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ABSTRACT Interconnecting small quantum computers will be essential in the future for creating large-
scale, robust quantum computers. Methods for distributing monolithic quantum algorithms efficiently are,
thus, needed. In this article, we consider an approach for distributing the accelerated variational quantum
eigensolver algorithm over arbitrary sized—in terms of number of qubits—distributed quantum computers.
We consider approaches for distributing qubit assignments of the Ansatz states required to estimate the
expectation value of Hamiltonian operators in quantum chemistry in a parallelized computation and provide
a systematic approach to generate distributed quantum circuits for distributed quantum computing. Moreover,
we propose an architecture for a distributed quantum control system in the context of centralized and

decentralized network control.

INDEX TERMS Distributed quantum computing, network control, quantum multicomputing, variational

quantum eigensolver.

I. INTRODUCTION

To execute large-scale quantum algorithms on a quantum
computer will require many physical qubits. One path to
creating quantum computers with many qubits is to construct
a network of smaller-scale quantum computers and perform
distributed computing amongst them. This scheme is known
as distributed quantum computing or quantum multicom-
puting. Envisioned in IBM’s roadmap for scaling quantum
devices, they discuss quantum interconnects, networking di-
lution refrigerators each holding a million qubits creating a
massively parallel quantum computer capable of changing
the world [1]. In any system that is converted from mono-
lithic to distributed, a layer of communication complexity
is added in order to perform distributed operations across
devices. Because, here, the goal is to run quantum algorithms
on this distributed system, the aim is to allow the control
system to handle the communications needed. This depends
on the architecture of the distributed system.

The number of qubits in quantum computers is steadily
increasing, expecting to grow with a Moore’s-like exponen-
tial growth every 18 months [2], [3], but until there are
enough qubits, variational quantum algorithms have been
proposed [4]. Variational quantum algorithms are hybrid
classical-quantum algorithms that use shallow-depth circuits
and classical optimization to perform a specific task. One
such example is the variational quantum eigensolver (VQE).
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VQE can be used to estimate ground state energies of molec-
ular chemical Hamiltonians and, therefore, has a strong use
case for developing small-scale and possibly noisy quantum
devices. Promising results have already appeared such as the
experiment recently conducted using the Google quantum
computer [5].

A modified version of VQE called accelerated VQE or
a-VQE is yet another adaptation that allows for using near-
term quantum hardware to its maximum ability. The « in
a-VQE represents the tradeoff parameter for run time, which
could be long for some variational algorithms, for circuit
depth [6], reducing run time at the cost of having more stable
qubits. @-VQE uses a more efficient method for estimating
the expectation value with respect to an Ansatz of a Hamilto-
nian than standard VQE, which is a quantum algorithm called
accelerated quantum phase estimation or «-QPE. «-VQE
replaces the expectation value estimation stage of standard
VQE with a-QPE.

In this article, we take these two concepts and combine
them to construct a method for running «-VQE on a dis-
tributed system of quantum computers. We begin with a
technical overview of the state of the art in this direction.
To estimate expectation values, an Ansatz state has to ini-
tialized. In Section III-A1, we consider various approaches
for distributing the Ansatz states over an arbitrary distributed
quantum computer. This includes methods for distributing
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the circuits needed to perform the initialization. Moreover,
algorithms for distributing the circuits to perform «-VQE are
provided. In Section IV, we describe two different architec-
tures for performing distributed quantum computing and pro-
pose network control systems based on Deltaflow.OS, which
we explain more deeply what Deltaflow.OS is in Section IV.

A. SUMMARY OF CONTRIBUTIONS

We design a method for performing accelerated VQE on
a distributed system of quantum computers. We consider a
system that, given the input of the number of qubits in a dis-
tributed collection of QPUs and circuitry needed to run VQE,
we can map the system to a distributed system such that
the Hamiltonian expectation estimation phase is parallelized
and distributed. We provide various approaches of mapping
a monolithic system to an arbitrary distributed quantum sys-
tem. Moreover, we analyze a control system architecture that
can be used to execute the quantum gate instructions, and
combine the results such that «-VQE can be executed. This
process is not strictly contained to «-VQE and many of the
ideas can be adapted for VQE in its standard form (or when
a = 0). The strategy for distributing qubits and scheduling
can also be adapted for other quantum algorithms.

B. RELATED WORK

The basis of this article is in distributing quantum al-
gorithms specifically the accelerated variational quantum
eigensolver [6] and controlling networked quantum hard-
ware. Using the method of decomposing quantum algorithms
that we use here has been explored in [7] and [8], where a
full example of decomposing Shor’s algorithm was proposed
in [9]. Control systems for quantum computing have been
proposed in [10] and [11], but these do not discuss the control
between networked quantum computers.

Il. TECHNICAL PREREQUISITES

In this article, we make use of theory from distributed quan-
tum computing, software-based control systems, distributed
operating systems, and dataflow programming schemes. In
this section, we give a brief overview of each of these topics
as a primer.

A. DISTRIBUTED QUANTUM COMPUTING

Distributed quantum computing is the act of processing
quantum information on two or more distinct quantum com-
puters to solve a single problem and combining the results to
produce one output [12], [13]. According to the Dowling—
Neven law [2], [3], the number of usable qubits in a sin-
gle, monolithic quantum computer, is growing steadily in a
Moore’s like fashion. To generate larger quantum systems, an
orthogonal approach relies on connecting multiple quantum
computers and use classical communication and entangle-
ment to perform distributed quantum computing. Classical
communication and entanglement allow application of mul-
tiqubit gates across physically separated quantum computers
referred to as the LOCC-ENTANGLE model in [14].
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There are various ways to perform multiqubit gates across
quantum computers. In [15], teleportation is at the base of the
overall process. In particular, two forms of teleportation—
qubit teleportation and gate teleportation—between quantum
devices are analyzed. It is shown that teleporting qubits per-
forms better than teleporting gates. Teleportation requires
one entangled pair and two bits of classical communication.
If the qubits are to be teleported back to their original lo-
cation, this operation would need to be performed twice.
The approach we use in this article, instead, uses the results
from [7]. As it will be described in more depth in Section III-
A, Yimsiriwattana et al. do not use teleportation at all but
instead rely on one entangled pair and two bits of classical
communication to perform a distributed control gate.

An analysis of how to perform quantum algorithms over
a networked distributed quantum computer has been pre-
sented in [16]. A network model is proposed such that a
distributed quantum system can simulate circuits for mono-
lithic quantum computers with a communication overhead
of O(log> N), where N is the number of qubits in the full
system. In [15], it is discussed how a linear network topology
will perform adequately for the foreseeable future, but I/O
bandwidth will be a more challenging problem to overcome.

Another form of distributed quantum computing is cloud-
based quantum computing, with companies such as Amazon,
Microsoft, IBM, and others each releasing their own versions
of a cloud quantum computing service [17]. In this type of
distributed quantum computing algorithm input from a client
is sent to a server, the server executes the algorithm instruc-
tions and then sends the results back to the client. In this case,
protocols such as universal blind quantum computation [18]
can be performed. In Section IV, we consider among our
models a cloud based model with cooperating vendors.

Overall, the development of distributing quantum com-
puters will be a promising path to increasing the size of
quantum computers. Many network technologies for high
speed, low-latency communication have been developed in
other contexts and as we will see, can potentially be applied
to distributed quantum computing.

B. SOFTWARE CONTROL SYSTEMS OF

QUANTUM HARDWARE

To perform the gate operations on the qubits in a quan-
tum computer requires a system that can translate gate in-
structions to physical interactions with the qubits. Currently,
quantum algorithms are generally written in terms of circuits
of quantum gates. The circuits are designed with the assump-
tion of noiseless qubits. The software takes these circuits as
input, optimizes them, and converts them to a data format
such that the control system controlling the qubits can exe-
cute the instructions.

A first step into defining how such a system functions is
to draft a model of the full stack of the quantum computer.
Such an architecture has been proposed in [11], defining the
software and hardware stack for a quantum computer. Here,
a protocol is defined to convert the classical and quantum
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instructions to binary strings such that they can be executed
at the machine level. This stack incorporates error correction
into the model and injects the additional instructions between
gate operations when needed. To execute the instructions,
hardware is in place that quickly reads the binary strings and
then runs the optical control on the qubits. Such hardware
is proposed in [19]. Here, cryogenic field-programmable
gate arrays (FPGAs) are incorporated into the control sys-
tem architecture to manipulate semiconductor-based qubits.
In [20], it is explained how moving the parts of the classical
control of quantum system to lower latency hardware like
FPGAs can greatly benefit near-term quantum computing.

An important part of this system stack is to be able to con-
trol the amount of messages being passed to the hardware.
The number of messages can grow very quickly when error
correction is considered, and the bandwidth of the system
can be used up completely with just instructions for error
correction. In [10], quantum error-correction substrate, an ar-
chitecture that delegates the task of quantum error correction
to the hardware, for overcoming this is proposed.

Software and hardware will have to work closely together
in an highly optimized way in order to reduce the amount
of instructions while performing them with as low a latency
as possible. As quantum hardware technology improves and
as more research towards quantum software deepens, this
area of quantum computing will become central to executing
quantum algorithms on large-scale quantum hardware.

C. DISTRIBUTED OPERATING SYSTEMS

In general, an operating system (OS) is a system that man-
ages the resources on a computer, such as the random ac-
cess memory or the CPU, such that multiple programs can
run simultaneously without undesirably interfering with each
other. An OS also provides an interface between the user and
the hardware. We will refer to the class of OSs that run on
a single computer as a centralized OS. A distributed OS is
an OS that runs on a cluster or group of computers, which
are physically separated and connected via a network [21].
To the user of a distributed OS, it should appear as if their
programs are running on a centralized OS. More specifically,
adistributed OS should behave as an ordinary centralized OS
with the caveat that the programs could be running at any
physical location, which is not known to the user.

