
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/TQE.2020.DOI

Quantum Conformal Prediction for
Reliable Uncertainty Quantification in
Quantum Machine Learning
SANGWOO PARK, (Member, IEEE), and OSVALDO SIMEONE, (Fellow, IEEE)
King’s Communications, Learning & Information Processing (KCLIP) lab, Centre for Intelligent Information Processing Systems (CIIPS), Department of
Engineering, King’s College London, London WC2R 2LS, United Kingdom (email: {sangwoo.park, osvaldo.simeone}@kcl.ac.uk )

Corresponding author: Sangwoo Park (email: sangwoo.park@kcl.ac.uk).

“This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement No. 725732), by the European Union’s Horizon Europe project CENTRIC (101096379), by an Open
Fellowship of the EPSRC (EP/W024101/1), by the EPSRC project (EP/X011852/1), and by Project REASON, a UK Government funded
project under the Future Open Networks Research Challenge (FONRC) sponsored by the Department of Science Innovation and
Technology (DSIT).”

ABSTRACT Quantum machine learning is a promising programming paradigm for the optimization of
quantum algorithms in the current era of noisy intermediate scale quantum (NISQ) computers. A funda-
mental challenge in quantum machine learning is generalization, as the designer targets performance under
testing conditions, while having access only to limited training data. Existing generalization analyses, while
identifying important general trends and scaling laws, cannot be used to assign reliable and informative
“error bars” to the decisions made by quantum models. In this article, we propose a general methodology
that can reliably quantify the uncertainty of quantum models, irrespective of the amount of training data, of
the number of shots, of the ansatz, of the training algorithm, and of the presence of quantum hardware noise.
The approach, which builds on probabilistic conformal prediction, turns an arbitrary, possibly small, number
of shots from a pre-trained quantum model into a set prediction, e.g., an interval, that provably contains
the true target with any desired coverage level. Experimental results confirm the theoretical calibration
guarantees of the proposed framework, referred to as quantum conformal prediction.

Code can be found at https://github.com/kclip/quantum-CP

INDEX TERMS Quantum machine learning, conformal prediction, generalization analysis, uncertainty
quantification.

I. INTRODUCTION

QUANTUM machine learning is currently viewed as a
promising paradigm for the optimization of algorithms

that can leverage existing noisy intermediate scale quantum
(NISQ) computers [1]–[3]. As for classical machine learn-
ing, the principle underlying quantum machine learning is
generalization: While the optimization is based on a limited
training set, the designer targets the performance of the al-
gorithm outside the training set, under testing conditions that
are statistically similar – ideally equivalent – to those encoun-
tered during training data collection. The central technical
challenge is therefore that of understanding and controlling
accuracy and uncertainty levels for decisions taken by a
trained algorithm on test data [4], [5].

As we will summarize in the next subsection, most work

on the subject of generalization for quantum machine learn-
ing has focused on studying scaling laws on the amount of
data required to ensure desired performance levels on test
data (see, e.g., [6]). In contrast, this article introduces a
novel operational framework for the derivation of practically
relevant generalization guarantees. The approach, referred to
as quantum conformal prediction (QCP), applies a post-hoc
calibration step based on held-out calibration, or validation,
data to pre-trained quantum machine learning models. QCP
builds on conformal prediction (CP), a general calibration
methodology that is currently experiencing renewed attention
in the area of classical machine learning [7]–[10]. Unlike
classical CP, QCP takes into account the unique nature of
quantum models as probabilistic machines, due to the inher-
ent randomness of quantum measurements [3], [11].
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FIGURE 1. Comparison between (i) quantum generalization analysis [6],
[12]–[15] and (ii) quantum conformal prediction (QCP), which is introduced in
this work. Quantum generalization analysis provides analytical bounds on the
generalization error that explicitly capture the general dependence on the
number of training examples (typically assuming an infinite number of shots).
Based on such bounds, one is able to conclude that, if the number of data
points scales sufficiently quickly with respect to the model complexity, the
trained model generalizes well outside the training data. In contrast, QCP
provides an operational way of quantifying the uncertainty of the decisions
made outside the training set (shaded areas). The resulting “error bars” are
guaranteed to contain the ground-truth output with a desired probability,
regardless of the amount of data, of the number of measurements, of the
ansatz of the quantum machine learning model, of the training algorithm, and
of the presence of quantum hardware noise. (iii) As an illustration of the
results that can be obtained via generalization analysis, this panel shows the
generalization bounds derived in [6] as a function of number of training
examples for different numbers T of trainable local quantum gates (see
Appendix A for details). As suggested by the plot, while very useful to identify
general trends and scaling laws, generalization analyses only provide
numerically meaningful bounds with a very large number of training examples.

A. GENERALIZATION ANALYSIS VS. CONFORMAL
PREDICTION

As illustrated in Fig. 1, generalization analysis focuses on
the identification of analytical scaling laws on the amount
of data required to ensure desired performance levels on test
data [4], possibly as a function of the training algorithm [16],
[17] and of the data distribution [18], [19] (see also [5]).
Related studies have also been initiated for quantum machine
learning, with recent results including [6], [12]–[15].

As a notable example, reference [6] reveals the important
insight that the generalization error, i.e., the discrepancy
between training and test losses, for quantum models grows
as the square root of the number of gates T and with the
inverse of the square root of the size of the data set. While
critical to gauge the feasibility to train quantum circuits, such
results provide limited operational guidelines concerning the

uncertainty associated with decisions made on test data when
training data are limited (see Fig. 1 and Appendix A for
details).

Most papers on quantum machine learning, including on
generalization analyses, treat the output of a quantum model
as deterministic, implicitly assuming that expected values
of observables can be calculated exactly [6], [12]–[15]. In
practice, for this to be an accurate modelling assumption,
one needs to carry out a sufficiently large – strictly speaking,
infinite – number of measurements, or shots, at the output
of the quantum circuit (see Fig. 1, left column). These mea-
surements are averaged to obtain the final prediction. From
a statistical viewpoint, this assumption conveniently makes a
quantum models likelihood-based, in the sense that one can
evaluate exactly the probability of any output given an input
and the model parameters (see, e.g., [5]).

In practice, however, quantum models are more properly
described as being implicit, or simulation-based, in the sense
that they only provide random samples from a given, inac-
cessible, likelihood [20]. The generalization capabilities of
generative quantum models – an example of implicit models
– have been recently studied in a separate line of research,
including in [21], [22].

In contrast to generalization analysis, CP [7] does not
aim at obtaining analytical conclusions concerning sample
efficiency. Rather, it provides a general methodology to ob-
tain “error bars” with formal guarantees on the probability
of covering the correct test output. Such guarantees hold
irrespective of the size of the training data set [7], [9]. We
will specifically focus here on split, or validation-based, CP
[7].

Validation-based CP is a post-hoc calibration methodol-
ogy that applies to pre-trained machine learning models. It
produces set predictors, such as intervals for regression prob-
lems, that are provably guaranteed to contain the true target
with probability no smaller than the predetermined coverage
level (see Fig. 1, right column). This goal is accomplished by
utilizing a calibration data set, and is formalized in terms of
probabilities with respect to the random generation of testing
and calibration data.

To the best of our knowledge, as we further discuss next,
this is the first work that proposes to leverage CP for the pur-
pose of reliably quantifying uncertainty for quantum machine
learning models.

B. QUANTUM CONFORMAL PREDICTION
The goal of the proposed framework, referred to as QCP, is
to assign well-calibrated “error bars” to the decisions made
by the quantum machine learning models. The “error-bars”
are formally subsets of the output space, and calibration
refers to the property of containing the true target with
probability no smaller than a predetermined coverage level.
Importantly, with QCP, calibration holds irrespective of the
number of training data set, of the ansatz of the quantum
machine learning model, of the training algorithm, of the
number of shots, and of the presence of quantum hardware
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noise [11]. The only assumption required for QCP is the
finite exchangeability of calibration data and test data, which
is practically satisfied under the conventional independent
and identically distributed (i.i.d.) assumption [7]. We refer
to Fig. 2, left bar, for an illustration of the properties of QCP.

An important challenge in applying CP to quantum ma-
chine learning models is that conventional CP targets deter-
ministic, likelihood-based, models that produce point predic-
tions, such as conventional neural networks, while quantum
models are inherently stochastic, or sampling-based. Recent
work [23] introduced a novel CP scheme, referred to as
probabilistic CP (PCP), that applies to classical sampling-
based predictors. The main motivation of reference [23] in
leveraging probabilistic outputs is to address a mismatch
between the assumed probabilistic model and the ground-
truth distribution, which may require disconnected predictive
sets (see [23, Fig. 1], as well as Fig. 3 for a preview). QCP
is inspired by reference [23], although our motivation stems
from the fact that quantum models are inherently implicit
probabilistic models. The proposed method is aligned with
the framework in [24] in that it operates with any finite
number of copies of a quantum state, not requiring the exact
evaluation of an expected value.

Our main contributions are as follows:

• We introduce QCP, a post-hoc calibration methodology
for quantum machine learning models that produces
predictive sets with controllable guarantees on the gen-
eralization performance.

• To keep the article self-contained, we provide an intro-
duction to classical CP and PCP.

• We present, for reference, a direct application of CP to
conventional deterministic and likelihood-based quan-
tum machine learning that assume the use of an infinite
number of shots.

• We detail experimental results based on both simulation
and quantum hardware implementation. The experi-
ments bring evidence on the merits of QCP, confirming
its theoretical calibration guarantees.

• Among our main conclusions, we show that, when
quantum models are augmented with QCP, it is gen-
erally advantageous not to average over the shots, as
typically done in the literature. Rather, treating the
shots as separate samples allows QCP to obtain more
informative error bars.

The rest of the article is organized as follows. In Sec.
II, conventional CP for classical deterministic models is
reviewed, and a direct application of CP to quantum machine
learning models is presented that assumes an infinite number
of shots. Sec. III describes PCP for classical probabilistic
models as proposed in [23]. Then, QCP for quantum ma-
chine learning models is introduced in Sec. IV, with Sec. V
addressing the aspect of performance evaluation. Numerical
and experimental settings are provided in Sec. VI, with
results presented in Sec. VII. Sec. VIII concludes the article.

II. CONFORMAL PREDICTION FOR DETERMINISTIC
MODELS
In this section, we first review conventional CP, which applies
a post-hoc calibration step to deterministic predictive models
[7]. Then, we introduce a direct application of this approach
to quantum models, and we highlight its limitations. This
discussion will motivate the proposed QCP method, which
is presented in Sec. IV.

A. CALIBRATING DETERMINISTIC PREDICTORS VIA
SET PREDICTION
Consider a class of classical parametric predictors f(·|θ) with
parameter vector θ. The predictor produces an output y ∈ Y
given an input x ∈ X as

ŷ = f(x|θ). (1)

The domains X and Y of input and output, respectively, can
be either discrete or continuous depending on the problem of
interest. The parameter vector θ is optimized using a training
data set

Dtr = {ztr[i] = (xtr[i], ytr[i])}|D
tr|

i=1 (2)

via an arbitrary training algorithm that returns a parameter
vector θDtr and a corresponding predictor ŷ = f(x|θDtr).

As we detail in the next subsection, CP is a post-hoc
calibration scheme that processes the prediction ŷ by using
a calibration data set

Dcal = {z[i] = (x[i], y[i])}|D
cal|

i=1 (3)

to obtain a well-calibrated set prediction. Given a test input
x, a set predictor Γ(x|Dcal, θ) ⊆ Y returns a subset of the
possible output values in set Y . The set Γ(x|Dcal, θ) is said
to be well calibrated if it contains the true target y with
probability no smaller than a predetermined coverage level
1− α.

