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ABSTRACT In this article, we extend variational quantum optimization algorithms for quadratic uncon-
strained binary optimization problems to the class of mixed binary optimization problems. This allows
us to combine binary decision variables with continuous decision variables, which, for instance, enables
the modeling of inequality constraints via slack variables. We propose two heuristics and introduce the
transaction settlement problem to demonstrate them. Transaction settlement is defined as the exchange of
securities and cash between parties and is crucial to financial market infrastructure. We test our algorithms
using classical simulation as well as real quantum devices provided by IBM quantum.

INDEX TERMS Mixed binary optimization (MBO), quadratic unconstrained binary optimization (QUBO),
quantum finance, quantum optimization, transaction settlement.

I. INTRODUCTION
Quantum computers process information using the laws of
quantum mechanics. They are well suited for a number of
tasks, such as simulating quantum mechanical systems [1],
[2] and factoring [3]. Additionally, quantum computers can
provide a quadratic speed-up over classicalMonte Carlo sim-
ulations, which may be used to evaluate risk [4], [5] and
price financial derivatives [6], [7]. Another possible applica-
tion area for quantum computers is optimization, particularly
combinatorial optimization. It is not believed that quantum
computers will be able to solve NP-hard problems in poly-
nomial time [8]. There is, however, a significant effort in de-
signing quantum heuristics that could be practically useful by
finding near optimal solutions [9]–[12]. Adiabatic quantum
computing [13], [14] and variational algorithms, such as the
variational quantum eigensolver (VQE) [9] and the quan-
tum approximate optimization algorithm (QAOA) [10], are
designed to tackle quadratic unconstrained binary optimiza-
tion (QUBO) problems. Importantly, quantum optimization
algorithms may benefit from a warm-start obtained from the
solution of an efficiently solvable relaxation of the problem.
In doing so, the quantum algorithm inherits the performance
guarantee of the classical algorithm, as shown for QUBO
problems [15], [16]. However, many relevant problems in

business and science are mixed binary optimization (MBO)
problems, with discrete and continuous variables, or with
constraints that cannot be modeled as part of a QUBO prob-
lem, e.g., inequality constraints. In this article, we introduce
an approach to extend the existing quantum methods to more
general MBO problem classes.
While quantum algorithms are not yet mature enough to

deploy at scale in the market place, it is crucial to investigate
their potential to business-relevant problems to one day gain
a quantum advantage. We therefore test our algorithm on
the transaction settlement problem by focusing on securities
settlement in capital markets. Here, transaction settlement
is the process in which securities (tradeable financial as-
sets, such as shares, bonds, and derivatives) are delivered
usually against a payment. This exchange between parties
can be facilitated by a clearing house, which also mitigates
the counterparty risk [17]. Financial institutions submit the
details of the trades (e.g., buy x shares of some company for
an amount y of some currency) to the clearing house, which
runs a complex optimization algorithm on the resulting batch
of transactions while taking into account credit and collat-
eral facilities. The objective is typically to settle as many
transactions as possible or to maximize the total value of
the settled transactions. Transaction settlement is a difficult
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optimization problem due to a combination of both the le-
gal constraints that must be satisfied when settling delivery-
versus-payment (DvP) transactions and the additional op-
tionality introduced by collateralizing assets and utilizing
credit facilities. A variety of approaches are currently em-
ployed, ranging in complexity from basic gross settlement
systems (which settle on a simple transaction-by-transaction
basis) to sophisticated probabilistic techniques, such as sim-
ulated annealing (whereby an optimization process is per-
formed to identify a sufficient subset of transactions that can
settle and then that subset is actually settled). This is an in-
dustry process of systemic importance because of the volume
and value of transactions settled, e.g., over $1.85 quadrillion
of securities transactions were processed in 2018 by sub-
sidiaries of the posttrade market infrastructure DTCC [18].
This article is structured as follows. In Section II, we de-

fineQUBOproblems and discuss their relation toMBOprob-
lems. In Section III, we introduce hybrid quantum-classical
optimization algorithms for MBO by extending the known
algorithms. In Section IV, we map the transaction settlement
problem to this framework, and in Section V, we demonstrate
the performance of our hybrid algorithm on concrete in-
stances using cloud-based quantum hardware. We conclude
in Section VI and discuss open questions and directions of
further research.

