@IEEE Transactions on,
Quantum Software uantumEngineering

Received March 25, 2021; revised June 7, 2021; accepted June 22, 2021; date of publication June 25, 2021;
date of current version July 20, 2021.

Digital Object Identifier 10.1109/TQE.2021.3092395

QuNetSim: A Software Framework for
Quantum Networks

STEPHEN DIADAMO™, JANIS NOTZEL®, BENJAMIN ZANGER,
AND MEHMET MERT BESE

Technische Universitit Miinchen, 80333 Munich, Germany
Corresponding author: Stephen Diadamo (stephen.diadamo @gmail.com).

This work was funded by the Deutsche Forschungssgemeinschaft (DFG) under Grant 1129/2-1 and the Unitary Fund.

ABSTRACT As quantum network technologies develop, the need for teaching and engineering tools such
as simulators and emulators rises. QuNetSim addresses this need. QuNetSim is a Python software framework
that delivers an easy-to-use interface for simulating quantum networks at the network layer, which can be
extended at little effort of the user to implement the corresponding link layer protocols. The goal of QuNet-
Sim is to make it easier to investigate and test quantum networking protocols over various quantum network
configurations and parameters. The framework incorporates many known quantum network protocols so that
users can quickly build simulations using a quantum-networking toolbox in a few lines of code and so that
beginners can easily learn to implement their own quantum networking protocols. Unlike most current tools,
QuNetSim simulates with real time and is, therefore, well suited to control laboratory hardware. Here, we
present a software design overview of QuNetSim and demonstrate examples of protocols implemented with
it. We describe ongoing work, which uses QuNetSim as a library, and describe possible future directions for

the development of QuNetSim.

INDEX TERMS Quantum Internet, quantum networking, quantum simulation, quantum software.

I. INTRODUCTION

A quantum network is a network of physical devices that are
able to transmit quantum information and distribute quan-
tum entanglement amongst themselves. As developments are
made toward realizing a standardized quantum Internet [1],
[2], there is a stronger need to efficiently develop and test
quantum networking protocols and applications. Recently,
there has been much effort into developing quantum simu-
lation software for quantum computing [3], whereas simula-
tion software for quantum networks has received consider-
ably less attention. An aspect that is much more critical to
networking than to computing is asynchrony between nodes
in the network, and an aspect that is important to the engineer
is to deploy code that is written once in a simulation directly
to a device. The initial release of QuNetSim addresses this
need by providing a lightweight, easy-to-use, open-source
quantum network simulation framework, which runs in real
time and is, therefore, in principle also able to interact with
laboratory equipment.

As it has been done for the classical Internet with, for
example, the NS-3 [4] and Mininet [5] platforms, work to-
ward a similar open-source simulation platform with many
contributors should be developed for quantum networking.

VOLUME 2, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Although there have been developments in quantum network
simulators, as we discuss in Section III, presently, we think
there is a gap between network simulators that work on a low
level and network simulators that are easy-to-use and can be
used in a testing phase of protocol development for quantum
networks.

The goal for QuNetSim is to provide a high-level frame-
work that allows users to quickly develop quantum net-
working protocols without having to invest time on purely
software-related tasks, such as managing threading and syn-
chronization, writing thread-safe logic, or repeatedly imple-
menting basic protocols that can be used as building blocks
for new protocols. QuNetSim further aims to provide an
open-source simulation platform offering a high degree of
freedom to attract contributors, enabling even more simula-
tion possibilities. As a consequence of meeting these goals,
the learning curve needed to begin developing protocols
for quantum networks is flattened, since QuNetSim makes
it easier to write them. QuNetSim allows users to create
examples of quantum networking protocols that are along
the lines of how protocols are developed as a first stage
for research papers, which helps us to develop protocols as
well as educate students about quantum networks. In the

2502512

https://orcid.org/0000-0001-5758-9563
https://orcid.org/0000-0003-0091-3072

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

examples, we provide, we see how there is an almost one-
to-one correspondence between how protocols are written in
quantum network protocol research papers as to how sim-
ulations are developed in QuNetSim. In future releases, we
aim to subsequently professionalize the process of emulating
parts of quantum networks interfacing with QuNetSim, or
to use QuNetSim for the purpose of creating emulations.
Although the currently limited availability of off-the-shelf
hardware components for quantum networks leaves the net-
work engineer with many unfulfilled needs, QuNetSim of-
fers, at least in principle, already today the possibility for
using hardware in the loop.

In this article, we will give an overview of the design and
implementation of QuNetSim, detailing its layered structure
and how it works in principle. We then review the other quan-
tum network simulation platforms that are available. Lastly,
we demonstrate with some examples quantum network pro-
tocols implemented in QuNetSim.

Il. OVERVIEW OF QUNETSIM

The current main purpose of QuNetSim, as the name sug-
gests, is to simulate quantum networks. To this end, we aim
to allow for the writing and testing of robust protocols for
multihop quantum transmission with various network param-
eters and configurations. QuNetSim allows users to create
network configurations of nodes connected via classical or
quantum links and then program the behavior of each node
in the network as they choose to. To simulate the asynchrony
of networks, QuNetSim runs in a multithreaded environment
using first-in-first-out queues for packets. The generally chal-
lenging programming problem of managing multiple threads
is simplified as QuNetSim provides the methods to synchro-
nize the nodes in the network even when they are all perform-
ing their actions independently and asynchronously. Further-
more, QuNetSim comes with many built-in protocols such
as teleportation, EPR generation, GHZ state distribution and
more, over arbitrary network topologies that make it easier
to develop more complex protocols, using the basic ones as
a toolbox. It also provides an easy way of constructing a
complex network topology such that one can design and test
routing algorithms for quantum networks.

QuNetSim uses a network layering model inspired by the
OSI model [6]. It naturally incorporates control information
together with any payload type, but is open to modifications
where control information is explicitly transmitted separate
from payload. In future quantum network implementations,
it is likely that exact OSI model layering model will not
be used and it could be that new layers are introduced. For
example, an already proposed network layering includes a
“connectivity layer” between the link and physical layer [7].
We anticipate that the basic concept of layering of classical
communication networks will be carried over to quantum
networks, so that included will be layers such as application,
transport, and network. Quantum information carriers will be
encoded into some form of packets, which will then be routed
through the network to the desired destination. In its initial

2502512

7N\

Network
AL AL
w AA4
Transport
AA AA

AA4 AA4
Application

FIG. 1. Design depiction of QuNetSim. Here, the green line represents a
classical channel and the red a quantum channel. QuNetSim attempts to
simulate the process of moving both classical and quantum packets
through a set of network layers as does the classical Internet. Here, host
A has a virtual connection to host B, and so all of their communication is
processed one layer at a time. QuNetSim does not explicitly incorporate
features of the higher layers such as the link-layer or the physical layer.

form, QuNetSim implements the network layer and assumes
link- and physical-layer deliver error-free bit and qubit trans-
mission capabilities. While it is relatively straightforward to
model link layer (in the sense of a logical but potentially
not error-free qubit channel between two nodes) behavior in
QuNetSim, the modeling of a physical layer (in the sense of,
e.g., a continuous-variable quantum system) is currently not
considered as within the scope of QuNetSim. By design, the
accurate modeling of lower layers is left to simulators, which
are better suited for that task.