A distributed OS can be deployed in multiple ways [22,
Ch. 8]. One way is to deploy the OS such that there is
a distinction between the types of nodes in the distributed
system, “nodes” meaning the computers in the cluster. The
distinction is generally that there is one computer, which con-
trols the rest of the system and the controlled nodes follow
all the commands of this “controller” unit. An alternative
configuration is that the network connecting the computers in
the cluster are connected via an Internet and a set of Internet
protocols are used to request resources from the nodes in
the cluster and perform interprocess communication. One
can think of this as a client-server relationship [23]. In this
case, we call the operating system a network OS. The main
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FIGURE 1. Example of a dataflow program.

difference between a distributed OS and a network OS is in a
network OS, the user is aware that multiple systems are being
use, albeit programs appear to be running on a single system.

One can deploy their systems as a distributed OS or a
network OS or as a hybrid of the two. When deploying a
distributed operating system one needs to find a good balance
of some key properties to ensure that the operating system is
robust, efficient, and can be scaled up. For example, one can
potentially make the system very robust by adding abundant
internode communication, but this could make the system
inefficient or can overload the processors with messages to
process.

In this article, we are focused on a specific system with
a specific use case. These are systems that have classical
control but have hardware that establish quantum entangle-
ment and classical communication. We explore how one can
design a distributed OS, where the distributed part we focus
on is a cluster of quantum computers. We take into account
the two models, the client-server model over a entanglement
network and the single controller model. We use a specific
control system, namely Deltaflow.OS, which we explain in
Section IV, to explore these two models in depth.

D. DATAFLOW PROGRAMMING

Dataflow programming is a method of programming that
uses a network flow, or a directed graph, approach for de-
veloping algorithms [24]. The nodes in the network hold
the logic of the program—or are constant valued—and the
flow in the network represents the inputs to the next nodes
in the flow, which is then processed and output to the next
node in the network until the program is complete. Gen-
erally, in dataflow programming the nodes run in parallel
and asynchronously. In real implementations, the nodes run
idly, waking when they receive input to process. When the
program starts, some nodes are selected to initialize without
input, triggering the start of the program. Commonly used
hardware programming languages like Verilog and VHDL
use dataflow programming as a paradigm.

Fig. 1 is an example of a simple dataflow program. The
constants three and five are inputs to the 4 node, which takes
two inputs and outputs their sum. The output of the addition
is passed to the x node, which takes two inputs and output
the product. In this case, 2 and 3 4 5 are inputs to x and the
complete output is 16.
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In this article, we use Deltaflow to add control to the
network hardware. Deltaflow is built on the dataflow pro-
gramming paradigm. We will discuss in Section IV, how
Deltaflow can be used to define the logic in the control blocks
for an overall network control.

1il. DISTRIBUTING ACCELERATED VQE

A problem to overcome when dealing with near-term quan-
tum computing devices is that the ability to run deep circuits
is greatly reduced due to low coherence time of qubit systems
without error correction. A classical-quantum hybrid class
of algorithms called “variational quantum algorithms” allow
to run reduced depth circuits performing some of the algo-
rithm on near-term quantum hardware and some on classical
hardware. In particular, the VQE algorithm is a variational
hybrid-quantum algorithm that can be used to find the mini-
mum eigenvalue of a chemical Hamiltonian. It uses a quan-
tum portion of the hardware to estimate the eigenvalues for a
particular Ansatz of Pauli operations combining to form the
Hamiltonian. VQE uses the quantum system to determine an
expectation value and these expectation values are then com-
bined to find an expectation value of the full Hamiltonian [4].

Using classical optimization techniques, various
Ansidtze—plural of Ansatz—are prepared with the goal
of finding an estimate to the eigenstate with the lowest
eigenvalue. The drawback of VQE is that the number of
times the Ansatz state and expectation value needs to be
prepared is proportional to 1/€2, where € is the desired
precision, which could lead to long run-times [4]. Another
way to estimate eigenvalues of unitary operations is using the
quantum phase estimation (QPE) algorithm explained more
in depth in Section III-B1. The advantage to using QPE is
that the number of times the experiment is conducted to find
the estimate is proportional to a constant. The downside is
of course that the circuit depth grows proportionally to 1/e.

As quantum hardware technologies improve, it will allow
for longer coherence times of qubits and in turn allows for
deeper quantum circuits. To make use of this ability, and
to “squeeze” as much power out of the quantum hardware
that is available, Wang et al. proposed the accelerated VQE
(«¢-VQE) algorithm [6]. We again attempt to squeeze more
power out of our quantum hardware by considering how
one could implement «-VQE for a distributed quantum com-
puter.

When using VQE for quantum chemistry applications, it
is common to prepare parameterized circuits that generate
entangled Ansatz states. A commonly used Ansatz is the
unitary coupled cluster Ansatz [25], which grows in number
of qubits required to prepare the Ansatz as Hamiltonian com-
plexity increases. A critical part of using a distributed quan-
tum computer for quantum chemistry is, therefore, preparing
Ansatz states over an array of quantum computers. When
distributing any quantum circuit across devices, the main
complication that arises is when a controlled two-qubit gate
needs to be applied across two QPUs. There are two ap-
proaches we consider here. We assume that we would like
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FIGURE 2. Circuit diagram for a nonlocal CNOT gate between |y;) and
|¥2), where (a) is the cat-entangler sequence and (b) the
cat-disentangler sequence.

to use only entanglement and classical communication to
achieve this—alternative to this, we could consider physi-
cally moving qubits between QPUs but this is a much noisier
task and we ignore this option. We consider two approaches:
Teleporting one of the two qubits to the other QPU so that
they are on the same QPU and then perform the two-qubit
gate on one QPU locally, the second approach is to use the
mechanism introduced in [7], where Yimsiriwattana et al. in-
troduce “cat-entangle” and “cat-disentangle” protocols seen
in Fig. 2.

A. SCHEDULING HAMILTONIANS

An electronic molecular Hamiltonian H can be written as
a sum of a polynomial number (with respect to the system
size) of Pauli matrices in the form of (1), where each P; €
{1, 0y, 0y, 0:}*" is a tensor product of qubit n Pauli operators
(or the identity), called a Pauli string, and each a; € R

H=Y aP. ()

In order to more effectively use a networked quantum
computer, we wish to use a parallelized and distributed ap-
proach to expectation value estimation. We motivate the
approach as follows. Given the linear nature of estimating
(¥ |H|y), we can break up the summation into its pieces.
We need to prepare an n qubit Ansatz for each piece of the
sum in order to estimate each (i |P;|y) independently to later
rejoin the expectation values to estimate (y|H |vr). Given the
distributed QPU architecture, we need to allocate the qubits
in such a way that Ansatz states can be prepared for each P; in
the sum. Later, the coefficients a; can be merged to produce
a single value for (¥ |H|v).

For Hamiltonians that require a large number of qubits,
in this section, we consider methods that distribute the ex-
pectation calculation of the Pauli strings between a given
distributed quantum computer. Here, we model a collection
of quantum processors {QPUjy,...,QPU,,} as a collection of
gi € N qubits (respectively), all of which are located in the
same device. Given a set of QPUs and a Hamiltonian in the
form of a summation of Pauli strings, a distributed layout
of the qubits with the required allocation of communication
qubits is produced.
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We enforce the following restrictions. Because the goal is
to run «-VQE, we know ahead of time that one additional
qubit (additional to the qubits in the Ansatz) is reserved for
each Ansatz to perform «-QPE. Ontop of this, we need to
reserve qubits for entanglement between QPUs, which is
necessary when an Ansatz is split between QPUs. The worst
case for this occurs when there is a three-qubit control gate
(equivalent to a Toffoli gate) where the chain qubits are al-
located on different QPU while performing o-QPE. In this
case, since we are using the method of cat-entangling and
disentangling, we need to reserve two qubits from each QPU
for entanglement. We formalize this as a problem as follows.

Problem 1 (Ansatz Distribution Problem): Given a
Hamiltonian H = ), a;P; where each Pauli string P; €
{1, oy, oy, 0,}®"% and a collection of m QPUs described by
the number of qubits on the system [q1, g2, - . ., ¢m], Output
a series of rounds that can be used to estimate, for a given
Ansatz |), the expectation (¥ |H|y). In order to prepare
an Ansatz, when P; is split between two QPUs, two qubits
from each QPU have to be allocated in order to perform
nonlocal operations for preparing the Ansatz |{) across two
or more QPUs. Moreover, one qubit needs to be reserved for
a-QPE. The solution to this problem outputs a schedule of
distributions in which one can run over the distributed system
to obtain an estimate to (Y |H|v).

For the task of distributing the qubits, we take various
approaches to this problem. In its essence, this problem is
a resource allocation problem. We can, therefore, gain in-
sight from common solutions to such problems. Common
approaches for resource allocation problems are greedy al-
gorithms and constraint programming. We propose an algo-
rithm of each approach in this section.

1) GREEDY ANSATZ DISTRIBUTION

In the greedy algorithm approach, we greedily fill the QPUs
with as many Ansatz states that can possibly fit and for the
remaining needed qubits, we split them across the QPUs re-
serving the needed qubits as needed. When the QPUs cannot
fit any more Ansitze, the execution of those estimations are
moved to the next round. In detail, we propose Algorithm
1. We refer to an algorithm called doesNotFit, which simply
runs a similar logic as the main algorithm but just ensures
a distribution exists for one particular Ansatz. We refer the
reader to Appendix A, Algorithm 8 for the detailed algo-
rithm. This algorithm executes with run time on the order of
O(p - m*), where pis the number of Pauli strings to distribute
and m is the number of QPUs.

2) CONSTRAINT PROGRAMMING APPROACH

As another approach to solving Problem 1, we use constraint
programming. The tradeoff with constraint programming is
that setting up a collection of constraints is generally straight
forward but solving constraint problems on a finite domain is
generally NP-complete, trading simplicity for time. Adding
more constraints is straightforward relative to implementing
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Algorithm 1: Greedy Ansatz Distribution.