To formalize the notion of calibration for set predictors, let
us make the mild assumption that the calibration examples
z[i] = (x[i], y[i]) for i = 1, ..., |Dcal| in set Dcal, along
with the test example z = (x, y), are (finitely) exchangeable
random variables. As a point of notation, observe that we use
bold fonts to denote random variables.

Assumption 1 (Finite exchangeability [25, Sec. II]). Cal-
ibration data set Dcal and a test data point z are finitely
exchangeable random variables, i.e., the joint distribution
p(Dcal, z) = p(z[1], ..., z[|Dcal|], z) is invariant to any per-
mutation of the variables {z[1], ..., z[|Dcal|], z}. Mathemat-
ically, we have the equality p(z[1], ..., z[|Dcal| + 1]) =
p(z[π(1)], ..., z[π(|Dcal|+1)]) with z = z[|Dcal|+1], for any
permutation operator π(·). Note that the standard assump-
tion of i.i.d. random variables satisfies finite exchangeability.

It is important to emphasize that only exchangeability of
calibration and test data is assumed (Assumption 1), while
no requirements are imposed on the training data set Dtr, or
on the accuracy of the trained model parameter vector θDtr .
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FIGURE 2. Illustration of conventional CP for deterministic (likelihood-based) models: (i) Based on any trained model parameter vector θDtr and given a scoring
function s(·|θDtr ), e.g., the quadratic loss, CP first computes scores for every calibration example in an offline phase; (ii) Based on the |Dcal| calibration scores, CP
divides the real line into an acceptance region and a rejection region by computing the (1 − α)-quantile of the calibration scores; (iii) CP constructs a set predictor
for a test input x by collecting all candidate outputs y′ ∈ Y whose scores lie in the acceptance region; (iv) The obtained CP set predictor (green circle) is
guaranteed to satisfy the validity condition (4).

Given a trained model parameter vector θDtr , a set predictor
Γ(x|Dcal, θDtr) is said to be well calibrated at the coverage
level 1 − α, for some α ∈ (0, 1), if the following inequality
holds

Pr
(
y ∈ Γ(x|Dcal, θDtr)

)
≥ 1− α, (4)

where the probability Pr(·) is taken over the joint distribution
p(Dcal, z) of calibration data set and test data point.

B. CONFORMAL PREDICTION
As mentioned, CP starts with a pre-trained model ŷ =
f(x|θDtr), and extracts from it a well-calibrated set predictor
satisfying the condition (4). To this end, CP relies on the
specification of a scoring function s(·|θDtr). The scoring
function quantifies the performance loss accrued by the
trained model on the input-output pair z = (x, y). Accord-
ingly, a scoring function should ideally increase when the
error between prediction ŷ and the true target y increases [7].

As an example of scoring functions, one may consider the
quadratic loss s(z|θ) = (y−f(x|θDtr))2 for continuous target
variables with Y = R, or the logistic loss s(z|θ) = log(1 +
exp(−yf(x|θDtr))) for binary random variables with Y =
{−1, 1} [5].

Based on the calibration set Dcal and the target coverage
level 1 − α, as illustrated in Fig. 2, CP divides the possible
values returned by the scoring function for the trained model
f(x|θDtr) into an acceptance region and a rejection region. A

set predictor Γ(x|Dcal, θDtr) for a test input x is then obtained
by including all candidate outputs y′ ∈ Y whose scores
s((x, y′)|θDtr) lie in the acceptance region for the trained
predictor.

The threshold dividing the acceptance and rejection re-
gions is obtained by examining the calibration set |Dcal|.
Specifically, in an offline phase, the scores assigned by
the pre-trained model are evaluated for all data points
in the calibration set, obtaining the set of |Dcal| values
{s(z[1]|θDtr), ..., s(z[|Dcal|]|θDtr)}. Then, CP chooses the
threshold such that a fraction (1 − α) of calibration points
returns a score value lower than the threshold. Intuitively, this
ensures that all accepted output values also have probability
no smaller than 1− α due to the exchangeability assumption
in Assumption 1 [7].

More formally, let us define as Q1−α({s(z[i]|θDtr)}|D
cal|

i=1 )
the ⌈(1 − α)(|Dcal| + 1)⌉-th smallest value in the set
{s(z[1]|θDtr), ..., s(z[|Dcal|]|θDtr),∞}. The CP set predictor
is defined as

Γ(x|Dcal, θDtr) =
{
y′ ∈ Y : s((x, y′)|θDtr) (5)

≤ Q1−α

({
s(z[i]|θDtr)

}|Dcal|
i=1

)}
.

Fig. 2 provides an illustration of the overall CP process.
As long as Assumption 1 holds, conventional CP guaran-

tees that the set predictor (5) is well calibrated for any trained
model θDtr .
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Theorem 1 (Calibration of deterministic CP [7]). Under
Assumption 1, for any miscoverage level α ∈ (0, 1), for any
trained model θDtr , and for any scoring function s(·|θDtr),
the CP set predictor (5) satisfies the validity condition (4),
i.e., Pr(y ∈ Γ(x|Dcal, θDtr)) ≥ 1−α, with probability taken
over the joint distribution of the test data z and calibration
data set Dcal.

For completeness, and in order to keep the presentation
self-contained, a proof of Theorem 1 can be found in Ap-
pendix B.

C. CONVENTIONAL CONFORMAL PREDICTION FOR
QUANTUM MODELS
In this section, we introduce a direct application of con-
ventional CP, as described in the previous subsection, to
predictions obtained via quantum machine learning mod-
els. Throughout this article, we focus on general quantum
machine learning models implemented by a parameterized
quantum circuit (PQC) (see, e.g., [2], [3] for an introduction).
Furthermore, we assume in this subsection that outputs of the
model are obtained by averaging over an infinite number of
shots, as in most of the literature on the subject (see, e.g.,
[2]).

A PQC encodes the classical input x into a parameterized
quantum embedding defined by the state of an n-qubits
state. The state is described by a 2n × 2n density matrix
ρ(x|θ), which is a positive semi-definite matrix with unitary
trace, i.e., Tr(ρ(x|θ)) = 1, where Tr(·) represents the trace
operator. We write N = 2n for the dimension of the Hilbert
space on which density matrix ρ(x|θ) operates. The state
ρ(x|θ) is obtained via the application of a parameterized
unitary matrix U(x|θ) to a fiducial state |0⟩ for the register
of n qubits, yielding

ρ(x|θ) = U(x|θ)|0⟩⟨0|U(x|θ)†, (6)

where † represents the complex conjugate transpose opera-
tion.

Deterministic predictors can be in principle implemented
via a PQC by considering the expected value of some ob-
servable O as the output of the model. An observable is
defined by an N × N Hermitian matrix O. By the spectral
theorem, an observable can be hence expressed in terms of
its eigendecomposition (see, e.g., [3, Sec. 5])

O =

N ′∑
j=1

ojΠj (7)

with real eigenvalues {oj}N
′

j=1 and projection matri-
ces {Πj}N

′

j=1 satisfying the resolution-of-identity equality∑N ′

j=1 Πj = I , where N ′ ≤ N is the number of distinct
eigenvalues of the observable O.

Accordingly, for a scalar target variable, the deterministic
predictor is given by the expectation

ŷ = Tr(Oρ(x|θ)) = ⟨O⟩ρ(x|θ). (8)

Note that multi-dimensional target spaces Y can be handled
by considering a number of observables [6]. Henceforth, we
will assume a scalar target variable y ∈ R. Furthermore, we
will assume that the discrete output space of the PQC Ŷ =
{oj}N

′

j=1 is included in the target space Y , i.e., Ŷ ⊆ Y . These
assumptions are made to simplify the presentation, and they
can be alleviated at the cost of a more cumbersome notation.

Given the deterministic parametric predictor (8), training
can be carried out based on training set Dtr using local
or global optimization schemes [20], [26]–[29], producing
a trained parameter vector θDtr . Given the trained model
Tr(Oρ(x|θDtr)), one can directly apply CP as described in
the previous subsection in order to obtain well-calibrated set
predictors.

This direct application of CP to quantum machine learning
has the important limitation of relying on the assumption that
the expected value (8) can be evaluated exactly. In fact, in
practice, the expectation in (8) can only be estimated based
on a finite number of measurements, or shots, obtained by
running the PQC multiple times and applying the projective
measurement defined by projectors {Πj}N

′

j=1 to the quantum
embedding ρ(x|θ).

III. CONFORMAL PREDICTION FOR CLASSICAL
PROBABILISTIC MODELS
This section reviews the PCP approach introduced in [23],
which is a variant of CP that applies post-hoc calibration to
samples produced by a classical probabilistic model.

Consider a parametric probabilistic predictor defined by
a conditional distribution p(y|x, θ) of target output y given
input x = x. For example, in regression, the distribution
p(y|x, θ) may describe a Gaussian random variable y with
mean and covariance dependent on input x and parameter
vector θ; or it may describe a categorical random variable y
with logit vector dependent on input x and parameter vector
θ. The mentioned functions are typically implemented as
neural networks with weight vector θ and input x. Model
p(y|x, θ) can be trained using standard tools from machine
learning, yielding a trained model parameter vector θDtr [3],
[4].

PCP constructs a set predictor not directly as a function of
the likelihood p(y|x, θDtr) of the trained model, but rather as a
function of a number of random predictions ŷ generated from
the model p(y|x, θDtr). As mentioned in Sec. I, the motivation
of PCP is to obtain more flexible set predictors that can
describe disjoint error bars [23, Fig. 1]. An illustration of PCP
can be found in Fig. 3.

To elaborate, given test input x and trained model
p(y|x, θDtr), PCP generates M i.i.d. predictions ŷ1:M =
{ŷm}Mm=1, with each sample drawn from the model as

ŷm ∼ p(y|x, θDtr). (9)

It then calibrates these predictions by using the calibration
set. To this end, given the calibration set Dcal, in an offline
phase, for each calibration example z[i] ∈ Dcal, PCP gen-
erates M i.i.d. random predictions ŷ1:M [i] = {ŷm[i]}Mm=1,
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with each sample obtained from the model as ŷm[i] ∼
p(y|x[i], θDtr).

Like CP, PCP also relies on the use of a scoring function
that evaluates the loss of the trained model on each data point.
Unlike CP, the scoring function of PCP is not a function
of a single, deterministic, prediction ŷ, but rather of the M
random predictions ŷ1:M generated i.i.d. from the model
p(y|x, θDtr) for the given test input x. Accordingly, we write
as s((x, y)|ŷ1:M ) the scoring function, which measures the
loss obtained by the trained model on an example z = (x, y)
based on the random predictions ŷ1:M .

The work [23] proposed the scoring function

s(z = (x, y)|ŷ1:M ) = min
m∈{1,...,M}

|y − ŷm|. (10)

This loss metric uses the best among the M random predic-
tions ŷm to evaluate the score on example z as the Euclidean
distance |y − ŷm| between the best prediction ŷm and the
output y [23].

Having defined the scoring function as in (10), PCP ob-
tains a set predictor (5) as for CP by replacing the scoring
function s(z|θ), e.g., the quadratic loss (y − f(x|θ))2, with
the scoring function (10) for both test and calibration pairs.
This yields the set predictor

ΓM (x|Dcal, θDtr) =
{
y′ ∈ Y : s((x, y′)|ŷ1:M ) (11)

≤ Q1−α

({
s(z[i]|ŷ1:M [i])

}|Dcal|
i=1

)}
.