In Fig. 1, we depict the high-level design structure of
QuNetSim. At this depth, it resembles a virtual connection
between two nodes in a classical network, where “virtual
connection” means that node A has the perspective that it
is directly connected to node B even though the information
sent from A is routed through the network with potentially
many relaying hops. In the figure, the two nodes are con-
nected (virtually) by a classical channel, represented by the
green lines, and a quantum channel, represented by the red
lines. Both modes of communication are processed through
the same layering mechanism as the network is able to route
both kinds of information but makes decisions based on the
payload of the packets. This allows users to use the same
programming logic for sending classical messages as for
sending quantum, leaving it to the lower layers to work out
the differences.

11l. COMPARISON TO OTHER QUANTUM NETWORK
SIMULATORS

A detailed list of quantum software libraries hosted at [3]
contains approximately 100 different flavors of quantum sim-
ulation software. Most of these are directed at simulating

VOLUME 2, 2021

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

@IEEE Transactions on,
uantumEngineering

quantum computation and circuitry on various hardware con-
figurations with various levels of realism. With regards to
quantum networking, as far as we know at this time, there
are five publicly available quantum network simulators: Sim-
ulaQron [8], NetSquid [9], simulator for quantum networks
and channels (SQUANCH) [10], quantum Internet simula-
tion package (QulISP) [11], and SeQUeNCe [12]. Of these,
all are libraries are freely available. SQUANCH, QuISP, Se-
QUeNCe, and SimulaQron are open-source under the MIT
license or 3-Clause BSD License. NetSquid uses a license re-
stricting its use for educational and noncommercial research
and development purposes. Indeed, there are simulators that
simulate quantum key distribution (QKD) [13], [14], but this
are single use case simulators and do not allow for arbitrary
application layer protocols and we do not compare them to
QuNetSim for that reason.

SimulaQron [8] is a simulator that can be used for develop-
ing quantum Internet software. It simulates several quantum
processors that are located at the end nodes of a quantum
network and are connected by simulated quantum links. The
main purpose of SimulaQron is to simulate the application
layer of a network; tasks such as routing are left to the user
to implement using their own approach if needed. Simu-
laQron further offers the ability to run simulations across
a distributed system, that is, simulations can be set up to
run on multiple computers. What we found slightly lacking
in SimulaQron is a way to easily synchronize the parties
regarding qubit arrival. A key difference in QuNetSim is that
it adds a layer of synchronization. Built into QuNetSim is
the approach of acknowledging when information arrives at
the receiver. One can more naturally write protocols in a
standard way, where one handles the information arriving
or not before proceeding. SimulaQron also has hosts, which
have features such as sending qubits, establishing Einstein-
Podolsky-Rosen (EPR) pairs, and sending classical informa-
tion. To simplify the task of developing protocols on top of
existing protocols, we try to include more built-in tasks such
as sending teleportation qubits, establishing a GHZ state, and
establishing a secret key using QKD.

NetSquid [9] is a powerful event-driven quantum network
simulator. It can simulate the physical properties of quantum
devices such as quantum gate and memory, noise and loss
of a quantum channel, and time-dependent quantum state
decoherence. NetSquid can be used as a benchmarking tool
to test robustness of quantum network protocols against the
physical and link layer effects of the network. It uses a mod-
ular approach for network configuration, allowing users to
customize their simulations in many ways. A key strength of
NetSquid is its ability to incorporate the time-dependent ef-
fects of quantum systems. With these features comes a layer
of added complexity that falls to the user. To use NetSquid
to its full extent, the user should have a fairly good under-
standing of the hardware structure of a quantum network.
In contrast, QuNetSim is designed to more easily develop
quantum protocols and test them for correctness over net-
works, and not for benchmarking against physical properties

VOLUME 2, 2021

of the network. This greatly reduces the need to understand
quantum networks at a deep level, but does remove the abil-
ity to benchmark quantum networking protocols against any
hardware specifications. One could use both NetSquid and
QuNetSim together to develop their ideas as a first prototyp-
ing step with QuNetSim and then benchmark the protocols
in NetSquid to see how it performs with the added physical
models.

SQUANCH [10] achieves similar functionality as Simu-
laQron but allows for customizable physical layer properties
and error models. It allows for creating simulations of dis-
tributed quantum information processing that can be paral-
lelized for more efficient simulation. It is designed specifi-
cally for simulating quantum networks to test ideas in quan-
tum transmission and networking protocols. SQUANCH can
be used to simulate many qubits and can allow a user to
add their own error models, which we think allows for a
more realistic quantum network simulator. SQUANCH also
allows one to separate the quantum and classical networks of
a complete network and as well as adding length dependent
noise to the channel. A key difference between SQUANCH
and QuNetSim is that in SQUANCH, as far as we know, a
node can run one set of instructions at a time and not more
in parallel. This may not be so restrictive, but in multiparty
protocols, it may become challenging to develop all of the
behavior in one set of instructions. QuNetSim allows one
to develop multiparty protocols one at a time and run them
in parallel. Furthermore, synchronization between parties is
again potentially an issue with SQUANCH. QuNetSim gives
each host an addressable quantum memory such that given an
ID, they can fetch a qubit and can manipulate it as desired.
In SQUANCH, one should initialize their qubits before the
start of the simulation whereas with QuNetSim qubits are
initialized at run time. We think this adds more flexibility
when writing protocols and allows for more natural logic in
the code.

QuISP [11] is also an event-driven simulation of quantum
repeater networks. The goal of QulSP is to simulate a full
quantum Internet consisting of up to 100 networks of up to
100 nodes each and 100 qubits at each node. Its focus is on
protocol design and studying emergent behaviors of com-
plex, heterogeneous networks at large scale, while keeping
the physical layer as realistic as possible. In comparison to
QuNetSim, QulISP uses a different approach in regards to
how qubits are simulated. The quantum state vector of the
qubits in the system are not represented. To simulate a large
scale network as QulSP does it is not possible to store the
state information of many mutually entangled qubits, as the
size of their state vector grows exponentially fast with the
number of qubits. Instead, QuISP stores the errors applied
on the qubits, which simplifies the qubit data structure. In
QuNetSim, in order to get a better sense of the network’s
effects, we do provide the qubit state vector, albeit with
the tradeoff that large scale simulations that are possible
with QulISP are not with QuNetSim. QulISP also follows
the “RuleSet” paradigm for programming the logic of the

2502512

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

network [15]. QuNetSim uses standard Python programming
to define the actions in the network, in-line with the goal of
simplicity.

SeQUeNCe [12] is a discrete-event quantum network sim-
ulator as are QuISP and NetSquid. It is customizable, so users
can define the network topology, the hardware parameters of
the nodes, and the actions the nodes take regarding storing
qubits. SeQUeNCe has physical models built in and follows
a modularized design with cross-module communication to
allow for flexibility of the simulation. In this regard Se-
QUeNCe and NetSquid are the most similar from the collec-
tion. In comparison to QuNetSim, again the main difference
is QuNetSim is not a discrete-event simulator and focuses on
simplifying protocol development rather than benchmarking.

A real-time simulator such as QuNetSim allows the user to
easily connect to physical hardware devices, allowing for a
“hardware-in-the-loop” type of simulation. Indeed we have
demonstrated splitting the quantum simulation backend as-
pect from the application development part of QuNetSim,
controlling the quantum simulation through microcontroller
instructions. With this, we can replace the quantum simu-
lation devices with physical hardware for “lab-in-the-loop”
behavior. QuNetSim can be integrated as an external library
for simulating distributed quantum systems. Indeed an initial
implementation of a distributed quantum computing emula-
tion has been demonstrated [16]. The Interlin-q project sim-
ulates the execution of distributed quantum algorithms using
QuNetSim to perform entanglement distribution and classi-
cal communication, the necessary ingredients for distributed
quantum computing.