Input:

o List of QPU sizes Q = [q1, g2, .., ¢m].

o n the qubits for Ansatz

o p the number of Pauli strings to distribute

o Parameters for recursion defaulted to schedule = {} and round = 1
Output: An Ansatz distribution schedule used to compute (2| H |+)) for an
Ansatz [1)) of size n qubits.
GreedyDistribution(Q, n, schedule, round):

1:ifp=0orn=0:
2: | return schedule
30 Q<+ copy(Q) ={da}, - dn} > Copy @ for modification
4: schedule[r] < [ | > Initialize the schedule for this round
5: couldNotFit < 0
6: fori e 1,...,pdo
7: | sort(Q")
8: | if doesNotFit(n, Q') :
9: | | ifround =1Ai=1:exit
10: couldN ot F'it <— coundNotF'it 4 1
11: continue
12: | distribution < [0for _ € {1,..,m}] > A vector of m zeros
13: | forj € {1,...,]|Q’|} do
14: curAllocation < [0 for _ € {1,..,m}]
15: possibleQPUs <+ Q'|{1,... 1 > Restrict to first j QPUs
16: ifj=1: > No split needed
17: k < QPUNumber(possibleQPUs[1]) > The QPU index
18: curAllocation[k] < possibleQPUs[1] — 1
19: else
20: k < QPUNumber(possibleQPUs[1]) > The QPU index
21: cur Allocation|k] < possibleQPUs[1] — 3
22: for ¢ € possibleQPUs|5, . ;3 do
23: | curAllocation[s] <+ ¢!, — 2 > Reserve 2 qubits from QPUs
24: end for
25: if sum(cur Allocation) > n: > An allocation is possible
26: remaining < n
27: iteration < 1
28: for ¢/, € possibleQPUs do
29: t <+ min{remaining, cur Allocation|[s|}
30: distribution[s] <t
31: remaining <— remaining — t
32: if iteration = 1 : > Remove respective qubits from first QPU
33: ifj=1:
34: | ¢t «q,—t—1
35: else
36: | ¢t «q,—t—3
37: else
38: | @&« q,—t—2
39: if remaining = 0 : break
40: iteration < iteration + 1
41: end for
42: break
43: | end for
44: | for ¢, € Q' do
45: | | if g, = 0: delete ¢’
46: | end for
47: | schedule[r].add((i, distribution))
48: end for
49: return

GreedyDistribution(Q, n, could N ot F'it, schedule, round + 1)

the same constraints in greedily. We construct the multiob-
jective constraint program in detail in constraint program 2.
Using this constraint program repeatedly, we can produce a
schedule by running the constraint program on the maximum
number of Ansitze that fit in the system and using a solu-
tion from the output, once per round, until all Ansitze are
covered.
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Algorithm 2 Constraint Program 2

Input:
*0=1q1,...,qu], Vi, gi € N alist of the number of
qubits for each QPU in the system
* A € N the number of qubits in the Ansatz
*m € N the number of Ansitze to fit
Variables:
*x;j € {0, ..., A}: The number of qubits from Ansatz
0 <i < m placed on QPU j
*y;j € {0, 1}: The QPE qubit for Ansatz i on QPU j
* Zijk € {0, 2}: The number of qubits used to split
Ansatz i between QPUs j and k
Objective Functions:
maximize ), ; Xij, minimize > ik Zijk
Constraints:
1) There’s only one QPE qubit per Ansatz:

n
Zy,,:L Vie(l,..., m)
j=1

2) If the Ansatz is split, then both QPUs use qubits:

o) —{H]} — A=
o (i} i
10) —{H}——r9
W) —t— o — - e ———

FIGURE 3. Circuit diagram for QPE with unitary operation U and
eigenstate |y).

|0) E €{0,1}
) f UM

7
FIGURE 4. Circuit diagram for RFPE. Z(M6) := diag(1, e-"™*).

calculations, VQE is used with a statistical sampling sub-
routine to estimate expectation values with a given Ansatz
with a classical optimizer to pick the parameters to mini-
mize the expectation value. In [6], a generalization of VQE
is proposed, called «-VQE. The generalization replaces the
statistical sampling step with a subroutine called «-QPE,

Zijk = zZikj» Yie{l,...,m}, j,ke{l,...,n}, j#k,j<kwhich for the selection of « € [0, 1] can behave as VQE

3) Ansatz is completely covered with one QPE qubit:

n
Zx,-j+y,-j=A+1, Vie{l,...,m
j=1

4) Qubits allocated do not exceed the number of
qubits on the QPU. Note we can recycle the
splitting qubits for multiple splits of the same
Ansatz.

m
inj +yij+ max zijp <gq;, Vjel{l,.. n}
. ke{l,...,n}
= k£
5) The Ansatz fits on one QPU or it is split:
n
max X;; :A/\Zzijk =0 v

ie(l,...,A} >
Jj=1

[{xij = je{l,...n}hx; # 0} —1
=zijk: kell,....n}, j#k zijp=2}1/2,
Vie{l,...,m

6) The QPE qubit exists on a QPU with Ansatz
qubits:

Elje{l,...,n}xij;éO/\yij;éO, Vie{l,...,m}

B. DISTRIBUTING «-VQE

As discussed in earlier sections, The VQE is a variational
algorithm that uses a combination of quantum and classical
components and can be used to estimate ground state ener-
gies in electric molecular Hamiltonians. To perform chemical
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does, but also can become more efficient by choosing & > 0,
which requires the ability to run deeper circuits on quantum
hardware.

In this section, we take the proposed «-VQE in [6] and
map it to a distributed system. The main theme in this sec-
tion is applying nonlocal control gates over separated QPUs.
We follow the approach of [7] and [8] using entanglement
and classical communication to perform control gates across
distributed systems, relying on the preallocated qubits from
the previous section to hold the entanglement across devices.

1) DISTRIBUTING «-QPE

The QPE algorithm is an essential ingredient to many popular
quantum algorithms—one such being Shor’s algorithm. First
discussed by Kitaev in [26], QPE is used to estimate the
phase of a quantum state |i) that appears after applying a
specific unitary operation U to it, where |i/) is an eigenstate
of U. Specifically, QPE aims to estimate the phase ¢ in
Uly) = e*™9|4) with high probability. In Fig. 3, we depict
a circuit representation of QPE applied to a qubit |y/), where
n qubits are used to estimate ¢.

Here, we adapt a modified version of QPE developed in [6]
called «-QPE for a distributed system. «-QPE is a modified
version of rejection filtering phase estimation (RFPE) whose
circuit diagram is given in Fig. 4. «-QPE uses a free param-
eter « that is chosen depending on the available circuit depth
on the specific hardware running the algorithm. With this «,
M, and 6 are selectedas M = 1 /0% and 0 = u — 0. Here, o
and p are parameters for a normal A (u, o2) prior distribu-
tion in the first round of «-QPE for sampling values of ¢, the
“eigenphase” in U|¢) = eT®|¢). Here, U is modified to be a
rotation operator that rotates an Ansatz |{) by an angle ¢ in
the plane spanned by {|v), P|vr)}, where P is a Pauli string.
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FIGURE 5. Example of running the DistributedRemapper algorithm. (a) Three-qubit variational form. (b) Three-qubit variational form distributed across

two devices.

More precisely, with the goal of estimating | (¥ |P|y)|, given
an Ansatz preparation circuit R := R(A) for some parameter
vector A € R" and a reflection operator IT := 1 — 2]0)(0],
U := RTIR'PRTIR' P and the circuit depicted in Fig. 4 is
executed to obtain a value E. When E is obtained, rejection
sampling is performed to produce a posterior distribution,
which can be shown to again be normal, in which to again
sample values of . This process is repeated until sufficient
accuracy is reached. Once an estimate for ¢ is obtained,
one can recover |(¥|P|y)| using the relation |(Y|P|Y¥)| =
cos(¢/2). In [6], mechanisms to recover the sign of (y|P|y)
are provided.

In this section, we tackle three key steps in to adapt «-QPE
for a distributed system. The first is mapping the state prepa-
ration circuit R(1) across multiple QPUs, the second is then
to map U to a distributed system, and the third, performing
the controlled operation in Fig. 4. We solve these in order.
The solution to the first task takes Ansatz preparation circuit
R(X) and develops a mechanism such that it can be applied
when some qubits are physically separated. Here, we con-
sider R(A) a variational form, a parameterized circuit used to
prepare an Ansatz. We give an algorithm to achieve this in
Algorithm 3.

The high level idea of Algorithm 3 is, given the circuit
representation of R()) as a series of layers, where each layer
is a collection of gates in a layer of a circuit, and a mapping
of qubits, to search for any control gates where the control
and target are physically separated between two QPUs. When
found, insert, between the current layer and next layer in the
circuit, the necessary steps to perform the control gate in a
nonlocal way using the cat-entangling method. We also en-
sure that entanglement is established between the two QPUs
ahead of time by prepending an entanglement generation
step. As an optimization, the cat-disentangler step can be
shifted to a later layer if the nonlocal control gate has the
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same control qubit and no operations on that control qubit
in between controlled gates. Note that we can generate a
distributed R(1)" in the same way. From the previous section,
the proposed solutions to Problem 1 ensure that there are two
qubits reserved on each QPU for the entanglement qubits
needed for nonlocal operations. Producing the layering of a
circuit can be done in a straight forward way and we assume
that this structure is the input to the algorithm. We depict an
example of running the algorithm in Fig. 5.