II. MIXED BINARY OPTIMIZATION
QUBO problems, defined as

min
x∈{0,1}n

xTAx+ bT x+ c (1)

where A ∈ Rn×n, b ∈ Rn, and c ∈ R, have a wide range of
applications, such as portfolio optimization or the traveling
salesman problem, but are hard to solve [12], [19]. Vari-
ational quantum algorithms for combinatorial optimization
can find good solutions to QUBO problems with n variables
once mapped to an Ising Hamiltonian H for n qubits by
setting xi = (1 − zi)/2 for zi ∈ {−1,+1} and replacing zi by
Pauli Z-matrices σ Zi , for i = 1, . . . , n. This allows us, for in-
stance, to use VQE or QAOA to approximate the ground state
ofH, which corresponds to the optimal solution of theQUBO
problem. For further details on how to map QUBO prob-
lems to Ising Hamiltonians, we refer the interested reader to
Lucas [19].
Since many industry relevant problems, such as portfolio

optimization with budget constraints [20] or the knapsack
problem and its variants [21], are not QUBO problems, we
also consider MBO problems, here defined as

min
x∈{0,1}n
y∈Y

xTA(y)x+ b(y)T x+ c(y) (2)

whereY ⊂ Rm is the feasible set for the continuous variables
y and A : Rm → Rn×n, b : Rm → Rn, and c : Rm → R are
given functions of y. MBO problems therefore combine dis-
crete and continuous variables x and y, respectively. Further-
more, for a fixed y ∈ Y , the MBO problem (2) corresponds

to the QUBO problem (1). While other definitions of MBO
exist, we have chosen this one to be compatible with the
variational heuristics we want to extend.
In QUBO problems, we model linear equality constraints

of the form uT x+ v = 0 by adding quadratic penalty terms
(uT x+ v)2 scaled by a large weight λ to the objective, where
u ∈ Rn and v ∈ R are given. This forces optimal solutions
to satisfy the constraint to prevent the large penalty. Other
types of constraints are usually not possible in QUBO, since
they cannot be represented as quadratic penalty terms. In the
quantum alternating operator ansatz, the mixing operator
in QAOA is adjusted to keep the process in the feasible set
assuming a feasible initial state [22]. This is a promising, but
nongeneric, approach to incorporate constraints.
Since MBO problems allow continuous variables, we may

introduce a slack variable s ≥ 0 to enforce the equality con-
straint uT x+ v + s = 0. This is equivalent to the inequality
constraint uT x+ v ≤ 0, without s. Thus, by allowing binary
and continuous variables, we extend the type of constraints
we can model. The lower bound on s needs to be included as
a continuous constraint defining the feasible set Y .

III. QUANTUM OPTIMIZATION ALGORITHMS FOR MBO
Variational quantum algorithms for QUBO first translate the
problem into an n-qubit Ising Hamiltonian H, as discussed
in Section II. Classical optimization can then find the values
of the parameters θ of a n-qubit trial wavefunction |ψ (θ )〉 to,
for instance, minimize the expected value

min
θ

〈ψ (θ )|H |ψ (θ )〉 (3)

i.e., by applying VQE [9]. The expected value is easily esti-
mated by repeatedly measuring |ψ (θ )〉 along the Z-axis as
H only consists of σ Z-terms. Since we consider classical
optimization, we can translate every measurement of |ψ (θ )〉
into an n-bit string and directly evaluate (1). If we measure
|ψ (θ )〉 N-times and denote the resulting bit strings by x j(θ )
where j = 1, . . . ,N, the resulting optimization problem is

min
θ

N∑
j=1

x j(θ )TAx j(θ ) + bT x j(θ ) + c. (4)

We may improve the performance of the optimization al-
gorithm by replacing the sample average in problem (4) by
another aggregation function, such as the Conditional Value
at Risk (CVaR). That is, for a given α ∈ (0, 1], we only av-
erage over the best αN samples, which can help the classical
optimization process find better results [12].
In this article, we consider two variational algorithms.