When evaluated using the scoring function (10), this results
in a generally disjoint set of intervals for scalar variables (and
circles for two-dimensional variables) [23].

As long as the examples in the calibration set Dcal and
the test example z are finitely exchangeable random variables
(Assumption 1), the PCP set predictor (11) is well calibrated
as formalized next.

Theorem 2 (Calibration of PCP [23]). Under Assumption 1
with sampling procedure following (9), for any miscoverage
level α ∈ (0, 1) and for any trained model θDtr , the PCP set
predictor (11) satisfies the inequality

Pr(y ∈ ΓM (x|Dcal, θDtr)) ≥ 1− α, (12)

with probability taken over the joint distribution of the test
data z, of the calibration data set Dcal, and also over the
independent random predictions ŷ1:M and {ŷ1:M [i]}|D

cal|
i=1

produced by the model for test and calibration points.

A proof of Theorem 2 is provided for completeness in
Appendix B.

IV. QUANTUM CONFORMAL PREDICTION
In this section, we describe the proposed QCP method, a
post-hoc calibration scheme for quantum machine learning
that treats PQCs as implicit, i.e., likelihood-free, probabilistic
models.

A. PQCS AS IMPLICIT PROBABILISTIC MODELS
As discussed in Sec. II-C, the output of PQCs is typically
taken to be the expectation (8) of one or more observables.
However, the exact evaluation of this quantity requires the
capacity to run the PQC for an arbitrarily large number of
times in order to average over a, theoretically infinite, number
of shots. In contrast, in this section, we view the output
of the PQC over any, potentially small, number of shots as
probabilistic.

To elaborate, let us fix a trained model parameter vector
θDtr , as well as a projective measurement defined by the
projection matrices {Πj}N

′

j=1 and corresponding numerical
outputs {oj}N

′

j=1 as in (7). For any input x, the output ŷ
obtained from the model equals value oj with probability

p(ŷ = oj |x, θDtr) = Tr(Πjρ(x|θDtr)). (13)

The distribution (13) is generally not directly accessible.
Rather, the model is implicit, in the sense that all that can
be observed by a user are samples ŷ ∼ p(y|x, θDtr) drawn
from it.

Treating a PQC as an implicit probabilistic model has the
additional advantage that one can seamlessly account for the
presence of quantum hardware noise. To this end, let us write
as ρ̃(x|θDtr) the quantum embedding produced by a noisy
quantum computer. The density matrix ρ̃(x|θDtr) accounts
also for the effect of quantum channels describing gate noise
[30]–[33]. Then, the noisy PQC can be viewed as an implicit
probabilistic model that, for any input x, produces a sample
ŷ equal to oj with probability

p(ŷ = oj |x, θDtr) = Tr(Πj ρ̃(x|θDtr)) (14)

for all j = 1, ..., N ′. One can also similarly account for
other sources of noise, including in the preparation and
measurement phases [34]–[36].

We will follow the standard assumption that each new m-
th measurement, or shot, for a given input x produces an
independent output ŷm with distribution (14). Accordingly,
given an input x, we will assume the availability of M inde-
pendent measurements ŷ1:M = {ŷm}Mm=1 from distribution
(14). This is in line with the assumption made in PCP, which
considers the output predictions in (9) to be i.i.d. While we
will not elaborate on this point further, we note that it is also
possible to extend the properties of QCP to more general
measurement models characterized by correlation across the
measurement outputs ŷ1:M produced for each input x, as
long as there is no correlation across shots for distinct inputs
x. This correlation may arise, for instance, due to a system or
diffusive drift in the quantum noise processes [37]. We note
that, in practice, correlations may also extend across multiple
inputs x [24].

B. QUANTUM CONFORMAL PREDICTION
For a test input x, QCP processes the M predictions ŷ1:M =
{ŷm}Mm=1 made via the PQC with the goal of producing a
well-calibrated set predictor with generalization guarantees.
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FIGURE 3. (i) In PCP, the score for each calibration example z[i] = (x[i], y[i]) is evaluated based on independent random predictions ŷ1:M [i] produced by the
trained model as in (9). As an example, using the scoring function (10), the score is obtained by evaluating the minimum distance between the true output y[i] and
the M random predictions ŷm[i]. (ii) The PCP set predictor uses the M random predictions ŷ1:M for test input x in a similar way in order to evaluate the score of
every possible candidate output y′ ∈ Y . With the scoring function (10), PCP yields a predictive set given by disjoint regions in the plane. This set is guaranteed to
contain the true output y with the predetermined coverage level 1 − α.

As detailed in the previous subsection, the M predictions are
obtained via M independent measurements of the output of
the PQC, which are distributed as in (14). Following the CP
framework, QCP leverages a calibration data setDcal consist-
ing of |Dcal| calibration examples z[i] for i = 1, ..., |Dcal|. In
the rest of this subsection, we detail the operation of QCP,
which is illustrated in Fig. 4 and summarized in Algorithm 1.

Like CP and PCP, QCP is divided into an offline phase,
taking place only once based on the calibration data set, and
a testing phase in which set predictions are produced for a set
of desired test inputs. Both phases rely on the specification of
a scoring function s(z|ŷ1:M ), which, given an example z =
(x, y), quantifies the prediction loss associated with samples
ŷ1:M produced by the PQC in response to an input x when
the correct output is y. The scoring function may be selected
as in (10), as suggested in [23]. More general choices, which
will be proved to be advantageous in Sec. VII, are presented
in Sec. IV-D.

During the offline phase, for each calibration point z[i],
the PQC with trained model parameter vector θDtr generates
M independent predictions ŷ1:M [i] = {ŷm[i]}Mi=1 from
distribution (13) (Fig. 4-(i)). Then, following the CP method-
ology detailed in Sec. II-B, QCP divides the possible values
returned by the scoring function into an acceptance region
and a rejection region (Fig. 4-(ii)). The acceptance threshold
is given by the ⌈(1 − α)(|Dcal| + 1)⌉-th smallest value in
the set {s(z[1]|ŷ1:M [1]), ..., s(z[|Dcal|]|ŷ1:M [|Dcal|]),∞} of
scores for the calibration data points. As in Sec. II-B, this
quantity is denoted as Q1−α({s(z[i]|ŷ1:M [i])}|D

cal|
i=1 ).

In the testing phase, for a test input x, the PQC with
the same trained model parameter vector θDtr produces M
predictions ŷ1:M (Fig. 4-(iii, dotted box)). Finally, QCP pro-
duces the prediction set ΓM (x|Dcal, θDtr) ⊆ Y of the target
space Y , by including in the set predictor ΓM (x|Dcal, θDtr)
all candidate outputs y′ ∈ Y whose scores s((x, y′)|ŷ1:M )
lie in the acceptance region (Fig. 4-(iii)). Accordingly, the

QCP set predictor is defined as

ΓM (x|Dcal, θDtr) =
{
y′ ∈ Y : s((x, y′)|ŷ1:M ) (15)

≤ Q1−α

({
s(z[i]|ŷ1:M [i])

}|Dcal|
i=1

)}
.

In Algorithm 1, which summarizes QCP, the complexity
of the offline phase (lines 3–7) can be amortized by reusing
the threshold identified during this phase across multiple test
inputs. In this regard, for general scoring functions, it may not
be feasible to try out all values of y′ ∈ Y for inclusion in the
predictive set (lines 11–14). This problem can be addressed
in one of two ways. First, for specific scoring functions, such
as (10), the predictive set can be obtained in closed form,
as we elaborate on in Sec. IV-D. Second, it is possible to
quantize the target space in order to reduce the complexity of
the search among values of y′ ∈ Y to include in the predictive
set [38].

C. THEORETICAL CALIBRATION GUARANTEES
QCP inherits the calibration properties of CP and PCP. In
particular, as long as the examples in the calibration set Dcal

and the test example z are finitely exchangeable random
variables (Assumption 1), the QCP set predictor (15) is well
calibrated at coverage level 1− α, as detailed next.

Theorem 3 (Calibration of QCP). Under Assumption 1 with
sampling procedure following (14), for any coverage level
1−α ∈ (0, 1) and for any trained PQC with model parameter
vector θDtr , the QCP set predictor (11) satisfies the inequality

Pr(y ∈ ΓM (x|Dcal, θDtr)) ≥ 1− α, (16)

with probability taken over the joint distribution of the test
data z, of the calibration data set Dcal, and of the indepen-
dent random predictions ŷ1:M and {ŷ1:M [i]}|D

cal|
i=1 produced

by the PQC for test and calibration points, respectively.

A proof of Theorem 3 is provided in Appendix B.
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FIGURE 4. Illustration of QCP for a PQC with trained parameter vector θDtr and for a scoring function s((x, y)|ŷ1:M ) (see Sec. IV-D): In the offline phase, (i) QCP
first computes a score for each calibration example based on M random predictions produced by the PQC; (ii) then, based on the obtained |Dcal| calibration
scores, QCP divides the real line into an acceptance region and a rejection region by using as a threshold the (1 − α)-quantile of the calibration scores. In the
testing phase, (iii) QCP constructs a set predictor for a test input x by including in the set all candidate outputs y′ ∈ Y whose scores lie in the acceptance region.
(iv) The obtained QCP set predictor (green circle) is guaranteed to satisfy the validity condition (16).

D. SCORING FUNCTION
In this subsection, we elaborate on possible choices for the
scoring function to be used in QCP. We note that the same
considerations apply also to PCP. We start by interpreting
the scoring function (10) assumed by PCP as the loss as-
sociated with a non-parametric estimate of the conditional
distribution p(y|x, θ) of the target variable y given the input
variable x, where the estimate is obtained based on the
samples ŷ1:M produced by the model. We then observe that
any loss function for a probabilistic predictor, coupled with
an estimate of the conditional distribution p(y|x, θ), yields a
valid scoring function.

To elaborate, we review the notion of loss function for an
explicit probabilistic predictor p(y|x, θ) (see, e.g., [7, Sec.
2.2.2]). An explicit probabilistic predictor is one that out-
puts the probability distribution p(y|x, θ). Given an example
z = (x, y), the loss accrued by probabilistic model p(y|x, θ)
can be evaluated as g(p(y|x, θ)), where g(·) is a strictly
decreasing function. Accordingly, the loss increases if the
model assigns a lower probability p(y|x, θ) to the correct
output y given input x. Typical examples of such functions
include the negative logarithm, which yields the log-loss
− log p(y|x, θ), and the inverse function 1/p(y|x, θ) (see,
e.g., [3, Sec. 6.7] for further examples).

The class of loss functions outlined in the previous para-
graph is not applicable to implicit models, which do not

produce the probabilities p(y|x, θ), but only samples from
this distribution. However, given M samples ŷ1:M gener-
ated i.i.d. from the distribution p(y|x, θ), one can obtain
an estimate p̂(y|x, θ) of the probability p(y|x, θ). The key
observation of this subsection is that such an estimate can be
used to define a scoring function as follows.

Definition 1 (Scoring function for implicit models). Given
M i.i.d. predictions ŷ1:M drawn from a model p(y|x, θ) for
input x, a scoring function for input-output pair z = (x, y)
is defined as

s(z|ŷ1:M ) = g(p̂(y|x, θ)), (17)

where g(·) is a monotonically decreasing function and
p̂(y|x, θ) is an estimator of the probability p(y|x, θ) obtained
as a function of the samples ŷ1:M .