The next step is to map U := RTIRPRTIPTR' to a dis-
tributed system. One observation that can be made immedi-
ately is, since P is a Pauli string, P" = P, so there are no
additional steps needed to map P'. P is a separable operation
(i.e., there are no two-qubit gates) and, therefore, we can
apply each piece of P in a single layer with no added inter-
QPU communication. For mapping R(1)" to a distributed
system, as discussed, given an R(X) as a circuit that is not
distributed, we can obtain R(1)". To obtain the mapping, we
can run Algorithm 3 with R(1)" as the input with the same
Ansatz distribution. Next, we consider the n qubit reflection
operator I1, which can be decomposed (locally) as a series of
single-qubit gates and CNOT operations. We can, therefore,
again use Algorithm 3 to map a provided reflection IT to
a distributed architecture given the Ansatz distribution as
input.

For the control part of «-QPE, we consider the controlled
version of U, ¢ — U, because of the structure of U, one can
see that the only operation that is in need of control is in the
reflection IT since if IT is not applied, ¢ — U is reduced to
the identity. Here, it will be the case that we need to exe-
cute control—control gates (CC-gates). If the Ansatz is split
between QPUs, then two qubits need to be reserved on each
QPU to accommodate for CC-gates. This is guaranteed by
the scheduling algorithm in the previous section and there
will always be two free qubits reserved such that we can
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Algorithm 3: Local to Distributed Circuit.

Algorithm 4: GetSeriesControlGates.

Input:

o A circuit representation of unitary U where U is a list of list of
gates. Each list represents a layer in the circuit. Gates have the
form Gate(ID) or CT RL(G,1Dy,ID2) where G is the gate
to applied using control qubit with /D, and target qubit / Ds.
The ID in the form (i, j) where i is the QPU and j the qubit on
that QPU.

o A qubit layout map qubit M ap on a collection ID tuples of the
form (ID.,1D2).

Output: An equivalent circuit that accommodates for non-local
controlled gates.
DistributedRemapper (U, qubit M ap):

I: remappedCircuit < [[]]

2: for layer; € U do

3: | modLayers < [[] x §]
4: | for gate € layer; do
5: if gateis CTRL :
6: ((2,7), (s,t)) + gate.qubits
7: ifi=s:
8: | modLayers[0].add(gate)
9: if Entanglement not established between QPUs 7 and s :
10: | remappingi—1.add(Ent((i,e1), (s, e2))
11: modLayers[0].add(CNOT((i, j), (i,e1)))
12: modLayers[1].add(c; < measure((i,e1)))
13: modLayers[2].add(cs < claComm(i, s, ¢;))
14: modLayers[2].add(claCtriX (c;, (i,e1))
15: modLayers[3].add(claCtriX (cs, (s, e2))
16: modLayers[4].add(ctrl — G((s, e2), (s, 1))
17: modLayers[4].add(ctrl — G((s, e2), (s, 1))
18: n <+ 0
19: for ctrl-G’ € GetSeriesCGates(U, layery, s, (i,7)) do
20: n<n-+1
21: (L, ), (1) « ctrl-G'.qubits
22: modLayers.add([ |,4 + n)
23: modLayers[4 + n].add(ctrl-G'((s, e2), (s,t"))
24: remove ctrl-G'
25: end for
26: modLayers[5 + n].add(H (s, e2))
27: modLayers[6 + n].add(cs < measure(s,ez))
28: modLayers[6 + n].add(claCtriX (cs, (s, e2)))
29: modLayers[6 + n].add(cs « claComm(s, i, cs))
30: modLayers[7 + n].add(claCtriZ(c;, (i, e1))
31 else
32: | modLayers[0].add(gate)
33: | end for
34: | remappedCircuit.addAll(modLayers)
35: end for

36: return remappedC'ircuit

apply Algorithm 3 again after adding a control connection to
each gate of the circuit representing IT the distributed form,
excluding the previously added nonlocal steps, to produce a
circuit that achieves the controlled version of IT.

The remaining steps of «-QPE are the two complications
that arise, which are discussed in [6, Sec. II-B]. At each
iteration of w-QPE the Ansatz |y) = l/ﬁ(lqb) + | —¢))
needs to be collapsed into either |¢) or | — ¢). Wang et al.
[6] proposed a statistical sampling method, which one can
apply a constant number of iterations in order to, with high
confidence, both estimate the sign of (¥|P|y) and ensure
that | (¥ |P|y)| > 6. When this bound holds, then with high
confidence, |1) can be efficiently collapsed to either one of
|¢) or | — ¢). Once this is performed, we apply the «¢-QPE
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Input:
o U the circuit as described in Algorithm 3
o layerl; the current layer to decompose in U
o s the QPU for the target qubit
o (4, ) the control qubit
Output: The series of gates directly following from layer [ that are
control gates with with control qubit (2, 7).
GetSeriesCGates(U, layer, s, (i,7)):
: layers < {layeris1, ..., layer,} C U
2: gates < ||
3: for layers € layers do

4: | for gate € layers do

5: if gate is CTRL and gate = (_, (4, 7), (s,_)) :
6: | gates.add(gate)

7: else

8: | return gates

9: | end for
10: end for

11: return gates

procedure as normal. If high confidence cannot be achieved,
then instead of using the «-QPE circuitry, statistical sampling
continues. Statistical sampling in this setting implies repeat-
edly preparing |y), applying the single layer Pauli string P,
in order to estimate (| P|y). When the bound does not hold,
statistical sampling is performed until (|P|y) is estimated
with sufficient precision in the normal VQE sense. We follow
the method of Wang et al., but use the modified R(}) circuit
needed to prepare the Ansatz over a distributed quantum
computer. We write this whole procedure in Algorithm 5.

Definition 2 (Schedule): A schedule S is a collection of
r lists where each element of a list contains the distribution
of qubits on the m QPUs. Each distribution is a list of qubit
allocations on each QPU g; € {0, ..., Q;}, where Q; is the
number of qubits on QPU j. If the Ansatz is not allocated in
around ' € {1, ..., r}, it does not appear in the distribution
list. The structure of a schedule is as follows:

S={
1 : [[5117 MRS qm]lv crey [qu RS} ‘Im]nl]
2: [[qlv D) ‘Im]n1+la L] [CIla CERY) Qm]nz]y
r [[C]], R} qm]n,_1+1s L] [QI, R} Clm]n,]
}.

The subscripts on the qubit count lists represent the index of
the Pauli being estimated.

2) DISTRIBUTED «-VQE

To conclude the mapping of a localized, monolithic version
of a-VQE to the distributed version, we need to replace the
«-QPE subroutine with the distributed «-QPE version from
the previous section. For completeness, we write distributed
a-VQE as an algorithm in Algorithm 6.
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Algorithm 5: Distributed a-QPE.

Algorithm 6: Distributed a-VQE.

Input:
o S: A schedule (defined in Definition 2) providing the qubit
mapping of an Ansatz of size n for p Pauli strings on m QPUs.
o A =la1,..., an]: The vector constants for each Pauli string.
o U =[Ux,..., Uy]: The circuits for a-QPE
e P =[Pi,..., P,]: The Pauli operators associated with each U;
Output: The value of the expectation value estimations of the p
Paulis
Distributed a-QPE(S, A, U, P):
1: estimates < | |
: forr € Sdo
roundO f Estimates < RunAQPERound(S(r),U)
estimates.addAll(roundO f Estimates)
end for
return A - estimates

RunAQPERound(S(r),U):
1. estimates < Array(]S(r)|)

SANRAREE N

> Return the scalar product

> Initalize |S(r)| length array

2: in parallel for p € S(r) do
3: | success + Bound | (p(\)|Pp|tp(N)) | away from 0 and 1
using [6, Appendix C, Stage I]

4: | if success :

5. | | Perform [6, Appendix C, Stage II] to collapse [t) to |+¢)

6: | | estimates[p] + Perform a-QPE using distributed circuits
with ¢ — U, or ¢ — U;[ depending
on collapsed |v))

7: | else

8: | | estimates[p] < Estimate (1)(\)|P,|v(A)) with statistical
sampling using constant distribution
circuits using the Ansatz distribution p

9: await all

0: return estimates

—_

C. ANALYSIS
In this section, we analyze the properties of the distributed
quantum circuits in relation to the Ansatz size. First, we com-
pare the duration of computation using three methods of per-
forming the estimates of the expectation values: estimating in
parallel, on one single QPU the size of the Ansatz, and using
parallel and distributed computing. When running in parallel,
one Pauli string is estimated per QPU. The limitation is that
the Ansatz can be only as big as the smallest QPU, minus
the qubit for «-QPE. In the single QPU case, we assume
the full Ansatz can fit on the QPU, and therefore no gates
are distributed. Finally, in the distributed and parallel case,
Pauli strings are estimated similarly to the parallel case, but
multiple Ansitze can be placed on a single QPU as well as
split between multiple QPUs with distributed control gates.
To get an estimate for the number of gates used, we analyze
the pieces of the U operator defined in the previous section.
The reflection operator IT has the equivalent cost, up to 2n
single-qubit gates to an (n + 1)-qubit Toffoli gate [6, Sec. II-
B]. Without ancilla qubits, currently the circuit depth to im-
plement such a gate grows linearly O(n) [27] with improved
linear scaling with one ancilla qubit [28]. When f%} ancilla
qubits are available, the depth can scale as O(logn) [29] to
implement with 6n — 6 CNOT gates. The additional ancilla
qubits to decrease the circuit depth could be considered in the
Ansatz distribution phase from Section III-A, and we leave
it to future work to analyze this change. Here, we assume no
additional ancilla qubits. For the Ansatz preparation R(1), in
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Input:
o Alist of QPU sizes Q = [q1, G2, .-y Gm]
o H the Hamiltonian H = A- P ="  a; P
o R(A) The Ansatz preparation circuit
Output: An estimate for (¢»(\)|H|1(N)), [10(\)) the state prepared
by circuit R()).
Distributed o-VQE(Q, H, R(\))
1: g < Number of qubits needed for R(\)
2: p < Number of Paulis for H
3: S, map < Ansatz schedule from an algorithm proposed
in Section I1I-A
4: dR()\) < DistributedRemapper(R()), map)
5: dR(\)" < DistributedRemapper(R(\)", map)
6: dII < DistributedRemapper (11, map)
7: ¢ — IT <= Add control connections to dII from pre-allocated
«-QPE qubit
8: ¢ — dII < DistributedRemapper(c — II, map)
9: for P; € P do
10: | dP; < DistributedRemapper(P;, map)
11: | ¢ — dU; < Combine distributed circuits
dR(c — dII)dR'dP;dR(c — dl1)dP;dR}
12: end for
13: ¢ —dU < [¢c — dUy, ...,c — dU,]
14: dP <« [dP,...,dP,]
15: (¥(A)|H|¢p(N)) < Distributed a-QPE(S, A, ¢ — dU, dP)
16: return (p(N\)|H|p(N))

L p— Distributed
—— One QPU
R 0.8+ — Parallel
= 0.6
= 0.4
==
0.2
0 -
T T T T T T T T
5 10 15 20 25 30 35 40

Ansatz size

FIGURE 6. This plot is of a weighted time using the greedy distribution
of the Ansatz for growing Ansatz sizes with five QPUs each with ten
qubits. The green line shows the timing for running one Ansatz per QPU.
It cuts off at nine qubits. The orange line is if all 50 qubits were on 1
QPU. The blue line is if we use a distributed Ansatz over the five QPUs.

most of the applications to date, the circuit depth is 2(n) [30],
meaning it has a tight upper and lower bound proportional to
the number of qubits, which could be the most significant
overhead in this process.