First, VQE with a generic trial wavefunction |ψ (θ )〉 and
second, QAOA, where we construct |ψ (θ )〉 based on H. In
the following, we discuss how to extend these algorithms to
be applicable to MBO problems.
If a generic trial-solution |ψ (θ )〉 is given, as in VQE,

we can map an MBO problem to a continuous optimization

3101208 VOLUME 2, 2021



Braine et al.: QUANTUM ALGORITHMS FOR MIXED BINARY OPTIMIZATION APPLIED TO TRANSACTION SETTLEMENT Engineeringuantum
Transactions onIEEE

problem

min
θ
y∈Y

N∑
j=1

x j(θ )TA(y)x j(θ ) + b(y)T x j(θ ) + c(y) (5)

for which solutions can be approximated using classical op-
timization schemes.
Let us now consider a rule to derive a trial wavefunc-

tion |ψH (θ )〉 from a given Hamiltonian H, such as given
by QAOA. For MBO, every fixed y ∈ Y defines a QUBO
and can, thus, be translated to an Ising Hamiltonian H(y).
This allows us to define trial wavefunctions |ψH(y)(θ )〉 that
now depend on y. As in (5), we can translate the MBO to a
continuous optimization problem, where the measurements
x j(θ, y) depend on θ as well as y. In summary, A(y), b(y),
and c(y) define the Hamiltonian H(y), which in turn defines
the θ - and y-dependent trial wavefunction |ψH(y)(θ )〉. These
two approaches allow us to extend the existing quantum
heuristics fromQUBO toMBO enabling us to test variational
quantum algorithms on a larger problem class.
Next, we introduce a heuristic that is designed to han-

dle slack variables resulting from modeling inequality con-
straints explicitly. This can help the classical optimizer used
to solve (5) to move out of local minima. Suppose, for sim-
plicity, that we have a problemwith only binary variables and
a single slack variable, coming from an inequality constraint,
formally given by

max
x
s≥0

xTAx+ bT x+ c+ λ
(
uT x+ v + s

)2
. (6)

The large scalar λ > 0 enforces uT x+ v + s = 0. The new
heuristic consists of repeating the following three steps a
fixed number of times, or until some predefined termination
criterion is met.

1) Perform a preset fixed number of iterations of a classi-
cal optimizer to jointly optimize θ and s, and store the
resulting samples x j(θ ) from the last iteration.

2) Analyze every individual sample x j(θ ) and define

s j = max
{
0,−(uT x j(θ ) + v)

}
. (7)

In other words, for each sampled binary vector x j(θ ),
we derive the slack variable s j such that the constraint
uT x+ v + s = 0 is satisfied, if possible, or such that
we minimize the violation. Evaluate the overall objec-
tive value for x j(θ ) and s j and identify the candidate so-
lution that performs best, i.e., that achieves the smallest
objective value.

3) Fix s j determined in the previous step and rerun the
classical optimizer over θ only for a preset fixed num-
ber of iterations.

This simple heuristic can help significantly to move out
of local optima of the considered continuous optimization
problem in θ and s. The algorithmic parameters, such as
number of cycles and number of iterations per cycle, need
to be determined according to the problem of interest. As

we show in the following section, applying a classical opti-
mizer directly to solve (5) often gets stuck in local optima,
whereas our new heuristic reliably found the globally op-
timal solution of the considered test case. The introduced
algorithm can be easily extended to more complex problems
with additional continuous variables and multiple inequality
constraints/slack variables.
The quantum algorithms ourmethods rely upon are heuris-

tics and, therefore, cannot be analyzed using O-notation.
Instead, the potential quantum advantage must be studied
empirically on a case-to-case basis and current research sug-
gests that if an advantage can be gained, it will be for problem
sizes with more than 100 variables [23], [24]. The energy
landscapes of the QAOA and the VQE are typically noncon-
vex and contain many local minima. Current research has
focused on strategies, such as reinforcement learning [25]
and multistart methods [26], to navigate this landscape. The
quality of the VQE and QAOA solutions increases with the
depth of the quantum algorithm [23], which can lead to deep
quantum circuits, which exhaust the coherence time of noisy
quantum hardware. Furthermore, the optimization problems
must be mapped to the native connectivity of the qubits using
SWAP gates, which further increases the circuit depth [27]. It
is therefore paramount to increase the quality of the hardware
so that such algorithms may find practical relevance [28]. In
addition, implementing small problems on noisy hardware
shows how to leverage novel hardware platforms, such as
tunable couplers [2] and pulse-level optimizations [29]–[31],
to accelerate the development of quantum algorithms.

