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ABSTRACT Classical microwave circuit theory is incapable of representing some phenomena at the
quantum level. To include quantum statistical effects, various theoretical treatments can be employed.
Quantum input-output network (QION) theory is one such treatment. Another formalism, called SLH theory,
incorporates scattering matrices (S), coupling vectors (L), and system Hamiltonians (H). These theoretical
treatments require a reformulation of classical microwave theory. To make these topics comprehensible to an
electrical engineer, we demonstrate some underpinnings of microwave quantum optics in terms ofmicrowave
engineering. For instance, we equate traveling-wave phasors in a transmission line (V+

0 ) directly to bosonic
field operators. Furthermore, we extend QION to include a state-space representation and a transfer function
for a single port quantum network. This serves as a case study to highlight how microwave methodologies
can be applied in open quantum systems. Although the same conclusion could be found from a full SLH
theory treatment, our method was derived directly from first principles of QION.

INDEX TERMS Microwave quantum optics, quantum input–output network theory, quantum networking,
state-space representation, transmission lines.

I. INTRODUCTION
Although classical circuit theory has been the forefront of
microwave engineering for many decades, the theory is inca-
pable of explaining quantum noise from single-photon detec-
tion, long distance communication, phase amplifiers, etc. [1].
With growing interest to utilize microwave networks for
quantum communication [1], quantum computing [2], quan-
tum information [3], and quantum networking [4], a second
quantization of circuit components has provided a successful
transition from classical to quantum treatment for microwave
networks. Such models include QION theory [5]–[9] and
SLH theory [10]–[12], which SLH has success in applying
classical methodologies to quantum mechanics including a
state-space representation.
The difficulty of thesemodels arises from the need to accu-

rately describe the dynamics of an open quantum system. In
particular, a popular treatment in both optical and microwave
networks is to express bosonic operators in terms of quantum
input/output operators (Gaussian noise increments). From
here, a quantum stochastic differential equation can fully
describe the dynamics of a quantum network [5]. This is the
fundamental principle behind QION and SLH theory, where

SLH expands on this idea to include multiport networks. This
makes QION theory a useful tool to solve simple single-port
quantum networks. However, in literature, QION formalism
was dominated by the perspective of quantum optics with no
clear transition for microwave theory. This becomes a con-
cerning problem when describing microwave systems using
QION since the research field diverges from standardized no-
tation depending on one’s interest. In addition, there has been
little attempt to connect QION to classical methodologies,
which can potentially expand already established microwave
techniques to quantum networks.
This article was developed to outline the importance of

microwave formalism for a simple single port circuit con-
nected to a transmission line. In Section II, we introduced
classical normal modes of a lumped LC oscillator to later
compare classical methodology to quantum circuit theory.
In Section III, we derived quantum LC operators of nodal
charge and nodal flux in the form of annihilation opera-
tors. We formulated a comprehensible definition of a bosonic
wave operator(s) for a one-dimensional transmission line and
showed how to map between classical microwave formalism
to quantum electric circuit theory. Finally, in Section IV, we
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apply these definitions to create a state-space representation
and transfer function for a single-port lumped LC oscillator
coupled to a transmission line.
Although the methodologies applied in this article can be

used to solve nonlinear networks such as Josephson junctions
and qubits [13], [14], the approximations made in nonlinear
circuits do not affect the overall treatment of QION compared
to a linear network. To illustrate the analogies between clas-
sical and quantum methodologies, this article focuses on a
simple single-port lumped LC example. This approach can
be easily extended to a multiport system and/or more com-
plicated systems.

II. CLASSICAL NORMAL MODES OF THE LUMPED
LC OSCILLATOR
We first consider a lumped LC oscillator, consisting of an
inductor with inductance L and capacitor with capacitance
C. The equations of motion for LC circuit are given by [15]

dI

dt
= −1

L
V

dV

dt
= 1

C
I (1)

which, through linear combinations, yields the normal mode
equations

a = 1

2

√
L(I + iωCV )

a∗ = 1

2

√
L(I − iωCV ) (2)

where i is the imaginary unit and ω is the natural oscillation
frequency ω = 1√

LC
. The normalization provides that the

square of the amplitudes represents the energy stored in the
modes, and the sum of the squares of themodes gives the total
energy of the system, E = |a(t )|2 + |a∗(t )|2 = 1

2 [CV
2(t ) +

LI2(t )].
This understanding of normal modes in the classical sense

helps us understand the form necessary to introduce bosonic
operators.