We demonstrate the time tradeoff. In Fig. 6, we assume
we have a QPU cluster with five QPUs each with ten qubits.
We determine a rough upper bound on the number of gates
needed to perform distributed computing and summarize the
time weight and gate quantity scaling in Table 1. In Fig. 7,
we show the maximum number of qubits that an Ansatz can
be composed of using four different sized QPUs and with
respect to the adding additional QPUs of the that size to the
distributed system.
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TABLE 1. Time scaling of gates. n represents the number of qubits in the
Ansatz and m the number of QPUs. The execution time weights are
derived from [31] for superconducting qubits. The quantity scalings are
based on a Bravyi-Kitaev mapping [32]

Operation Time weight Quantity scaling
CNOT 5 O(n* -logn)
Single qubit gate 1 O(n* - logn)
Measurements 2 O(n* -logn)
Entanglement generation 8 O(n* - logn)
Classical communication 2 O(n* -logn)
Output merging 3 O(m)
—— 10 Qubits
° 2000459 Qubits
5 —— 100 Qubits
; 1,500 150 Qubits
E
= 1,000 -
500 //
=
0 -

T T T T T T T

2 4 6 8 10 12 14
Number of QPUs

FIGURE 7. Maximum Ansatz size that would fit on a distributed system
of QPUs. The maximum Ansatz size is given by >/, g; —2n — 1 with n
QPUs with g; > 2 qubits on QPU i.

D. APPLICATIONS FOR QUANTUM CHEMISTRY

In this section, we take an example of an electronic molecular
Hamiltonian for the chemical H,. To estimate the Hamil-
tonian for this molecule with two electrons and two active
orbitals, we require four qubits when using a Bravyi—Kitaev
transformation. We can quickly obtain the Hamiltonian using
the Pennylane Python library [33]. The Hamiltonian in this
case, under the Bravyi—Kitaev transformation is of the form

15
H=) aP, @
i=1

where we are concerned in the number of elements in the
sum and less so about the constant factors and therefore to
perform «-VQE, we will need to estimate 15 Pauli strings. In
this example, we will consider a distributed quantum system
of three QPUs each containing nine qubits. If we use these
parameters as input to the algorithms in Section III-Al, the
output configuration would be the one depicted in Fig. 8. In
one round, four Ansézte can fit across this distributed system,
and so at least four rounds need to be executed. We can use
the same allocation for the first three rounds and in the last
round eliminate the distributed Ansatz in order to reduce the
need for cross communication between QPUs.

For the Ansatz preparation, we use the circuit R(}) de-
picted in Fig. 9(a). From the four Ansitze, three of them
will be able to run the «-QPE step without distribution of the
Ansatz. The fourth Ansatz is, on the other hand, distributed
and will need to use the circuit in Fig. 9(b) for preparation.
For simplicity, we include arbitrary qubit rotations, which are
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FIGURE 8. Distributed Ansatz of size four on three QPUs with nine
qubits. The green outlined qubits are reserved for running «-QPE. The red
outline qubits are for the Ansétze. The orange outlined are qubits
reserved for entanglement between QPUs for nonlocal gates. One qubit
is left idle.

represented by the R(A1, A2, A3) gates, where A; € [~75, 5
fori € {1, 2, 3}. Next we need to perform the reflection oper-
ation IT described in Section III-B1, whose circuit is shown
in Fig. 10(a). An equivalent circuit is also shown, which de-
composes the four-qubit Toffoli gate into a series-controlled
and single-qubit gate. We again need a distributed version
of the reflection operation to support the Ansatz, which is
distributed. We show this circuit in Fig. 10(b). Here, we
introduce gates for the cat-entangler and cat-disentagler se-
quences. Here, four qubits are allocated for performing the
nonlocal gates. Now, for running «-QPE, we need a circuit
for ¢ — TI, which is the control part of c — U. Here is where it
is critical to have two entanglement qubits for each splitting
of the Ansatz on each QPU since, as seen in Fig. 11, there
are CC-gates that occur across QPUs. With this collection of
gates, we can run «-QPE and, therefore, using the algorithm
in Section I1I-B run a-VQE.

IV. NETWORKED CONTROL SYSTEMS FOR

DISTRIBUTED QC

Because it will be difficult in the near future to construct
large, monolithic quantum computers, it will be a viable op-
tion to instead connect smaller quantum computers together
using a network in a distributed manner. One can therefore
consider networked control systems (NCSs) to manage the
distribution of resources for running quantum algorithms.
Such a system could allow for more flexibility regarding
hardware configurations and the ability to dynamically add
more devices while minimizing integration overheads. A
NCS is a network of devices connected together using the
network in order to perform a specific mutual task orches-
trated by a control system [34], [35]. Among the other thing,
NCSs are used to perform distributed or parallel computing,
controlling a fleet of robots or drones, or smart grid systems
deployed in modern cities [36].

Networked control systems can have various architectures
for the control system part. These systems can either have
a centralized controller where communications amongst the
nodes are restricted to local area network (LAN) or a decen-
tralized controller system that is connected via an Internet
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FIGURE 11. Distributed circuit mapping for ¢ — II. (a) To run a-QPE, one needs to perform a controlled U operation M times, where U = RTIR'PRTIR'P.
The control portion to consider is ¢ — I1. We depict the ¢ — IT part, where the other parts of U are applied before and after what is depicted, which do
not need to be controlled. (b) Distributed c — I1. The square gates in the four-qubit gates represent the cat-entangler/disentager sequence.

or wide area network (WAN). These two scenarios resem-
ble how distributed quantum computers could potentially be
networked. In the first case, one can consider a single owner
of multiple quantum devices where all of the quantum de-
vices are located in the same room or building, specifically,
the network owner would know the network topology and
information about hardware in the network. In the second set-
ting, multiple quantum computers located possibly far apart
potentially connected by multihop connections, where the
owner of the hardware between the hops is possibly different.
Here, more advanced protocols that consider security and ro-
bustness will be needed potentially leading to a fully fledged
quantum Internet.

In order to use a network of distributed quantum comput-
ers efficiently, it is important that one develops robust com-
munication protocols such that communication and control
between the quantum devices in the network is efficient and
reliable. In this section, we consider quantum systems with
classical control and a separated quantum processing units.
We consider a QPU to be a combination of a three-layered
system depicted in Fig. 12. The QPU in this case is a layered
system with inputs and outputs to a communication network
through a classical computer, or a CPU. The CPU interfaces
with the network as well as controls the FPGA based on the
control instructions from the network, which in turn controls
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Qubits

FPGA

CPU

QPU

FIGURE 12. Internal layering of a QPU. We assume there is a layered
architecture. The CPU instructs the FPGA which in turn controls and
measures the qubits. The CPU also interfaces with the network.

the qubits to perform quantum operations on the qubit layer.
Qubit measurements and other classical messages are trans-
mitted back to the network via a reversed path.

We consider the two different network configurations de-
scribed and get into more detail about how these systems
could be implemented in practice. We list the communication
requirements needed to perform distributed quantum compu-
tations. We explore some available protocols to achieve these
requirements under two scenarios. In the first one, there is a
centralized controller of the system and communication to
devices is classical information and quantum entanglement
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FIGURE 13. Networked control system with a centralized controller. The triangular arrowheads represent classical connections and the diamond shaped
arrow heads represent quantum connections used for establishing EPR pairs. Here, we assume the network between the QPUs is completely connected
in terms of quantum and classical connections, that is, each QPU has the same connections with any other QPU. In the completely connected network,
this network is single use for transmitting with low latency. Moreover, each QPU is connected to a common bus line that handles all the latency-tolerant

message exchanges among the nodes.

can be sent directly to other quantum processors without
routing. The second case is when control over the network
is not centralized, but has a single user. We, then, propose
a control system using Deltaflow.OS to control system to
orchestrate distributed quantum computing.

A. CONTROL SYSTEM ARCHITECTURES FOR DISTRIBUTED
QUANTUM COMPUTING

In this section, we discuss two possible network architectures
for distributed quantum computing control systems. The ma-
jor difference between the two systems is centralization of
the control. In the first system, we consider a distributed
architecture with a centralized control. In the second, the
control is split such that each QPU in the system has its
own control. In this section, we describe these two systems
in depth. In later sections, we go into detail regarding the
communication requirements needed to run the systems and
potential protocols to achieve them.