IV. TRANSACTION SETTLEMENT
In this section, we introduce the transaction settlement prob-
lem in which parties continuously submit the details of the
trades to a clearing house. All of the corresponding DvP
transactions recorded by the clearing house during a prede-
fined time interval, plus all the unsettled transactions remain-
ing from the previous batch, form a new batch of I transac-
tions submitted by K parties. �k is the set of transactions of
party k. The clearing house must then settle as many transac-
tions as possible within the given batch. The ith transaction
involving a party k is described by a sparse vector �vik of
length J, the total number of security and currency accounts,
with only two nonzero entries, one for the security (delivery)
and one for the currency (payment). The transaction vectors
of two parties k and k′ that participate in a transaction i sum
to zero: �vik + �vik′ = �0. To each transaction i, we associate a
binary variable xi to indicate settlement.
We, thus, seek to maximize the weighted sum of settled

transactions

max
�x

I∑
i=1

wixi

subject to: �bk +
∑
i∈�k

xi�vik ≥ �lk ∀k. (8)
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FIGURE 1. Diagrams illustrating a batch of three DvP transactions T1, T2, T3 between three parties P1, P2, P3. Each party has a currency account C and
security account S, with amounts shown in the interior circles. Each transaction is shown with a pair of arrows and the corresponding amount of security
and currency involved. In (b), we consider a simplified credit and collateral facility (CCF) (with a net zero amount of credit) shared by both accounts of
P1, with an exchange factor between currency and security of 1S = 2 C. In both (a) and (b), the optimal solution settles transactions T2 and T3, as
indicated by the pairs of solid green arrows. With the modification of P1’s account balances in (b), none of the transactions could settle without the
presence of the CCF F1, which P1 can use to convert security into currency to facilitate the transaction with P3.

FIGURE 2. Diagram illustrating a batch of seven payments T1, . . . , T7 between six parties P1, . . . , P6. Each party has a single currency account C, with
amounts shown in the interior circles. Each transaction is shown with a single arrow and the corresponding amount of currency involved. Several
optimal solutions exist that settle four total transactions, e.g., payments T2, T3, T6, T7, shown here with solid green arrows to differentiate the unsettled
transactions indicated by grey hatched arrows.

The weight ωi may, for instance, be the total monetary value
of transaction i, or ωi = 1∀i if we seek to optimize the num-
ber of settled transactions. The K vector constraints in (8)
feature the balance vector �bk, which encodes the securities
and currencies that party k owns before any transactions set-
tle. Additionally, party kmay be granted credit for some or all
accounts, which is encoded by�lk. There areK × J constraints
in (8), but, in practice, the sparsity of �bk, �vik, and �lk reduces
the number of constraints. Thus, the optimization described
by (8) must ensure that the credit limits are not exceeded. The

transaction settlement optimization problem is complex and
may feature dependence chains and even cyclical dependen-
cies between transactions, as seen in Figs. 1 and 2.
Each account (associated with a security or currency)

owned by a party can optionally participate in a simplified
CCF, which permits the account to contribute to a collateral
pool and also use the resulting credit pool. Several accounts
owned by a party can participate in the same CCF, permitting
shared pools (in principle, several credit and collateral facil-
ities can be defined for each party). The accounts owned by
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TABLE 1 Notation Used Throughout This Article to Define the
Transaction Settlement Optimization Problem

party k may add to or draw from the credit pool such that a
total credit amount pk is not exceeded. This can be modeled
as an additional continuous constraint

