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ABSTRACT Solving combinatorial optimization problems on current noisy quantum devices is currently
being advocated for (and restricted to) binary polynomial optimization with equality constraints via quantum
heuristic approaches. This is achieved using, for example, the variational quantum eigensolver (VQE) and
the quantum approximate optimization algorithm (QAOA). In this article, we present a decomposition-based
approach to extend the applicability of current approaches to “quadratic plus convex” mixed binary opti-
mization (MBO) problems, so as to solve a broad class of real-world optimization problems. In the MBO
framework, we show that the alternating direction method of multipliers (ADMM) can split the MBO into
a binary unconstrained problem (that can be solved with quantum algorithms), and continuous constrained
convex subproblems (that can be solved cheaply with classical optimization solvers). The validity of the
approach is then showcased by numerical results obtained on several optimization problems via simulations
with VQE and QAOA on the quantum circuits implemented in Qiskit, an open-source quantum computing

software development framework.

INDEX TERMS Mathematical programming, optimization, quantum computing.

I. INTRODUCTION

Mixed-binary optimization (MBO) has been studied for
decades in mathematical programming, because of the
widespread range of applications in several domains [1]-[3],
and the inherent difficulties posed by integer variables. MBO
is known to be NP-hard in the general case.

The MBO class is very broad, and tailored exact or
heuristic solution approaches have been devised in classical
computation, depending on the nature and structure of the
specific formulation [4], [5]. Recently, the advances in uni-
versal quantum computing [6]-[9] fostered efforts to un-
derstand whether this alternative computing paradigm could
offer advantages (e.g., faster exact algorithms, more reli-
able heuristics) to solving combinatorial optimization prob-
lems [10]. Research directed to apply the resulting algo-
rithms to early generation of universal quantum computers
has mainly focused on quantum variational approaches [6],
which have been applied to chemistry [11], [12], machine
learning [13], [14], and mathematical optimization [7], [15],
[16]. In broad terms, a variational approach works by choos-
ing a parametrization of the space of quantum states that
depends on a relatively small set of parameters, then using
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classical optimization routines to determine values of the
parameters corresponding to a quantum state that maximizes
or minimizes a given utility function. Typically, the utility
function is given by a Hamiltonian encoding the total energy
of the system, to be minimized. The variational theorem en-
sures that the expectation value of the Hamiltonian is greater
than or equal to the minimum eigenvalue of the Hamiltonian.
Such variational approaches can be applied for solving com-
binatorial optimization problems, provided that we can con-
struct a Hamiltonian encoding the objective function of the
optimization problem. See [17] and [18]. In the mathemati-
cal optimization context, research has been directed mainly
to quadratic unconstrained binary optimization (QUBO)
problems

minimize cTx+ xTOx
X

subject to: x € {0, 1}", with c € R”, Q € R™"

which can be transformed into an Ising model with Hamilto-
nian constituted as a summation of weighted tensor products
of Z Pauli operators. In case equality constraints Ax = b are
required to be modeled, a QUBO can still be devised by
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adding a quadratic penalization «[|Ax — b||> of the equality
constraints to the objective function, as a soft-constraint in
an augmented Lagrangian fashion [18]-[20].

A typical quantum variational approach, such as VQE [11]
would involve two key steps in solving a QUBO, given
its Ising Hamiltonian H formulation. First, one would
parametrize the quantum state via a small set of rotation
parameters 0: the state can then be expressed as [{¥(0)) =
U(0)|0), where U(0) is the parametrized quantum circuit
applied to the initial state |0). The variational approach would
then aim at solving ming (¥/(8)|H |y (6)). Such optimization
can be performed in a hybrid setting that uses a classical com-
puter running an iterative algorithm to select 6, and a quan-
tum computer to compute information about (y(0)|H |y (0))
for given 6 (e.g., its gradient).

In the MBO formulations, continuous variables and in-
equality constraints are typically both required to be mod-
eled. Tackling a general MBO problem with quantum varia-
tional approaches is at its early stages. One possibility is to
introduce slack-based formulations, and consider the slacks
as additional continuous parameters for the quantum QUBO
solvers [21]. While Grover searches have been applied for
some continuous optimization problems [22], and quantum
annealing allows for tackling inequality constraints [23], the
potential of quantum optimization algorithms for subclasses
of MBO problems has not been investigated with a principled
approach yet.