IV. ASSUMPTIONS MADE ABOUT FUTURE QUANTUM
NETWORKS IN QUNETSIM

Although much research is directed at building a quantum
Internet, or more generally and abstractly a network of nodes
with the ability to create, distribute, and store quantum states,
currently such a network does not exist. In order to build a
simulation software framework as general as possible while
attempting to keep it simple, we, therefore, make only few
assumptions that we think will most likely be met by future
quantum networks.

QuNetSim assumes that both classical and quantum in-
formation transmitted via future quantum networks will use
signal processing that is modeled based on quantum mechan-
ics. However, following the principles of network layering,
not all information that is available at the lower layers can
be accessed by the upper layers. Therefore, the class quan-
tum_connection in QuNetSim is assumed to model an
error-free logical qubit channel between network hosts where
the physical means of transmitting a qubit necessarily in-
volve also sending—potentially classical—control informa-
tion such as desired destination node, type of error correction
applied, and synchronization information all of which might
even rely on an exchange of information via a feedback loop
from receiver to sender. In future networks, not every con-
nection between network nodes will necessarily be able to

2502512

transmit quantum information. Therefore, QuNetSim offers
the additional class classical_connection, which al-
lows the transmission of classical data alone.

Another assumption we make is that quantum nodes will
be able to detect that a qubit has arrived in their qubit storage.
The practical methods (e.g., heralding) used to achieving this
functionality are left open. QuNetSim aims to make it easy to
synchronize between hosts, and therefore, we allow acknowl-
edgment of the arrival of qubits. Since QuNetSim simulates
up to the network layer, we assume that the lower layers of
the quantum network will be able to provide protocols to
accomplish this. This is different than current QKD networks
that simply measure the qubits as they arrive without storage.
In such an implementation, the measurement output acts as
a herald but inevitably destroys quantum information and is,
therefore, not suitable for a quantum network.

QuNetSim is a tool for protocol development in quantum
communication networks modeled based on a structure sim-
ilar to current classical communication networks. The state
of the quantum Internet is still very primitive and although
we attempted to design QuNetSim in a way that safeguards
against future physical implementations, it is still difficult to
clearly foresee how a quantum Internet will be designed and
implemented and which features it will and will not have.
We, therefore, make no claim that a simulation implemented
in QuNetSim is guaranteed to work in a future quantum
Internet, but we hope that by using it one can more easily
envision the potential structures of and experiment with pos-
sible quantum networks.

V. LIMITATIONS OF QUNETSIM

QuNetSim provides a high-level framework for developing
quantum protocols. There are, however, some limitations
in the current implementation. QuNetSim relies on existing
qubit simulators (see Section VII-A), which in some cases
perform well and in some cases do not. This causes QuNet-
Sim to periodically run more slowly than desired and, be-
cause we are using full qubit simulators, where the alternative
is error tracking only as it is in QulISP [11], running large
scale simulations can consume much of the user’s computer’s
resources. We have found that QuNetSim works well for
smaller scale simulations using ten to fifteen hosts that are
separated by a small number of network hops. QuNetSim
tends to reach its limits when many entangled qubits are
being generated across the network with many parallel op-
erations. As this is an ongoing project, we will investigate
performance improvements as a priority during future itera-
tions. Moreover, QuNetSim does not aim at perfect physical
realism, and so the physical properties of quantum networks
are mostly neglected. One can although in principle recover
physical realism by integrating QuNetSim with physical de-
vices as described earlier.

VI. DESIGN OVERVIEW OF QUNETSIM
The aim of QuNetSim is to allow for the development of
simulations that contain enough realism that applications of

VOLUME 2, 2021

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

@IEEE Transactions on,
uantumEngineering

A C
. Rl ¥
v
Transport B . S ’ Transport
R \ . ’ A
v ¥
Network a Network

FIG. 2. Example of a communication process in QuNetSim with three
hosts. In this example, there are three hosts, A, B, and C. hosts A and B
are connected via a two-way channel (represented by the dashed line),
as are hosts B and C. When host A executes an application that transmits
information to host C, since there is no direct connection, the
information must first be routed though host B. QuNetSim uses a layered
approach such as the Internet. First, application data are filtered through
a transport preparation layer so that the information packet is prepared
for the network. From there, the transport layer packet is put into the
network. The network also encodes the packet with its own header
information and begins to route the packet through the network. The
network packet is moved first to host B, and host B relays the data to
host C to complete the transmission.

quantum networks can be developed, tested, and debugged
for a proof of principle step. With this in mind, we have
designed the software such that we remove the need for
the large overhead of setting up new simulations and added
built-in features that are potentially repeated across many
simulations. Another design aspect we aim for is that a prior
deep level of understanding of quantum networks and soft-
ware development should not be required to use QuNetSim.
To allow for as many users as possible to develop their ap-
plications, we keep the functionality at a high level such
that protocols written with QuNetSim are as easy or easier
to understand as the protocols written in scientific papers.
QuNetSim allows users to merge various protocols, which
can be easily modified and simulated or chained together to
run in parallel or sequential configurations.

The general architecture layout of QuNetSim is depicted in
Fig. 2. Here, there are three network nodes, which are hosts in
QuNetSim. Hosts A and B are connected via a communica-
tion link as are hosts B and C. As in a classical network, hosts
run such that they sit idle awaiting any incoming packets
and then act when packets arrive, or optionally they can be
programmed to act during idle periods. Hosts in QuNetSim
run applications asynchronously and transfer quantum and
classical messages to other hosts in the network. In the figure,
host A runs an application that sends a packet to host C.
Host A has no direct connection to host C, and therefore,
its information must be routed through B in order to arrive at
C. In a layered network architecture, since host A is running
on the application layer, it should not be concerned with how
the information arrives at C, and it is the duty of transport
layer to prepare metadata of the application’s action and the
network layer to route the information to C if a route exists.

The transport layer prepares the information sent from
A for the network by encoding necessary information in a

VOLUME 2, 2021

packet header such as the sender and receiver IDs, the pro-
tocol, and the packet sequence number. As the layering of
quantum networks is not specified yet, the transport layer
of QuNetSim has only few responsibilities. For example,
it can be used to ensure the availability of pre-established
entanglement between network hosts prior to executing pro-
tocols such as dense coding or teleportation. The transport
layer processes incoming and outgoing packets as a layer
between the network and the hosts. Defined in the transport
layer is a set of protocols so that packets are encoded and
decoded properly. Once information is encoded into a packet,
the transport layer moves the packet to the network. In the
current state of QulNetSim, the transport layer is not config-
urable, other than the ability to disable the check for EPR
pairs for the built-in teleportation and superdense coding
features. In the next major release of QuNetSim, we aim to
allow users to define their own packet structures and have a
more configurable transport layer behavior.

Once the packet is added to the network the network layer
routes it to the destination receiver. The path from A to C
is through B and so a transport layer packet is encoded in
a network packet and then moved through B to C. When
host B receives a packet from A, since it is not the intended
receiver, it relays the network packet onward. Finally, when
the network packet arrives at C the packet is unpacked in the
network layer and again in the transport layer. The payload
can then be processed according to the decoded information
in the header. This separation of responsibility per layer is
a fundamental element of the QuNetSim design. The net-
work of QuNetSim behaves much like the network in the
Internet with some key differences. In QuNetSim, the net-
work is composed of two separate but parallel networks, one
for quantum information and one for classical information.
When quantum information is sent from a host, the network
routes it through the quantum links in the network as it does
for classical information. Another responsibility of the net-
work layer that differs from the classical setting is that the
network layer is responsible for establishing an EPR pair
between nodes that do not share a direct connection via an
entanglement swapping routine. It can trigger a chain of
hosts to perform an entanglement swapping so that in the
end, the sender and the intended receiver will share an EPR
pair.