III. QUANTIZATION OF ELECTRIC CIRCUITS
A. QUANTIZATION OF THE LUMPED LC OSCILLATOR
To quantize the lumped LC circuit, we can follow the same
conventions from [15], starting with the same equations of
motion as (1). However, since most quantum engineering
systems involve Josephson Junctions, it will be more con-
venient to consider the equations of motion in terms of node
flux and charge. We define node flux as �(t ) = ∫ t dt ′V (t ′)
such that voltage is given by V (t ) = d�

dt ; we can also define
current to be I(t ) = −�

L (t ). Using the fact that node charge
is given by Q(t ) = CV (t ), we can rewrite (1) in terms of flux
and charge

d�

dt
= Q

C

dQ

dt
= −�

L
. (3)

This same result can be obtained by finding the Lagrangian
and Hamiltonian of the system, where flux � is the analog
to displacement, and charge Q is its momentum conjugate.
They can then be made quantum operators that follow the
canonical commutation relation

[�̂, Q̂] = i�. (4)

We find the quantized normal mode operators to be [16],
[17]

â = �̂√
2L�ω

+ i
Q̂√
2C�ω

,

â† = �̂√
2L�ω

− i
Q̂√
2C�ω

(5)

where ω is the resonant frequency given by ω = 1√
LC

. Sub-
stituting � = LI and Q = CV into these quantized normal
modes returns (2) normalized by (

√
2�ω)−1, which ensures

that the commutation relation [â, â†] = 1 holds and that
our operators are dimensionless, rather than having units of
square root energy, like the classical normal modes of the
lumped oscillator.
By rearranging (5), one can write flux, charge, current, and

voltage in terms of bosonic operators â and â†

�̂ = LÎ =
√
L�ω

2
(â+ â†),

Q̂ = CV̂ = −i
√
C�ω

2
(â− â†). (6)

Additionally, theHamiltonian is given byH = �ω(â†â+ 1
2 ).

B. QUANTIZATION OF THE LOSSLESS
TRANSMISSION LINE
We now turn to consideration of the lossless transmis-
sion line, beginning with the familiar Telegrapher’s equa-
tions [18]–[21]

∂

∂z
V (z, t ) = −L′ ∂

∂t
I(z, t )

∂

∂z
I(z, t ) = −C′ ∂

∂t
V (z, t ) (7)

where L′ and C′ are inductance and capacitance per unit
length, respectively. Again, like with the quantization of the
lumped oscillator, it will be convenient to consider the system
in terms of node flux and node charge. We relate voltage as
∂
∂t�(z, t ) = V (z, t ) and I = − 1

L′
∂
∂z�(z, t ). Then, substituting

our relations, we obtain 1-d wave equations in terms of flux

v2p
∂2

∂z2
�(z, t ) = ∂2

∂t2
�(z, t ) (8)

where vp is the phase velocity given by vp = 1√
L′C′ . We

note that (8) is the same result obtained by considering the
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Lagrangian of the system and finding the Euler–Lagrange
equation of motion, where node flux is the analog to the
displacement done by [9], [16], [17], and [22]. To remain
consistent, we will consider solutions to (8). It can be shown
that the charge density q (charge per unit length) is the conju-
gate momentum to flux, with the commutation relation given
by

[�̂(z, t ), q̂(z,′ t )] = i�δ(z− z′). (9)

We can then present normal modes for the transmission
line given by [16]

b̂k =
√

ωkC′�
2�

�̂k + i

√
1

2 C′��ωk
Q̂k

b̂†k =
√

ωkC′�
2�

�̂k − i

√
1

2 C′��ωk
Q̂k (10)

where � is a length along the transmission line, typically
where the transmission line becomes periodic, k is the wave
number, andωk = vpk. It can be shown that the commutation
relation is given by [b̂k, b̂

†
k] = 1, ensured by the normaliza-

tion. b̂k and b̂†k are the familiar Bose lowering and raising
operators, respectively. The Hamiltonian is then given in
the familiar form ofH = ∑

k �ωk(b̂
†
kb̂k + 1

2 ) for a quantized
simple harmonic oscillator. Equation (10) yields the node
flux and node charge at a specified mode k given by