In this article, we aim at extending the quantum opti-
mization methodologies to be able to cope with MBOs on
current quantum devices. As a matter of fact, we start in a
bit more general context and we pose as an assumption that
an approximate or noisy QUBO solver oracle is available
to approximately solve QUBOs with some degree of sub-
optimality; then, we ask ourselves where we can go from
there. In particular, we explore ways to (heuristically) ap-
proximately solve certain classes of MBOs with the assumed
noisy QUBO solver. The aim of this article is as follows:

1) to extend the quantum optimization methodologies to
cope with MBOs;

2) to propose new heuristics to solve MBOs on quantum
computers, having the potential to scale, in the future,
to larger sizes than heuristics on classical computers;

3) to offer a glimpse on current research in combinato-
rial optimization in quantum computing, along with
assumptions, challenges, and open problems.

The proposed heuristics are based on the celebrated alter-
nating direction method of multipliers (ADMM), see [24]—
[35]. ADMM is an operator splitting algorithm that has a
long history in convex optimization. ADMM is known to
have residual, objective, and dual variable convergence prop-
erties, provided that convexity assumptions are holding [24].
Recently, nonconvex variants of ADMM have been devel-
oped (see [36]-[42] for nonconvex/combinatorial theoreti-
cal results and ADMM-inspired heuristics). In the heuristic
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framework of [36] for problems with convex objective and
decision variables from a nonconvex set, ADMM relies on
a (eventually approximate) projection on the nonconvex fea-
sibility set, and the ADMM iterates are improved via local
search (LS) methods. Our method instead does not involve
a projection step and makes use of the ADMM operator-
splitting procedure to devise a decomposition for certain
classes of MBOs into the following:

1) a QUBO subproblem to be solved by a QUBO
(approximate) solver, e.g., on noisy quantum de-
vices via quantum variational algorithms, such as
VQE [11], QAOA [8], or with Grover-search-based
algorithms [43], or quantum-based semidefinite pro-
gramming (SDP) relaxations [44].

2) a convex constrained subproblem, which can be effi-
ciently solved with classical optimization solvers [45].

Our method builds upon the recent results of [37] and [38],
which propose global convergence guarantees for noncon-
vex and nonsmooth optimization problems. For MBO, the
convergence results of [37] would not hold because of the
requirement on the Lipschitz continuity of specific compo-
nents of the objective function. However, the authors in [38]
and [46] observed that a third block can be added to the
two-block decomposition of ADMM in order to gain con-
vergence properties to stationary points. Our method also
leverages the recent results of [47] on related tame problems
to ensure that convergence is attained to a unique stationary
point, by taking advantage of the semialgebraic structure of
the problem. Possible extensions to our current setting might
be offered by [48] and [49], but not pursued here.

The mathematical contribution of this article is a multi-
block ADMM heuristic (M-ADMM-H) algorithm for MBO,
for which we present the following points:

1) adecomposition approach suitable for computation on
current quantum devices;
2) conditions for convergence, feasibility, and optimality.

The quantum computing contribution of this article is in-
stead the analysis of the mentioned heuristic on quantum
devices, and in particular, of the following:

1) computational results for classical and quantum im-
plementations, including comments on the solution
quality achieved;

2) analysis of errors coming from an approximate so-
lution of the underlying QUBO problem, which are
typical in noisy (quantum) machines.

Despite the quantum-oriented angle of this article, our
results applied also to classical computing, whenever a clas-
sical QUBO solver is available, or whenever the QUBO sub-
problems are easy or trivially solvable.

This article is organized as follows. Section II outlines
current research effort in optimization in quantum comput-
ing, especially for QUBO solvers and the possible speed-up
with respect to classical computing. Section III reviews the
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ADMM proposed for convex optimization and introduces a
two and three-block implementation of ADMM when binary
variables are present. In Section IV, the two and three-block
implementations are then specified for MBO problems and
convergence properties are illustrated. To get a better pic-
ture of the proposed algorithm, Section V discusses small-
sized examples. The two illustrative MBO formulations in
Section VI are solved with the proposed ADMM-based al-
gorithms in Section VII, discussing the results obtained on
simulated quantum devices. Finally, conclusions are drawn
in Section VIII.