�rk · �lk ≥ pk (9)

for each party k that participates in a CCF. The exchange
factors �rk represent the conversion of a currency/security in
one account into a currency/security of another account when
exchanged via the facility and may be party dependent. In
this scenario, the credit limits �lk can now be variable, instead
of fixed for each account, to reflect the amount contributed
to or drawn from the shared pool. The notation we use to
formulate this problem is summarized in Table 1.
We now transform problem (8), following Section II, into

the form given in (2), which may be solved using the varia-
tional quantum solvers discussed in Section III. Nonnegative
slack variables �sk are used to cast the inequality constraints
into equality constraints, i.e., (8) becomes

max
�x

�sk≥0

I∑
i=1

wixi

subject to: �bk +
∑
i∈�k

xi�vik = �lk + �sk ∀k. (10)

Next, we map this constrained optimization problem to
an unconstrained optimization problem by transforming the
equality constraint into a quadratic penalty term scaled by a
large number λ ≥ 0

max
�x

�sk≥0

⎡
⎢⎣

I∑
i=1

wixi − λ

K∑
k=1

⎛
⎝�bk +

∑
i∈�k

xi�vi − �lk − �sk

⎞
⎠

2
⎤
⎥⎦ .

(11)
In this form, we can solve the optimization problem using the
methods of Section III, where the number of qubits needed
to represent the trial wavefunction is equal to the number
of transactions under consideration. The nonnegativity con-
straint on the slack variables as well as constraint (9) is
handled by the classical optimizer as they do not involve the

FIGURE 3. Variational circuit used for the first two problem instances of
three DvP transactions between three parties without and with a
simplified CCF, (12) and (13), respectively. The depth d = 2 variational
form is composed of d + 1 layers of parameterized Ry gates (parameters
omitted in the figure) interleaved with d fully connected entangling
blocks of controlled-phase gates, for a total of n(d + 1) independent
angles, for n qubits. The linear connectivity of the Valencia quantum
processor introduces swap gates for two-qubit gates between
nonadjacent qubits. In practice, this circuit can be further optimized, e.g.,
cancelling a pair of cnots from an adjacent swap and cnot. A similar
circuit is used for simulation of the third problem instance of seven
payments between six parties, but with depth d = 3 and n = 7 qubits.

decision variables xi. Our formulation of the transaction set-
tlement problem assumes that the order in which transactions
are settled within a batch can be ignored. Therefore, only the
settled transactions affect the balances.
We now describe the transaction settlement problem for

three concrete test cases, with numerical results discussed
later in Section V. The first two test cases involve three
transactions between three parties of a single currency and
security, whereas the third test case is a batch of seven pay-
ments of a single currency between six parties. In all three
problems, we maximize the total number of transactions.

The first problem instance, shown in Fig. 1(a), does
not feature a CCF, whereas the second instance, shown in
Fig. 1(b), utilizes one for both accounts held by the first party.
Starting with the first instance, we solve the following:

max (x1 + x2 + x3)

subject to

P1 : (2, 0) + (−1, 2) x1 + (−1, 2) x3 ≥ (0, 0)

P2 : (0, 3) + (1,−2) x1 + (1,−2) x2 ≥ (0, 0)

P3 : (0, 0) + (−1, 2) x2 + (1,−2) x3 ≥ (0, 0) (12)

where, for each party Pi, the account balances, transaction
values, and account credit limits are indicated by vectors
(C, S) specifying the amounts of currency C and security S.
The optimal solution settles transactions T2 and T3, that is,
(x1, x2, x3) = 011, whereas a greedy algorithm may be able
to settle only a single transaction T1.
Next, we consider the batch of three transactions in the