�̂k =
√

�

2ωkC′�

(
b̂k + b̂†k

)

Q̂k = −i
√
C′��ωk

2

(
b̂k − b̂†k

)
(11)

and they can can be considered as traveling waves of flux and
charge, respectively [17], [22]

�̂R(z, t ) =
∑
k>0

√
�

2ωkC′�

(
b̂ke

−i(ωkt−kz) + b̂†ke
i(ωkt−kz)

)

Q̂R(t ) = − i
∑
k>0

√
C′��ωk

2

(
b̂ke

−i(ωkt−kz) − b̂†ke
i(ωkt−kz)

)
.

(12)

Using the fact that Q = C′�V and −L′�I = �, or by consid-
ering time derivatives of (12), one can find the right-moving
voltage and current waves to be

V̂R(z, t ) = − i
∑
k>0

√
�ωk

2 C′�

(
b̂ke

−i(ωkt−kz) − b̂†ke
i(ωkt−kz)

)

ÎR(z, t ) = −1

L′�

∑
k>0

√
�

2ωkC′�

(
b̂ke

−i(ωkt−kz) + b̂†ke
i(ωkt−kz)

)
.

(13)

It can be shown that [ÎR, V̂R] �= 0 and, similarly, for the left-
moving voltage and current waves, which contributes to zero

point fluctuations in power. We note that voltage and current,
described in (13), is offset by a phase φ = π

2 in comparison
to microwave theory. This is due to the fact that the choice
of origin is arbitrary and we chose flux to be our position
coordinate and charge to be momentum. To match notation
in microwave theory, we can introduce a phase offset of π/2

whichmaps b̂′
k = b̂ke−iπ/2 = −ib̂k and b̂′†

k = b̂†ke
iπ/2 = ib̂†k.

Substituting this into (13), we obtain voltage as a sum of the
Bose operators that is real

V̂R(z, t ) =
∑
k>0

√
�ωk

2 C′�

(
b̂′
ke

−i(ωkt−kz) + b̂′†
k e

i(ωkt−kz)
)

.

(14)

Similarly, current is given by

ÎR(z, t )

= i

L′�

∑
k>0

√
�

2ωkC′�

(
b̂′†
ke
i(ωkt−kz) − b̂′

ke
−i(ωkt−kz)

)
.

(15)

Following [9], [17], and [22], we can extend (14) to the
continuum limit, where � → ∞

V̂R(z, t ) =
∫ ∞

0

dω√
2π

√
�ωZ0
2

(
b̂R(ω)e−i(ωt−kz) + h.c.

)

V̂L(z, t ) =
∫ ∞

0

dω√
2π

√
�ωZ0
2

(
b̂L(ω)e−i(ωt+kz) + h.c.

)
(16)

where Z0 is the characteristic impedance given by Z0 =
√

L′
C′ ,

and

b̂R(ω) =
√
2π (L′C′�2)−1/4

∑
k>0

b̂′
kδ(ω − ωk ),

b̂L(ω) =
√
2π (L′C′�2)−1/4

∑
k<0

b̂′
kδ(ω − ωk ). (17)

The resulting commutation relation is given by[
b̂R(ω), b̂†R(ω

′)
]

=
[
b̂L(ω), b̂†L(ω

′)
]

= 2πδ(ω − ω′). (18)

The normalization of (17) ensures that the commutation rela-
tions of (9) and (18) hold. Equation (9) is important because it
depicts the uncertainty relationship between charge and flux,
which are canonical conjugates. Equation (18) is important
because we recover boson commutation relations.

C. MAPPING QUANTUM CIRCUITS BY WAY OF
MICROWAVE ENGINEERING
We now consider a classical, single-mode voltage
traveling-wave, moving to the right, with instantaneous
solution VR(z, t ) = |V+

0 | cos(ωt − kz+ φ). Using sinu-
soidal steady-state analysis to provide phasor notation,
VR(t ) = Re{V+

0 exp[i(ωt − kz+ φ)]}. Note that the Bose

operators could also be written as b̂k = e−iφ̂
√
N̂k and
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TABLE 1. Quantum Engineering Rosetta Stone of Generalized Scattering
Parameters in Microwave Engineering language [19], With Bosonic
Operators in a Quantized Transmission Line. The Characteristic

Impedance is Given by Z0 =
√

L′
C′ and Phase Velocity Given by vp = 1√

L′C′

b̂†k =
√
N̂keiφ̂ [23], where φ̂ is a hypothetical phase operator,

defined uniquely only for the interval [0, 2π ] [24], [25].
We also note that b̂kb̂

†
k = N̂k + 1 and b̂†kb̂k = N̂k, which

ensures that the commutation relation [b̂k, b̂
†
k] = 1 holds.

