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ABSTRACT The determination of vehicle routes fulfilling connectivity, time, and operational constraints is
a well-studied combinatorial optimization problem. TheNP-hard complexity of vehicle routing problems has
fostered the adoption of tailored exact approaches, matheuristics, and metaheuristics on classical computing
devices. The ongoing evolution of quantum computing hardware and the recent advances of quantum
algorithms (i.e., VQE, QAOA, and ADMM) for mathematical programming make decision-making for
routing problems an avenue of research worthwhile to be explored on quantum devices. In this article, we
propose several mathematical formulations for inventory routing cast as vehicle routing with time windows
and comment on their strengths and weaknesses. The optimization models are compared from a quantum
computing perspective, specifically with metrics to evaluate the difficulty in solving the underlying quadratic
unconstrained binary optimization problems. Finally, the solutions obtained on simulated quantum devices
demonstrate the relative benefits of different algorithms and their robustness when put into practice.

INDEX TERMS Optimization, quantum computing, routing, variational algorithms.

I. INTRODUCTION
Routing problems encompass a wide range of problems in
logistics and operations research. These problems are gen-
erally concerned with the optimal management of a fleet of
vehicles, e.g., how should each vehicle be dispatched in order
to satisfy some goal, while minimizing time or maximizing
profit. There aremany variants and specifications of the prob-
lem to certain settings [1], and this work focuses on the vehi-
cle routing problem with time windows (VRPTW). Typical
solution approaches to VRPTW on classical computing de-
vices include mathematical formulations involving discrete
variables [2]. Consequently, classical methods tend to have
worst-case solution times that scale exponentially with the
number of decision variables (the 0–1 integer programming
feasibility problem is NP-complete [3, Sec. I.5, Prop. 6.6]).
For specific applications, tailored exact approaches,

matheuristics, and metaheuristics need to be devised with the
aim of obtaining solutions with good quality at a reasonable
computational effort. For example, we are motivated by the
maritime inventory routing problem (MIRP) [4], in which
inventory levels of a product must be tracked. This is a

characteristic of commodity and bulk (e.g., oil, gas, iron ore,
and grain) shipping, which in 2017 accounted for over 75%
of world seaborne trade measured in ton-miles [5, Fig. 1.4].
Recent work in [6] indicates the limits of some of these
classical methods for the MIRP.
The ongoing evolution of quantum computing hardware

and the recent advances of quantum algorithms for math-
ematical programming make decision-making for routing
problems an avenue of research worthwhile to be explored
on quantum devices. So far, quantum algorithms for math-
ematical optimization have often focused on quadratic un-
constrained binary optimization (QUBO) problems [7], [8],
expressed in the form

min
x

x�Mx+ c

s.t. x ∈ {0, 1}n (1)

where M is an n× n real matrix and c is a scalar offset.
To achieve a representation on quantum devices, the QUBO
can be transformed into an Ising model with Hamiltonian
constituted as a summation of weighted tensor products of
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FIGURE 1. Small example VRPTW. Arc costs ci, j equal the travel time ti, j .
This is a nearly fully connected graph; however, travel from node 3 to
node 2 is not allowed because the time window of node 2 ends before
the time window of node 3 begins. The vehicles leave depot d fully
loaded at their capacity Q = 6. Recall the sign convention for qi ; qi is
negative for demand that must be delivered and depletes the product on
a vehicle.

Z Pauli operators. Equality constraints can also be added to
the QUBO formulation by casting them as a quadratic penal-
ization of the objective function [9], [10]. One of the goals
of our work is then to introduce formulations of the routing
problem that are amenable to emerging quantum hardware
and quantum algorithms, which can provide fast heuristics
for QUBO problems.
Gate-based quantum computers provide a particularly

alluring setting to develop and propose new algorithms.
Variational algorithms such as the quantum approximate
optimization algorithm (QAOA) [11] and variational
quantum eigensolver (VQE) [12] can be implemented
on current gate-based devices. The idea behind quantum
variational algorithms is to use quantum devices to efficiently
sample from large parameterized distributions by executing
shallow parameterized quantum circuits. In an optimization
setting, when solving QUBO problems, the quantum device
is used to efficiently calculate a utility function (e.g., the
expectation value or conditional value at risk [7]) of the
cost Hamiltonian for a particular parameterized quantum
state. A classical optimization algorithm is used to optimize
the given utility function over the rotation parameters.
Provided that the parameterized circuit, also called an
ansatz, represents states close to the Hamiltonian ground
state, variational algorithms can obtain heuristic solutions
of reasonable quality on current quantum devices. There
are several reasons to motivate the adoption of quantum
algorithms and solve QUBO problems using quantum
computers. First, variational algorithms such as VQE
and QAOA are known to not be efficiently simulatable
classically [13], [14]. Second, some encouraging results in
terms of performance advantage have been documented for
QAOA with respect to the classical Goemans–Williamson

limit [15], for Grover Adaptive Search with respect to a
classical unstructured search [16], and for quantum semidef-
inite programming relaxations for QUBO problems [17].
Decision-making in practical optimization problems of-

ten involves modeling continuous variables and inequality
constraints with mixed binary optimization (MBO) [18]. A
recent contribution to solving MBO on current quantum
devices is given by nonconvex variants of the alternating
direction method of multipliers (ADMM). Specifically, the
ADMMworks by alternatively optimizing an augmented La-
grangian function over QUBO and continuous subproblems.
The QUBO problem can be solved on quantum devices via
quantum algorithms such as QAOA and VQE. Conditions of
convergence to stationary points have been investigated, and
the ADMM has been shown to achieve satisfactory levels of
solution quality [19].
This article aims to bring together different formulations

for solving routing problems on quantum devices, with spe-
cific focus on timing constraints, expressed either in a dis-
crete or continuous form. These formulations are largely in-
spired by the classical operations research literature, but we
introduce them here in order to obtain QUBO representations
suitable for quantum algorithms. Previous work on quantum
or quantum-inspired classical algorithms applied to logistics
problems has focused on the traveling salesman problem [8],
[20], [21] or the related capacitated vehicle routing prob-
lem [22]. While Irie et al. [23] have introduced a formulation
that handles timing constraints, we are not aware of any
work that collects VRPTW approaches together and com-
pares them in the context of quantum algorithms (see [24] for
a comparison of different formulations in a classical setting).
Overall, the contributions of this article are the following.

1) We introduce mathematical optimization models for
VRPTW suitable for state-of-the-art quantum algo-
rithms.

2) We investigate the modeling capabilities of the
VRPTW formulations with respect to constraints and
objectives arising in practical applications.

3) We compare the VRPTW formulations from a quan-
tum computing perspective, specifically with metrics
to evaluate the difficulty in solving the underlying
QUBO problems.

4) We test the formulations on simulated gate-based
quantum devices and draw insights on the current capa-
bilities of quantum computing approaches for routing
problems.

Given that the quantum algorithms proposed here for the
VRPTW are not bound to a specific quantum QUBO solver,
our framework is flexible for future improvements in both
gate-based quantum hardware and algorithms, as well as
other types of emerging specialized devices. This is espe-
cially appealing, given the wealth of studies and results in
this direction (see, e.g., [25]–[29]).
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The rest of this article is organized as follows.

1) Section II describes the VRPTW problem that we con-
sider, along with the key features of the MIRP (see
Section II-A) that can be cast in the VRPTW formal-
ism. The various mathematical programming formula-
tions of the VRPTW are introduced in Sections II-B–
II-E.

2) In Section III, we discuss how to cast and solve the
VRPTW formulations on quantum devices, via refor-
mulations to QUBO problems (see Sections III-A and
III-B) or an MBO problem (Section III-C).

3) Section IV compares the formulations along dif-
ferent dimensions on the examples presented in
Section IV-A. In particular, the strengths and weak-
nesses of the formulations in modeling VRPTW are
discussed in Section IV-B, while the difficulty for solv-
ing the formulations is evaluated in Sections IV-C
and IV-D via the number of variables, sparsity of the
QUBO matrix, and the number of solutions.

4) Section IV-E includes numerical results obtained
from solving a VRPTW instance with the outlined
quantum algorithms. Sequence-based formulation and
sequence-based formulation with continuous time are
solved in the section.

5) Finally, conclusions and remarks are drawn in
Section V.

Notation: Throughout this article, we use the following
notation. Sets are denoted with uppercase calligraphic letters
(e.g., A). Matrices are denoted with uppercase bold letters
(e.g., M), while vectors are lowercase bold letters (e.g., v).
For a vector v, Diag(v) denotes a square matrix with v on its
diagonal and zeros elsewhere.