presence of a simplified CCF. In this model, illustrated in
Fig. 1(b), the two accounts held by party P1 can contribute to
and draw from a shared credit pool F1 containing a net zero
balance.We adjust the balance of P1 such that no transactions
can settle without the CCF, whereas the optimal solution
settles T2 and T3 with the facility (note that settling only T1 is
a valid solution, though not optimal). The constraints for P1
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FIGURE 4. Results for (a), (b) the three DvP transactions of (12) and (c), (d) the three DvP transactions with a CCF of (13). (a) and (c) show the results
from classical simulation, whereas (b) and (d) show the results from the Valencia 5-qubit quantum processor. Candidate solutions are grouped into
feasible (green bars) and infeasible (grey hatched bars) sets and then sorted left to right by descending value of the objective function (number of trades
settled). In all four cases, the optimal solution (x1, x2, x3) = 011, indicating that transactions T2 and T3 settle, is sampled with the highest probability.
Both problems used the Ry variational circuit of depth d = 2 shown in Fig. 3, a penalty factor λ = 103 for adding constraints to the objective function, the
CVaR aggregation function with α = 25%, and 150 iterations of COBYLA (without additional cycles to explicitly handle slack variables, see Section III).

are then modified from those in (12) to

max (x1 + x2 + x3)

subject to

P1 : (0, 1) + (−1, 2) x1 + (−1, 2) x3 ≥ (lC, lS)

F1 : lC + 2lS = 0, lC ≥ −2, lS ≥ 0

P2 : (0, 3) + (1,−2) x1 + (1,−2) x2 ≥ (0, 0)

P3 : (0, 0) + (−1, 2) x2 + (1,−2) x3 ≥ (0, 0). (13)

Party P1 now has an effective credit line for each account lC
and lS. We assume that the CCF F1 has a zero net balance
so that lC and lS sum to zero with the appropriate exchange
factors between accounts. In particular, the credit limit lC on
the currency account cannot extend past −1S× (2C/S) =
−2C, where 1S is the starting balance of the security account
and 1S = 2C is the exchange factor. A similar analysis holds
for the security account: lS ≥ 0.
The final problem instance, illustrated in Fig. 2, involves

a batch of seven payments of a single currency between six
parties. The objective and full list of constraints is the fol-
lowing set of equations:

max(x1 + x2 + x3 + x4 + x5 + x6 + x7)

subject to

P1 : 5 − 4x1 − 3x2 − 2x3 ≥ 0

P2 : 1 + 4x1 − 3x4 − 3x5 ≥ 0

P3 : 2 + 3x2 ≥ 0

P4 : 3 + 2x3 ≥ 0

P5 : 2 + 3x4 − 6x6 + 4x7 ≥ 0

P6 : 1 + 3x5 + 6x6 − 4x7 ≥ 0 (14)

where the constraints for P3 and P4 are always satisfied and
can be removed from the model. Several optimal solutions
exist, for example, with payments T2,T3,T6,T7 settling. In
the next section, we discuss numerical results for each of
these three problem instances.

V. RESULTS
We solve each problem instance described in Section IV
using the hybrid/quantum classical algorithms outlined in
Section III. Following Nannicini [11], we use COBYLA [32]
as the classical optimizer, since it is well suited to handle con-
tinuous variable constraints. For each problem instance, we
classically simulate the hybrid quantum-classical algorithm
using Qiskit [33] and, for the first two problem instances,
compare the simulations to runs on the ibmq_valencia 5-
qubit backend of IBM quantum. We employ readout-error
mitigation using Qiskit Ignis [33], [34] to correct measure-
ment errors. The variational circuit we use, shown in Fig. 3,
is composed of d + 1 layers of single-qubit Y -rotations in-
terleaved with d blocks of controlled-Z gates [1]. We set
a quadratic penalty factor of λ = 103 for the problem con-
straints [see (11)], and utilize the CVaR aggregation function
mentioned in Section III withα = 25% in place of the sample
average for 8192 samples drawn from each trial wavefunc-
tion. The results of the quantum algorithm for the first two
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FIGURE 5. Results for six parties and seven payments of a single currency using classical simulation. The problem is first approached without (a), (b)
and then with (c), (d) explicit handling of slack variables, i.e., the heuristic described in Section III. In the first approach, we apply COBYLA with 300
iterations, whereas in the second, we run 1 cycle with 100 + 100 iterations of COBYLA (the first 100 iterations on the full problem and the second 100
iterations on the parameters of the variational form only). We show here the probabilities of the ten most frequent states resulting from the
optimization process (a), (c), where candidate solutions are grouped into feasible (green bars) and infeasible (grey hatched bars) sets and then sorted
left to right by descending value of the objective function (number of trades settled). In (a), the feasible solutions sampled are suboptimal, the best one
having a single payment settled. In (b), an optimal solution with four payments settled is found with a probability larger than 40%. In addition, we show
the progress during the optimization, where it can clearly be seen how the explicit handling of slack variables (d) achieves the optimal solution while
the direct application of COBYLA gets stuck in a local optimum (b). Results shown here used an Ry variational circuit of depth d = 3, a penalty factor
λ = 103 for adding constraints to the objective function, and the CVaR aggregation function with α = 25%.