QuNetSim does not currently go above the network layer
in terms of simulation of quantum networks. As more fea-
tures are developed, the code structure allows us to replace
pieces that we currently omit, such as link layer functional-
ity. We do, however, allow the user to integrate their qubit
channel models, and in subsequent versions will incorporate
this into the design such that these things will be easy to
change.

We now discuss the software implementation of QuNet-
Sim. The QuNetSim framework is developed in the Python
programming language [17] as a software library. It uses
Python’s multithreading library to simulate the asynchronous
networks behavior. Each host has a processing queue and

2502512

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

runs in a thread so that when a host performs an action the
actions run in a first-in-first-out ordering. These actions are
then processed in the transport layer where the header infor-
mation contains sender and receiver information, along with
information on how to process the payload. The processed
packet is put into the network for routing. The network acts
like a host where it has a packet queue, which is being mon-
itored for changes. Once a packet is put into the queue, it is
analyzed and processed.

In the network-packet can be a signal to generate entangle-
ment between hosts prior to executing a given task. Since the
swap procedure—as mentioned above—consumes a large
amount of communication resources, and since this reflects
on the run-time of QuNetSim, the default behavior of QuNet-
Sim is to first check if it is possible to form a SWAP chain
from sender to receiver. If it is possible to form an entangle-
ment swap chain, then all corresponding Bell measurements
and the transmission of classical messages associated with
executing the entanglement swap protocol will not be per-
formed explicitly. Instead, only the end result of the protocol
(deletion of the consumed EPR pairs and establishment of an
EPR pair between sender and receiver) is directly provided
to the backend. This way, the execution time of the already
well-known procedure is not contradicting the design goal of
an efficient protocol testing. If no EPR pair is needed the pay-
load is checked for the type of data it contains. A network in
QuNetSim contains two directed graphs to represent disjoint
networks for the respective data types. If the packet payload
is classical data, it is routed over the classical network and if
it is quantum data, it is routed via the quantum network. By
default, the routing algorithm is shortest path, but it can be
changed via parameter settings. We see an example of how
this is done in Section VIII. Currently in QuNetSim there are
simple error models available that can be turned ON as an
optional feature. The error models are configured as network
property and include packet loss and Pauli errors applied to
Qubits en route. A more complex treatment of the link-layer
will be considered in future iterations of QuNetSim.

Finally, the packet arrives at the receiver host after being
routed in the network. The payload is then processed at the
receiver side according to the header information. Once pro-
cessed, the classical or quantum data is stored in either the
classical memory of the host or in one of the two quantum
memories. There are two quantum memories, as this allows
users to more easily distinguish between qubits that arrive
as qubits encoded by the sender or qubits specifically gener-
ated using one of the built-in entanglement generation host
methods.

In summary, QuNetSim implements a layered model of
component objects much like the OSI model [6]. The host
and network components are implemented using threading
and observing queues. The queues are monitored constantly
and queue changes trigger an event. Extensive use of thread-
ing allows each task to wait without blocking the main pro-
gram thread, which simulates the behavior of sending in-
formation and waiting for an acknowledgment, or expecting

2502512

information to arrive for some period of time from another
host.

VIL. USING QUNETSIM

In this section, we introduce the key features of QuNetSim
for implementing protocols. A full set of documentation is
also available [18].

A foundational data structure used in QuNetSim is the
Qubit. When a Qubit is created, it is created with a specified
host and gets assigned a unique ID. A qubit is generated
using Qubit (host). Once a qubit is created by a host,
logic gates can be applied to it, it can be stored, or it can be
transmitted to another host. To send a qubit to another host,
one can send it directly or by using teleportation. The two
Qubit methods that accomplish this are as follows:

1) send_qubit;
2) send_teleport.

Hosts can easily establish entangled qubits with other
hosts in QuNetsim with two host methods. Built in, hosts can
generate EPR pairs with another host or a GHZ or W-state
with many hosts. To do so, the following host methods are in
place:

1) send_epr;
2) send_ghz;
3) send_w.

Hosts can send classical messages in three ways; they can
send an arbitrary string over a classical connection, a binary
message via superdense coding, or classically broadcast mes-
sages through the network. These are accomplished with the
following host methods:

1) send_classical;
2) send_superdense;
3) send_broadcast.

Sending a message using superdense coding [19] requires
that a quantum channel is also available between hosts, as it
requires a pre-established EPR pair.

For synchronization between communicating hosts, it is
sometimes beneficial to wait for acknowledgment from the
receiving host. “Waiting” in QuNetSim implies blocking a
line of code. Waiting for an acknowledgment is possible for
all sending method, which is done by setting the flag in the
methods called await_ack. By setting the flag to false, the
host does not wait before executing the actions that follow
and there is no thread blocking done. Moreover, it can be
specified how long a host should wait for acknowledgments
by setting the max_ack_wait host property. QuNetSim
uses real-time for this, so this parameter is the number of
seconds to wait. When await_ack is false, an acknowl-
edgment is still sent, but there is no waiting. One can further
specify that no acknowledgment should be sent by using the
no_ack flag in sending methods.

Hosts can be programmed to retrieve an incoming classical
or quantum message and also wait for it to arrive. When a

VOLUME 2, 2021

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

@IEEE Transactions on,
uantumEngineering

classical or quantum message arrives, it is stored at the host in
its respective memory structure—there is a distinct memory
for classical and quantum information. Hosts have the option
to fetch the data from their memories so that actions can be
performed on it. These methods are as follows:

1) get_classical;
2) get_data_qubit;
3) get_epr;

4) get_ghz;

5) get_w.

Much like awaiting acknowledgments, hosts can wait until
a message or qubit arrives for a fixed amount of time be-
fore proceeding. For each “get” method, there is a parameter
wait=n where n is a floating point number of seconds to
wait. For example, get_epr (”"Alice, ” wait=5) will
wait for five (real) seconds for an EPR to arrive from Alice.

In near-future quantum hardware, it is expected that quan-
tum memories will be limited in their ability to store large
numbers of qubits. QuNetSim supports limiting the number
of qubits stored at a host. The number of entangled qubits
and data qubits can be limited separately or a limit for the
combined number of qubits can be set. The host methods for
setting the limits are as follows:

1) set_epr_memory_limit;
2) set_data_qgqubit_memory_ limit.

These parameters will enforce that no more than the set
number of qubits can be stored. When the limit is reached,
the qubits are lost when they arrive.

To construct a network of hosts, hosts methods are pro-
vided with for adding and removing connections. Connec-
tions in QuNetSim are unidirectional and can be either purely
classical, purely quantum, or both classical and quantum.
For example, if two hosts are connected by only a classical
connection, then qubits cannot be transmitted between the
two hosts. These host methods are as follows:

1) add_c_connection;
2) add_g connection;
3) add_connection.

Connections can also be removed at run time with

1) remove_connection;
2) remove_c_connection;
3) remove_g connection.

Hosts have the ability to eavesdrop on communications.
This is accomplished by first setting the following host prop-
erties to true:

1) c_relay_sniffing;
2) g relay_sniffing.

From there, a custom Python function can be ran to ma-
nipulate the payload of the relaying packets. To do this, func-
tions are set to the host properties:

VOLUME 2, 2021

1) c_relay _sniffing_fn;
2) g relay_sniffing_fn.

