mar. 2007, doi: 10.1109/TIT.2006.890730.

[61] G. G. La Guardia, “On the construction of nonbinary quantum BCH
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1528–1535, Mar. 2014,
doi: 10.1109/TIT.2014.2298137.

[62] S. Lin, K. Abdel-Ghaffar, J. Li, and K. Liu, “Iterative soft-decision decod-
ing of Reed-Solomon codes of prime lengths,” in Proc. IEEE Int. Symp.
Inf. Theory, 2017, pp. 341–345, doi: 10.1109/ISIT.2017.8006546.

[63] S. Lin, K. Abdel-Ghaffar, J. Li, and K. Liu, “A scheme for collective
encoding and iterative soft-decision decoding of cyclic codes of prime
lengths: Applications to Reed-Solomon, BCH, and quadratic residue
codes,” IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5358–5378, Sep. 2020,
doi: 10.1109/TIT.2020.2978383.

[64] J. Jiang and K. R. Narayanan, “Iterative soft-input soft-output de-
coding of Reed-Solomon codes by adapting the parity-check matrix,”
IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3746–3756, Aug. 2006,
doi: 10.1109/TIT.2006.878176.

[65] M. El-Khamy and R. J. McEliece, “Iterative algebraic soft-decision list
decoding of Reed-Solomon codes,” IEEE J. Sel. Areas Commun., vol. 24,
no. 3, pp. 481–490, Mar. 2006, doi: 10.1109/JSAC.2005.862399.

VOLUME 2, 2021 2103615

https://dx.doi.org/10.1109/ISIT.1995.550455
https://dx.doi.org/10.1109/49.661103
https://dx.doi.org/10.1109/18.825794
https://dx.doi.org/10.1109/18.910572
https://dx.doi.org/10.1017/CBO9780511791338
https://dx.doi.org/10.1109/18.782103
https://dx.doi.org/10.1109/18.959288
https://dx.doi.org/10.1109/TIT.2006.883612
https://dx.doi.org/10.1103/PhysRevLett.95.230503
https://dx.doi.org/10.1103/PhysRevLett.97.040501
https://dx.doi.org/10.1109/ITW.1998.706440
https://dx.doi.org/10.1007/978-1-4613-0165-3_6
https://dx.doi.org/10.1109/TCOMM.2007.894088
https://dx.doi.org/10.1109/ISIT.2014.6874997
https://dx.doi.org/10.1109/ICC.2004.1312606
https://dx.doi.org/10.1109/ICC.1995.524253
https://dx.doi.org/10.1109/18.485714
https://dx.doi.org/10.1109/GLOCOM.2001.965575
https://dx.doi.org/10.1109/TIT.2011.2167593
https://dx.doi.org/10.1103/PhysRevA.88.012311
https://dx.doi.org/10.1109/TIT.2013.2292061
https://dx.doi.org/10.1109/26.990903
https://dx.doi.org/10.1109/TCOMM.2005.852852
https://dx.doi.org/10.1109/LCOMM.2003.822499
https://dx.doi.org/10.1007/978-1-4613-1983-2
https://dx.doi.org/10.1142/S0129054103002011
https://dx.doi.org/10.1109/ISIT45174.2021.9518018
https://dx.doi.org/10.1109/IEEESTD.1985.82928
https://dx.doi.org/10.1109/TIT.2011.2177440
https://dx.doi.org/10.1109/GCWkshps50303.2020.9367482
https://dx.doi.org/10.1016/S0003-4916(02)00018-0
https://dx.doi.org/10.1103/PhysRevLett.97.180501
https://dx.doi.org/10.1103/PhysRevLett.97.180501
https://dx.doi.org/10.1007/3-540-46796-3_23
https://dx.doi.org/10.1109/TIT.2006.890730
https://dx.doi.org/10.1109/TIT.2014.2298137
https://dx.doi.org/10.1109/ISIT.2017.8006546
https://dx.doi.org/10.1109/TIT.2020.2978383
https://dx.doi.org/10.1109/TIT.2006.878176
https://dx.doi.org/10.1109/JSAC.2005.862399

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