problem instances using a simulator and the Valencia quan-
tum processor are shown in Fig. 4.
We compare the results for the first problem, given in (12),

from classical simulation in Fig. 4(a) to those found from
running on Valencia in Fig. 4(b), and similarly for the second
problem, given in (13) in Fig. 4(c) and (d), respectively. For
both problem instances, with and without the CCF, we find
good agreement between simulation and experiment. The
optimal solution that settles T2 and T3 (the bitstring 011)
appears with the highest probability.
For the third problem, given in (14), we simulate classi-

cally and compare the algorithm with explicit handling of
slack variables and without, as described in the heuristic
of Section III. In the latter case, we find that the objective
function never reaches the maximum value of four (i.e.,
four settled transactions), but saturates at unity, as seen in
Fig. 5(b). As a result, only suboptimal feasible solutions are
sampled [see Fig. 5(a)]. In contrast, with explicit handling
of slack variables, Fig. 5(d) shows how the objective func-
tion achieves the maximum value within the second part
(step 3, evaluations 100–200) of the first cycle, and that we
now sample a globally optimal solution settling payments
T2,T3,T6,T7 (the bitstring 0 110 011) in Fig. 5(c). Note that
the heuristic finds only one out of the three possible globally
optimal solutions. To influence the actual solution found, we
could adjust the weights wi in (10), for instance, to prioritize
transactions with a larger volume.

All the algorithms described here have been implemented
using Qiskit [33], which has been used to access the classical
simulator as well as the quantum hardware, and the detailed
settings can be found in the captions of Figs. 4 and 5.

VI. CONCLUSION
While quantum algorithms are not yet ready to be applied
at scale in the market place, quantum technologies have
greatly progressed in recent years. It is, therefore, important
to understand how quantum algorithms can be applied to
business-relevant problems even though large-scale demon-
strations cannot be tackled with today’s quantum hardware.
In this article, we take a step in this direction by extending
the existing work on quantum optimization to the class of
MBO and propose hybrid quantum/classical heuristics to ad-
dress such problems. This allows us, for instance, to model
inequality constraints, which significantly extends the appli-
cability of these algorithms. Inequality constraints are crucial
for many applications, such as portfolio optimization, where
to date, quantum algorithms were always assuming a cardi-
nality equality constraint instead of a real budget constraint.
We tested our algorithms on the transaction settlement prob-
lem for batches of payment and DvP securities transactions,
which is a difficult and important optimization challenge in
capital markets. Better algorithms could increase settlement
efficiency (in terms of the number of transactions settled for a
given batch), thereby minimizing the time intervals between
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trade and settlement. This could reduce replacement cost risk
(the risk of loss of unrealized gains due to delay in settle-
ment), reduce liquidity risk (substantial liquidity pressures
can emerge if a participant fails to settle its net funds debit
positions), and reduce credit risk (particularly if there is a
decline in value of the securities).
The algorithms presented in this article are exploiting only

very little of the structure of a problem. Although this al-
lows for great flexibility, it also clearly indicates directions
of future research. By restricting to problems with certain
properties, such as, for instance, convexity in the continuous
variables, it may be possible to derive algorithms that outper-
form the current state-of-the-art and even derive some guar-
antees on convergence under assumptions of the underlying
quantum algorithms. The proposed structure also allows for
the use of problem specific variational forms, such as those
proposed by QAOA, which may further improve the perfor-
mance.
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