To define a score function as in (17) one can generally use
either non-parametric density estimators, including kernel
density estimation [39], variable kernel density estimation
[40], [41], and histogram-based density estimation [42]; or
parametric density estimators, including contrastive density
learning [43], and normalizing flows [44] (see, e.g., [5,
Sec. 7.3] for a summary).

We elaborate here on the use of non-parametric estimators,
and we focus as done throughout the article on a scalar
target variable y. Given M samples ŷ1:M drawn i.i.d. from
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FIGURE 5. (i) In QCP, the score for each calibration example z[i] = (x[i], y[i]) is evaluated based on independent random predictions ŷ1:M [i] produced by the
trained model as in (9). Using the proposed scoring function (17)-(18), the score is obtained by evaluating the k-th smallest distance between the true output y[i]
and the M random predictions ŷm[i]. (ii) The QCP set predictor uses the M random predictions ŷ1:M for test input x in order to evaluate the score of every
possible candidate output y′ ∈ Y . QCP yields a predictive set given by disjoint regions in the plane. By not relying solely on the closest prediction as PCP (see
Fig. 3), the prediction sets produced by QCP can be more robust to noisy predictions (see Sec. VII). This set is guaranteed to contain the true output y with the
predetermined coverage level 1 − α.

Algorithm 1: Quantum Conformal Prediction (QCP)

Input: trained parameter vector θDtr for the PQC;
calibration data set
Dcal = {z[i] = (x[i], y[i])}|D

cal|
i=1 ; test input x;

number of shots M ≥ 1; desired coverage
level 1− α

Output: well-calibrated predictive set
ΓM (x|Dcal, θDtr) at coverage level 1− α

1 choose scoring function s((x, y)|ŷ1:M ) as outlined in
Sec. IV-D

2 Offline phase
3 for i-th calibration data example z[i] with

i = 1, ..., |Dcal| do
4 given input x[i], produce M independent

predictions ŷ1:M [i] = {ŷm[i]}Mm=1 via M shots
of the PQC

5 compute the corresponding score s(z[i]|ŷ1:M [i])
6 end
7 find the ⌈(1− α)(|Dcal|+ 1)⌉-th smallest value

among the obtained scores, which is denoted as
Q1−α({s(z[i]|ŷ1:M [i])}|D

cal|
i=1 )

8 Testing phase for input x
9 initialize predictive set ΓM (x|Dcal, θDtr)← {}

10 for test input x, make M predictions
ŷ1:M = {ŷm}Mm=1 via PQC

11 for candidate output y′ ∈ Y do
12 compute the corresponding score s((x, y′)|ŷ1:M )

13 if s((x, y′)|ŷ1:M ) ≤ Q1−α({s(z[i]|ŷ1:M [i])}|D
cal|

i=1 )
14 ΓM (x|Dcal, θDtr)← ΓM (x|Dcal, θDtr) ∪ {y′}
15 end
16 return the predictive set ΓM (x|Dcal, θDtr) for test

input x

distribution p(y|x, θ), and a positive integer k ≤ M , the

k-nearest neighbor (k-NN) density estimator of p(y|x, θ) is
given by [41]

p̂(y|x, θ) = k

2M |y − ŷm|(k)
, (18)

where |y − ŷm|(k) is the k-th smallest Euclidean distance in
the set of distances {|y − ŷm|}Mm=1. This estimate is asymp-
totically consistent: As long as k grows suitably with M , the
estimate (18) tends to the true distribution p(y|x, θ) pointwise
in probability [41]. In particular, parameter k should be
selected in such a way that the limits limM→∞ k(M) = ∞
and limM→∞ k(M)/M = 0 are satisfied. An example of
such dependence is given by [41]

k(M) =
⌈
M1/2

⌉
. (19)

With this background in place, we can now show that the
PCP scoring function (10) corresponds to a special case of
the class of scoring functions (17). In fact, with the inverse
function for g(·) and the 1-NN estimator (18), the scoring
function (17) reads

s(z = (x, y)|ŷ1:M ) =
1

p̂(y|x, θ)
= 2M |y − ŷm|(1), (20)

which equals (10) apart from an inessential multiplicative
constant.

In the experiments in Sec. VII, we will consider the more
general scoring function in class (20) obtained with the k-NN
predictor (18). With this choice, the QCP set predictor (15),
as well as the PCP set predictor (11) can be expressed as

ΓM (x|Dcal, θDtr) (21)

=
{
y′ ∈ Y :

M∑
m=1

1
(
y′ ∈ Bq(Dcal)(ŷ

m)
)
≥ k}

}
,

in which Bq(Dcal)(y) is the closed interval with center point y,
i.e., Br(y) = {y′ ∈ Y : |y − y′| ≤ r}, and radius q(Dcal) =

Q1−α

({
|y[i] − ŷm[i]|(k)

}|Dcal|
i=1

)
. Illustration of the QCP set
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predictor with k chosen as (19) can be found in Fig. 5, while
experimental study regarding the impact of k on the size of
the set predictor (21) can be found in Appendix C.

E. APPLICATION TO QUANTUM DATA
So far we have focused on situations in which input data x
is of classical nature. Accordingly, given a pre-trained PQC,
one can produce M copies of the quantum embedding state
ρ(x|θDtr) to be used by QCP in order to yield the set predictor
ΓM (x|Dcal, θDtr). However, QCP can be equally well applied
to settings in which the pre-trained model takes as input
quantum data. We briefly elaborate on this applications in
the rest of this subsection by focusing on the classification
of quantum data.

Assume that there are C classes of quantum states, in-
dexed by variable y ∈ {1, ..., C}, such that the y-th class
corresponds to a density matrix ρ(y). The data generating
mechanism is specified by a distribution p(y) over the class
index y and by the set of density matrices ρ(y) with y ∈
{1, ..., C}. Given any pre-designed positive operator-valued
measurement (POVM) defined by positive semidefinite ma-
trices P = {P1, ...,PC}, the POVM produces output ŷ with
probability

ŷ ∼ p(y|ρ,P) = Tr(Pyρ). (22)

Note that the POVM P can be implemented via a pre-trained
PQC with parameter vector θDtr followed by a projective
measurement as per the setting considered above, yielding
(13) when removing input x. Here we adopt a more general
formulation. As we will see in Sec. VII-C, this allows us
to consider other quantum detectors such as pretty good
measurements [45], [46].

The goal of QCP is to use the predesigned model operating
on M copies of a test state ρ ∈ {ρ(1), ..., ρ(C)}, denoted as
ρ⊗M , as well as M copies of each example in the calibration
data set Dcal, to produce a set predictor ΓM (ρ⊗M |Dcal,P)
that contains the true label with predetermined coverage
level 1 − α. The calibration data is of the form Dcal =
{(ρ(y[i])⊗M , y[i])}|D

cal|
i=1 , where label y[i] ∈ {1, ..., C} and

M copies of corresponding state ρ(y[i]) are available for
each i-th calibration example. Mathematically, the reliability
requirement can be expressed as the inequality

Pr
(
y ∈ ΓM (ρ(y)⊗M |Dcal,P)

)
≥ 1− α, (23)

where the probability Pr(·) is taken over the i.i.d. calibration
and test labels y,y[1], ...,y[|Dcal|] ∼ p(y) and over the
independent random predictions ŷ1:M and {ŷ1:M [i]}|D

cal|
i=1 in

(22).
QCP can be directly applied to the test predictions ŷ1:M

and to the calibration predictions {ŷ1:M [i]}|D
cal|

i=1 as detailed
in Algorithm 1. By Theorem 3, QCP satisfies the reliability
condition (16). We also emphasize, following the discussions
in Sec. IV-A, that the result applies also in the presence of
quantum noise affecting the copies of the input states. Such
noise can be generally expressed as a channelN (·) acting on

the M copies asN (ρ⊗M ), as long as the same channelN (·)
affects both test and calibration input examples.

V. CALIBRATION GUARANTEES OVER A FINITE
NUMBER OF EXPERIMENTS
In the previous sections, we have described CP schemes that
satisfy calibration conditions, namely (4), (12), and (16), that
are defined on average over the calibration and test data
points. For PCP and QCP, the average is also taken with
respect to the random predictions produced for calibration
and test data points. In this section, we elaborate on the
practical significance of this expectation.

Suppose that we run CP, PCP or QCP (Algorithm 1) over
K runs that use independent calibration and test data. What
is the fraction of such runs that meet the condition that the
true output is included in the predictive set? Ideally, this
fraction will be close to the desired target 1 − α with high
probability. In fact, by the results in the previous sections and
by the law of large numbers, as K grows large, this fraction
of “successful” experiments will tend to 1 − α. What can
be guaranteed for a finite number K of experiments? In the
following, we address this question for conventional CP first,
and then for PCP and QCP.

A. CONVENTIONAL CP

Following the setting described above, let us consider K
experiments, such that in each k-th experiment we draw
calibration and test data from the joint distribution p(Dcal, z),
i.e., (Dcal

k , zk) ∼ p(Dcal, z). For each experiment, we evalu-
ate whether the prediction set (5) produced by CP contains
the true target label yk or not. Accordingly, the fraction of
“successful” experiments is given by

P̂ =
1

K

K∑
k=1

1
(
yk ∈ Γ(xk|Dcal

k , θDtr)
)
, (24)

where 1(·) is the indicator function (1(true) = 1 and
1(false) = 0). To restate the question posed at the beginning
of this section, given K, how large can we guarantee the
success rate P̂ to be?

By the exchangeability of calibration and test data (As-
sumption 1), which implies the exchangeability of the
|Dcal| + 1 scores evaluated on calibration and test data (see
Appendix B), the distribution of random variable KP̂ is
given by the binomial

KP̂ ∼ Binom
(
K,
⌈(1− α)(|Dcal|+ 1)⌉

|Dcal|+ 1

)
, (25)

if ties between the |Dcal| + 1 scores occur with probability
zero (see [8], [47] for other uses of this assumption). Note
that the distribution (25) can be recovered from [10, Sec. C]
by setting the number of test points to be one (see also [48]).
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1 − α

Fig. 5

1 − α

1 − α

FIGURE 6. (top) Normalized density of the empirical coverage rate P̂
obtained from K = 100, 1000, 10000 independent trials. (bottom) Probability
that the empirical coverage rate P̂ satisfies the validity condition with tolerance
level, or backoff probability, ϵ as a function of ϵ, for K = 100, 1000, 10000
independent trials (α = 0.1, |Dcal| = 9).

This implies that the success rate P̂ is larger than 1−α− ϵ
for any ϵ > 0 with probability

Pr(P̂ ≥ 1− α− ϵ) (26)
= I ⌈(1−α)(|Dcal|+1)⌉

|Dcal|+1

(⌈K(1− α− ϵ)⌉, ⌊K(α+ ϵ)⌋+ 1),

with regularized incomplete beta function Ix(a, b) =
B(x; a, b)/B(a, b), where B(x; a, b) =

∫ x

0
ta−1(1− t)b−1dt

and B(a, b) = B(1; a, b) [49].
Fig. 6 shows the probability distribution of random vari-

able P̂, as well as the probability (26) as a function of
tolerance level ϵ for different number of experiments K =
100, 1000, 10000, given α = 0.1 and |Dcal| = 9. The
top figure confirms that, by the law of large numbers, the
distribution of success rate P̂ concentrates around the value
1−α = 0.9. The bottom figure can be used to identify a value
of the backoff probability ϵ that allows one to obtain finite-K
guarantees on the success rate 1− α− ϵ. For instance, when
K = 1000, we observe that setting ϵ = 0.03 guarantees a
success rate P̂ no smaller than 0.87 with probability larger
than 0.999.