II. MATHEMATICAL FORMULATIONS FOR VRPTW
In this section, we describe the VRPTW at hand and spec-
ify the different mathematical formulations. An instance of
VRPTW is formulated on a graphwith nodesN ∪ {d} and di-
rected edges/arcsA. Each node i ∈ N represents a customer,
associated with a demand level qi and time window [ai, bi]:
qi represents the amount of product that must be delivered
(qi < 0) or picked up (qi > 0) after time ai and before time bi.
The “depot” node d serves as departure and destination node
for all vehicles v ∈ V . In some situations, the depot nodemay
be considered a physical node corresponding to, for instance,
a warehouse, from which all vehicles start their routes fully
loaded, and at which all vehicles must finish their routes. We
note that the formulations discussed in this work could be
seamlessly extended to the case in which starting and ending
nodes for the vehicle routes are not coincident with the depot.
We allow a vehicle to arrive early (i.e., before ai) and wait at
a customer location, but not to arrive late (i.e., after bi). Each
customer is serviced exactly once (i.e., the demand cannot
be split among different vehicles.). Each arc (i, j) ∈ A has
an associated cost ci, j and travel time ti, j. Typically, the

cost for traveling from node i to j is the distance between
the nodes. The vehicles are homogeneous (i.e., they have
the same capacity, travel speed, cost to operate, etc.). Each
vehicle has capacity (maximum load size) Q and leaves the
depot with an initial loadingQ0. For instance, when the depot
corresponds to a warehouse, we might assume Q0 = Q. If it
is ever needed, it is assumed that the depot has an infinite
time window [0,+∞]. The objective of the VRPTW is to
minimize the total cost of transportation while servicing each
customer in the given time windows.
In Section II-A, we describe some key features of the

MIRP and how these manifest in the data of the VRPTW
described above. A comprehensive overview of the MIRP
and a review of the literature can be found in [4]. In the
following subsections, we describe four different mathemat-
ical formulations of the VRPTW: route-based, arc-based,
sequence-based, and sequence-based with continuous time.
Since our goal is to target QUBO subproblems, these for-
mulations have primarily or exclusively binary variables
and linear or quadratic equality constraints. The exception
is the sequence-based formulation with continuous time in
Section II-E, which involves inequality constraints and con-
tinuous variables. These formulations have different levels of
faithfulness in modeling VRPTW, and we discuss extensions
that could make formulations more accurately capture the
VRPTW setting.

A. KEY FEATURES OF THE MIRP
The MIRP is often characterized by travel times that are
relatively long compared to the time windows of the nodes.
These long travel times mean that fairly long time horizons
must be considered in order to get the benefit of optimizing
logistics. Furthermore, there are often multiple supply points
in addition to multiple demand points/customers. These sup-
ply points are often terminals producing a commodity such
as natural gas, and since they often have limited storage
capacity, they must also be serviced, and inventory picked
up, in certain time intervals. This is why demand levels
qi are signed. Another characteristic of maritime shipping,
in particular in liquefied natural gas shipping, is that ves-
sels/vehicles typically fully load at supply points and fully
unload at demand points. Therefore, a typical route of a
vessel alternates between supply points and demand points.
Combined with the assumption of a homogeneous fleet of
vessels, this means that the capacityQ and the demand levels
qi are all equal in magnitude. Consequently, the constraints
on vehicle capacity are less important. It is instead more
important to enforce the alternating sequence of supply and
demand points. This is easily achieved by restricting the arcs
inA so that there are only arcs between a supply and demand
node or vice versa. Combined with the long travel times, nar-
row time windows, and long time horizons, the graph can be
quite sparse, as we can a priori remove arcs that would have
the vessel arriving at the node after the time window ends.
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B. ROUTE-BASED FORMULATION
In the route-based VRPTW formulation, the decisions to be
made are whether routes are traveled or not. A route is a se-
quence of nodes (i1, i2, . . . , iP) satisfying the following con-
straints (for some route-specific positive integer P). A route
begins and ends at the depot: i1 = iP = d. Each segment is a
valid arc: (ip, ip+1) ∈ A, for all 1 ≤ p ≤ P− 1. For each fea-
sible route, the running sum of the product delivered/picked
up must be physically possible: 0 ≤ Q0 +

∑p
j=2qi j ≤ Q, for

all p ≤ P− 1 (i.e., at each stop, the amount loaded on the
vehicle must be nonnegative and less than the vehicle’s ca-
pacity). The arrival time at node ip must be before the time
window ends. If we let Ti1 = 0, then the effective arrival time
at node ip+1 is given by Tip+1 = max{aip+1 ,Tip + tip,ip+1} for
all 1 ≤ p ≤ P− 1. Then, we require Tip ≤ bip for all p.

We index the set of routes by the set R. If route r ∈
R has node sequence (i1, i2, . . . , iP), then it has cost cr =∑P−1

p=1cip,ip+1 . Finally, we define δi,r to be a constant with
value 1 if route r visits customer i ∈ N (i.e., one of the nodes
in the route is i), and zero otherwise.
We introduce variable xr, which has value 1 if a vehicle

travels route r; otherwise, it has value 0. Here, and in the rest
of this section, we denote the collection of binary variables
in a specific formulation by x. In the case of the route-based
formulation, x = (xr )r∈R. As a mathematical program, the
VRPTW becomes

min
x

∑
r∈R

crxr (2a)

s.t.
∑
r∈R

δi,rxr = 1 ∀i ∈ N (2b)

xr ∈ {0, 1} ∀r ∈ R. (2c)

The equality constraint enforces the requirement that all
customer nodes are visited by exactly one vehicle. A con-
straint on the number of vehicles available can be enforced by
making sure that the number of outgoing arcs from the depot
d equals the number of available vehicles |V|. If necessary,
the only nodes directly connected to the depot can be thought
of as “dummy” nodes and essentially keep track of whether a
vehicle is used or not. Problem (2) may also be recognized as
a set partitioning problem/exact covering problem, a classic
problem in discrete optimization; see, for instance, [21, Sec.
4.1] and [30].
The number of routes |R| can, in general, be extremely

large. If travel from any node to any other node is possible,
then the number of routes is |N |!, although the allowed
arcs and constraints on a route described above will limit
this. In classical computing approaches, this formulation is
best handled by a column generation method (e.g., [30]).
Here, we will consider R to be given. The instances that we
will consider are either small enough that the routes can be
exhaustively enumerated, or else we will use a heuristic to
generate a set of routes (see Algorithm 1 in Appendix V).
While this heuristic is not computationally expensive, it is

effectively a preprocessing step that influences the charac-
teristics of the formulation. However, this enables us to test
the formulation on current quantum devices with quantum
optimization algorithms.
Meanwhile, this motivates the rest of the formulations in

this section, which can be fully specified without having to
perform this potentially expensive route generation step.

C. ARC-BASED FORMULATION
Wenow consider a discrete-time arc-based formulation of the
VRPTW. In this case, the range of time instants, in which
the vehicles can perform their routes, is represented by the
discrete set T . Each node’s time window encloses at least
one time point in T : T ∩ [ai, bi] 	= ∅.

We introduce a variable xi,s, j,t , which has value 1 if a
vehicle travels from node i at time s to node j at time t;
otherwise, it has value 0. As a mathematical program, the
VRPTW becomes

min
x

∑
i,s, j,t

ci, jxi,s, j,t (3a)

s.t.
∑
i,s,t

xi,s, j,t = 1 ∀ j ∈ N (3b)

∑
j,t

x j,t,i,s =
∑
j,t

xi,s, j,t ∀(i, s) ∈ N × T (3c)

xi,s, j,t = 0 ∀(i, s, j, t ) : t /∈ [a j, b j] (3d)

xi,s, j,t = 0 ∀(i, s, j, t ) : s /∈ [ai, bi] (3e)

xi,s, j,t = 0 ∀(i, s, j, t ) : (i, j) /∈ A (3f)

xi,s, j,t = 0 ∀(i, s, j, t ) : s+ ti, j > t (3g)

xi,s, j,t ∈ {0, 1} ∀(i, s, j, t ). (3h)

Constraints (3b) ensure that each node (besides the depot
d) is visited exactly once over all vehicles. Constraints (3c)
ensure continuity of routes through the graph: if a vehicle
enters node i at time s, then it must leave node i at that time.
Note that we do not enforce this for the depot d; otherwise,
the vehicles could not get started. Constraints (3d) ensure that
a vehicle arrives at a node before or during its time window.
Constraints (3e) are implied by (3c) and (3b), but explicitly,
a vehicle must leave a node during its time window. Con-
straints (3f) ensure that vehicles obey the allowed travel arcs.
Constraints (3g) ensure that vehicles do not travel back in
time. Note that we do not enforce the timing “exactly”; we
allow xi,s, j,t with s+ ti, j strictly less than t. This permits the
situation that a vehicle arrives at node j at time s+ ti, j, waits,
and then leaves at time t. (Thus, it is more accurate to say that
variable xi,s, j,t takes value 1 if a vehicle leaves node i at time
s, travels to node j, and then subsequently leaves node j at
time t.)
Note that capacity constraints on the vehicles have not

been enforced in this formulation. To do so, we could
modify the formulation by adding an index v ∈ V to track
the vehicles used. Constraint (3b) would be modified to
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make sure that each node is visited exactly once over all
vehicles:

∑
v,i,s,t xv,i,s, j,t = 1 for each j ∈ N . Meanwhile,

constraint (3c) would be modified to enforce continuity
of routes for each vehicle:

∑
j,t xv, j,t,i,s =

∑
j,t xv,i,s, j,t , for

each (v, i, s) ∈ V ×N × T . The other constraints are mod-
ified similarly. Then, capacity constraints can be enforced
with

0 ≤ Q0 +
∑

i,s, j,u:u≤t
q jxv,i,s, j,u ≤ Q ∀(v, t ) ∈ V × T

(the cumulative loaded product up to time t must be nonneg-
ative and less than the vehicle’s capacity). This is similar to
the constraint on routes from Section II-B. This prevents an
initially empty vehicle with capacity 2 from visiting three
supply nodes with demand level 1 each, and then two nodes
with demand level−1 each; while the sum of the loadings is
1, the capacity of the vehicle was exceeded at its third stop.
However, as described in Section II, the capacity constraints
are less important for practically modeling MIRP. Hence, in
the numerical tests, we leave these constraints out. Further-
more, we will see that this formulation will typically be the
largest in terms of number of variables, and adding an index
to track specific vehicles will only exacerbate that.