We can consider these quantum-mechanical expressions in
a semiclassical limit, where we propose bosonic operators
now to be downgraded to the role of simple scalars. In this
limit, we can equate our prior expression for traveling-wave
voltage with a standard, plane-wave engineering expression.
In this case, we recover the following relationships to
standard microwave expressions [19]–[21]

V+
0 = ∣∣V+

0

∣∣ eiφ =
√
2�ωk
C′�

b̂†ke
−iπ/2, (k > 0)

b̂†k =
√
N̂eiφ̂ =

√
C′�
2�ωk

V+
0 e

iπ/2, (k > 0). (19)

A relationship between V−
0 and b̂†k can be found by con-

sidering the left-moving voltages instead. Using the rela-
tionship between V+

0 and b̂†k, one can relate Pozar’s formal-

ism for generalized scattering parameters, a = V+
0√
Z0

with b̂†k.
A comprehensive translation—possibly an interdisciplinary
Rosetta Stone—between formalisms can be seen in Table 1.
It is tempting to speculate how one could upgrade parame-

tersV+
0 andV−

0 to quantum operators, V̂+
0 and V̂−

0 , and derive
open quantum systems in terms of these operators, rather
than with using traditional bosonic operators.

IV. HEISENBERG EQUATION OF MOTION,
INPUT–OUTPUT RELATION, AND STATE-SPACE
REPRESENTATION
Assume a transmission line coupled to a quantum lumped LC
oscillator (system) by a coupling capacitor with capacitance
Cc; see Fig. 1 (the capacitance and inductance of the system
are denoted as L and C, respectively). This creates an open

FIGURE 1. Lumped LC parallel tank circuit is coupled to a transmission
line through a coupling capacitor. Although thermal photons in a
semi-infinite transmission line could also be considered, here, we
implicitly assume a generator to be matched at the source of the
transmission line.

quantum system

H = Hsys + Hint + Hbath (20)

where Hsys is the Hamiltonian of lumped LC, Hint is the
Hamiltonian of the interaction between the lumped LC and
bosonic bath operator (voltage wave), andHbath is the Hamil-
tonian of the bosonic field. We assume that the transmis-
sion line is semi-infinite, where z = 0 and t = 0, the right-
propagating wave V̂R enters the lumped LC oscillator at t= 0,
and, at a later time t, the left propagating wave V̂L is reflected
back. This results in the bath Hamiltonian Hbath defined in
Section III-B where the right-moving bosonic operators are
the input bosonic operators bin(ω) = b̂R(ω) and, similarly,
the output bosonic operator are the left-moving bosonic op-
erators. The system Hamiltonian Hsys is the Hamiltonian of
the lumped LC oscillator described in Section III-A using the
values in Fig. 1 (right side).
We assume the interaction Hamiltonian between the input

voltage and systemHint to be the same as the energy stored in
the coupling capacitor ECc , whereHint = ECc = 1

2Cc(V̂bath −
V̂sys)2 (with C � Cc). We assume that 1

2CcV̂
2
bath and

1
2CcV̂

2
sys

are negligible compared to the bath and system Hamiltonian
terms. This is because the impedance across the coupling
capacitor will be much greater than the impedance across
the system capacitor C. Therefore, more energy will flow
across the system capacitor than the coupling capacitor (H �
1
2CcV̂

2
sys). A similar argument can be used for 1

2CcV̂
2
bath. Then

interaction Hamiltonian reduces to Hint ≈ −CcV̂sysV̂bath.
Each Hamiltonian can be defined as

Hsys = �
a†a, (21a)

Hint = i
�Cc
2

√
Z0ωR
2πC

∫ ∞

0

√
ω(a− a†)(b̂(ω) + b̂†(ω))dω,

(21b)