These features allow hosts to intercept the qubits that pass
through them en route and manipulate them by measuring
them or performing a unitary operation on them before re-
laying it onward. With classical messages, the hosts can ma-
nipulate the classical payloads, changing the messages for
example.

Host are initialized in an “OFF” state, and so to start hosts
one uses the start host method. Once started, hosts can
run custom protocols using the run_protocol method
taking any Python written function as a parameter. We will
see examples of this in the following section. A running
protocol can be blocking or nonblocking. The Python thread
object containing the running protocols are provided and can
be handled by the user as desired.

Building the network topology is also a critical part of
every simulation. QuNetSim uses a Network singleton ob-
ject to abstract the classical and quantum networks. Once the
network topology is established between the hosts, hosts are
added to the network using the network method add_host.
The network builds a graph structure using the connections of
the host to be used for routing. As we will see in the following
section, this involves adding hosts to the network and then
calling the Network method start.

Networks can be programmed to run custom routing func-
tions for the classical and quantum messages separately. By
default, the network uses shortest-path routing for packets in
the network, but by setting the following network properties:

1) quantum_routing_algo;
2) classical_routing_algo;

the network will use the routing algorithm specified by
the user. The custom routing algorithm’s output need just
be an ordered list, which is the path to the receiver. The
network can reroute at each hop as well by setting the
use_hop_by_hop flag accordingly.

Overall, with these features one can already develop a va-
riety of protocols with varying network topologies. Further-
more, by programming eavesdropping hosts, one can easily
test protocols against malicious third parties, programming
various attacks, as is the norm in the development of QKD
protocols.

A. QUANTUM BACKENDS

QuNetSim relies on open-source qubit simulators that we use
to simulate the physical qubits in the network. At the current
stage, we are using three qubit simulators that each have
their own benefits: CQC/SimulaQron [20], ProjectQ [21],
EQSN [22], and recently QuTiP [23]. EQSN is the default
backend and it is created by the TQSD group. Users are free
to change the backend of QuNetSim to use different qubit
simulators, and we also explain how new backends can be
easily added in our full documentation [18].

2502512

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

TABLE I Benchmark of the Various Backends With Different Networking

Tasks

Backend | Teleportation | Superdense | GHZ State

ProjectQ 102 + 30 82+ 15 N/A
EQSN 283 + 33 296 £ 72 | 2765+ 245
CQC 301+ 75 533 £ 70% | 215 £ 17*
QuTiP 111+ 28 9242 351 + 40

Various protocols are ran over networks with ten hops between the end nodes.
Listed is the average duration in milliseconds to run the specified protocol 10
times repeating the procedure 30 times over to collect the samples. The GHZ state
is distributed to nine other hosts from the first host in the chain. The benchmarking
is done using an average laptop with a 2.7 GHz Dual-Core Intel Core i5 processor
with Python version 3.6.4. *represents tested with just two nodes to work with the
benchmarking tool.

Other than SimulaQron/CQC, using these quantum simu-
lators independent of QuNetSim removes the ability to easily
mimic transporting of quantum information in a network
setting. For example, one can indeed implement a simulation
of quantum teleportation in ProjectQ. With only a quantum
circuit alone, which ProjectQ uses for simulation input, one
may not immediately know that the circuit represents a multi-
party network protocol. In QuNetSim, one programs multiple
entities independently, clarifying the network aspects. With
the circuit model, there is also no aspect of waiting and eaves-
dropping, both of which are available in QuNetSim. Sim-
ulaQron most closely resembles QuNetSim, but QuNetSim
adds a lair of synchronization, such as waiting for arrivals
and acknowledgment to the hosts, on top of SimulaQron and
adds addition network features as mentioned in the earlier
section.

Each backend has advantages and disadvantages and we
give a general benchmarking overview in Table I. The ad-
vantage of using ProjectQ is that it is the fastest in terms of
run-time of the three implemented backends. We have found,
however that it tends to slow when there is a high volume of
qubit entanglement and less robust when protocols run for
longer durations. ProjectQ is not designed to run in a mul-
tithreaded environment and so we observed run-time errors
when many measurements are made on qubits in multiple
threads. We predict that there could be some additional thread
synchronization done here to prevent these errors. Generally,
these are not major issues and can be avoided by slowing the
simulation slightly using the delaying mechanisms built-in
to QuNetSim. EQSN and CQC both work well in terms of
threading and processing speed, but are indeed slower in
speed than ProjectQ. They are generally more reliable under
many qubit operations and tend not to be affected as quickly
when many entangled states are being generated. QuTiP cur-
rently shows the best performance. It is optimized in terms of
representing a density matrix with as little data as possible as
well as not using a single matrix to represent the entire quan-
tum system. This allows for generating many qubits, even
with bipartite entanglement, efficiently. Overall, the user can
use the same code for their network simulation and easily
change the underlying quantum simulation backend to find
the one that best suits their needs. In future iterations, we aim
to integrate more qubit backends to allow for an even more

diverse set of simulation possibilities.
2502512

-]

.
N

>
<a—b
<4

\
J

w

,
N

d—>
>l <
4>

N
J

Q

-
S

»
| <
|

»
<
<K

\
J

E

FIG. 3. Network depiction for example A.

VIIl. EXAMPLE SIMULATIONS

In this section, we cover three examples using QuNet-
Sim. The first example is an explanatory example that
demonstrates establishing a network and sending qubits be-
tween hosts in the network. The following example is of es-
tablishing quantum entanglement between two parties where
the knowledge of which hosts share the entangled pair is
anonymous to all but the two hosts. The example is based
on the protocol in [24]. In the final example, we establish
a network and define a custom routing mechanism. In this
example, hosts are constantly generating entanglement when
possible, and super-dense encoded messages are then trans-
mitted between parties using the route with the most estab-
lished entanglement. This routing concept is further estab-
lished in [25].

A. SENDING DATA QUBITS

We demonstrate here the simple task of sending qubits that
have been encoded with information, or as they are called in
QuNetSim, “data” qubits. We send the qubits from host A to
host D over the network in Fig. 3.

Network is a singleton

network = Network.get_instance()

Start the network with the nodes defined above
network.start ()

Define the Hosts

host_A = Host('A’)

Define the Host’s connections
host_A.add_connection(’'B’)

Start the Host

host_A.start()

host_B = Host(’B’)
host_B.add_connections(['A’, 'E’])
host_B.start()

host_E = Host('E’)
host_E.add_connections(['B’, 'D’])
host_E.start()

host_D = Host(’D’)
host_D.add_connection('E’)
host_D.start ()

Add the Hosts to the network to build the network
graph
network.add_hosts([host_A, host_B, host_E, host_D])

In the following, we want to generate the protocols for
A and D to run. Protocols are the functionality of a host.

Protocols are very flexible with the only exception that the
VOLUME 2, 2021

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

@IEEE Transactions on,
uantumEngineering

protocol function must take the host as the first parameter.
Following is the sample protocol and code to launch the
protocol for a host. In this example, host A is sending five
data qubits to D.

def sender(host, receiver)

Sends 5 qubits to Host *receiverx.

Args:
host (Host): The Host object running the protocol

receiver (str): The name of the receiver

for i in range(5):
The Host creates a qubit
qubit = Qubit(host)
Perform a Hadamard operation on the qubit
qubit.H()
The Host sends the qubit to the receiver
and awaits an ACK from the receiver that
the qubit arrived for some fixed amount of time.
ack_arrived = host.send_qubit(receiver, qubit,
await_ack=True)
if ack_arrived:
print(’Qubit sent successfully.’)
else:
print(’Qubit did not transmit.’)