B. PROBABILISTIC AND QUANTUM CP
In the case of PCP and QCP, each k-th experiment involves
also the predictions {ŷ1:M

k [i]}|D
cal|

i=1 for the calibration points
Dcal

k , and ŷ1:M
k for the test data zk, following either (9)

(PCP) or (14) (QCP). Despite the presence of the additional
randomness due to the stochastic predictions, the finite-K
guarantees (25)-(26) still hold for the fraction of “successful”
experiments

P̂M :=
1

K

K∑
k=1

1
(
yk ∈ ΓM (xk|Dcal

k , θDtr)
)

(27)

for PCP and QCP if ties between the |Dcal| + 1 scores occur
with probability zero. This is because the |Dcal|+1 scores for
calibration and test data are exchangeable also for PCP and
QCP due to the exchangeability of calibration and test data
(Assumption 1), and to the independence of M predictions
(9), (14) for distinct inputs.

VI. EXPERIMENTAL SETTINGS
In the rest of this article, we demonstrate the validity of the
proposed QCP method by addressing both an unsupervised
learning task, namely density learning, and a supervised
learning task, namely regression. We start in this section
by describing the experimental settings, including problem
definition and assumed PQC ansatzes, while the next section
presents the experimental results. We cover first density
learning and then regression.

A. UNSUPERVISED LEARNING: DENSITY LEARNING

Given a data set D = {y[i]}|D|
i=1, with training samples y[i]

following an unknown population distribution p∗(y) on the
real line, density estimation aims at inferring some properties
about the distribution p∗(y) (see, e.g., [5, Sec. 7.3]). We make
the standard assumption that the data points in set D are
drawn i.i.d. from the population distribution p∗(y). Follow-
ing [51], we specifically focus on the problem of reliably
identifying a collection of intervals that are guaranteed to
contain a test sample y ∼ p∗(y) with coverage probability
at least 1 − α, as illustrated in Fig. 7-(i). We recall that,
with CP, PCP, and QCP, the coverage probability is evaluated
also with respect to the calibration data set. The ground-truth
population distribution p∗(y) is the mixture of Gaussians
p∗(y) = 1

2N (−0.75, 0.12) + 1
2N (0.75, 0.12) as also shown

in Fig. 7-(i).

1) Benchmarks

For deterministic CP and for QCP, set predictors are obtained
from (5) and (15), respectively by disregarding the input
x. Accordingly, we denote the corresponding set predictors
as Γ(Dcal, θDtr) and ΓM (Dcal, θDtr), respectively. As bench-
marks, we consider an ideal support estimator and a naïve
support predictor based on a pre-trained PQC.

The smallest support set with coverage 1− α is given by

Γopt = arg min
Γ∈2Y

|Γ| s.t.
∫
y∈Γ

p∗(y)dy ≥ 1− α. (28)

This is depicted in Fig. 7-(i) using a gray shaded area. This
set offers an idealized solution, and it cannot be evaluated
in practice, since the ground-truth distribution p∗(y) is not
known.

Consider now a trained PQC that implements an implicit
probabilistic model p(y|θD), where θD is the parameter
vector optimized based on data set D. Replacing the ground-
truth distribution p∗(y) with the trained probabilistic model

VOLUME -, 2023 11

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2023.3333224

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Park and Simeone: Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

FIGURE 7. Illustration of the unsupervised learning problem of support estimation, in which the goal is to use the samples drawn from the PQC, as well as
additional calibration data Dcal, to estimate the support at coverage level 1− α of the ground-truth probability density p∗(y). (i) Ground-truth (unknown) distribution
p∗(y) and smallest support set (28) with coverage 1 − α = 0.9 (gray area), along with |Dtr| = 10 training examples (crosses) and |Dcal| = 10 calibration
examples (circles); Histogram of the M = 200 samples ŷ1:M obtained via a PQC trained using the data set shown in part (i) and implemented via: (ii) a classical
simulator; (iii) the imbq_quito NISQ device made available through IBM Quantum; and (iv) the imbq_quito NISQ device with M3 quantum error mitigation
(QEM) [50]. (v) Predicted intervals produced by the naïve set predictor (29), by deterministic CP, and by QCP (k = 1 and k = ⌈M1/2⌉) (15) for one realization of
the calibration data set. The estimated empirical coverage probability for the set predictors is also indicated.

FIGURE 8. Illustration of the assumed hardware-efficient ansatz for density
learning.

p(y|θD) in (28), a naïve support predictor can be obtained as

Γnaïve
M (θD) = arg min

Γ∈2Y
|Γ| s.t.

∫
y∈Γ

p(y|θD)dy ≥ 1− α.

(29)

To evaluate the set in (29), samples ŷ1:M drawn from the
trained model p(y|θD) are used to approximate the integral
in (29) via Monte Carlo integration.

2) PQC Ansatz
We adopt the standard hardware-efficient ansatz, which has
also been previously used for the related unsupervised learn-
ing task of training generative quantum models [21], [22],

[52]. As shown in Fig. 8, the parameterized unitary matrix
U(θ) operates on a register of n qubits, which are initially in
the fiducial state |0⟩. The parameterized unitary matrix U(θ)
consists of L layers applied sequentially as

U(θ) = UL(θ) · UL−1(θ) · · ·U1(θ), (30)

with Ul(θ) being the unitary matrix corresponding to the l-th
layer.

Following the hardware-efficient ansatz, the unitary Ul(θ)
can be written as (see, e.g., [3, Sec. 6.4.2])

Ul(θ) = Uent(R(θ1l,1, θ
2
l,1, θ

3
l,1)⊗ · · · ⊗R(θ1l,n, θ

2
l,n, θ

3
l,n)),

(31)

where Uent is an entangling unitary, while

R(θ1, θ2, θ3) = RZ(θ
1)RY (θ

2)RZ(θ
3) (32)

represents a general parameterized single-qubit gate with
Pauli rotations RP (θ) = exp(−i θ2P ) for P ∈ {Y, Z}. By
(31), the parameter vector θ is the collection of the angles
[θ1l,k, θ

2
l,k, θ

3
l,k] for all k-th qubits and all l-th layers, i.e.,

θ = {{θ1l,k, θ2l,k, θ3l,k}nk=1}Ll=1.
Given the PQC described above, for a fixed model param-

eter vector θ, M predictions ŷ1:M are obtained by measuring
a quantum observable O under the quantum state

ρ(θ) = U(θ)|0⟩⟨0|U(θ)† (33)
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FIGURE 9. Illustration of the supervised learning problem of regression under study, in which the goal is to use the samples drawn from the PQC, as well as
additional calibration data Dcal, in order to produce a subset of predicted values at coverage probability 1 − α for the target y given test input x. (i) Ground-truth
(unknown) minimal 1 − α conditional support (35) (gray area), along with |Dtr| = 90 training examples (crosses) and |Dcal| = 10 calibration examples (circles); (ii)
First and third columns: M = 100 measurements obtained from a PQC with trained model based on the entire data set, θD (first column) and based only on the
data partition, θDtr (third column), with the PQC being implemented either using a classical simulator or the imbq_quito NISQ device made available through IBM
Quantum with or without M3 QEM [50]. (ii) Second and fourth columns: Predicted intervals produced by the naïve set predictor (36) and by QCP (15) for one
realization of the calibration data set. The estimated empirical coverage probability via naïve set prediction and QCP set prediction is also indicated.

produced as the output of the PQC. Measurements are im-
plemented in the computational basis, i.e., with projection
matrices Πj = |j⟩⟨j|, denoting as |j⟩ the one-hot amplitude
vector with 1 at position j for j = 1, ..., N . We choose
the possible values {oj}Nj=1 to be equally spaced in the
interval [−1, 1]. Accordingly, we set the j-th eigenvalue of
the observable O as oj = −1 + 2(j − 1)/(N − 1).

We adopt a PQC with n = 5 qubits, and the entangling
unitary consists of controlled-Z (CZ) gates connecting suc-
cessive qubits, i.e., Uent =

∏n−1
k=1 C

Z
k,k+1, where CZ

k,k+1 is
the CZ gate between the k-th qubit and (k + 1)-th qubit. We
set number of layers to L = 2. We implemented the described
PQC on (i) a classical simulator; (ii) on the imbq_quito
NISQ device made available through IBM Quantum; and (ii)
on the imbq_quito NISQ device with M3 quantum error
mitigation [50].

B. SUPERVISED LEARNING: REGRESSION

In the regression problem under study, we aim at predict-
ing a scalar continuous-valued target y given scalar input
x, with input and output following the unknown ground-

truth joint distribution p∗(x, y). We assume access to a data
set D = {z[i] = (x[i], y[i])}|D|

i=1, with training samples
z[i] ∼ p∗(x, y) drawn in an i.i.d. manner.

We specifically consider the mixture of two sinusoidal
functions for the ground-truth distribution, as given by

p∗(y|x) = 1

2
N (µ(x), 0.052) +

1

2
N (−µ(x), 0.052)

and p∗(x) = U(−10, 10), (34)

where we have denoted as U(a, b) the uniform distribution in
the interval [a, b], and we set µ(x) = 0.5 sin(0.8x) + 0.05x.
We note that bimodal distributions such as (34) cannot be rep-
resented by standard classical machine learning models used
for regression that assume a Gaussian conditional distribution
p(y|x, θ) with a parameterized mean [53]–[55].

1) Benchmarks

Benchmarks for regression generalize the approaches de-
scribed in Sec. VI-A1 for unsupervised learning. Accord-
ingly, the smallest prediction interval with coverage 1 − α
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for input x is given by

Γopt(x) = arg min
Γ∈2Y

|Γ|

s.t.
∫
y∈Γ

p∗(y|x)dy ≥ 1− α. (35)

This is illustrated in Fig. 9-(i) as a gray shaded area. Since
this ideal interval cannot be computed, a naïve set predictor
alternative is to replace the ground-truth distribution p∗(y|x)
with a model p(y|x, θD) trained using the available data D.
This yields

Γnaïve
M (x|θD) = arg min

Γ∈2Y
|Γ|

s.t.
∫
y∈Γ

p(y|x, θD)dy ≥ 1− α, (36)

where the integral is approximated via Monte Carlo integra-
tion using samples ŷ1:M drawn from the model p(y|x, θD).

2) PQC Ansatz
As for the problem of density estimation, we adopt the
hardware-efficient ansatz, with the key difference that the
parameterized unitary matrix U(x|θ) also encodes the input
x. In this regard, we follow the data reuploading strategy
introduced in [56], which encodes the input x across all
layers of the PQC architecture. This has been shown to offer
significant advantages in terms of model expressivity [56].
We explore three different data encoding solutions in order
of complexity: (i) conventional fixed angle encoding [57];
(ii) learned linear angle encoding as studied in [56]; and
(iii) learned non-linear angle encoding, which appears not
to have been considered before and may be of independent
interest.