Hbath = �

∫ ∞

0
ωb̂†(ω)b̂(ω)dω (21c)

where 
 = ω − ωR is the detuning frequency of the lumped

LC, the resonant frequency for the circuit is ωR = (LC)−
1
2 ,

V̂sys is the voltage operator across a capacitor defined in
Section III-A, Z0 is the characteristic impedance of the trans-
mission line, and an implied tensor product between (b(ω) +
b†(ω)) and (a – a†). We also denote the identity matrix in
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the bosonic operator Hilbert space as Ibath, and the identity
matrix in the system’s Hilbert space as Isys.
Before we solve the dynamics of this system, we would

want to change the basis of the interaction Hamiltonian to
interaction (Dirac) picture in the perspective of the sys-
tem [5]. This is done by considering a bare Hamiltonian

H0 = Hbath + Hint with Hint(t ) = e
i
�
H0tHinte−

i
�
H0t such that

Hint(t ) = i�
Cc
2

√
Z0ωR
2πC

∫ ∞

0

√
ω(a(t ) − a†(t ))(b̂(ω)

+ b̂†(ω))dω (22)

where a(t) = ae−i
t . Commutation relations still hold
[a(t ), a†(t ′)]=δ(t−t ′) and [a†(t ), a†(t ′)]=[a(t ), a(t ′)] = 0.
In addition, the system operator in the interaction frame is
modified to Hsys = �
a†(t )a(t ).
Let us consider a wave at frequency 	. At large frequen-

cies away from	, the field has very little interaction with the
system states [17]. In consequence, we can integrate both the
bath and interaction Hamiltonian on the interval (−∞,∞).
This means for both the interaction and bath Hamiltonian,
the limits of integration can change as

∫ ∞
0 −→ ∫ ∞

−∞.
For weak coupling between the system and bath, the

interaction Hamiltonian, as it is now, does not conserve
energy with counter-rotating terms being nonconservative
b̂†(ω)a†(t ) and b̂(ω)a(t ) [7]. To fix this, we introduce the
rotating wave approximation to get rid of these terms in the
interaction Hamiltonian [4]–[7], [26].
We assume that the rate of change in frequency is minus-

cule around 	 such that ω ≈ 	. This means that we can uti-
lize the Markovian approximation

√
κ
2π ≈ Cc

2 (
Z0ωR
2πC )

1
2
√

	,

where κ is the photon rate around resonance [5]–[7]. This
approximation,

√
κ , describes how strong bosons interact

with the network for every unit (time)−
1
2 . The interaction

Hamiltonian yields

Hint(t ) = i�

√
κ

2π

∫ ∞

−∞
(b̂†(ω)a(t ) − a†(t )b̂(ω))dω (23)

with implied outer products between a(t) and b̂(ω) operators.
Shifting the lab frame to 	 modifies the bath Hamiltonian as
Hbath = �

∫ ∞
−∞(ω − 	)b̂†(ω)b̂(ω)dω [4]. Often, the Marko-

vian approximation is written as κ (ω) ≈
√

κ
2π , which is the

normal formalism in quantum optics as it connects κ with
how much photons are entering the network [27] (units of
(time)−1). However, this nomenclature may not be as in-
sightful since the coupling between bath and system goes

by units of (time)−
1
2 , where the meaning of the dimensional

unit analysis is lost. Therefore, it is tempting to create a repre-
sentationwhere theMarkovian approximation, κ (ω) → κ ′√

2π
κ ′ = √

κ .

A. HEISENBERG–LANGEVIN EQUATION
We want to solve the equation of motion for the bosonic
field operators. Specifically, we want to develop an input

bosonic operator. To do this, wewill have to solve theHeisen-
berg equation of motion in the bosonic field frame. In the
interaction frame of the bosonic field, the dynamics only
depend on the interaction and bath Hamiltonian such that
ḃ(ω) = − i

�
[b(ω),Hint + Hbath] to describe all the dynamics

of b(ω) from t0 to t. The solutions to this equation yields

b̂(ω) = b̂(ω, t = t0)e
−i(ω−	)(t−t0)

+ 1√
2π

∫ t

t0

√
κa(t ′)e−i(ω−	)(t ′−t )dt ′. (24)

We can find the evolution of the system operator a(t) from
t0 to t in the Heisenberg picture (and interaction picture) just
as we did with b̂(ω). This equation is also known as the
Heisenberg–Langevin equation [4]–[6], [9] is given as

ȧ(t ) = − i

�
[a(t ),Hsys + Hint], (25)

= −i[a(t ),
a†(t )a(t )]

+ [a(t ),

√
κ

2π

∫ ∞

−∞
(b̂†(ω)a(t ) − a†(t )b̂(ω))dω]

(26)

where there is an implied inner product with identity matrix
of the bosonic field (a(t ) = a(t ) ⊗ Ibath).