D. SEQUENCE-BASED FORMULATION
We describe a discrete sequence-based formulation for the
VRPTW. For this formulation, each vehicle can make a max-
imum number of stops P: this bound can be determined from
capacity limitations, by application requirements, or simply
by the number of customers. Since each vehicle starts and
ends at the depot, P− 2 is the maximum number of nondepot
nodes that each vehicle can visit. Furthermore, we assume
that the depot is “absorbing”: if a vehicle returns to the depot,
it must remain there. Consequently, the arc (d, d) is in the arc
set A.
We introduce a variable xv,p,i, which has value 1 if vehicle

v visits node i at position p in its sequence; otherwise, it has
value 0. This makes a discretization of the time horizon un-
necessary to model the VRPTW routes. As a math program,
the VRPTW becomes

min
x

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j (4a)

s.t.
∑
v∈V

P∑
p=1

xv,p,i = 1 ∀i ∈ N (4b)

∑
i∈N∪{d}

xv,p,i = 1 ∀v ∈ V, p ∈ {1, . . . ,P} (4c)

xv,p,ixv,p+1, j = 0 ∀v ∈ V
p ∈ {1, . . . ,P− 1} , (i, j) /∈ A (4d)

xv,p,dxv,p+1, j = 0 ∀v ∈ V
p ∈ {2, . . . ,P− 1} , j 	= d (4e)

xv,1,d = 1 ∀v ∈ V (4f)

xv,P,d = 1 ∀v ∈ V (4g)

xv,1,i = 0 ∀v ∈ V, i ∈ N (4h)

xv,P,i = 0 ∀v ∈ V, i ∈ N (4i)

xv,2, j = 0 ∀v ∈ V, (d, j) /∈ A (4j)

xv,P−1, j = 0 ∀v ∈ V, ( j, d) /∈ A (4k)

xv,p,i ∈ {0, 1} ∀(v, p, i).

Constraints (4b) ensure that each node is visited exactly
once over all vehicles and sequence positions (besides the
depot node d). Constraints (4c) ensure that each vehicle uses
each position p in the sequence once. Constraints (4d) ensure
that only allowed edges are traversed. Constraints (4e) ensure
that once a vehicle returns to the depot, it remains there (i.e.,
it does not visit other nodes). Constraints (4f) and (4g) ensure
that all vehicles start and end at the depot, respectively.
Constraints (4h)–(4k) are consequences of the others and

help eliminate variables. Specifically, constraints (4h) and
(4j) are a consequence of the assumption that all vehicles start
at the depot: constraints (4h) are implied by constraints (4c)
and (4f), while constraints (4j) are implied by constraints (4d)
and (4f). Similarly, constraints (4i) and (4k) are a conse-
quence of the assumption that all vehicles end at the depot.
We may eliminate further variables by considering the nodes
reachable by routes of a given length, but as discussed in
Section II-B, the full set of routes can be expensive to find.
Capacity constraints on the vehicles are not directly en-

forced in this formulation either, in the general case. If all
nodes i ∈ N have the same level of demand, capacity con-
straints can be enforced by choosing P appropriately. Capac-
ity constraints can also be handled more exactly by adding
the constraints

0 ≤ Q0 +
p∑

r = 2

∑
i

qixv,r,i ≤ Q

∀(v, p) ∈ V × {1, . . . ,P− 1} .
However, as discussed before, capacity constraints are less
important in the maritime setting, so this modeling feature is
not included in the numerical testing.
Note that timing constraints have not been addressed ex-

plicitly in this formulation. In many problems, the time win-
dows of the nodes are fairly narrow compared to the travel
times between nodes and overall time horizon of the prob-
lem. Consequently, we can conservatively enforce the time
windows by removing arcs from the graph that do not satisfy
application-specific assumptions. Specifically, if the end of
the time window of node i plus the travel time ti, j is greater
than the end of the time window of node j, then that arc
is removed. This corresponds to assuming that the vehicles
always arrive at a node at the end of its time window. Thus,
the set of arcs A used in this formulation may have to be
different from the one used in the other formulations. For
some problems, this may be too restrictive, which motivates
the formulation of the following section.
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E. SEQUENCE-BASED FORMULATION WITH
CONTINUOUS TIME
We here consider a sequencing-based formulation of the
VRPTW with continuous variables to track the arrival time
at each node. This makes it possible to seamlessly enforce
time windows, unlike the formulation with binary decisions
only, described in Section II-D.
As in the discrete sequence-based formulation, we define

a variable xv,p,i, which has value 1 if vehicle v visits node i at
position p in its sequence; otherwise, it has value 0. Further-
more, we introduce a variable si ∈ R, which equals the time
when a vehicle arrives at node i 	= d. The arrival time of each
vehicle v to the destination node d is the duration of route v

and is associated with variable sdv . These real variables are
collected as a vector s. As a math program, the VRPTW
becomes

min
x,s

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j (5a)

s.t.
∑
v∈V

P∑
p=1

xv,p,i = 1 ∀i ∈ N (5b)

∑
i∈N∪{d}

xv,p,i = 1 ∀v ∈ V, p ∈ {1, . . . ,P} (5c)

xv,p,ixv,p+1, j = 0 ∀v ∈ V
p ∈ {1, . . . ,P− 1} , (i, j) /∈ A (5d)

xv,p,dxv,p+1, j = 0 ∀v ∈ V
p ∈ {2, . . . ,P− 1} , j 	= d (5e)

xv,1,d = 1 ∀v ∈ V (5f)

xv,P,d = 1 ∀v ∈ V (5g)

xv,1,i = 0 ∀v ∈ V, i ∈ N (5h)

xv,P,i = 0 ∀v ∈ V, i ∈ N (5i)

xv,2, j = 0 ∀v ∈ V, (d, j) /∈ A (5j)

xv,P−1, j = 0 ∀v ∈ V, ( j, d) /∈ A (5k)

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)xv,p, jxv,p+1,i

∀i ∈ N (5l)

sdv ≥
∑
p<P

∑
j:( j,d)∈A

(s j + t j,d )xv,p, jxv,p+1,d

∀v ∈ V (5m)

ai ≤ si ≤ bi ∀i ∈ N (5n)

xv,p,i ∈ {0, 1} ∀(v, p, i)

si ∈ R ∀i ∈ N

sdv ∈ R ∀v ∈ V .

All constraints pertaining only to the binary variables
xv,p,i are shared with the sequence-based formulation dis-
cussed in Section II-D. Constraints (5n) enforce the timewin-
dow constraints explicitly. Constraints (5l) define the arrival
times at nodes i ∈ N and can be justified as follows. Con-
straints (5b) and the fact that the x variables are binary imply
that for each i, there is exactly one index (vi, pi) such that
xvi,pi,i = 1. Using this, constraints (5l) can be viewed as si ≥∑

j:( j,i)∈A(s j + t j,i)xvi,pi−1, j ∀ i ∈ N . By constraint (5c),
there is exactly one index j′ such that xvi,pi−1, j′ = 1. Con-
sequently, constraints (5l) enforce that the arrival time at
each node i must be greater than or equal to the arrival time
at the previously visited node plus the travel time. Similar
reasoning can be done to derive constraints (5m): the only
difference is that the arrival time to the depot depends on
the vehicle v. Model (5) reads as a MBO problem, given the
presence of both binary and continuous decision variables.
The presence of constraints (5l) and (5m) makes the continu-
ous relaxation of the problem nonconvex. As in the arc-based
formulation, enforcing arrival times with an inequality rather
than equality permits the possibility that a vehicle arrives
early and waits.
Modeling the arrival times with continuous decision vari-

ables allows for an alternative formulation, with the aim
of minimizing routes duration, without modifying the con-
straints set. This is achieved by switching objective (5a) with

min
x,s

∑
v

sdv . (6)

Routes duration is a typical metric to evaluate vehicle routes
in the VRPTW.

III. SOLVING THE ROUTING PROBLEMS
ON QUANTUM COMPUTERS
In this section, we discuss the reformulations needed to ex-
press the VRPTW formulations in a form suitable for quan-
tum algorithms. In Sections III-A and III-B, most of the
formulations are cast into (1), which is a standard form for
a QUBO and enables the application of quantum algorithms
such as VQE and QAOA. Due to the presence of continuous
arrival times, the sequence-based formulation with continu-
ous time, as presented in Section II-E, is an MBO and needs
a different representation on quantum devices, which is dis-
cussed in Section III-C.