1) CENTRALIZED-CONTROLLED DISTRIBUTED

QUANTUM SYSTEMS

The first distributed quantum computing scenario we con-
sider is depicted in Fig. 13. This scenario is one where there
is a single controller and the quantum hardware behaves only
according to the instructions that are fed from this controller.
The QPU systems are connected to the controller via clas-
sical network and further they are connected to each other
both classically and quantumly—so that they can generate
entanglement amongst themselves. The main idea here is that
the CPUs in the network have a static IP and can be accessed
by the centralized control. The finer synchronization between
the QPU nodes is delegated to the CPU controlling the FPGA
layer of the QPU from the centralized control ahead of exe-
cution time. The CPUs control the FPGAs and the FPGAs
communicate over fixed low-latency links. This latency can
be accounted for control instruction scheduling. At a small
and medium size, this network scheme will be best suited,
but when many nodes are added to the network, a system
with a distributed control is better suited, which we discuss
in the following section.
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FIGURE 14. Internetworked distributed quantum computer with
decentralized controllers. Here, there are independent controllers that
control their respective quantum processing systems. Entanglement is
generated with an entanglement network requiring possibly multihop
entanglement routing. The controller is placed between the QPU and the
quantum network since in this scenario, a quantum processing layer will
be needed.

2) DECENTRALIZED-CONTROLLED DISTRIBUTED
QUANTUM SYSTEMS

With a decentralized control system, the nodes in the network
are no longer in a “master-slave” relationship because the
hardware is no longer controlled by a single entity. A de-
piction of this scenario is seen in Fig. 14. Resources in this
setting need to be requested from various parties and there is
no guarantee that the requested resource will be available at
the time of request. Access to the controllers is hidden behind
a firewall and their IP, MAC, and inner network configuration
is potentially not exposed. We assume that the QPUs are
offered by various vendors that have agreed to offer a base
set of services. They provide access to quantum hardware
for a maximum amount of time per instruction set execu-
tion, they offer classical communication input and output to
a prespecified IP address, where the communication stream
is established prior to execution, and they allow for remote
entanglement to be established between quantum devices on
specified quantum hardware. In this case, the control infor-
mation between QPUs is needed and we will need a low-
latency protocol that works in the network layer so that the
control messages can be routed.

B. DISTRIBUTED QUANTUM ALGORITHM SCHEDULING
In order for networked quantum hardware to execute instruc-
tions in a synchronous fashion, a method of dictating to the
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devices when the instructions should be executed is needed.
In this section, we propose a temporal operation schedule,
i.e., a schedule of the operations with precise timestamps for
execution. These schedules can then be sent to each QPU in
the network with a time to begin execution. Because quantum
gates generally have an upper bound for how long they take
to execute, we can use this information when generating
the schedule. Here, we assume that all gates have a known
execution time as well and that latency times for classical
communication and entanglement generation are known. We
formalize the problem as follows.

Problem 3 (Distributed Quantum Algorithm Scheduling):
Given a distributed circuit as a series of gate layers, where
each layer contains a collection of gates to be applied on the
qubits in the system, and the gate times (i.e., the amount of
time it takes to perform the gate) of each gate for each QPU
in the system, produce a temporal gate execution schedule
such that the following constraints are obeyed.

1) Sending and receiving classical communication or en-
tanglement between two parties occurs at the same
time for the sending and the receiving parties.

2) One qubit operation occurs per time instance per qubit
for the duration of the gate time (i.e., no overlapping
gates).

3) At the start of a controlled operation, both qubits need
to be available to perform the control gate (i.e., one
qubit cannot have a gate operation ongoing).

At the start of the problem, it is assumed that all nodes
in the distributed system have synchronized clocks. We as-
sume routes for any multihop communication or entangle-
ment generation is already established and is already calcu-
lated into the communication time bounds. Moreover, it is
assumed that swap gates are not considered in the schedul-
ing and are assumed included in the worst case gate times
provided.

Comparing and creating a hybrid temporal planning ap-
proach with constraint programming for quantum circuit
scheduling has been investigated in [37] for the max-cut
problem. The difference here is the level of compilation is
deeper as they include swap operations since they limit to
nearest-neighbor interactions between the qubits. A temporal
planning and constraint programming approach is, therefore,
sensible. Here, we do not enforce nearest-neighbor interac-
tion, and assume this process is included in the worse case
timings for two-qubit gates for swapping qubits to their near-
est neighbor if needed and remapping the index of the qubit
so it does not have to be swapped back. We assume at the end
of each layer of gates, each qubit will be free to be operated
on and no swapping is needed and, therefore, do not use any
constraint programming.

The output of the schedule for each QPU will have the
form of Table 2. Table 3 is an intermediate schedule, which
is used before splitting the schedules for each QPU. For
a list of all possible commands and their descriptions, see
Appendix B, Table 4. We approach this problem as follows.
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TABLE 2. T; is the time to execute the particular gate. The output of
Algorithm 7 will generate a collection of schedules in this form for each
QPU

Command Time
CTRL[G,qID, qID] T
SEND_ENT[QPU,qID| T>
REC_CLA[QPU,cID] T3
SINGLE|G,qID] T

TABLE 3. T; is the time to execute the particular gate. The first step of
Algorithm 7 generates a table of gates with QPU information before
filtering the gates for each QPU for execution

Command
CTRL[G,qID, qID]
GEN_ENT|qID, qID]
CLASSICALIcID]

QPUs Time

QPU1 T
QPU1, QPU2 Ty
QPU3, QPU2 T3

SINGLE[G, qID] QPUS T,

We start with high-level instructions, which are entanglement
generation, single qubit gates, classical communication, and
control gates. We generate an instruction list using this gate
set. We then take the high-level circuits and break them down
into finer control instructions. Once the full schedule is cre-
ated, we can split the instructions such that the instruction
schedule is for a single QPU. The instruction sets can, then,
be sent to their respective QPUs and the algorithm can start.
In order to ensure gates are performed in the correct order,
we layer the circuits as done in the previous section and
schedule the circuits layer by layer, iteratively constructing a
full schedule. In complete form, we propose Algorithm 7.

C. PROTOCOLS

In order to run a distributed quantum algorithm with a dis-
tribute quantum computer using the architectures proposed
in the previous section, certain communication requirements
are needed to ensure execution is possible. Protocols for con-
trolling networked systems exist in practice in the centralized
and decentralized case, and we explore some examples of
them in this section.

The first requirement considered is the classical commu-
nication between the controllers and the QPUs. Here, what is
needed is a method for sending the computation instructions
to the QPUs, which can be done at slower latency, as well
as a method for sending low-latency control bits between
the QPUs. We explore methods for achieving this in the two
cases. Clock synchronization is a commonly used scheme
in distributed control systems. We consider an example of
architectures using clock synchronization on a large scale.
Finally, in the multivendor case, we discuss certification
steps needed to ensure multiple vendors are able to execute
distributed quantum algorithms in a cooperative way.
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Algorithm 7: Distributed Scheduler.
Input:
o QQPUs the collection of QPUs in the system
o C = {ly,...,15} the circuit to schedule as a series of layers
where each I; = {g1, ..., gm }-
o gateTime a mapping of gate names to time the gate takes to
execute for each QPU.
Output: A schedule of gate operations for each QPU to run.
1: layer End < 0
2: gateSchedule < [ ]
3: for [; € C'do > Make a first pass schedule based on the layers
of the circuit

4: | for g; € l; do

5. | | gateSchedule.add((g;,QPUs(g;), layer End))

6: | end for

7: | layer End + max;(gateTime(g;)) + layer End

8: end for

9: QPUSches + {}

10: for QPU € QPUs do > Split schedules so each QPU has own
11: | QPUSche <[]

12: | for step € gateSchedule do

13: if QPU €QPUs(step) A |QPUs(step)| =1

14: | QPUSche.add(step)

15: else if gate(step) = GEN_ENT :

16: | if QPU = QPUs(step)[0] : > Sender QPU
17: | | | | QPUSche.add(SEN D_ENT[QPUs(step)[1],qID],

time(step))
18: else > Receiver QPU
19: | QPUSche.add(REC_ENT[QPUs(step)[0],qID],
time(step))
20: else > The other non-local gate is classical transmission
21: | if QPU = QPUs(step)[0] : > Sender QPU
22: | | | | QPUSche.add(SEN D_CLA[QPUs(step)[1], cID],
time(step))
23: else > Receiver QPU
24: | QPUSche.add(REC_CLA[QPUs(step)[0],cID],
time(step))

25: | end for
26: | QPUSches|QPU] + QPUSche
27: end for

28: return Q PU Sches

Selecting the specific hardware that can execute these pro-
tocols is left to future work as tasks such as entanglement
generation is still it a primitive state and may not exist to the
extent we need for years to come. Also as qubit technologies
improve, the need for as-low-as-possible latency could be
loosened, and other protocols could be used in replacement.
Here, we explore examples that could potentially achieve
what is needed to perform distributed quantum computing.

1) CLASSICAL COMMUNICATION

In order to run distributed quantum algorithms, there are
specific nonlocal tasks that need to be carried out by the dis-
tributed system such as receiving control commands, send-
ing measurement results to the controller, and sending qubit
measurements between the QPUs at low latency to perform
nonlocal control gates. In this section, we explore communi-
cation protocols, which can be used by the control system to
accomplish running distributed algorithms. Here, we explore
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some examples of existing protocols that exist at an industry
level.

For the centralized control case, we neglect routing of
information and assume each node is connected both clas-
sically and quantumly to another. As discussed, We propose
that there is a classical network connecting the QPUs to a
centralized controller forming a “master-slave” relationship
with the additional network of dedicated connections be-
tween the QPUs for the sole purpose of low-latency commu-
nication. This communication does not go through the CPU
of the QPU, but directly between the FPGAs to perform the
nonlocal gates.