Here, we assume that the system state cannot evolve until
the right propagating wave enters the network and, for a
finite field between the times t and t + dt, the field inter-
acts with the system changing its state. In a similar man-
ner, the wave reflected from the lumped LC cannot change
(or be created) until the system state changes. This means
that the bosonic field operators are independent (commutes)
with system operator at integrated time t ′ being bigger than
the present time t. Therefore, [b̂(ω), a(t ′)] = [b̂†(ω), a(t ′)] =
[b̂(ω), a†(t ′)] = [b†(ω), a†(t ′)] = 0 when t’ > t. Equation
(26) yields

ȧ(t ) = −i
a(t ) +
√

κ

2π

∫ ∞

−∞
b̂†(ω)[a(t ), a(t )]dω

−
√

κ

2π

∫ ∞

−∞
[a(t ), a†(t )]b̂(ω)dω. (27)

We substitute the commutation relations

ȧ(t ) = −i
a(t ) −
√

κ

2π

∫ ∞

−∞
b̂(ω)dω. (28)

We define the bosonic field (at z = 0) entering the lumped
LC at t0 = 0 as the input bosonic field

bin(t ) = 1√
2π

∫ ∞

−∞
b̂(ω, t = 0)e−i(ω−	)tdω (29)

where b̂(ω, t = 0) is the initial field entering the system in
frequency domain. The output operator is derived in a similar
manner but with t0 = t1, where t1 is the first “infinitesimal
slice” of the wave changed by the system state.
Plugging (24) into (28)

ȧ(t ) = −i
a(t ) − √
κ
(
bin(t )
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+ 1

2π

∫ ∞

−∞

∫ t

0

√
κa(t ′)e−i(ω−	)(t ′−t )dt ′dω

)
. (30)

Using properties in [5] where 1
2π

∫ ∞
−∞ e−i(ω−	)(t−t ′ )dω =

δ(t − t ′) and 2
∫ t
t0

δ(t − t ′)a(t ′)dt ′ = sgn(t − to)a(t ), we in-
tegrate between t and t + dt. For this network, as we have
solved the Heisenberg–Langevin equation based on input–
output theory [5], [9]

ȧ(t ) = −
(
i
 + κ

2

)
a(t ) − √

κbin(t ) (31)

where a(0) = a ⊗Ibath.

B. INPUT–OUTPUT RELATION
The most important result in input–output theory is the map
between an input field to its output field. Thework [5] derived
a general form of this based on the negligible time delay be-
tween the input port and output port. Using this assumption,
the solution of (24) for t0 = 0 (the input field) equals the
solution of the wave function for the output field (t0 = t1)
at some τ . This yields

b̂(ω, t = 0)e−i(ω−	)t + 1√
2π

∫ τ

0

√
κa(t ′)e−i(ω−	)(t ′−t )dt ′

= b(ω, t = t1)e
−i(ω−	)(t−t1)

+ 1√
2π

∫ τ

t1

√
κa(t ′)e−i(ω−	)(t ′−t )dt ′. (32)

Integrating from ω to ω + dω in (32) on both sides gives

√
2πbin(t ) + 1√

2π

∫ τ

0

√
κa(t ′)2πδ(t − t ′)dt ′

=
√
2πbout(t ) − 1√

2π

∫ t1

τ

√
κa(t ′)2πδ(t − t ′)dt ′ (33)

√
2πbin(t ) +

√
2πκ

2
a(t ) =

√
2πbout(t ) −

√
2πκ

2
a(t ).

(34)

Divide (34) by
√
2π and rearrange the equation so that bout(t )

is by itself on the left-hand side. This yields the input–output
relation (originally derived by Gardiner and Collett [5])

bout(t ) = √
κa(t ) + bin(t ) (35)

where bin/out(t ) is denoted as Isys ⊗ bin/out(t ) and a(t ) as
a(t ) ⊗ Ibath.