A. ROUTE- AND ARC-BASED FORMULATIONS AS QUBO
Both problems (2) and (3) have the common form

min
x

{
c�x : Ax = b, x ∈ {0, 1}n} (7)

for some real vectors b and c and real matrix A. The chal-
lenge is to construct a matrix M so that the QUBO stan-
dard form in (1) is equivalent to the binary linear pro-
gram (7). Specifically, we would like our matrix to encode
the quadratic penalty (or energy) function

H : x 
→ c�x+ ρ ‖Ax− b‖2
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for a real constant ρ > 0, to be determined. This transforma-
tion is an exact penalty reformulation of (7), and it is consis-
tent with the general suggestion for binary linear programs
from [21, Sec. 3], as well as the transformation specific to
the set partitioning problem from [21, Sec. 4.1].
The term ‖Ax− b‖2 expands to x�A�Ax− 2b�Ax+

b�b. Consequently, to obtain a QUBO, we set M =
ρA�A+ ρDiag(−2A�b)+ Diag(c). The constant term
‖b‖2 is then an added offset to match the original objective
value.
The main challenge is finding the right value of ρ so that

the minimization of H is equivalent to (7). The general rea-
soning is as follows. Looking at the data of the constraints
of problems (2) and (3), and considering that the variables
are binary, the smallest value that the penalty terms can take
for an infeasible solution is ρ (when ‖Ax− b‖2 = 1). Thus,
ρ needs to be big enough to overwhelm any decrease in the
original objective by moving to an infeasible point. Imagine
flipping each variable from 0 to 1 or vice versa depending
on the sign of ci; we can bound from above that change
in objective by

∑
i |ci|. Thus, ρ >

∑
i |ci| suffices. For the

route-based formulation (2), this is established in more detail
in Appendix B.

B. SEQUENCE-BASED FORMULATION AS QUBO
The sequence-based formulation (4) differs from the route-
and arc-based formulations since it has bilinear equality con-
straints. To devise the QUBO reformulation, express the lin-
ear equality constraints (4b) and (4c) as Ax = b. Similarly,
along with the bilinear equality constraints (4d) and (4e),
these are turned into a penalty term

w : x 
→ ‖Ax− b‖2 +
∑

v

∑
p<P

∑
(i, j)/∈A

xv,p,ixv,p+1, j

+
∑

v

P−1∑
p = 2

∑
j: j 	=d

xv,p,dxv,p+1, j.

Consequently, an exact penalty reformulation of (4) is

min
x

∑
v

∑
p<P

∑
(i, j)∈A

ci, jxv,p,ixv,p+1, j + ρw(x)

s.t. (4 f ), (4g)

(4h), (4i)

(4 j), (4k)

xv,p,i ∈ {0, 1} ∀(v, p, i) (8)

where constraints (4f)–(4k) merely fix the values of certain
variables.
For penalty parameter ρ sufficiently large, the solutions

of (4) and (8) coincide. Looking at the specifics of the con-
straints and considering that the variables are binary, the
smallest value that the penalty term ρw(x) can take for an
infeasible solution is ρ (for w(x) = 1). As with the for-
mulations in the previous subsection, ρ needs to be big

enough to overwhelm any decrease in the original objec-
tive by moving to an infeasible point. This time, the change
in objective when flipping each bilinear term depending on
the sign of ci, j can be bounded by

∑
v

∑
p

∑
(i, j)∈A |ci, j| =

P|V|∑(i, j)∈A |ci, j|. Thus
ρ > P |V|

∑
(i, j)∈A

∣∣ci, j∣∣
suffices. As in Section III-A, let M̃ = ρA�A+
ρDiag(−2A�b). We can add the other bilinear terms
from the objective and penalty to get an objective in the form
x�Mx, as desired for a QUBO.

C. VRPTW VIA ADMM-BASED HEURISTIC
In order to extend the range of mathematical formulations
solvable on quantum near-term devices via variational-based
approaches, Gambella and Simonetto [19] proposed a multi-
block ADMM operator-splitting procedure. This iterative
algorithm devises a decomposition for a specific class of
MBOs into:

1) a QUBO subproblem to be solved by a QUBO solver
oracle (or, on near-term quantum devices by quantum
algorithms such as VQE or QAOA);

2) a convex constrained subproblem, which can be effi-
ciently solved with classical optimization solvers [31].

The solutions obtained in each ADMM iteration are eval-
uated with a merit function, which evaluates the tradeoffs
between feasibility and optimality. The authors devised con-
ditions for the MBO to converge via ADMM to stationary
points of a soft-constrained reformulation of the problem.
In particular, the set of MBO constraints needs to have a
continuous convex relaxation, which is not the case for the
sequence-based formulation with continuous time. This mo-
tivates the adoption of a strategy to reformulate the contin-
uous subproblem with convex approximations. In our case,
the continuous subproblems are nonconvex, and they will be
solved via a sequential convex approximation as follows.
Consider the cubic nonconvex constraints (5l)–(5m) of the

sequence-based formulation with continuous times, namely:

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)xv,p, jxv,p+1,i∀i ∈ N

sdv ≥
∑
p<P

∑
j:( j,d)∈A

(s j + t j,d )xv,p, jxv,p+1,d∀v ∈ V .

The idea is to deal with them in the continuous problem of
the ADMM framework by using sequential convex program-
ming (see [32] and [33]). In particular, since we are splitting
the problem onto the binary variables, we introduce contin-
uous variable uv,p, j ∈ [0, 1] for each three-indexed binary
variable xv,p, j, and set uv,p, j = xv,p, j. Then, in the continu-
ous problem of the ADMM, where constraints (5l)–(5m) will
become

si ≥
∑
v∈V

∑
p<P

∑
j:( j,i)∈A

(s j + t j,i)uv,p, juv,p+1,i ∀i ∈ N
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sdv ≥
∑
p<P

∑
j:( j,d)∈A

(s j + t j,d )uv,p, juv,p+1,d ∀v ∈ V .

such constraints can be compactly written as

g(s,u) ≤ 0. (9)

Function g is not convex, since it is cubic in (s,u), but one
can always use sequential convex programming approach to
solve the continuous problem of the ADMM.
By using this strategy, the continuous problems of the

ADMM converge to a local stationary point, and the overall
ADMM strategy will remain a heuristic in general, but with
the advantage that it limits the introduction of auxiliary bi-
nary decision variables in theQUBO subproblems andmakes
the solution of MBO on quantum devices a computationally
tractable task.

IV. COMPARISON OF FORMULATIONS
We are now ready to showcase the different formulations on
simulated quantum hardware and compare their numerical
properties and performance.
First, in Section IV-A, we describe two examples that will

serve as benchmarks to compare the mathematical formula-
tions from a quantum computing perspective. We then report
a summary of the qualitative modeling differences of the
formulations in Section IV-B. Finally, quantitative compar-
isons are presented in Sections IV-C–IV-E and are meant to:
1) demonstrate the inherent difficulty in finding routes with
good solution quality at a reasonable computational effort,
using current classical algorithms; and 2) report the solution
metrics obtained with the quantum state-of-the-art solution
approaches on quantum devices.

A. EXAMPLE DEFINITIONS
1) MIRP WITH VARYING TIME HORIZON
We define an example inspired by the MIRP setting with
a varying time horizon. The example is a modification of
instance LR1_2_DR1_3_VC2_V6a in Group 1 of the MIR-
PLIB library [4]. This example involves two supply ports
and three demand ports; the objective is to minimize travel
costs while visiting each port frequently enough to remove
or replenish its inventory. One characteristic of this example
is that we can vary the time horizon of the problem; thus, we
can effectivelymake the problem as large, in terms of number
of nodes |N |, as we want. See Appendix V for its data,
interpretation as a VRPTW, and the specific steps required
to obtain the various formulations from Section II.

2) SMALL VRPTW
We define a small three-customer example, originally
from [30], with data reported in Fig. 1.
The instance has 11 valid routes, which define the

feasibility set R for the route-based formulation (2):
(d, 1, d), (d, 2, d), (d, 3, d), (d, 1, 2, d), (d, 1, 3, d),
(d, 2, 1, d), (d, 2, 3, d), (d, 3, 1, d), (d, 1, 2, 3, d),
(d, 2, 1, 3, d), (d, 2, 3, 1, d). Routes (d, 1, 2, 3, d) and

(d, 2, 3, 1, d) are optimal for the minimization of distance,
with cost equal to 5. In order to define the arc-based
formulation (3), we need to define the discrete time points
T . We use the starting and ending points of the time
windows {0, 1, 2, 4, 7}. This happens to exclude the optimal
route/sequence (d, 2, 3, 1, d), which would require another
time point t ≥ 8 to allow the vehicle to return to the
depot. For more complicated examples, it is often not
viable to enumerate exhaustively the set of time periods to
consider. For the sequence-based formulation, we make the
assumption mentioned in Section II-D that vehicles arrive at
the end of a node’s time window. This means that we have to
prune the set of arcs; consequently, the only valid arc from
node 1 is (1, d), and similarly, the only valid arc from node
3 is (3, d).