The parameterized unitary matrix U(x|θ) with L layers is
defined as (cf. (30))

U(x|θ) = UL(x|θ) · UL−1(x|θ) · · ·U1(x|θ), (37)

with the unitary matrix Ul(x|θ) for each l-th layer modelled
as (cf. (31))

Ul(x|θ) (38)

= Uent(R(ϕ1
l,1, ϕ

2
l,1, ϕ

3
l,1)⊗ · · · ⊗R(ϕ1

l,n, ϕ
2
l,n, ϕ

3
l,n)),

with Uent and R(ϕ1, ϕ2, ϕ3) defined as in Sec. VI-A2. Unlike
Sec. VI-A2, however, the three angles [ϕ1

l,k, ϕ
2
l,k, ϕ

3
l,k] for

k-th qubit at the l-th layer may encode information about
the input x. Note that we did not indicate this dependence
explicitly in the notation in order to avoid clutter. We set
L = 5.

Angle encoding can be generally expressed with a parame-
terized (classical) function f(·|θl,k) : X → [0, 2π]×[0, 2π]×
[0, 2π] that takes as input x and outputs three angles. The
function is parameterized by a vector θl,k, and is generally
written as

f(x|θl,k) = [ϕ1
l,k, ϕ

2
l,k, ϕ

3
l,k]. (39)

FIGURE 10. Illustration of the considered angle encoding strategies for the
hardware-efficient ansatz adopted for the regression problem: (i) fixed angle
encoding [57] has no trainable parameters for the data encoding block; (ii)
learned linear angle encoding assumes trainable linear weight parameters that
are multiplied with the input x [56]; (iii) learned non-linear angle encoding
strategy maps the input x to the gate-controlling angles via a classical neural
network.

Accordingly, the parameter vector θ contains n parame-
ter vectors θl,k for each l-th layer, i.e., we have θ =
{{θl,k}nk=1}Ll=1. As mentioned, we consider three types of
encoding functions, which are listed in order of increased
generality.

Denoting as f i(x|θl,k) the i-th output of the function
f(x|θl,k) in (39), conventional angle encoding sets [56]

ϕi
l,k = f i(x|θl,k) = x+ bil,k, (40)

where the model parameter vector encompasses the scalar
biases θl,k = {bil,k}3i=1.

Learning linear angle encoding sets the function f(x|θl,k)
as [56]

ϕi
l,k = f i(x|θl,k) = wi

l,kx+ bil,k, (41)

with parameters θl,k = {wi
l,k, b

i
l,k}3i=1 containing scalar

weights and scalar biases.
Finally, learned non-linear angle encoding implements

function f(x|θl,k) as a multi-layer neural network. In this
case, the parameter vector θl,k includes the synaptic weights
and biases of the neural network. In particular, we con-
sider a fully connected network with input x followed by
two hidden layers with 10 neurons having exponential lin-
ear unit (ELU) activation in each layer, that outputs the
3nL angles {{ϕ1

l,k, ϕ
2
l,k, ϕ

3
l,k}nk=1}Ll=1 for the PQC, i.e.,

[ϕ1
1,1, ϕ

2
1,1, ϕ

3
1,1, ϕ

1
1,2, ..., ϕ

3
1,n, ϕ

1
2,1, ..., ϕ

3
L,n]. We note that

non-parametric non-linear angle encoding [3, Sec. 6.8.1] and
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exponential angle encoding [58] are also non-linear forms of
angle encoding, which can be approximated via a suitable
choice of the neural network function f(x|θl,k) [59].

C. TRAINING
In this subsection, we elaborate on the implementation of
training for the PQCs described in the previous subsections.
We first note that the naïve predictors (29) and (36) use
the entire data set D for training, while QCP splits data
set D into a training set Dtr and a calibration set Dcal. We
adopt an equal split, with |Dtr| = |D|/2 training examples
and |Dcal| = |D|/2 calibration examples, unless specified
otherwise. For the rest of this subsection, we write the data
used for training as Dtr, with the understanding that for naïve
schemes, this set is intended to be the overall setD. We focus
on the more general supervised learning setting, for which
each training data example is a pair of input xtr and output
ytr, since for unsupervised learning it is sufficient to remove
the input xtr.

Given a training data set Dtr, the PQC model parameter
vector θDtr is trained using Adam [60] based on gradients
evaluated via automatic differentiation in PyTorch [61] on a
classical simulator. When training on a quantum hardware
device, the parameter-shift rule [27] is utilized to update the
parameters of the PQC. In the rest of this subsection, we
detail the loss functions used for the training of deterministic
predictors (8) and implicit probabilistic models (13).

1) Training PQCs as Deterministic Predictors
When the PQC is used as a deterministic predictor, the
prediction is given by ŷ = ⟨O⟩ρ(x|θ) as in (8). For this case,
we adopt the standard quadratic loss, yielding the empirical
risk minimization problem

θDtr = argmin
θ

|Dtr|∑
i=1

(ytr[i]− ⟨O⟩ρ(xtr[i]|θ))
2. (42)

2) Training PQCs as Implicit Probabilistic Models
When the PQC is used as an implicit probabilistic predictor,
with distribution p(ŷ = oj |x, θ) = Tr(Πjρ(x|θ)) as in (13),
we adopt the cross-entropy loss. To this end, we first quantize
the true label y of an example (x, y) so that the quantization
levels match the possible values {oj}N

′

j=1 obtained from the
measurement of the given observable O =

∑N ′

j=1 ojΠj .
Then, the empirical risk minimization problem tackled dur-
ing training is written as

θDtr = argmin
θ

|Dtr|∑
i=1

(− logTr(Πjiρ(x
tr[i]|θ))), (43)

where ji ∈ {1, ...., N ′} is the index of the eigenvalue oji that
is closest (in Euclidean distance) to the i-th training output
ytr[i].
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FIGURE 11. Density estimation with a weakly bimodal ground-truth Gaussian
distribution: Coverage and average size of the set predictors as a function of
number M of quantum measurements given |D| = 20 available training
samples. Training and testing are done on a classical simulator. The shaded
areas correspond to confidence intervals covering 95% of the realized values.

VII. EXPERIMENTAL RESULTS
This section describes experimental results for both the unsu-
pervised learning and supervised learning settings introduced
in the previous section.

A. UNSUPERVISED LEARNING: DENSITY LEARNING
As explained in the previous section, we compare the
performance of deterministic CP (Sec. II), which requires
an arbitrarily large number of shots, with the naïve pre-
dictor (29), and with the proposed QCP scheme (Al-
gorithm 1), in terms of their coverage probability and
of the average size of the predicted set. These met-
rics are evaluated using K = 1000 experiments as the
averages P̂supp = 1

K

∑K
k=1

∫
y∈Γ(Dcal

k ,θDtr )
p∗(y)dy and

1
K

∑K
k=1 |Γ(Dcal

k , θDtr)| for deterministic CP; and as the
averages P̂supp

M = 1
K

∑K
k=1

∫
y∈ΓM (Dcal

k ,θDtr )
p∗(y)dy and

1
K

∑K
k=1 |ΓM (Dcal

k , θDtr)| for QCP.

1) A Visual Comparison
Fig. 7 presents a visual comparison of the predicted sets
produced by the different techniques with |D| = 20 ex-
amples, assuming M = 200 measurements from the PQC.
Specifically, panel (v) in the figure displays examples of
predicted sets obtained with the training data and with the
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realizations of the calibration data set shown in panel (i) for
1−α = 0.9. Deterministic CP is observed to fail when faced
with a bimodal ground-truth distribution (shown in panel (i)).
This is because it makes the underlying design assumption
of a single-modal likelihood, as implied by the conventional
choice of the quadratic loss (42). As a result, deterministic
CP produces inefficient set predictors. In contrast, a naïve
set predictor tends to underestimate the coverage, since the
samples produced by the trained PQC are excessively con-
centrated around the modes of the two Gaussians as seen in
panels (ii)-(iv).

Unlike these baselines, the proposed QCP scheme prov-
ably meets the desired coverage level of 1−α = 0.9 (see The-
orem 3). Furthermore, as observed in the last two columns of
panel (v), it does so by producing efficient predicted sets, as
long as the value of the parameter k used in the proposed
QCP set predictor in (21) is properly chosen. In this regard,
it is observed that setting k = 1 as in the original PCP
work [23] does not provide good performance in terms of
efficiency of the set predictor in the presence of quantum
hardware noise (see second row and third column of panel
(v)), while setting k = ⌈M1/2⌉ = 15 ensures efficient set
predictors. This result suggests that increasing the value of
k enhances the robustness of the k-NN density estimator
in (18), with k = 1 yielding an excessive sensitivity to
randomness due to shot and quantum noise.

2) Quantitative Results with a Noiseless Simulator

We now provide numerical evaluations of the coverage prob-
ability and of the average size of the set predictor as a
function of the number of shots M produced by the PQC.
As in the example above, we also show the performance of
deterministic CP, which assumes M = ∞. We assume a
data set of |D| = 20 data points, a target miscoverage level
α = 0.1.

We start by assuming a weakly bi-modal ground-truth
distribution p∗(y), obtained as the mixture of Gaussians with
similar means given their standard deviation. We specifically
set p∗(y) = 1

2N (−0.15, 0.12) + 1
2N (0.15, 0.12). Fig. 11

shows coverage and average size of the set predictor as a
function of number of quantum measurements M . While CP-
based approaches provably provide well-calibrated support
estimators, the naïve predictor (29) fails to cover the 1−α of
the mass of the ground-truth distribution p∗(y).

In terms of coverage, since the weakly bimodal distri-
bution at hand can be well approximated by a unimodal
Gaussian distribution, deterministic CP – labelled as “CP”
in the figure – performs well. While using a finite number
of samples, QCP performs comparably to CP as long as k
is suitably chosen as k = ⌈M1/2⌉ and M is not too small.
This is because, as illustrated in Fig. 7-(ii), the trained PQC
produces samples also in low-density regions of the ground-
truth distribution p∗(y), and the probability of obtaining
one or more of such samples increases with the number of
samples, M .
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FIGURE 12. Density estimation with a strongly bimodal ground-truth Gaussian
distribution: Coverage and average size of the set predictors as a function of
number M of quantum measurements given |D| = 20 available training
samples. Training and testing are done on a classical simulator. The shaded
areas correspond to confidence intervals covering 95% of the realized values.

We now consider a ground-truth Gaussian distribution
that presents a stronger bimodality. To this end, we set
p∗(y) = 1

2N (−0.75, 0.12)+ 1
2N (0.75, 0.12), and the results

are illustrated in Fig. 12. While the conclusions in terms
of coverage remain the same as in the previous example,
comparisons in terms of average predicted set size reveal
remarkably different behaviors of the considered predictors.
In particular, despite its requirements in terms of number of
shots, deterministic CP significantly underperforms QCP due
to the underlying assumption of unimodality of the likelihood
function. Using QCP with either k = 1 or k = ⌈M1/2⌉ yields
a reduction by a factor of 3 in the size of the predicted set.

3) Quantitative Results with Quantum Hardware Noise
Finally, we provide a quantitative performance comparison
based on results obtained on the imbq_quito NISQ device
with or without M3 quantum error mitigation (QEM) [50]. As
discussed in the previous section, for this case, training was
done using a classical simulator, and the quantum computer
was used solely for testing, i.e., to produce the density
support estimate. Additional experimental results with PQC
trained on imbq_quito NISQ device can be found in
Appendix C. For reference, for this experiment, we show
the performance of deterministic CP by using the empirical
average of the measurements, i.e., 1

M

∑M
m=1 ŷ

m, in lieu of
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FIGURE 13. Density estimation with a strongly bimodal ground-truth Gaussian
distribution: Coverage and average size of the set predictors as a function of
number M of quantum measurements given |D| = 20 available training
samples. Training is done on a classical simulator, while testing is implemented
on imbq_quito NISQ device, with or without M3 QEM [50]. The shaded
areas correspond to confidence intervals covering 95% of the realized values.

the true expectation ŷ = ⟨O⟩ρ(x|θDtr ). This allows to report
results for CP that depend on the number of shots, M .