When using a centralized control system, to perform
slower communications between the QPUs and the controller
one could consider two options. The first is to simply connect
the CPU portions of the network to the controller using a
LAN, and communicate using TCP/IP to from the controller
to the QPUs. In this case, one would need to closely monitor
that communication traffic does not overwhelm the network.
Another approach that has this feature built in is to use a pro-
tocol often used in industrial control systems. The Modbus
communication protocol [38]. Modbus is an open protocol
used in a centralized controller master-slave setting as is
this centralized controller setting. It is a messaging struc-
ture that allows for heterogeneous devices to communicate
with a centralized controller and to receive control messages
from the controller. The Modbus protocol can be used over
a local network using TCP/IP making it easier to install into
existing commonly used Ethernet networks. With Modbus,
the controller can send the control instructions to the CPU
portion of each QPU, which can be sent to the FPGA to
perform the portion of the quantum algorithm. With Modbus,
the controller can also receive the qubit measurement results
from the QPUs once the algorithm is complete.

For low latency communication of short messages (<1 B)
between FPGAs there are existing methods that can be used
to communicate at the ultralow latency range (<1 ms). In
the high performance computing domain, FPGA networks
for ultralow latency, high bandwidth communication are re-
alized. Here, we need to consider that the FPGAs may be
meters apart. Connecting the FPGAs with, for example, 10
Gigabit Ethernet for sending short messages and using cus-
tom communication protocol and small form-factor plug-
gable (i.e., SFP+) transceivers, latency of 300 ns is possible
for each link [39]. With fiber, the latency can be even further
reduced.

Another approach that can be integrated again comes from
the industrial control domain. Industrial control, especially
in the power sector faces issues where some devices need
constant monitoring and reacting to the changes needs to
be done at very fast speeds. A method used is the Mirrored
Bits [40] protocol. Mirrored Bits is a communication pro-
tocol for ultralow latency communication adding additional
a latency of approximately 200 us for message processing
in addition to the latency from transmitting signals over the
communication link. Mirrored Bits could be used in this
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setting to transmit qubit measurement data. The devices that
perform the Mirrored Bits protocol, which are manufactured
by Schweitzer Engineering Laboratories are programmable
and can trigger different routines on the FPGA depending on
the input bit. These devices are commonly used to frequently
monitor sensor data to trigger emergency shut offs as fast as
possible, for example.

In the decentralized case, a dedicated WAN could be es-
tablished between the vendors such that a link-layer (of the
OSImodel) protocol is used for the classical control informa-
tion between the QPUs. Low latency communication can be
achieved using the link-layer protocol called the Generic Ob-
ject Oriented Substation Event (GOOSE). In particular, IEC
61850 is a GOOSE Ethernet protocol meeting time sensitive
communications and high-speed performance requirements
of automation applications. At the link-layer over an Ethernet
network experimental results show GOOSE can be used to
transmit in the 0.5-ms scale [41]. When routing is involved,
naturally, the latency will grow. If TCP/IP protocols are used
over the Internet are considered, then it is unlikely one could
create any latency guarantees. If instead there are dedicated
WANSs with routing, one could consider the network-layer
version of GOOSE called Routable GOOSE [42]. In [41],
R-GOOSE is analyzed over a WAN using a particular data
distribution service and was shown to transmit with average
latency of around 8 ms.

Overall, there can be much to learn from looking into the
power automation industry, as many low-latency and fast-
reaction systems have been developed, which have carryover
into distributed quantum computing. These protocols have
been tested for robustness and security and could poten-
tially fit well for doing distributed quantum computing over
a WAN. Moreover, networking FPGAs are as follows.

2) CLOCK SYNCHRONIZATION
For centralized control, the assumptions of clock synchro-
nization and full connectivity at a small scale are not
overly restrictive. High-precision clock synchronization can
be achieved even in very large configurations (i.e., that com-
prise a large number of devices) using methods such as in the
White Rabbit project [43]. White Rabbit is used at CERN
to synchronize over 1000 nodes with subnanosecond accu-
racy. This is achieved using Ethernet with lengths of up to
10 km, with experiments demonstrating an average of 160 ps
skew between similar clocks—regarding clock environmen-
tal variables such as temperature—after several hours [44].
This protocol can be integrated in the centralized controller
case so that all of the hardware used has synchronized clocks.
Once the number of nodes in the network becomes large,
routing and efficient network topologies becomes critical.
In the decentralized case, the controllers will need to per-
form a coarse-grain time synchronization via classical net-
work synchronization protocols and a fine-grain synchro-
nization, a precise notation of time can be shared. GPSs
directly connected to FPGAs can be a solution where shield-
ing does not stop the incoming signals. This process is
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Protocol 8: Entanglement Validation.

Vendor 1

1:  Generate N entangled pairs with Vendor 2

2:  Measure all of the owned halves

3:  Sendt < N randomly selected measurements to

Vendor 2 without stating which qubits were

measured

Receive ¢ bits from Vendor 2

If ¢ bits not received, abort

Send positions of measurements to Vendor 2

Receive positions of measurements from Vendor 2

and compare measurements

8:  Send acknowledgement if comparison passes, else
send negative acknowledgement

Vendor 2

1:  Generate N entangled pairs with Vendor 1

2:  Measure all of the owned halves

3:  Sendt < N randomly selected measurements to

Vendor 1 without stating which qubits were

measured

Receive ¢ bits from Vendor 1

If ¢ bits not received, abort

Send positions of measurements to Vendor 1

Receive positions of measurements from Vendor 1

and compare measurements

8:  Send acknowledgement if comparison passes, else

send negative acknowledgement

AN A

AR O

common in distributed physical experiments such as in the
Super-Kamiokande detector [45] and the CERN-OPERA
experiment [46]. Each node will need to implement extra
steps to guarantee that the timing information is constantly
accurate.

3) ENTANGLEMENT GENERATION

To perform the nonlocal control gates needed in the dis-
tributed circuits, the ability to share high quality entan-
glement between quantum processors is critical. Entangle
generation has been achieved in various qubit technologies
such as in optical photons, NV-centers, and superconduct-
ing qubits [47], but entanglement generation in quantum
networks is an ongoing research topic. We consider deter-
ministic entanglement generation schemes such that there
is a guaranteed entangled pair available shared between the
quantum processors when it is needed. Experimental results
demonstrating deterministic delivery of entanglement using
NV-centers in diamond as qubits have been shown in [48],
generating heralded entanglement at a rate of 39 Hz, three
orders of magnitude better than previous known results and
guaranteeing an entangled pair every 100 ms with fidelity
greater than 0.5 without pre- or postselection. Methods for
improving the results further are also proposed. This gives
evidence that using entanglement to perform distributed
quantum computing can become more feasible using various
qubit technologies. As technology regarding entanglement
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Protocol 9: Contract Creation Protocol.

User

1:  Assume it is known how many qubits exist on each
available QPU for each QPU provider

2:  Generate non-local circuits Section III-B

3:  Request gate and classical communication latency
times of gates from each QPU provider

4:  Generate a gate execution schedule using
Algorithm 7

5:  Send executions schedules for the respective QPUs
to the respective vendor along with current system
time

6:  Await confirmation messages from all vendors

7:  If any vendor responds negatively, broadcast abort

8:  Gather all latest start times and broadcast start time
as the minimum over all latest start times

9:  Await acknowledgements from all vendors,
broadcast abort if any do not arrive, otherwise
broadcast start signal

Vendor
I:  Await request from user for gate times and respond
accordingly

2:  Await gate execution schedule

3:  Validate that instructions can execute within
allotted time frame for the user, respond to user if
negative

4:  If there are instructions with classical
communication to an IP address, perform a
handshake with other IP, respond to user if negative

5:  If there are instructions with entanglement,
perform entanglement validation procedure in
Protocol 8, respond to user if negative

6:  With other IPs, perform clock synchronization,
respond to user if negative

7:  When all checks pass, respond positively to user
with latest possible start time of execution adjusted
for user system time difference

8:  Await start time confirmation, send
acknowledgement to user, and await for final
acknowledgement from user

generation and qubit stability improves, the deterministic
entanglement generation rate can be improved.

4) CUSTOMER-VENDOR CERTIFICATION

In the case of a decentralized controller, additional protocols
are required to ensure that the all parties are able to execute
the distributed quantum algorithms and an execution sched-
ule can be made such that nonlocal operations are performed
synchronously. In this setting, the user has no control over
the quantum hardware and, therefore, a protocol for ensuring
the user’s instructions can be executed is needed. We write in
Protocol 9 a protocol for creating contracts between vendors
and the user to ensure the desired instructions are carried out
as specified.
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DeltaGraph

FIGURE 15. DeltaGraph laid out on top of distributed quantum
hardware. The DeltaGraph controls the distributed computations
performed by QPUs 1 and 2. The user enters the parameters to the
centralized controller which initializes execution.

D. DELTAFLOW AS A NETWORKED CONTROL SYSTEM

To orchestrate a centralized control system, we propose a
scheme that uses Deltaflow.OS as the control. Deltaflow is
based on the dataflow programming paradigm described in
Section II-D. The Deltaflow language is a Python-based lan-
guage that allows users to specify graphs and edges repre-
senting the dataflow between them. It is a hosted domain-
specific language: the nodes are filled with code correspond-
ing to the hardware that is represented. A Deltaflow.OS is
a tool for running Deltaflow programs on a specific piece
of hardware. When given a Deltaflow program it performs
compilation steps to transform it into chunks that run on the
native hardware, runs those chunks, and exists in parallel
to provide system services, networking and communication
abstractions, and time sharing facilities. A Deltaflow.OS pro-
vides the same functionality as an OS and compiler combi-
nation like Linux+GCC [49].