B. QUALITATIVE COMPARISONS
Each of the VRPTW formulations considered in Section II
has different strengths and weaknesses in terms of modeling,
which are summarized in Table 1. Most of these charac-
teristics have been discussed previously. For instance, the
sequence-based formulation models timing discretely, since
it effectively assumes that vehicles arrive at the end of a time
window. We remark that in MIRPs, the constraints on vehi-
cle capacity are not necessarily a strict requirement. This is
because a demand node is often visited right after a supplier.
Only the route-based formulation, as given, models the con-
straints on the vehicle capacities in full generality; the other
formulations must be extended along the lines discussed in
Sections II-C and II-D.
Another characteristic to consider is whether the formu-

lations can handle inhomogeneous vehicles. The sequence-
based and its continuous-time variant naturally can, since
their variables are already indexed by vehicle v; transporta-
tion time or cost, for instance, could depend on the type of
vehicle being used.
Finally, as mentioned in Section II-E, the total duration of

the routes taken is a common alternative objective used in the
VRPTW. The sequence-based formulation with continuous
time can handle this, as can the route-based formulation by
defining the cost of a route as the time that the vehicle arrives
back at the depot. While the other formulations can take the
arc costs ci, j to equal the arc travel time, this does not account
for time spent waiting at a node.

C. PROBLEM SCALING
As a first step in comparing the different VRPTW formu-
lations, we examine the resulting QUBO problems, as in-
troduced earlier in Section III. The size and sparsity of the
QUBO problem determine the resources needed to represent
the problem on a quantum computer. Specifically, the number
of logical qubits needed to represent the binary decision vari-
ables is equal to the dimension of the QUBOmatrixM, while
the number of nonzero elements in the matrix has impor-
tant implications for various solution methods. For example,
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TABLE 1. Qualitative characteristics of the formulations

Optional features such as the possibility of handling inhomogeneous vehicles, and aiming for minimization of route
duration are addressed.

TABLE 2. QUBO problem size, connectivity, and nonzero elements for
the MIRP example with varying time horizon

The statistics are reported for the route-based, sequence-based, arc-based formulations.

in the case of QAOA, the quantum circuit contains a two-
qubit gate for each off-diagonal nonzero entry in (an upper-
triangular)M. Another useful metric related to sparsity is the
connectivity of the QUBO problem, defined as the degree
of the graph with incidence matrix M, and equivalent to the
maximum number of nonzero entries per row (or column) of
the matrix.
We now compare the formulations described in Section II,

for the MIRP example with varying size introduced in
Section IV-A1. As mentioned, we can increase the time hori-
zon of the problem and subsequently obtain QUBOs of in-
creasing size and complexity for each formulation.
Table 2 shows the growth with the time horizon of the size

and the degree of connectivity of QUBOs for the route-based,
sequence-based, and arc-based formulations. As discussed
in Section II-E, the sequence-based formulation with con-
tinuous time is not directly expressed with a QUBO, but
rather it is an MBO. However, the metrics for the discrete
sequence-based formulation in Table 2 are highly informa-
tive for the effort required to solve MBO on quantum de-
vices via ADMM. In particular, the QUBO subproblems
of the ADMM heuristic for MBO have the same size of
the sequence-based QUBO: this is because MBO and the
sequence-based formulation (4) share the same combina-
torial structure (i.e., same binary variables and constraints
involving binary variables). The connectivity of the first
QUBO subproblem of ADMM in MBO differs from that of
the sequence-based QUBO by a constant term.
As expected, all formulations grow steadily with the time

horizon, with the route-based formulation generating the
smallest, but also least sparse, QUBO problems. However,
recall that the route-based formulation depends on route gen-
eration heuristics. Similar heuristics could be applied to the
sequence- and arc-based formulations as well. In general,
classical variable reduction heuristics are critical when one

FIGURE 2. (a) Variables and (b) nonzero elements for the QUBO
problems for the route-based, sequence-based, and arc-based
formulations. It is clear that for the arc- and sequence-based
formulations, the size (i.e., number of decision variables or qubits)
increases as O(T 2

H ), while the nonzero elements in the QUBO matrix (e.g.,
nonzero correlations or Pauli strings) increases as O(T 3

H ).

is restricted by the number of qubits available. On the other
hand, it seems to be intrinsically harder to directly control
sparsity and connectivity, and thus, the arc- or sequence-
based formulations may be preferable.
Fig. 2 shows a graphical representation of the growth

of the size and density of the formulations as the time
horizon increases. To emphasize the similarity between
the sequence-based and arc-based, we also plot quadratic
(i.e., c2T 2

H ) and cubic (i.e., c3T 3
H ) functions of the time

horizon TH . It is evident from the plots that the size of the
corresponding QUBO increases as O(T 2

H ), and the number
of nonzero elements in the QUBO matrix increases as
O(T 3

H ). Thus, the two formulations are comparable, and
while, in this particular case, the arc-based formulation has
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approximately twice as many variables, in practice, one may
want to consider other characteristics of the formulations
(like how accurately timing needs to be modeled).

D. SOLUTION LANDSCAPE
The comparison between the different formulations can also
be made in terms of the quality and quantity of feasible so-
lutions. This is meant to describe the landscape of solutions
on which the QUBO quantum solvers conduct their search
for ground states. Variational algorithms, such as VQE and
QAOA, are not guaranteed to converge to globally optimal
solutions and might get stuck in locally optimal solutions [8].
Consequently, when using such an algorithm prone to con-
verge to locally optimal solutions, a preferable formulation
might be one where the local optimal solutions have small
gaps relative to global optimality.1

In this section, we attempt to characterize the solution
landscape for the route-, arc-, and sequence-based formu-
lations of the MIRP example with varying sizes described
in Section IV-A1 using the commercial branch-and-bound
solver CPLEX [34]. In particular, we enumerate feasible so-
lutions via CPLEX’s populating routines and measure their
quality via their relative differencewith respect to the optimal
solution. This is commonly known as optimality gap, defined
as

gap = sol− opt

|opt| %

where sol is the objective value of the solution and opt is the
optimal solution value.
We consider the MIRP example with time horizons of 20

and 25. For each of these time horizons, each formulation
achieves the same optimal objective value opt; these values
are 2816.49 and 4457.15 for time horizons 20 and 25, re-
spectively. This indicates a certain amount of equivalence
between the formulations (for these specific instances, at
least). Furthermore, the resulting problems are small enough
to permit enumeration of all possible feasible solutions, for
the most part. The exception is the arc-based formulation;
even for these small instances, we are unable to compute
all of its feasible solutions. The smallest arc-based formu-
lation (with a time horizon of 20) has 355 variables and over
10 million feasible solutions, and enumerating the feasible
solutions requires more than 100 GB of RAM and several
hours of computation. The number of binary variables for
these instances makes a complete enumeration impossible in
a practical amount of time.
Continuingwith just the route- and sequence-based formu-

lations, we limit the characterization of the feasible solutions
up to 50% optimality gap. In the unconstrained reformulation

1We refer the reader to [19, Sec. 2] and references therein for a de-
tailed discussion on VQE/QAOA possible quantum advantage w.r.t. clas-
sical solvers, especially for QUBOs. In this article, we note that our formu-
lations are not dependent on a specific solver.

FIGURE 3. Cumulative number of feasible solutions (scaled by total
number of configurations) within a certain percentage gap of the optimal
solution for the route- and sequence-based formulations of the MIRP
example with different time horizons. All optimal solutions are captured
by an optimality gap equal to 0, while all feasible solutions are captured
by an optimality gap equal to +∞.

of the problem, a feasible solution beyond a certain optimal-
ity gap would be indistinguishable, in terms of the objective
function, from infeasible solutions of the original problem.
Fig. 3 shows the number of feasible solutions (scaled by

the total number of configurations) within a certain percent-
age gap of the optimal solution for the route- and sequence-
based formulations of the MIRP example. This figure essen-
tially gives us the probability of randomly sampling (from the
full configuration space) a feasible solution within a certain
optimality tolerance. We immediately note that the size of
the full configuration space (2n where n is the number of
variables) makes these probabilities dismally small, in gen-
eral. Combining this with the quadratic growth in the number
of variables for the sequence-based formulation observed in
Section IV-C, this means that a modest increase in the length
of the time horizon (20–25) reduces these probabilities by
approximately 40 orders of magnitude.
Consequently, in Fig. 4, we instead scale by the total num-

ber of feasible solutions and plot the (cumulative) fraction of
feasible solutions as a function of the optimality gap. Fig. 4
essentially gives us the performance of an algorithm that ran-
domly samples only feasible solutions: for the route-based
formulation with a time horizon of 25, such an algorithm
would have a probability of 0.497 of producing a solution
within 1% of optimal, versus a probability of 0.052 for the
sequence-based formulation. Consequently, if we expect an
algorithm (such as VQE or QAOA) to beat such random sam-
pling, then this gives us a lower bound for its performance.
Depending on the desired optimality gap, we are tempted to
say that the route-based formulation is preferable, although
this difference in the solution landscape between the formu-
lations may have more to do with the preprocessing step of
the route-based formulation, wherein a heuristic is used to
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FIGURE 4. Fraction of feasible solutions within a certain percentage gap
of the optimal solution for the route- and sequence-based formulations
of the MIRP example with different time horizons. The plot suggests that
the route-based formulation tends to have a higher density of
near-optimal feasible solutions.