Fig. 13 validates the conclusion reported in Sec. IV that
QCP is provably well calibrated despite the presence of
quantum hardware noise. In contrast, the naïve predictor is
not well calibrated, even in the absence of quantum hardware
noise (see Fig. 12). In this regard, the naïve predictor is
observed to benefit from quantum hardware noise, achieving
validity with a sufficiently large number of measurements
M ≥ 103. This can be understoood as a consequence of the
fact that quantum hardware noise tends to produce samples
that cover a wider range of output values [50], making it
easier to cover a fraction 1 − α of the mass of the original
density p∗(y) using the predictor (29).

In terms of average size of the prediction set, QCP with
k = 1 is seen to be particularly sensitive to quantum hard-
ware noise, as also anticipated with the examples in Fig. 7. In
this case, increasing the number of shots can be deleterious
as more noise is injected in the estimate of the predicted
set. In contrast, with k = ⌈M1/2⌉, the QCP set predictor
provides a significantly more robust performance to quantum
hardware noise, even in the presence of QEM. Moreover,
QEM is observed to improve the informativeness of the QCP
set predictor by enhancing the quality of the underlying
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
l,k,„

2
l,k,„

3
l,k}nk=1}Ll=1 for

the PQC, i.e., [„1
1,1,„

2
1,1,„

3
1,1,„

1
1,2, ...,„

3
1,n,„

1
2,1, ...,„

3
L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
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L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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FIGURE 14. Regression for mixture of two sinusoidal functions (34): Coverage
and average size of the set predictors as a function of the number |D| of
available data points given M = 1000 quantum measurements. Training and
testing are done on a classical simulator. The shaded areas correspond to
confidence intervals covering 95% of the realized values. The results are
averaged over K = 1000 experiments, and the transparent lines are used for
set predictors that do not meet the coverage level 1 − α = 0.9.

probabilistic predictor via the mitigation of quantum noise
(see, e.g., [62]).

B. SUPERVISED LEARNING: REGRESSION
In this subsection, we turn to the supervised learning problem
with ground-truth distribution (34). As done for unsupervised
learning, we compare QCP (Sec. IV) against deterministic
CP – in the ideal case of an infinite shots (Sec. II) – as well as
against the naïve predictor (36) by evaluating coverage prob-
ability and average size of the set predictors using K = 500
experiments as discussed in Sec. V.

1) A Visual Comparison
Fig. 9 presents a visual comparison of the different set
predictors assuming a data set of |D| = 100 data points
with M = 100 shots. We adopt learned non-linear angle
encoding as described in Sec. VI-B2 with neural network
composed of two hidden layers, each with 10 neurons having
ELU activations. Panel (ii) in the figure depicts examples
of predicted sets obtained with the training data and with
the realizations of the calibration data set shown in panel
(i) for 1 − α = 0.9. The naïve set predictor is observed to
underestimate the support of the distribution. This can be
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
l,k,„
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L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
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L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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FIGURE 15. Regression for mixture of two sinusoidal functions (34): Coverage
and average size of the set predictors as a function of the number |D| of
available training samples given M = 20 quantum measurements. Training
and testing are done on a classical simulator. The shaded areas correspond to
confidence intervals covering 95% of the realized values. The results are
averaged over K = 1000 experiments, and the transparent lines are used for
set predictors that do not meet the coverage level 1 − α = 0.9.

interpreted in light of the typical overconfidence of trained
predictors [1], [2], which causes the naïve predictor (36) to
concentrate on a smaller subset of values as compared to
the desired support, at level 1 − α = 0.9, of the ground-
truth distribution. In contrast, QCP provably satisfies the
predetermined coverage level of 1 − α = 0.9. Furthermore,
as seen in the last column of panel (ii), it also produces
efficient predicted sets with the choice k = ⌈M1/2⌉ in the
set predictor (21).

2) Quantitative Results with a Noiseless Simulator
We now provide numerical evaluations of the coverage prob-
ability and of the average size of the set predictor as a
function of the number |D| of data points for different angle
encoding strategies as described in Sec. VI-B2. For learning
non-linear angle encoding, we adopt the same architecture
described above. For CP set predictors, if |D| ≤ 20, we split
the data set D in equal parts for training and calibration;
while, when |D| > 20, we fix the number of calibration
examples to |Dcal| = 10 to use all the remaining data points
for training. We assume a target miscoverage level α = 0.1,
and the reported values of coverage and average size of the
set predictor are averaged over K = 1000 experiments as
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
l,k,„

2
l,k,„

3
l,k}nk=1}Ll=1 for
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3
L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).

27

co
ve

ra
ge

1 − α

co
ve

ra
ge naïve prediction

QCP, CP ( )M = ∞

non-linear angle encoding
linear angle encoding

conventional angle encoding

av
er

ag
e 

si
ze

 o
f t

he
 s

et
 p

re
di

ct
or

naïve prediction

QCP

CP ( )M = ∞
non-linear angle encoding

linear angle encoding
conventional angle encoding

number of data points (     )

Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
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L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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FIGURE 16. Regression for mixture of two sinusoidal functions (34): Coverage
and average size of the set predictors as a function of number M of quantum
measurements given |D| = 104 available training samples. Training and
testing are done on a classical simulator. The shaded areas correspond to
confidence intervals covering 95% of the realized values. The results are
averaged over K = 1000 experiments, and the transparent lines are used for
set predictors that do not meet the coverage level 1 − α = 0.9.

defined in Sec. V.
In Fig. 14 and Fig. 15, we show the coverage rate and av-

erage set size as a function of the number of data points, |D|,
with a large and small numbers of shots, namely M = 1000
and M = 20, respectively. In the first case, with a larger
M , given enough training examples, here, for |D| ≥ 104,
naïve prediction yields a well-calibrated set predictor that
achieves 1 − α coverage. This is the case when adopting
either linear [56] or non-linear angle encoding. In contrast,
naïve prediction fails to meet the coverage requirements for
smaller data set size; and also for the smaller value of M
irrespective of the data set size.

In line with their theoretical properties, deterministic CP
and QCP are guaranteed to provide coverage at the desired
level 1 − α, irrespective of data availability and number of
shots. However, despite the use of an arbitrarily large number
of shots, deterministic CP produces larger prediction set sizes
than QCP. As in the case of unsupervised learning studied in
the previous subsection, this is caused by the unimodality of
the likelihood function assumed by deterministic CP. As an
example, given |D| = 2000 with non-linear angle encoding,
when M = 1000, QCP yields set predictors with average size
0.76, while the average size of deterministic CP predictors
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Denoting as f i(x|◊l,k) the i-th output of the function f(x|◊l,k) in (38), conventional

angle encoding sets [52]

„i
l,k = f i(x|◊l,k) = x + bil,k, (39)

where the model parameter vector encompasses the scalar biases ◊l,k = {bil,k}3
i=1.

Learning linear angle encoding sets the function f(x|◊l,k) as [52]

„i
l,k = f i(x|◊l,k) = wi

l,kx + bil,k, (40)

with parameters ◊l,k = {wi
l,k, b

i
l,k}3

i=1 containing scalar weights and scalar biases.

Finally, learned non-linear angle encoding implements function f(x|◊l,k) as an L̃-layer

neural network. In this case, the parameter vector ◊l,k includes the synaptic weights and

biases of the neural network. In particular, we consider a fully connected network with

input x followed by two hidden layers with 10 neurons having exponential linear unit

(ELU) activation in each layer, that outputs the 3nL angles {{„1
l,k,„

2
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3
l,k}nk=1}Ll=1 for
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3
L,n]. We note that non-parametric non-

linear angle encoding [3, Sec. 6.8.1] and exponential angle encoding [54] are also non-linear

forms of angle encoding, which can be approximated via a suitable choice of the neural

network function f(x|◊l,k) [55].

6.3 Training

In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.

Given a training data set Dtr, the PQC model parameter vector ◊Dtr is trained using

Adam [56] based on gradients evaluated via automatic differentiation in PyTorch [57] on a

classical simulator. In the rest of this subsection, we detail the loss functions used for the

training of deterministic predictors (8) and implicit probabilistic models (13).
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In this subsection, we elaborate on the implementation of training for the PQCs described

in the previous subsections. We first note that the naïve predictors (28), (35) use the entire

data set D for training, while QCP splits data set D into a training set Dtr and a calibration

set Dcal. We adopt an equal split, with |Dtr| = |D|/2 training examples and |Dcal| = |D|/2
calibration examples, unless specified otherwise. For the rest of this subsection, we write

the data used for training as Dtr, with the understanding that for naïve schemes, this set

is intended to be the overall set D. Furthermore, we detail the more general supervised

learning setting for which each training data example is a pair of input xtr and output ytr.

Note that for unsupervised learning the input xtr is not available.
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FIGURE 17. Regression for mixture of two sinusoidal functions (34): Coverage
and average size of the set predictors as a function of number M of quantum
measurements given |D| = 100 available training samples. Training and
testing are done on a classical simulator. The shaded areas correspond to
confidence intervals covering 95% of the realized values. The results are
averaged over K = 1000 experiments, and the transparent lines are used for
set predictors that do not meet the coverage level 1 − α = 0.9.

is 1.74; and with M = 20 we obtain set size 1.74 with
deterministic CP and 0.94 for QCP.

We now further investigate the impact of the number M
of shots by focusing on regimes with abundant data, i.e.,
with |D| = 104, and with limited data, i.e., |D| = 100 in
Fig. 16 and Fig. 17, respectively. In a manner that parallels
the discussion in the previous paragraph on the role of the
data set size, if |D| is sufficiently large, naïve set prediction
achieves the desired coverage level as long as the number of
shots is also sufficiently large, here M ≥ 500 (Fig. 16). In
contrast, CP schemes attain calibration in all regimes, with
QCP significantly outperforming deterministic CP when M
is not too small. As an example, given M = 200 with non-
linear angle encoding, when |D| = 104, QCP yields set
predictors with average size 0.65, while the average size of
deterministic CP predictors is 1.73; and with |D| = 100
we obtain set size 2.21 with deterministic CP and 1.08 for
QCP. Following the discussion in the previous subsection,
an increase in the number of shots M does not necessarily
translate in more efficient set predictors, as it becomes more
likely for the PQC to draw outliers that cover low-density
areas of the ground-truth distribution.
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FIGURE 18. Regression for mixture of two sinusoidal functions (34): Coverage
and average size of the set predictors as a function of number M of quantum
measurements given |D| = 100 available training samples. Training is done
on a classical simulator, while testing is implemented on imbq_quito NISQ
device, with or without M3 QEM [50]. The shaded areas correspond to
confidence intervals covering 95% of the realized values. The results are
averaged over K = 500 experiments, and the transparent lines are used for
set predictors that do not meet the coverage level 1 − α = 0.9.