A protocol for receiving qubits must also be written.
def receiver(host, sender)

Sends 5 qubits to Host *receiverx.

Args:
host (Host): The Host object running the protocol
receiver (str): The name of the sender

for i in range(5):

The Host awaits a data qubit for 10 seconds maximum
qubit = host.get_data_qubit(sender, wait=10)
If the qubit arrived, measure it
if qgubit is not None:

m = qubit.measure()

print("%s received qubit in state %4"

% (host.host_id, m))

else:

print("Qubit did not arrive.")

To run the protocols, we have the following lines of code.

A runs the sender protocol with D

host_A.run_protocol(sender, ('D’,))

D runs the receiver protocol A

host_D.run_protocol(receiver, ('A’,))

In summary, with these code snippets, we can simulate
the transmission of five qubits from A to D over the net-
work in Fig. 3. Of course, this simple example is intended
to give an gentle introduction into how QuNetSim works. In
the following examples, we develop more complex protocol
simulations to see further the simplicity of using QuNetSim
to write quantum network simulations.

B. GHZ-BASED QUANTUM ANONYMOUS DISTRIBUTION

In this example, we will demonstrate how to simulate
an instance of GHZ-based quantum anonymous transmis-
sion [24]. The goal of the protocol is to hide the creation of
an entangled pair between two parties. This protocol imple-
mentation demonstrates the simplicity of translating a proto-
col from a high-level mathematical syntax into simulation
using QuNetSim. The protocol involves establishing GHZ
states amongst 7 parties as well as broadcasting measurement
outcomes. These types of tasks would involve a relatively
high level of software synchronization in order to program
a simulation from scratch. Here, we demonstrate that in

VOLUME 2, 2021

FIG. 4. Network depiction for example B.

QuNetSim, synchronization logic is programmatically kept
at a high level.

As a first step, as always, we generate a network. Follow-
ing is the code to generate such a network, which is depicted
in Fig. 4.

network = Network.get_instance()
network.start ()

host_A = Host('A’)
host_A.add_connections([‘B’, ‘C’, ‘D', 'E’])
host_A.start ()

host_B = Host(’B’)
host_B.add_c_connections(['C’, ‘D', 'E’])
host_B.start()

host_C = Host(’'C’)
host_C.add_c_connections(['B’, 'D’, 'E’])
host_C.start ()

host_D = Host(’'D’)

host_D.add_c_connections(['B’, 'C’, 'E’'])
host_D.start ()

host_E = Host('E’)
host_E.add_c_connections(['B’, 'C’ D’'])

host_E.start ()

network.add_hosts([host_A, host_B, host_C,

host_D, host_E])

The following step is to write the behavior of the GHZ
distributor, which in this example is host A. QuNetSim pro-
vides a function for distributing GHZ states so the function
distribute simply takes the distributing host as the first
parameter and the list of receiving nodes as the second. One
notices that the flag distribute has been set to true in
the send_ghz method call. This tells the sending host that
it should not keep part of the GHZ state, rather, it should
generate a GHZ state amongst the list given and send it to
the parties in the node list, keeping no part of the state for
itself.

def distribute(host, nodes):

e
host (Host): The Host running the protocol
nodes (list): The list of nodes to distribute the

GHZ to

distribute=True => don’'t keep part of the GHZ
host.send_ghz(nodes, distribute=True)

The next type of behavior we would like to simulate is
that of a node in the group that is not attempting to establish
an EPR pair. In the anonymous entanglement protocol, the
behavior of such a node is to simply receive a piece of a
GHZ state, perform a Hadamard operation on the received
qubit, measure it, and broadcast to the remaining participat-
ing parties the outcome of a measurement in the computa-
tional basis. In the following, we see how to accomplish this.

2502512

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

In the node function, the first parameter is, as always, the
host that is performing the protocol. The second is the ID of
the node distribution the GHZ state, which in this example,
is host A. The host fetches its GHZ state where, if it is
not available at the time, they will wait ten seconds for it,
accomplished by setting the wa i t parameter. If they have not
received part of the GHZ state, then the protocol has failed,
otherwise they simply perform the Hadamard operation on
the received qubit, measures it, and broadcasts the message to
the network. QuNetSim includes the task of broadcasting as a
built-in function, and therefore, the task of sending classical
messages to the whole network is simplified to one line of
code.
def node(host, distributor)
Args:
host (Host): The Host running the protocol
distributor (str): The ID of the distributor
for GHZ states
g = host.get_ghz(distributor, wait=10)
if g is None:
print(’failed’)
return
a.HQ)

m = g.measure()
host.send_broadcast(str(m))

We implement next the behavior of the party in the proto-
col acting as one end of the EPR link that we label the sender.
Here, we take three parameters (other than the host running
the protocol), the ID of the distributor, the receiver that is the
holder of the other half of the EPR pair, and an agreed upon
ID for the EPR pair that will be generated. In QuNetSim,
qubits have IDs for easier synchronization between parties.
For EPR pairs and GHZ states, qubits share and ID, that is,
the collection of qubits would all have the same ID. This is
done so that when parties share many EPR pairs, they can
easily synchronize their joint operations. The sender pro-
tocol is the following: first they receive part of a GHZ state,
they select a random bit and then broadcast the message so
that they appear as just any other node. They then manipulate
their part of their part of the GHZ state according to what the
random bit was. If the bit was 1, then a Z gate is applied. The
sending party can then add the qubit as an EPR pair shared
with the receiver. This EPR pair can then be used as if the
sender and receiver established an EPR directly.

def sender(host, distributor, receiver, epr_id):

Args:
host (Host): The Host running the protocol
distributor (str): The ID of the distributor
for GHZ states
receiver (str): ID to teleport the qubit to after
EPR is established
epr_id (str): ID for the EPR pair established
ahead of time

q = host.get_ghz(distributor, wait=10)
b = random.choice([’0’, '1'])
host.send_broadcast(b)
if b == '1":

q.2()
host.add_epr(receiver, g, g _id=epr_id)
qubit_to_send = Qubit(host)
host.send_teleport(r, qubit_to_send)
host.empty_classical()

Finally, we establish the behavior of the receiver. The
receiver here behaves as follows: First, in order to mask
their behavior they randomly choose a bit and broadcast it

2502512

FIG. 5. Network depiction for example C.

to the network. Once complete, they await the remainder of
the broadcast messages. In QuNetSim, classical messages
are stored as a list in the classical field. Since there
are three other parties, other than the receiver themself, they
await the other three messages. Once they arrive, the receiver
computes a global parity operation by taking the XOR of all
received bits along with their own random choice. With this,
the receiver can apply a controlled Z gate, which establishes
the EPR pair with the correct sender. They simply add the
EPR pair and complete the protocol.

def receiver(host, distributor, sender, epr_id)
g = host.get_ghz(distributor, wait=10)
b = random.choice([’'0’, "1"])
host.send_broadcast(b)

messages = []
Await broadcast messages from all parties
while len(messages) < 3

messages = host.classical

parity = int(b)
for m in messages:

if m.sender != s:
parity = parity ” int(m.content)
if parity ==
a.z()

Established secret EPR, add it
host.add_epr(sender, g, g _id=epr_id)

Await a teleportation from the anonymous sender
g = host.get_data_qubit(s, wait=10)

The last step of writing a QuNetSim simulation is to run
the protocols for each desired host. In the following, we let
host A act as the GHZ state distributor, B and C are neutral
parties running the node behavior, D acts as the sender
and E acts as the receiver. The following code initiates the
simulation.