FIGURE 5. Representation of the RY ansatz with two qubits and a depth
of one.

generate the set of routes. Determining the exact effect of
the preprocessing step is an avenue for future research.

E. NUMERICAL EXPERIMENTS
In this section, we solve the small VRPTW example from
Section IV-A2 using the IBM Quantum simulators and de-
vices accessed through the open-source programming frame-
work Qiskit [35], [36]. All experimental results are obtained
using Qiskit’s QasmSimulator backend. We focus the
discussion on the sequence-based formulations since their
size is small enough to analyze classically, yet large enough
to provide some insights into the algorithm performance.
This VRPTW instance requires 16 qubits to be represented
as a QUBO.

1) SEQUENCE-BASED FORMULATION
For the discrete sequence-based formulation (4), we consider
both the VQEwith a standard hardware-efficient ansatz (RY)
based on single-qubit rotations and two-qubit entangling
gates [37] (see Fig. 5 for a representation of the variational
form), and the QAOA, where the parameterization of the
circuit is constructed by the alternate application of the cost
Hamiltonian and a mixing operator [38], [39]. For the classi-
cal optimization part of the quantum algorithms, entailing the
solution of optimal parameters for the quantum circuits, we
consider two well-known gradient-free optimization algo-
rithms: the simultaneous perturbation stochastic approxima-
tion (SPSA) optimizer [40], and constrained optimization by
linear approximation (COBYLA) [41]. In the cases of both

SPSA andCOBYLA, themaximumnumber of function eval-
uations is set to 1000. We use the different ansatz/optimizer
combinations (e.g., RY/SPSA, etc.), subsequently referred to
as QUBO solvers, to directly solve the QUBO reformulation.
The sequence-based formulation for the small VRPTW

example results in 16 decision variables. Out of the 216 =
65 536 possible configurations or bitstrings, 2 are optimal,
and another 2 are feasible (i.e., satisfy all constraints) but
suboptimal. Since we are considering a depth one RY ansatz,
this means that the classical optimization algorithms are op-
timizing a function of 32 real-valued parameters in the case
of VQE. Meanwhile, we consider a p = 1 depth QAOA,
and therefore, the optimization algorithms are optimizing a
function of two real-valued parameters in the case of QAOA.
To compare the different QUBO solvers, we look at the

probability of measuring an optimal configuration given
the final optimized circuit. We will refer to this as the
“single-shot” probability of success, ps, which we determine
by inspecting the probability amplitudes corresponding
to the two known optimal configurations. However, since
these solvers rely on classical optimization methods, there
is a possibility of getting trapped at a local (sub) optimal
set of circuit parameters. Consequently, to improve the
robustness of the methods, they are typically run multiple
times with different initial values for the parameters. We
will do the same here, and sample each initial parameter
value uniformly from [0, 2π ] ([0, π ] for the angles in
the mixing part of QAOA). Thus, the performance of a
QUBO solver is captured by its resulting distribution of
single-shot probabilities of success. We will approximate
this distribution by running each QUBO solver 250 times
with these randomly sampled initial parameter values.
Table 3 reports various statistics for each solver’s distri-

bution of single-shot probabilities of success (as well as the
probability of measuring any feasible solution, p f , defined
similarly). It is hard to draw practical conclusions from these
statistics, however. We might suspect that RY/COBYLA is
the solver of choice, since it has the highest average proba-
bility of success, and a reasonable fraction of the ps are rel-
atively large (greater than 10−3). We could try to get a more
holistic view of the distributions by plotting histograms, but
we will instead propose the following statistic.
To put the performance of each QUBO solver in more

practical applied terms, we consider the expected probabil-
ity of success for each solver, as a function of the extra
postoptimization evaluations (or “shots”) we take of the final
optimized quantum circuit. Given a “typical run” of a QUBO
solver (essentially, a random sample ps from the correspond-
ing distribution), the probability of measuring an optimal
configuration with N shots is 1− (1− ps)N (one minus the
probability that an optimal configuration is not measured).
Subsequently, we take the expected value of this under the
distribution for ps. Naturally, we approximate this using a
sample-average estimate using our 250 samples of ps for
each solver.
The expected probabilities of success for the different

solvers are presented in Fig. 6. Also included is the
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TABLE 3. Statistics of single-shot probability of success and feasibility, for different solvers

FIGURE 6. Expected probability of successfully measuring an optimal
solution as a function of circuit evaluations or shots. These are the
number of evaluations given an optimized circuit, that is, after the
optimization phase.

corresponding function for uniform random sampling
(in this case, ps has a delta distribution, with mass at 2

216
).

We include this as a benchmark; note that random sampling
does not require any optimization effort. It is evident that
the “best” choice of solver depends on the number of
shots one is willing and able to take. For a low number of
shots, the best performing solver is RY/COBYLA, which
is quickly overtaken by RY/SPSA. With even more shots,
QAOA/COBYLA performs even better. We speculate that
this is because the QAOA ansatz can consistently produce
a state with small, but nonzero, overlap with the optimal
configurations. In contrast, an RY ansatz can exactly
represent the optimal state (a basis state), but the tradeoff
with this flexibility in the ansatz is that it is less forgiving to
poor optimization of the circuit parameters.

2) SEQUENCE-BASED FORMULATION WITH
CONTINUOUS TIME
The sequence-based formulation with continuous time needs
16 qubits for the QUBO subproblems to be solved via the
ADMM heuristics. This is because the size of the QU-
BOs is the same as the QUBO reformulation of the dis-
crete sequence-based model (4). The numerical results re-
ported here are referred to the two-block implementation
of ADMM with hyperparameters ρ = 1001 and β = 1000:
this ensures that the ADMM terminates in a finite number
of iterations, in case the continuous subproblem is convex
(see [19] for a detailed discussion on the ADMM implemen-
tation and convergence properties). The QUBO subproblems
of the ADMM heuristic are solved with VQE and QAOA
as quantum solvers and COBYLA as a classical optimizer.

TABLE 4. Metrics obtained for the minimum-distance MBO via ADMM
with the QUBO solvers QAOA and VQE

The continuous subproblems are solved via the sequential
convex programming algorithm described in Section III-C.
Preliminary computations conducted with COBYLA as a
continuous ADMM solver showed that the linear approxima-
tions performed therein resulted in a considerable increase of
the computational time.
Here, we have tested both the minimum-distance

and minimum-time VRPTW formulations described in
Section II-E. We have evaluated the MBO solutions via the
following metrics:

1) probability of success,Ps, of ADMM.This is expressed
as the percentage of ADMM runs that deliver an op-
timal solution for the problem. Note that the source
of randomness of ADMM lies in the QUBO, which is
solved via quantum algorithms;

2) probability of feasible solutions, Pf , found by ADMM,
defined similarly to Ps;

3) number of iterations I for ADMM convergence;
4) percentage qopt of QUBOs solved to optimality by the

QUBO solver.

All metrics are obtained as average results over three runs
of ADMM. The two QUBO solvers tested for ADMM are
VQE and QAOA with COBYLA as an internal classical
solver. Preliminary computations with the SPSA optimizer
resulted in extremely slow ADMM convergence. For VQE,
we chose the same ansatz tested for the QUBO formulations
of Section IV-E1, since the underlying combinatorial struc-
ture of the optimization problem is very similar.
The minimum-distance formulation turns out to be very

efficiently solved by the ADMM. As can be observed in
Table 4, all three ADMM runs deliver a feasible and optimal
route. Choosing VQE as QUBO solver results in a quicker
convergence. Solving QUBOs in an exact fashion is not a
guarantee for boosting ADMM convergence. Rather, a cer-
tain degree of inexactness in ADMM is beneficial for the
overall solution quality [19], [42]. This point is particularly
important since current computations on quantum devices
are inevitably affected by errors and noise.
The minimum-time formulation is solved to optimality

by the ADMM with VQE as a QUBO solver. For QAOA,
Table 5 reports the metric obtained with two choices of cir-
cuit depth p = 1, 3. A larger depth for the variational form
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FIGURE 7. (a) and (b) Solutions found by the ADMM runs. Optimal solution for minimization of route duration is displayed on the left. The vehicle visits
nodes 2 and 3 and waits one unit of time at node 3. At time 4, the vehicle leaves node 3 for visiting the remaining customer at node 1 and then reaches
the depot at time 6. Infeasible solution for minimization of route duration is reported on the right. The vehicle visits node 3 and heads to node 2 at time
4. The infeasible arc for node 2 time windows is displayed with a dashed line. Finally, the vehicle visits the customer at node 1 and reaches the depot at
time 7.

TABLE 5. Metrics obtained for the minimum-time MBO via ADMM with
the QUBO solvers QAOA and VQE

QAOA has been tested with p = 1 (“QAOA1”), and p =
3 (“QAOA3”).

helps ADMM converge in fewer iterations, and the success
rates Ps and Pf of the ADMM with QAOA are 1/3 in both
cases. Specifically, in one simulation, the ADMM finds the
feasible and optimal route with traveled time 6 displayed in
Fig. 7(a). The other two ADMM runs with the QAOAQUBO
solver deliver the route shown in Fig. 7(b), with infeasible
arc connecting nodes 2 and 3. Future research work could
explore the impact of choosing a different mixing Hamilto-
nian function in the QAOA algorithm, to aid the search for
feasible routes.
For both VQE and QAOA as QUBO solvers, the ADMM

exhibits convergence in a finite number of iterations, thanks
to the sequential convex programming solver.