C. STATE-SPACE REPRESENTATION
The equations of motion derived from the Heisenberg–
Langevin equation and input–output theorem can be com-
bined into a system of equations; also known as a state-space
representation if the equations describe the entire dynamics
of the network [4], [28]–[32]. The system operator a(t ) is
a ladder operator with quadratic degrees of freedom, which
can be treated as a state variable. The bosonic field opera-
tors are input and output vectors. This means solutions to
the Heisenberg–Langevin equation and input–output relation

can fully describe the dynamics of a quantum network. Here,
we can connect the dynamics to a state-space representation

ȧ(t ) = A a(t ) + B bin(t ) (36a)

bout(t ) = C a(t ) + D bin(t ). (36b)

Since the solutions to (31) and (35) can completely describe
the dynamics of the LC system operator a(t ) and the reflected
(output) wave bout(t ) given an input operator bin(t ), thenA=
–(i
 + κ

2 ), B = –
√

κ , C = √
κ , and D = 1. In this example,

the ABCD matrices are 1 × 1 dimensional since this is a 1-
port network which corresponds to the number of the ports
for the quantum LC oscillator.
As in classical state-space representation, the ABCD for-

mulation for linear quantum systems is the dynamical equa-
tion of the system operator and the output wave function
from 0 to t. The lumped LC circuit described in (36a)–(36b)
is an appropriate description of a passive network since the
matrix of coefficients—ABCD matrices—only scale for a
non-Hermitian conjugate form. This would be different for
active networks since nonconservative energy terms can arise
from Hermitian conjugate of either the system operators or
the coupling operators in Hint [33]–[36]. A linear map in the
spirit of Bogoliubov formulation is normally used to solve
realization theory and control theory for both passive and ac-
tive networks with many quadratic degrees of freedom [34],
[37]; however, we will arrive at the same conclusion without
taking into account this linear mapping.

D. TRANSFER FUNCTION
In classical systems, the transfer function H(s) (or trans-
fer matrix in multiport networks) serves as a way to model
characteristic solutions of time-invariant input–output prob-
lems in the Laplace domain [31], [32]. Similarly, a transfer
function for linear quantum networks with many (usually
quadratic) degrees of freedom can be constructed from a
state-space representation [37]–[43] using (36a) and (36b).
This is done by taking the Laplace transform of (36a) and
(36b), assuming that the initial state a(0) in Laplace domain
is zero

bout(s) = (C(sI − A)−1B + D)bin(s) (37)

where s is a complex variable, I is the identity matrix, and
(sI − A) is invertible.
The transfer function is defined as a ratio of output over

input in Laplace domain, H(s) = bout(s)
bin(s)

= C(s−A)−1B+D.
The transfer function for the lumped LC circuit results in

H(s) = (s− κ
2 ) + i


(s+ κ
2 ) + i
 (38)

for Re{s} > 0. For this derivation, we have treated ABCD
matrices and H(s) as matrices when they are scalars for a
one-port network like the lumped LC problem we developed
in this article. This notation is used to impart the idea that
these quantities are matrices with dimensions corresponding
to the number of input/output ports a network has.
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Throughout our derivation, we implicitly explained that
the operators can be expressed as a Wiener noise probability
distribution. This can be seen in (24), where the bosonic
wave is dependent on the convolution of the system operator.
This means that we could have represented the system and
bosonic dynamics using Itō calculus with the bosonic field
as a quantum Wiener noise operator [5], [6].

V. CONCLUSION
In this article, we demonstrated how to construct a simple
single-port quantum circuit from first principles of QION
theory. A lumped LC circuit coupled to a transmission line
can be easily modeled as an open quantum system, where the
dynamical solutions can be turned into a state-space repre-
sentation and a corresponding transfer function.We then pro-
vided a formalism of quantum circuits in terms of microwave
engineering, resulting in an easier understanding to solving
microwave systems. Our results imply that we can construct
quantum networks based on fundamental theorems of QION;
however, as we generalize to multiport systems, QION mod-
eling becomes increasingly difficult. Although SLH theory is
needed to accurately model multiport networks, QION can
do this for a simple single port.
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