epr_id = 12345’

host_A.run_protocol(distribute, ([’'B’, ‘C’, 'D’,
host_B.run_protocol(node, ('A’,))
host_C.run_protocol(node, ('A’,))
host_D.run_protocol(sender, ('A’, 'E’, epr_id))
host_E.run_protocol(receiver, ('A’, 'D’, epr_id))

‘E'],))

C. ROUTING WITH ENTANGLEMENT

In this example, we demonstrate how one can use QuNetSim
to test a custom routing algorithm. We consider the network
shown in Fig. 5. The example here uses the approach of [26]
for choosing the route and using dense coding for classical
message transmission. For this example, we assume the net-
work is using entanglement resources to transfer classical
information via superdense coding from host A to host B.
The sending and receiving parties must first establish an EPR
pair to send messages via superdense coding. The sender per-
forms a specific set of operations on its half of the EPR pair

VOLUME 2, 2021

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

@IEEE Transactions on,
uantumEngineering

and then transmits it through the network. When the receiver
received the qubit, it performs a specific set of operations
such that it recovers two bits of classical information. What
is important here is that A and B are separated by one hop.
In order to share an EPR pair, an entanglement swap routing
has to be made.

The strategy for this routing algorithm is to first build a
graph of the entanglement shared amongst the hosts in the
network. The strategy, since superdense coding consumes
entanglement pairs, will then be to route information through
the path that contains the most entanglement. In this example,
we show how this can be accomplished. As always, we first
generate the network topology.

nodes = ['A’, ‘node_l’, ’‘node_2’', 'B’]
network.use_hop_by_hop = False
network.use_ent_swap = True
network.set_delay = 0.1
network.start(nodes)

A = Host('A’)
A.add_connections([‘node_1’, ‘node_2'])
A.start()

node_1 = Host('node_1')
node_1.add_connections ([‘A", 'B’])
node_1.start ()

node_2 = Host('node_2')
node_2.add_connections([‘A", 'B'])
node_2.start ()

B = Host('B’)
B.add_connections ([‘node_1’, ’'node_2'])
B.start ()

network.add_hosts([A, node_1, node_2, B])

def generate_entanglement (host):

Generate entanglement if the Host is idle.
while True:
Check if the Host is not processing
if host.is_idle():
for connection in host.quantum_connections:
host.send_epr(connection)

def routing_algorithm(network_graph, source, target):
Entanglement based routing function.

Args:
network_graph (networkx.DiGraph): The directed graph
representation of
the network.
source (str): The sender ID
target (str): The receiver ID
Returns:
(list): The route ordered by the steps in the route.

Generate entanglement network
entanglement_network = nx.DiGraph()
nodes = network_graph.nodes ()
A relatively large number
inf = 1000000
for node in nodes:
host = network.get_host(node)
for connection in host.quantum_connections:
num_epr_pairs = len(host.get_epr pairs(connection))
if num_epr_pairs == 0:
entanglement_network
.add_edge(host.host_id,
connection,
weight=inf)
else:
entanglement_network
.add_edge(host.host_id,
connection,
weight=1. / num_epr_pairs)

try:
return nx.shortest_path(entanglement_network,
source,
target,
weight='weight’)
except Exception as e:
print(’Error getting route.’)

We can now begin to simulate the network using this con-
figuration. In this simulation, the nodes in the middle are
sending entanglement to the other nodes as often as they can,

VOLUME 2, 2021

establishing the most EPR pairs while they are free to do so.
We start them on this process as so:

node_1.run_protocol (generate_entanglement)
node_2.run_protocol (generate_entanglement)

Now we tell the network to use a different routing algo-
rithm for the quantum information in the network.

network.quantum_routing_algo = routing_algorithm

Finally, we trigger host A to begin transmitting 100 mes-
sages via superdense coding to host B.

choices = [’00’, "11’, ’10’, ’01"]

for _ in range(100):

m = random.choice(choices)
A.send_superdense(’'B’, m, await_ack=True)

IX. CONCLUSION AND OUTLOOK

Overall, we have introduced the open-source, Python-based,
real-time quantum network simulation framework QuNet-
Sim. We reviewed the design choices and architecture of
QuNetSim and the built-in features that allow for complex
quantum networking protocols to be developed in a straight-
forward way. We have shown that the high-level functionality
of QuNetSim allows beginners to easily learn about quantum
networks as well as quantum network protocol developers to
quickly develop and test their protocols, making QuNetSim
a good choice for teaching and research.

The current state of the quantum networking field is at
the near beginning in regards to which applications will
be implemented in reality, the network layer structure, the
standardization of protocols, and more. QuNetSim uses a
minimal set of assumptions as to allow for a maximization
of variation and configuration. QuNetSim’s main focus is
quantum network application development, but that is not
the end of its capabilities. QuNetSim being a Python library
allows for other distributed quantum network applications
to be built on top of it, as we have already seen with the
Interlin-q project [16]. Moreover, as a real-time simulator,
it allows for future emulation features and for integration of
“lab-in-a-loop” behavior.

The future of QulNetSim is to maintain its ease-of-use de-
sign while integrating the features needed to be a first-choice
tool for those in the quantum network field. QuNetSim’s
target user base and use cases will continue to be students
for learning, lectures as a teaching instruments, quantum
network engineers as a protocol development platform, and
quantum hardware developers for test-bed development. As
an open-source tool, building a strong collaborative devel-
oper network is also an important goal. Quantum networks
are an inevitable technology and with them comes many open
questions. QuNetSim aims to be a tool to help with answering
these questions.

ACKNOWLEDGMENT
The authors would like to thank all external contribu-
tors to QuNetSim, especially A. Muzzi for implementing

2502512

@IEEE Transactions on,
uantumEngineering

Diadamo et al.: QUNETSIM: A SOFTWARE FRAMEWORK FOR QUANTUM NETWORKS

We-state distribution and Anirban Majumder for implement-
ing noise models in channels. The work of Stephen Diadamo
was supported by the Unitary Fund under the QuNetSim
project.

REFERENCES

[1] H. J. Kimble, “The quantum Internet,” Nature, vol. 453, no. 7198,
pp. 1023-1030, 2008, doi: 10.1038/nature07127.

[2] S. Wehner, D. Elkouss, and R. Hanson, “Quantum Internet: A vision for
the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. eaam9288,
doi: 10.1126/science.aam9288.

[3] Q. O. S. Foundation, “List of open quantum projects,” 2020. [Online].
Available: https://qosf.org/project_list/

[4] G. F. Riley and T. R. Henderson, “The NS-3 network simulator,” in
Modeling Tools Network Simulation. Berlin, Germany: Springer, 2010,
pp. 15-34, doi: 10.1007/978-3-642-12331-3.

[5] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothen-
berg, “Mininet-WiFi: Emulating software-defined wireless networks,”
in Proc. 11th Int. Conf. Netw. Service Manage., 2015, pp. 384-389,
doi: 10.1109/CNSM.2015.7367387.

[6] H.Zimmermann, “OSI reference model—The ISO model of architecture
for open systems interconnection,” I[EEE Trans. Commun., vol. 28, no. 4,
pp. 425-432, Aug. 1980, doi: 10.1109/TCOM.1980.1094702.

[71 A. Pirker and W. Diir, “A quantum network stack and protocols for re-
liable entanglement-based networks,” New J. Phys., vol. 21, no. 3, 2019,
Art. no. 033003, doi: 10.1088/1367-2630/ab05f7.