V. CONCLUSION
Size, sparsity, connectivity, model faithfulness, and difficulty
to find optimal, or even feasible, solutions are all character-
istics of a vehicle routing problem that depend heavily on the
specific instances of interest and their mathematical formula-
tion. Here, we have provided insights into these characteris-
tics for the VRPTW. In particular, we have investigated these
characteristics for four mathematical formulations amenable
to being solved on current quantum hardware. Motivated by
the MIRP, we have assessed metrics that indicate hardware
requirements of tens of thousands of logical qubits to solve
real-world business problems. As indicated in [6], this ap-
proximate threshold is also where it can be difficult to obtain
good-quality solutions with reasonable computational effort
on modern classical hardware.

We are tempted to ask the question: “Which formula-
tion is best?” Naturally, there are tradeoffs, but each offers
lessons to be learned. Since the number of qubits available
on hardware will be limited in the near term, preprocessing
heuristics, like those used in the route-based formulation,
are needed to reduce the size of the problem. The route
generation heuristics help make the route-based formulation
the most compact one. Good preprocessing also seems to
influence the higher density of near-optimal solutions of the
route-based formulation, observed in Fig. 4. However, the
route-based formulation has unfavorable sparsity and con-
nectivity characteristics, which are also important metrics
to consider for near-term hardware. This suggests using the
route generation heuristics to reduce the size of the arc- or
sequence-based formulations. It would be interesting to see
if this helps reshape the solution landscape for these formu-
lations as well.
The “best” QUBO solver depends on the number of

samples one is willing to take from the optimized circuit.
VQE and QAOA represent two extremes of the tradeoff be-
tween having a flexible ansatz that can represent the optimal
solution and having a small enough number of parameters
to facilitate the convergence of the classical optimizer to
a high-quality solution. In our experiments, with a large
enough number of samples, the QAOA/COBYLA solver had
the highest probability of sampling an optimal configuration.
Meanwhile, when the number of samples was limited, using
VQE yielded a larger success probability.
For the sequence-based formulation with continuous time,

the simulations with the sequential convex programming
solver have shown the practical convergence of the ADMM
heuristic to solutions with a large probability to be feasible
and optimal. Furthermore, it has been shown that solving
the QUBO subproblems on quantum devices at proven op-
timality is not a necessary condition to ensure the quality
of the ADMM solutions. A certain degree of inexactness is
tolerated by the ADMM algorithm, and this is a promising

VOLUME 2, 2021 3100117



Engineeringuantum
Transactions onIEEE

Harwood et al.: FORMULATING AND SOLVING ROUTING PROBLEMS ON QUANTUM COMPUTERS

feature to handle the inherent noise affecting the quantum
algorithms on real devices.
Future work could extend the sequence-based with con-

tinuous time formulation to handle the vehicle capacity con-
straints and evaluate the quality of the ADMM solutions
obtained.

APPENDIX A
CONSTRUCTION OF THE MIRP EXAMPLE
The example MIRP introduced in Section IV-A1 is a mod-
ification of instance LR1_2_DR1_3_VC2_V6a in Group 1
of the MIRPLIB library [4]. Here, we describe its data, in-
terpretation as a VRPTW, and any specific steps required to
obtain the various formulations from Section II.

A. DESCRIPTION OF THE EXAMPLE MIRP
In this example, we have two supply ports S1 and S2 and
three demand ports D1, D2, and D3. Each supply port pro-
duces a good but has some limited amount of storage space
for it. Similarly, each demand port consumes this good and
has limited inventory of it. Different ports have different port
fees as well. The port data for this example are reported in
Table 6. The port fees have units of, e.g., dollars, while initial
inventory and capacity have units of volume, and production
and consumption rate have units of volume per time. The
distances between the ports are given in Table 7.
A fleet of vessels is available; these vessels all have the

same capacity of Q = 300 (volume units) and speed of 665
(distance per time, e.g., km/day). The travel cost per unit
distance for these vessels is 0.09 (e.g., dollars per kilometer).
We assume that the time horizon of interest begins at t = 0.
We allow the end of the time horizon TH to vary.

B. INTERPRETATION AS A VRPTW
The MIRP from Appendix V-A makes no mention of time
windows or demand levels. In order to put this problem in
the formalism of a VRPTW, we need to convert each port
into a series of nodes with a fixed demand level and time
window. To do this, we make the assumption that the vessels
fully load at a supply port, travel to a demand port, and
fully unload before returning to a supply port again. This can
be a restrictive assumption for some applications; however,
in this problem, each port has enough storage capacity to
load or unload a full vessel, and therefore, it is unnecessary
to consider partial unloading of a vessel. As mentioned in
Section II, this assumption is reasonable in some situations
like liquefied natural gas shipping.
To begin specifying the nodes, consider a supply port j.

Its initial level of inventory (at t = 0) is I0j ; at time t, the

inventory is I j(t ) = I0j + t · I�j . At time ta when I j(ta) = Q,

there is enough inventory to fully load a vessel. At time tb

when I j(tb) = ICj , the port runs out of storage space. These
times define the first time window, during which the port
must be visited. Now, assuming that the port has been visited
p times already, the inventory level at time t is given by
I0j + t · I�j − p · Q. The first time that the inventory reaches

TABLE 6. Port data for MIRP example

TABLE 7. Distances between ports for MIRP example (distance
are symmetric)

level Q again defines the beginning of the (p+ 1)th time
window. The time at which the inventory reaches the capacity
ICj defines the end of the (p+ 1)th time window. The result is
that we define nodes indexed by port and number of previous
visits; node ( j, p) corresponding to supply port j that has
been visited p times already has demand level q( j,p) = Q and
time window [a( j,p), b( j,p)], where

a( j,p) = (Q+ pQ− I0j )/I�j
b( j,p) = (ICj + pQ− I0j )/I�j .

For demand ports, the definitions are similar; the inventory
level at time t after the port has been visited p times already
is I0j + t · I�j + p · Q. The beginning of the time windows
is defined by the times at which the inventory level reaches
ICj − Q, at which point there is enough space to accept a full
vessel to unload. The end of the time windows is defined by
the times at which the inventory level reaches zero. Then,
node ( j, p) corresponding to demand port j that has been
visited p times already has demand level q( j,p) = −Q and
time window [a( j,p), b( j,p)], where

a( j,p) = (ICj − Q− pQ− I0j )/I�j
b( j,p) = (0− pQ− I0j )/I�j .

Note that we must have ICj ≥ Q or else the time window is

nonsensical (a( j,p) > b( j,p)), and when ICj = Q (as is the case
for port D3), the time window is degenerate.
For a given time horizon, we construct nodes for each port

until the time windows are no longer a subset of the time
horizon; that is, all nodes have b( j,p) ≤ TH .
To finish specifying the VRPTW, we need the arc data.

We define arcs between any supply node and any demand
node, and vice versa. This enforces the assumption that
vessels do not travel directly between supply ports or
directly between demand ports. The travel time for an arc
is simply the distance between the corresponding ports (see
Table 7) divided by the vessel speed (665). The cost of the
arc is the distance between the ports times the cost per unit
distance (0.09), plus the port fee of the destination port (see
Table 6). The original instance LR1_2_DR1_3_VC2_V6a
includes time for loading and unloading vessels at the ports.
For simplicity, we ignore this feature, although we could

3100117 VOLUME 2, 2021



Harwood et al.: FORMULATING AND SOLVING ROUTING PROBLEMS ON QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

include it by modifying the travel times by adding in the
loading/unloading time at the destination port. Note this
might make the travel times asymmetric.
Not all of the arcs defined this way are physically reason-

able due to the timing.We remove arcs (( j, p), ( j,′ p′)) where
a( j,p) + t(( j,p),( j,′p′ )) > b( j,′p′ ); that is, the beginning of the
time window of the origin node plus the travel time is greater
than the end of the time window of the destination node.
The depot node in this problem is a dummy node, serving

as an artificial source and sink for the vessels. Consequently,
we assume that the initial loading Q0 of the vessels is zero.
In general, the number of vessels, their initial positions, and
initial state (empty or full) are controlled through the specifi-
cation of the entry arcs, which have the depot as their origin.
The procedure for a general MIRP is as follows. For every
vessel v, we add a dummy node dumv with time window
[0,+∞]. If the vessel is initially empty, the dummy node
has demand level qdumv

= 0; an arc from the depot to this
dummy node is added, and then, arcs from the dummy node
to all supply nodes are added. If the vessel is initially fully
loaded, the dummy node has demand level qdumv

= Q (to
reflect the fact that this vessel visited a supply node sometime
before the time horizon started); an arc from the depot to
this dummy node is added, and then, arcs from the dummy
node to all demand nodes are added. The travel times from
the dummy node could reflect the geographic position of the
vessel, for instance, that it is in the middle of the ocean. To
finish specifying the network, we add exit arcs from any node
(including the dummy ones) back to the depot at zero travel
time and zero cost.
However, the original instance does not specify the initial

states of the vessels, and therefore, we are less constrained in
defining the entry arcs. Furthermore, because of how the arc-
and sequence-based formulations handle the capacity con-
straints, adding these dummy nodes might not be necessary.
Consequently, the handling of entry arcs is formulation-
specific and discussed in the following subsection.