1) CENTRALIZED CONTROL

As discussed, Deltaflow uses nodes in a graph to control the
flow of information within a hardware network. The nodes
contain the logic of what instructions to perform when an
input message is received. In this section, we describe the
highest level nodes that are used and their instruction logic to
conduct a distributed «-VQE when there is a single central-
ized control. Within the high-level nodes can be more nodes
but these nodes are hardware specific, and we leave this open
for future work. In Fig. 15, we depict a Deltaflow graph laid
on top of the hardware. There are four unique nodes in the
DeltaGraph: Controller, Classical Communication, Quantum
Gates, and Time Reference. We describe the controller re-
sponsibilities and the controlled node tasks below.
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Controller Node: The controller node is the main interface
between the user and the distributed quantum hardware. This
interaction closely resembles that of a distributed operating
system as discussed in Section II-C. The controller receives
the algorithm parameters from the user, namely, the user
sends the Ansatz preparation circuit designed for a single
QPU and a Hamiltonian. Once received, the controller node
handles the following.

1) Takes user specified Ansatz preparation circuit and
decomposed Hamiltonian, and confirms execution pa-
rameters.

2) When confirmed, the Hamiltonian is distributed across
the QPUs and a gate execution schedule is made.

3) The schedule is split according to the locality of the
execution, i.e., the entire instruction set is not sent to
each node, but rather just the parts that are executed by
that particular node.

4) Once all instructions are sent, the controller listens for
incoming messages from any node in the DeltaGraph
signaling an error. If such an error is received, then the
execution process is aborted and the user is informed.

5) Once scheduled run time has elapsed, the controller
listens for measurement results from the QGNs and
sends them to the user.

Classical Communication Node (CCN): The CCN handles
listening and sending classical data, that is information en-
coded into bits, to other QPUs in the network and collecting
and forwarding classical control information from and to the
quantum gates node (QGN) to perform any nonlocal control
operations. The CCN receives the precise times for when to
listen and when to transmit in the compiled instruction set
from the controller. When time, the CCN communicates with
the QGN to collect measurement results of the entangled
qubits needed to perform the nonlocal gates and transmits
the information to the paired QPU. The paired QPU will
have its own CCN, which will be listening for classical input
and will know what to do with the information based on the
predetermined instructions. Each CCN communicates with
the controller to receive instructions at the beginning of exe-
cution. CCNs can also inform the controller of any failures in
communication so that the controller can abort the run-time
process.

Quantum Gates Node: The QGN controls the quantum
hardware and controls the gate operations performed on and
measurements of the qubits. It communicates to the CCN
and the controller. The communication link with the CCN
is used for sending the measurement results of the entangled
qubits in the cat-entangler and cat-disentagler steps to the re-
spectively paired QPU. With the controller, communication
to receive instructions is needed as well as to transmit the
qubit measurements at the end of the algorithm. Moreover,
the QGN conducts entanglement half of an entanglement
generation scheme, controlling the particular hardware as
per the instructions and entanglement generation protocol
selected.
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Classical Comm.

Classical Comm.

FIGURE 16. DeltaGraph for a decentralized control distributed quantum
computer.

Time Reference Node (TRN): The TRN is a node used to
maintain synchronous time within the DeltaGraph. The duty
of the TNR is simply to periodically broadcast the system
time so that all nodes in the network can update their own
clocks to fix any clock drift that occurs during run time.
Latencies from the TRN to the nodes can be accounted for,
improving the overall resolution and precision of the timing
reference.

2) DECENTRALIZED CONTROL

In the decentralized controller setting, the DeltaGraph is split
between the QPUs in the network. Each QPU has their own
DeltaGraph and the intercommunication is handled by the
nodes in the DeltaGraph. In this case, there needs to be an
agreed upon contract between each participating party, which
we have provided in Protocol 9. Here, for simplicity, we
assume that there are no malicious parties and no eavesdrop-
pers. Unlike the centralized case in the previous section, each
remote QPU has its own controller and time reference node.
The DeltaGraph in this case is depicted in Fig. 16. The main
differences are that the independent time reference nodes
allows different clock hardware for each vendor. Different
mechanisms could be in place to adjust the time at each
vendor, which is controlled by the respective time reference
node. Time reference nodes are connected such that at each
vendor they can perform different preselected clock synchro-
nization protocols. The controller nodes’ main tasks are in-
terfacing with the user and orchestrating the instructions pro-
vided by the user for the specific hardware of the vendor. The
controller for each vendor interfaces with the user similarly
how it is described in the alternative method of deploying a
distributed operating system in Section II-C, where the user
is aware of the network topology and hardware capabilities
of each node.

Controller Node: Each controller node has the responsibil-
ity of interfacing with the user and distributing the execution
instructions to the other nodes. Much of the responsibilities
of the controller in this case match that of the centralized
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controller case, but here the controller is only aware of the
instructions that occur on the hardware in one QPU stack
rather than the entire instruction set. In the centralized case, it
was the duty of the controller to map the Ansatz circuit and
schedule the Ansézte to the distributed quantum hardware.
In this case, that duty is moved to the user. The user queries
QPU vendors, gathering the necessary hardware parameters
in order to create a schedule that is executed on each ven-
dor’s hardware. The point of this is that the user will have
more control over how many qubits they wish to run on each
vendor’s hardware. Variables such as cost of execution, time
duration of execution, and vendor availability can be inte-
grated into the user’s decision when distributing their circuits
across multiple vendors. The controller here can choose to
reject or accept instruction sets depending on the vendor’s
hardware and availability. We summarize the responsibilities
of the controller as follows.

1) Responds to user queries regarding hardware capabili-
ties of the QPU as described in Protocol 9, orchestrat-
ing the handshake steps for classical communication
and entanglement distribution.

2) Once start time and instructions are gathered, the in-
structions are distributed to the respective nodes in the
DeltaGraph.

3) Time reference is sent to the nodes in the DeltaGraph
via the controller in this case to simplify physical con-
nections to any external clocks.

4) Transmitting measurement results to back the user.

Classical Communications Node: At ahigh level, the CCN
performs much the same as in the centralized controller case.
There may be added complexity in the low-level details de-
pending on the selected protocols used for communication.

Quantum Gates Node: The QGN performs the much of
same tasks as in the centralized case. A difference to consider
is that each vendor could run their own centralized control
distributed quantum system. Here, the quantum gate con-
troller may need to be modified to perform much of the tasks
of the centralized control as in the previous section.

Time Reference Node: The TRN is distinct for each QPU,
different than in the centralized case where there is only one
TRN. Here, the TRNs communicate with each other between
DeltaGraphs in order to maintain clock synchronization in
their respective graphs.

V. CONCLUSION AND OUTLOOK

In summary, we have explored how the generalized VQE
algorithm «-VQE can be distributed across arbitrary sized
quantum computers connected with entanglement and clas-
sical communication networks. We proposed various ap-
proaches for splitting the Ansatz across the distributed sys-
tem and provided algorithms for splitting the circuitry needed
to split perform «-QPE, the central algorithm around «-
VQE. We show in our analysis that with this approach, larger
Ansatz stats used on distributed systems at the cost of run
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time. Next, we explore how one could network together a dis-
tributed quantum computer using two different architectures
and we collect the necessary protocols needed to achieve
this. We finish with a network control proposal using the
Deltaflow.OS, the software-based control system for control-
ling quantum systems at the various classical and quantum
hardware levels.

What remains open is to implement this system at a
small scale, using both simulation and physical systems.
Initial effort has been made in this direction, but more work
is needed to have a complete proof of concept. Already,
an implementation using quantum network simulator
QuNetSim [50] and Deltaflow together has shown distributed
quantum computing can be simulated. More, Deltaflow has
been shown to work with distributed circuit boards, which
leads to the first steps of simulating distributed quantum
algorithms. The methods for distributing the Ansatz states
could consider more parameters for further optimization,
such as the coherence times of the qubits and location of the
control gates in the circuits. We aim to explore this in more
detail in future work.

As discussed, distributed quantum computing is a promis-
ing path to developing large-scale quantum computers. Much
effort has gone into this in the classical computing domain,
and the overlap between the fields is high. We can use this
knowledge to design robust and secure distributed quantum
computers, and as quantum technologies improve, this will
surely become a reality.

APPENDIX A
ALGORITHMS

Algorithm 8: Does Not Fit.

Input:
e Q@ = [q1,...,qn] the collection of QPUs in the distributed
system, non-increasingly sorted by number of available qubits
o A the size of the Ansatz
Output: If the Ansatz can fit in the distributed QPU @
DoesNotFit(Q, A)
if @ is empty :
\ return true
for ¢; € Q do
curAllocation < [0, ...,0] > Allocate n element array of Os
possibleQPUs + {q1,...,¢i} € Q
ifi=1:

k < QPUNumber(possibleQPUs[1]) > The QPU index
curAllocation[k] < ¢1 — 1
else
| State k <+~ QPUNumber(possibleQPUs[1]) > The QPU
index

curAllocation[k] <— q1 — 3

for ¢; € {g2,...,q;} do
k <~QPUNumber(possibleQPUs[j]) > The QPU index
curAllocation[k] < q; — 2

end for

if sum(cur Allocation) > A :

| return false

end for

return true

> The Ansatz does fit
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APPENDIX B
CONTROL SYSTEM COMMANDS

TABLE 4. Commands for QPU schedule

Command Description

TWO_QUBIT|G,qID,, qID,]

Two qubit gate G on qubits with
memory IDs qID,, gID,, where
qID, is the control if needed. gID;
is potentially a classical register.

SINGLE|G,qID] A si.ngle': qubit gate G applied to
qubit with memory ID qID

Generate entanglement and

GEN_ENT|[gID,,qID
- [aID;, 1D store it in the qIDs qID, qID,,

REC_ENT|QPU, qID] Recei've' entanglement half and
store it in at memory qID

SEND_ENT[QPU, qID] Send entalllgleme‘nt half and keep
other half in qubit memory qID

CLASSICALICID] Transmission of classical bit in
classical memory with ID cID

Send classical bit in classical
SEND_CLAIQPU, cID] memory with ID cID

REC_CLA[QPU,cID] Receive classical bit and store in

classical memory with ID cID
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