3) Quantitative Results with Quantum Hardware Noise
Moreover, we present a quantitative performance comparison
based on results obtained on the imbq_quito NISQ device
with or without M3 QEM. As discussed in the previous
section, for this case, training was done using a classical
simulator, and the quantum computer was used solely for
testing, i.e., to produce the set prediction given a test input.
In Fig. 18, we investigate the performance metrics as a
function of number of quantum measurements M . QCP with
parameter k = ⌈M1/2⌉ is confirmed to provide the best
performance within a suitable range of values of M , signifi-
cantly outperforming deterministic CP, even in the presence
of quantum noise, with or without QEM.

C. QUANTUM DATA CLASSIFICATION
Finally, to demonstrate the validity of QCP when applied
to quantum data, we consider the problem of classifying
quantum states as described in Sec. IV-E. In particular, we
aim at classifying C = 10 density matrices of size 16 × 16,
assuming a uniform label probability p(y) = 1/C for all y ∈
{1, ..., 10}. The density matrix ρ(y) for each class y is ex-
pressed as the Gibbs state ρ(y) = e−H(y)/T /Tr(e−H(y)/T )
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FIGURE 19. Quantum data classification: Coverage and average size of the
set predictors as a function of the number M of quantum measurements given
|Dcal| = 10 calibration samples. The ten possible density matrices to be
classified are generated as ρ(y) = e−H(y)/T /Tr(e−H(y)/T ) with
temperature T > 0, where the Hamiltonian matrices H(y) are independently
generated so as to ensure a sparsity level of 0.2 at temperature T = 1 as in
[63]. Pretty good measurements detector is adopted [45]. The shaded areas
correspond to confidence intervals covering 95% of the realized values. The
results are averaged over K = 1000 experiments, and transparent lines are
used to highlight regimes in which the set predictors do not meet the coverage
level 1 − α = 0.9.

with temperature T > 0, where the Hamiltonian matrices
H(y) are independently generated so as to ensure a sparsity
level of 0.2 at temperature T = 1 as in [63]. We adopt a pretty
good measurement detector [45], [46] as the pre-designed
POVM P . We note that we could have also adopted PQC-
based detectors designed using a number of copies of the
training states in a manner similar to [24], since the validity
condition (23) holds for any fixed detector.

In Fig. 19, we plot coverage and average size of the set
predictor as a function of number of measurements M for
QCP and for the naïve predictor. Note that an increased
temperature T makes the classification problem more chal-
lenging since all the C density matrices {ρ(y)}Cy=1 become
increasingly close to the maximally mixed state. As per our
theoretical results, QCP always achieves coverage no smaller
than the predetermined level 1 − α = 0.9, while the naïve
prediction fails to achieve validity unless it is supplied a

sufficiently large number of quantum measurements M , i.e.,
M ≥ 100 for temperature T = 10. In the regime of many
shots, i.e., for M ≥ 100, although both naïve and QCP
set predictors are valid, the naïve set predictor tends to be
extremely conservative, yielding predicted set that include 9
out of 10 labels for T = 1, while the set predictions output
by QCP include on average a single class.

VIII. CONCLUSIONS
In this article, we have proposed a general methodology for
quantum machine learning, referred to as quantum conformal
prediction (QCP), that formally quantifies the uncertainty of
the decisions made outside the training set. QCP provides
“error bars” with coverage guarantees that do not rely on
the amount of training data, on the number of shots, on
the ansatz, on the training algorithm, and on the presence
of quantum hardware noise. We have shown that a proper
design of the scoring function used by QCP can significantly
reduce the size of the error bars especially in the presence
of quantum hardware noise, with or without quantum error
mitigation. Experimental results confirmed that error bars
produced by QCP contains the true target with desired cover-
age level, with up to three times smaller predictive set sizes as
compared to existing baselines. Furthermore, it is concluded
that, when quantum models are augmented with QCP, it is
generally advantageous not to average over the shots, as
typically done in the literature. Rather, treating the shots
as separate samples allows QCP to obtain more informative
error bars.

Future directions for research include the generalization of
the QCP framework to more general form of risk control be-
yond coverage [64]–[66] and the investigation of conditional
coverage guarantees [48], [67]. Furthermore, extensions to
problems such as quantum tomography and unsupervised
learning, as well as to settings with distributional shifts be-
tween calibration and test data [8], [68], [69], are interesting
open problems.

APPENDIX A. QUANTUM GENERALIZATION BOUNDS
In this appendix, we provide some details on the generaliza-
tion bounds plotted in Fig. 1-(iii). As discussed in Sec. I, the
figure reports the generalization bounds derived in [6] as a
function of the size of training data, |Dtr|, for PQCs with
T = 1, 2, 5, 10 trainable local quantum gates.

Let us fix a loss function l(x, y|θ) of the form l(x, y|θ) =
Tr(Oloss

y ρ(x|θ)) for any example (x, y), where Oy is the loss
observable for target variable value y. We recall that ρ(x|θ)
is the density matrix that describes the state produced by the
PQC with model parameters θ. As an example, choosing the
loss observable as Oloss

y =
∑

j 1(oj ̸= y)Πj , with Πj =
|j⟩⟨j|, ensures that the loss function l(x, y|θ) measures the
probability of error, i.e., the probability that the measurement
output of the PQC is not equal to the label y.

We are interested in bounding the generalization error,
which is given by the difference between the population
loss E(x,y)∼p(x,y)[l(x,y|θ)], evaluated with respect to the
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ground-truth, unknown, distribution p(x, y) and the training
loss 1/|Dtr|

∑
(x,y)∈Dtr l(x, y|θ). Reference [6] showed that

the following bound holds with probability at least 1−δ over
the choice of training data set Dtr [6, Theorem 6]

E(x,y)∼p(x,y)[l(x,y|θ)]−
1

|Dtr|
∑

(x,y)∈Dtr

l(x, y|θ) (44)

≤ 24Closs√
|Dtr|

√
512T

(
1

2

√
log(6T ) +

1

2

√
log 2

−
√
π

2
erf(

√
log 2) +

√
π

2

)
+ 3Closs

√
2 log(2/δ)

|Dtr|
,

where T is the number of trainable gates in the PQC and
Closs is the maximum spectral norm of the loss observables
Oloss

y . The error function in (44) is defined as erf(x) =
2√
π

∫ x

0
exp (−t2)dt. Fig. 1-(iii) plots this bound for different

values of |Dtr| and T by assuming the probability of error loss
described above, which has Closs = 1. We choose δ = 0.1,
but changes in δ have a negligible impact on the bound. We
refer to Sec. I for discussions on the bound.

APPENDIX B. PROOFS OF THEOREMS 1-3
In order to prove Theorems 1-3 at once, we unify the expres-
sion for the scoring function as t(z|ν), where ν is a context
variable. This way, for deterministic CP (Sec. II-B), we have
t(z|ν) = s(z|θDtr) with the context being deterministic; for
PCP, we have t(z|ν) = s(z|ŷ1:M ) as in (10), with random
variable ν = ŷ1:M generated i.i.d. from the classical model
p(y|x, θDtr); and for QCP (Sec. IV-D), we have t(z|ν) =
s(z|ŷ1:M ) with random variable ν = ŷ1:M generated by the
PQC with trained model θDtr following either (13) or (14).

With this notation, the validity conditions proved by The-
orems 1-3 can be expressed as

Pr(y ∈ Γ(x|Dcal, θDtr))

= Pr(t(z[N + 1]|ν[N + 1]) ≤ Q1−α({t(z[i]|ν[i])}Ni=1))

≥ 1− α, (45)

where t(z[N+1]|ν[N+1]) is the score for the test data z. We
recall that, given a set of real numbers {s[1], ..., s[N ],∞},
the notation Q1−α({s[i]}Ni=1) represents the ⌈(1 − α)(N +
1)⌉-th smallest value in the set. To prove the inequality (45),
we introduce the following lemmas.

Lemma 1 (Exchangeability lemma). Assume that z[1], ...,
z[N + 1] ∈ Z are exchangeable random variables. Further-
more, assume that the joint distribution of random variables
(z[1],ν[1]), ..., (z[N + 1],ν[N + 1]) can be written as

p((z[1], ν[1]), ..., (z[N + 1], ν[N + 1]))

=

N+1∏
i=1

p(ν[i]|z[i])p(z[1], ..., z[N + 1]) (46)

for some conditional distribution p(ν[i]|z[i]) that does not
depend on i = 1, ..., N + 1. Then, for any real-valued
function t(z|ν), the random variables

t(z[1]|ν[1]), ..., t(z[N + 1]|ν[N + 1]) (47)

are exchangeable.

Proof. The result follows directly from the permutation-
invariance of the distribution (46).

Lemma 2 (Quantile lemma [8]). If s[1], ..., s[N ], s[N + 1]
are exchangeable random variables, then for any α ∈ (0, 1),
the following inequality holds

Pr(s[N + 1] ≤ Q1−α({s[i]}Ni=1)) ≥ 1− α. (48)

Proof. Defining Q∗
1−α({s[i]}N+1

i=1 ) as the ⌈(1−α)(N +1)⌉-
th smallest value in the set {s[1], ..., s[N ], s[N+1]}, we have
the inequality

Pr(s[N + 1] ≤ Q∗
1−α({s[i]}N+1

i=1 )) ≥ 1− α, (49)

by the exchangeability of the random variables [70]. Further-
more, we have the following equivalence [8, Sec. A.1]

s[N + 1] > Q1−α({s[i]}Ni=1)

⇔s[N + 1] > Q∗
1−α({s[i]}N+1

i=1 ), (50)

which can be readily checked by noting that s[N +1] cannot
be strictly larger than itself or of∞.

Combining Lemma 1 and Lemma 2 for the random vari-
ables s[i] = t(z[i]|ν[i]), we obtain the desired condition (45).

APPENDIX C. ADDITIONAL EXPERIMENTS
A. IMPACT OF THE CHOICE OF PARAMETER k IN THE
QCP SCORING FUNCTION (21)
To elaborate on the impact of the choice of parameter k in the
k-NN density estimator adopted by QCP, we plot in Fig. 20
the coverage and average size of the QCP set predictor for
the density learning problem (see Sec. VI-A) as a function
of k given availability of M = 1000 measurements. Recall
that k = 1 corresponds to the choice of scoring function
assumed in PCP [23], while the selection k = ⌈

√
M⌉ ensures

consistency of the k-NN density estimator as summarized
in Sec. IV-D. From Fig. 20 we conclude that the proposed
scoring function (19) with the theoretically motivated choice
k = ⌈

√
M⌉ achieves nearly minimal average predicted set

size, decreasing the set size by 57.25% as compared to the
case k = 1.

B. QCP WITH PQC TRAINED IN THE PRESENCE OF
QUANTUM HARDWARE NOISE
In order to further verify that the reliability guarantees of
QCP in Theorem 3 hold irrespective of the quality of the
trained PQC, even trained in the presence of quantum hard-
ware noise, in Fig. 21, we plot the coverage and average size
of the set predictors for the problem of density estimation
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FIGURE 20. Density estimation with a strongly bimodal ground-truth
Gaussian distribution: Coverage and average size of the set predictors as a
function of k given |D| = 20 available training samples. Training is done on a
classical simulator, while testing is implemented on imbq_quito NISQ
device, with or without M3 QEM [50]. The shaded areas correspond to
confidence intervals covering 95% of the realized values.

using a PQC trained on imbq_quito NISQ device with or
without QEM. The other settings are same as in Fig. 7. QCP
is observed to guarantee reliability also for the model trained
on the quantum computer. This is in contrast to the naïve set
predictor, which only covers 40% of the support, falling far
short of the target coverage level 90%.
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