C. DETAILS FOR EACH FORMULATION
In this subsection, we go over any formulation-specific de-
tails required to handle the MIRP-as-VRPTW from the pre-
vious subsection. As mentioned, this includes the handling
of entry arcs.

1) ROUTE-BASED FORMULATION
First, we specify the entry arcs for the formulation. Since ve-
hicle capacity constraints are enforced through the definition
of an allowed route, we must add dummy nodes, as discussed
in Appendix V-B. We add entry arcs from the depot directly
to any supply node with end of time window less than 14.
Meanwhile, for every demand node with end of time window
less than 14, we first add a dummy node with demand level
Q. Then, we add arcs from the depot to this dummy node and
then from the dummy node to the demand node (both with
zero travel time and cost). This enforces the vessel to be fully
loaded before it arrives at the demand node. The result is a
set of seven vessels.

To finish specifying the route-based formulation, we need
to define the set of routes R. For this problem, we use a
randomized greedy solution heuristic to propose routes. The
core of this routine is given in Algorithm 1. This routine
takes a scaling factor S and functions ftime and fnode that
together assign a cost to visiting a node with a particular
arrival time. The scaling factor S controls the amount of
exploration/randomization that takes place, while ftime and
fnode can be used to control the timing aspect of routes and
which nodes the routes tend to favor visiting. Here, we set

ftime : t 
→
{
0, t ≤ 10

100t, t > 10

fnode : i 
→
{
0, i ∈ N
(TH/6) · 1500, i = d

.

This is intended to assign a high cost to routes that arrive
at nodes later, thus promoting the generation of routes that
greedily visit each node as early as possible, while simulta-
neously (through the action of fnode) discouraging early exit
back to the depot.
The ultimate set of routes R is the unique set of routes

generated by Algorithm 1 for increasing levels of random-
ization. Specifically, we run Algorithm 1 once for S = 10−4,
�TH� times for S = 1, and �10TH� times for S = +∞. For
S = +∞, the sampling at step 20 in Algorithm 1 is from a
uniform distribution over the valid proposed nodes.

2) ARC-BASED FORMULATION
The additional data that we need to specify the arc-based
formulation are the set of time periods T . There are many
options for determining this set; in general, we must balance
detail and how finely we can model the timing of events, with
how large the problem becomes. For this particular example,
we choose the time periods to equal the set of integer time
points that fall within any node’s time window (besides the
depot and any dummy node, which have infinite time win-
dows), plus the initial time point t = 0. For this example,
each node’s time window contains at least one integer time
point, and therefore, this gives us at least a little flexibility
in the timing of the arrival of vessels at a node. Furthermore,
this leads to some economy in the number of time points,
since an integer time point might fall in the time window of
multiple nodes.
Some care is required. Port D3 has degenerate time win-

dows; however, they happen to fall at integer time points.
Changing the initial inventory level so that it is not an integer
multiple of the consumption rate would affect this.
The arc-based formulation does not explicitly enforce ca-

pacity constraints (in this example, vessel capacity is essen-
tially enforced through the arcs, which only allow a vessel to
visit an alternating sequence of supply and demand nodes).
Consequently, the dummy nodes for enforcing the initial con-
ditions of vessels are unnecessary.We add entry arcs from the
depot directly to any supply node or demand nodewith end of
time window less than 14. As in the route-based formulation,
this results in seven vessels being available.
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Algorithm1:RandomizedGreedy SolutionHeuristic for
Route Generation.
Require: S ≥ 0, ftime : [0,TH ]→ R,
fnode : N ∪ {d} → R
1: Initialize proposed routes: RP = ∅
2: Initialize unvisited nodes: NU = N
3: for v ∈ Vdo
4: Initialize route and current arrival time: i1 = d,

tr = 0.
5: for p = 2, 3, 4, . . . do
6: Construct costs for proposed next nodes:
7: for i ∈ NU ∪ {d}do
8: if (ip−1, i) /∈ A then
9: continue
10: end if
11: tir = max{ai, tr + tip−1,i}
12: if tir > bi then
13: continue
14: else
15: fi = cip−1,i + ftime(tir )+ fnode(i)
16: end if
17: end for
18: Sample next node according to softmax of

negative costs:

ip ∼ P (i|ip−1) ≡ exp(− fi/S)∑
j exp(− f j/S)

.

19: Update route and arrival time:

r← (d, i2, i3, . . . , ip), tr ← t
ip
r

20: if ip = d then
21: End building route; break iteration over p
22: end if
23: end for
24: Update proposed routes: RP← RP ∪ {r}
25: Update set of unvisited nodes by removing those

visited by route r = (d, i2, i3, . . . , iP−1, d):
NU ← NU − {i2, i3, . . . , iP−1}

26: end for
27: Return RP

3) SEQUENCE-BASED FORMULATION
To specify the sequence-based formulation, we need a maxi-
mum number of stops P for each vehicle. Given the length of
the time horizon TH , we estimate this based on the shortest
travel time (5305.34/665 ≈ 8). Thus, we set P = �TH/8� +
2.
As in the arc-based formulation, dummy nodes for en-

forcing the initial conditions of vessels are unnecessary. We
add entry arcs from the depot directly to any supply node or
demand node with end of time window less than 14.
The sequence-based formulation does not directly enforce

timing constraints. As mentioned, we enforce them in a con-
servative way by pruning the arc set: for any arc (besides an
entry arc from the depot), if the end of the time window of
the origin node plus the travel time is greater than the end of

the time window of the destination node, then that arc is re-
moved. We essentially enforce timing constraints by assum-
ing that vessels always arrive at the end of a node’s time win-
dow. Something similar could be done by assuming that ves-
sels always arrive at the beginning of a node’s time window.

APPENDIX B
PROOF OF SUFFICIENT PENALTY VALUE
In this appendix, we establish in detail a value of the penalty
parameter that is sufficient to make the route-based formula-
tion (2) equivalent to minimizing the energy function

H : x 
→
∑
r

crxr + ρ
∑
i

(1−∑
rδi,rxr )

2.

Proposition 1: Assume that ρ satisfies

ρ >
∑
r

|cr| .

Then, x∗ is a solution of min{H(x) : x ∈ {0, 1}n} and prob-
lem (2) is feasible, if and only if x∗ solves problem (2) (where
n = |R|).
Proof: If x∗ solves (2), then it is feasible; therefore, the

penalty term is zero:
∑

i(1−
∑

rδi,rx
∗
r )

2 = 0. Assume for
a contradiction that there is an x† ∈ {0, 1}n with H(x†) <

H(x∗), or∑
r

crx
†
r + ρ

∑
i

(1−∑
rδi,rx

†
r )

2 <
∑
r

crx
∗
r . (10)

If x† is feasible in (2), then the penalty term is zero, and
therefore,

∑
r crx

†
r <

∑
r crx

∗
r , which contradicts the opti-

mality of x∗; thus, we must have that x† is infeasible in
(2). Since x†r and δi,r are {0, 1}-valued for all r and i,
the smallest value that ρ

∑
i(1−

∑
rδi,rx

†
r )

2 can take is
ρ (since it is infeasible, it cannot be zero). Meanwhile,
by the (generalization of) the Cauchy–Schwarz inequality,
−∑

r cr(x
†
r − x∗r ) ≤ ‖c‖∗‖x† − x∗‖ for any norm ‖ · ‖ and

its dual norm ‖ · ‖∗. In particular, using the infinity norm,
we have −∑

r cr(x
†
r − x∗r ) ≤ ‖c‖1 · 1. Using ρ ≤ ρ

∑
i(1−∑

rδi,rx
†
r )

2 and −‖c‖1 ≤
∑

r cr(x
†
r − x∗r ) and plugging into

(10), we have

−‖c‖1 + ρ < 0

but upon rearranging and using the definition of the one-
norm, we see this contradicts the assumption that ρ >∑

r |cr|. Thus, x∗ ∈ argminxH(x).
Conversely, assume that x† solves minx H(x), and that

problem (2) is feasible. We have minx H(x) must be less
than or equal to the minimum objective value of (2); H(x)
equals the objective of (2) on the feasible set of (2), and the
minimization ofH is over a superset of the feasible set of (2),
so the minimummust be less. Thus, we just need to establish
that x† is feasible for (2). So, assume for a contradiction that
x† is not feasible. By assumption, there exists x∗ feasible in
(2). Since x† minimizes H, we have∑

r

crx
†
r + ρ

∑
i

(1−∑
rδi,rx

†
r )

2 ≤
∑
r

crx
∗
r .
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We can proceed exactly as before to obtain −‖c‖1 + ρ ≤ 0,
which still contradicts the assumption that ρ >

∑
r |cr|.

Therefore x† is feasible in (2) and, thus, optimal. �
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