[8] A. Dahlberg and S. Wehner, “SimulaQron—A simulator for developing
quantum Internet software,” Quantum Sci. Technol., vol. 4, no. 1, 2018,
Art. no. 015001, doi: 10.1088/2058-9565/aad56e.

[9] T. Coopmans et al., “Netsquid, a discrete-event simulation platform for
quantum networks,” 2020, arXiv:2010.12535.

[10] B. Bartlett, “A distributed simulation framework for quantum networks
and channels,” 2018, arXiv:1808.07047.

[11] T. Matsuo et al., “QuISP—Quantum Internet simulation package,” 2020.
[Online]. Available: https://aqua.sfc.wide.ad.jp/quisp_website/

[12] X.Wueral., “Sequence: A customizable discrete-event simulator of quan-
tum networks,” 2020, arXiv:2009.12000.

[13] M. Mehic, O. Maurhart, S. Rass, and M. Voznak, “Implementation of
quantum key distribution network simulation module in the network sim-
ulator NS-3,” Quantum Inf. Process., vol. 16, no. 10, pp. 1-23, 2017,
doi: 10.1007/s11128-017-1702-z.

[14] R. Chatterjee, K. Joarder, S. Chatterjee, B. C. Sanders, and U. Sinha,
“QKDSIM, a simulation toolkit for quantum key distribution including
imperfections: Performance analysis and demonstration of the b92 pro-
tocol using heralded photons,” Phys. Rev. Appl., vol. 14, Aug. 2020,
Art. no. 024036, doi: 10.1103/PhysRevApplied.14.024036

[15] T. Matsuo, “Simulation of a dynamic, ruleset-based quantum network,”
2019, arXiv:1908.10758.

[16] R. Parekh and S. DiAdamo, “Interlin-Q: A quantum interconnect sim-
ulator for distributed quantum algorithms,” 2021. [Online]. Available:
https://github.com/Interlin-g/Interlin-q

[17] G. Van Rossum, and F. L. Drake, “Python 3 Reference Manual,” Scotts
Valley, CA, US, CreateSpace, 2009, isbn: 1441412697.

[18] S. DiAdamo, J. Nétzel, B. Zanger, and M. Mert Bese, “QuNetSim: A
software framework for quantum networks,” 2020. [Online]. Available:
https://tqsd.github.io/QuNetSim

[19] C. H. Bennett and S. J. Wiesner, “Communication via one- and two-
particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett.,
vol. 69, pp. 2881-2884, Nov. 1992, doi: 10.1103/PhysRevLett.69.2881

[20] A. Dahlberg et al., “A link layer protocol for quantum networks,”
in Proc. ACM Special Int. Group Data Commun., 2019, pp. 159-173,
doi: 10.1145/3341302.3342070.

[21] D. S. Steiger, T. Hiner, and M. Troyer, “ProjectQ: An open source soft-
ware framework for quantum computing,” Quantum, vol. 2, p. 49, 2018,
doi: 10.22331/q-2018-01-31-49.

[22] B. Zanger and S. DiAdamo, “EQSN: Effective Quantum Simulator for
Networks,” 2020. [Online]. Available: https://github.com/tqsd/EQSN_
python

2502512

[23] J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: An open-
source python framework for the dynamics of open quantum sys-
tems,” Comput. Phys. Commun., vol. 183, no. 8, pp. 1760-1772, 2012,
doi: 10.1016/j.cpc.2012.02.021.

[24] M. Christandl and S. Wehner, “Quantum anonymous transmissions,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2005, pp. 217-235,
doi: 10.1007/11593447_12.

[25] J. Notzel and S. DiAdamo, “Entanglement-enhanced communication
networks,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2020,
pp. 242-248, doi: 10.1109/QCE49297.2020.00038.

[26] J. Notzel and S. DiAdamo, “Entanglement-enhanced communication
networks,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2020,
pp. 242-248, doi: 10.1109/QCE49297.2020.00038.

Stephen Diadamo received the B.Sc. (Hons.)
degree in computer science and software engi-
neering from the University of Toronto, Toronto,
ON, Canada, in 2014 and the M.Sc. degree in
mathematics from the Technical University of
Munich, Munich, Germany, in 2018. He is cur-
rently working toward the Ph.D. degree in elec-
trical engineering with the Technical University
of Munich, Munich, Germany.

His research interests include quantum net-
works, quantum information theory, and dis-
tributed quantum computing.

Mr. Diadamo has been awarded a microgrant from the Unitary Fund
program in order to assist in the development of this work.

Janis Notzel received the Dipl. Phys. degree in
physics from the Technische Universitit Berlin,
Berlin, Germany, in 2007 and the Ph.D. degree
(Dr. rer. nat) in pure Mathematics from Technis-
che Universitdt Miinchen, Miinchen, Germany, in
2012.

From 2008 to 2010, he was a Research Assis-
tant with the Technische Universitit Berlin, and
from 2011 to 2015, with Technische Universitit
Miinchen. In 2015 and 2016, he was a DFG Re-
search Fellow with the Universitat Autonoma de
Barcelona, Bellaterra, Spain. From September 2016 to November 2018,
he led a research transfer with the 5G Lab, Technische Universitit Dres-
den, Dresden, Germany, resulting in the spin-off ZentiConnect. In Decem-
ber 2018, he became an Emmy-Noether Research Group Leader with the
Technische Universitdt Miinchen. His research interests include quantum
information processing, classical information theory, and signal processing
algorithms.

Benjamin Zanger received the B.Sc. degree
in electrical engineering and the B.Sc. degree
in computer science, with a focus on scientific
computing and quantum computing, in 2018 and
2020, respectively, from the Technical University
of Munich, Munich, Germany, where he is cur-
rently working toward the M.Sc. degree in elec-
trical engineering.

Before joining the Chair of Theoretical In-
formation Technology, he was a working stu-
dent in embedded software development for
over two years.

Mehmet Mert Bese received the B.Sc. degree
in electrical engineering from Middle East Tech-
nical University, Ankara, Turkey, in 2018, with a
focus on mobile communications, and the M.Sc.
degree in communications engineering from the
Technical University of Munich, Munich, Ger-
many, in 2020.

Before joining the Chair of Theoretical Infor-
mation Technology, he was a working student for
Airbus.

VOLUME 2, 2021

https://dx.doi.org/10.1038/nature07127
https://dx.doi.org/10.1126/science.aam9288
https://qosf.org/project_list/
https://dx.doi.org/10.1007/978-3-642-12331-3
https://dx.doi.org/10.1109/CNSM.2015.7367387
https://dx.doi.org/10.1109/TCOM.1980.1094702
https://dx.doi.org/10.1088/1367-2630/ab05f7
https://dx.doi.org/10.1088/2058-9565/aad56e
https://aqua.sfc.wide.ad.jp/quisp_website/
https://dx.doi.org/10.1007/s11128-017-1702-z
https://dx.doi.org/10.1103/PhysRevApplied.14.024036
https://github.com/Interlin-q/Interlin-q
https://tqsd.github.io/QuNetSim
https://dx.doi.org/10.1103/PhysRevLett.69.2881
https://dx.doi.org/10.1145/3341302.3342070
https://dx.doi.org/10.22331/q-2018-01-31-49
https://github.com/tqsd/EQSN_python
https://dx.doi.org/10.1016/j.cpc.2012.02.021
https://dx.doi.org/10.1007/11593447_12
https://dx.doi.org/10.1109/QCE49297.2020.00038
https://dx.doi.org/10.1109/QCE49297.2020.00038

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