Notation: Notation is whenever possible standard and bor-
rowed from convex analysis [45], [50]. Vectors x € R", ma-
trices A € R™™ and sets X € R". For vectors and matrices,
(+)T indicates the transpose operation. Functions f : R" —
R U {400}, whose codomain is the extended real line. A
function is convex iff its epigraph is a convex set. A convex
function is closed if its epigraph is closed, and it is proper
if its effective domain is nonempty and it never attains —oo.
A function is lower semicontinuous if and only if all of its
sublevel sets {x € X' : f(x) < y}areclosed. A proper convex
function is closed iff it is lower semicontinuous. The indica-
tor function of the set X" is a function ¢y : R” — R U {400},
for which ty(x) = 0 if x € X and +o00 otherwise. The indi-
cator function of any closed set is lower semicontinuous.

Il. QUANTUM COMPUTING FOR QUBOS
We briefly review here the current efforts in solving QUBOs
via quantum/classical approaches. The aim of this section is
to further expand on the state of the art, discuss what it is
meant with potential quantum advantage of quantum solvers
versus classical solvers and why this is important for MBOs.
First of all, we look at current noisy quantum computers
and quantum optimization algorithms, in particular VQE and
QAOA. We do not touch upon quantum annealing, but the
interested reader can find studies in the works of [51]-[54]
and references therein. VQE and QAOA are currently un-
der major scrutiny and discussions on their performance,
e.g., [9], [18], [55]-[58], especially for the solution of un-
constrained binary optimization problems, of which MaxCut
is one important embodiment. On one hand, it seems that, in
general, the QAOA performance is still not well understood
under all circumstances, and (even) some local classical al-
gorithms could outperform it in some cases [59]. On the other
hand, some encouraging results in terms of performance ad-
vantage of QAOA with respect to the classical Goemans—
Williamson limit have appeared [60]. In addition, the combi-
nation of hyperparametrization and multistart strategies has
shown promising results in escaping local optima [61]. These
considerations, together with the fact that QAOA is not effi-
ciently simulatable by classical computers, make QAOA an
appealing algorithm to explore on noisy quantum machines.
Second, looking ahead to less noisy quantum computers,
quadratic speedup for Grover-based quantum QUBO solvers
has been demonstrated in [43], with respect to a classical
unstructured search. While solving a large QUBO with an
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unstructured search is unrealistic for classical computers, we
can envision employing such Grover-based quantum QUBO
solvers for subproblems coming from classical branch-and-
bound methodologies. This would generate a quantifiable
speedup.

Third, looking further ahead to even less noisy quantum
computers, quadratic speedup for quantum semidefinite pro-
gramming (Q-SDP) relaxations arising in QUBO solving has
been shown in [44]. Given that currently SDP relaxations
are one of the workhorses for QUBO solving, this new Q-
SDP relaxations have the real potential of offering tangible
speedup in solving QUBO:s.

Given such wealth of results and studies, there is a sig-
nificant interest to see if and how one can leverage quantum
QUBO solvers to tackle more complicated constrained prob-
lems. This is what we are going to do next.

1Il. FROM THE STANDARD ADMM TO A THREE-BLOCK
STRUCTURE

A. CONVEX ADMM

We start with some background on ADMM and the known
results in the case of nonconvex and combinatorial prob-
lems. Let f: R" - RU {400} and i : R" — R U {400}
be closed convex proper functions, and let A € R"*7,
B € R™*P be given matrices. The prototypical problem we
are interested in is of the form

minimize f(x) + h(y) (1a)
xeR”? yeR™
subject to: Ax + By = 0. (1b)

Then, the ADMM is the following algorithm:

1) initialize the sequences (xg)reN> VkieN> (M )keN as
x0 € R", yo € R™, Ao € R”. Choose a penalty param-
eter o > 0;

2) fork=1,2,...,do:

a) First block update

X = arg min f(x)
xeR”

+ )L]I—l (Ax + B)’k—l)
0
+ 2 IAx + By, (2a)
b) Second block update

Vi = arg min h(y)
yeRm

+ A1, (Ax; + By)
+ SllAx + Byl (2b)
¢) Dual variable update
M = Ag—1 + 0(Axk + Byy). (2¢)

For the classical ADMM, we have various convergence
and convergence rate results. For an ample classes of convex
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costs, ADMM converges for any g, that is, starting from any
X0, Y0, Ag, it generates a sequence for which we have the
following.

1) Residual convergence: Axy + Byy — Oask — oo, i.e.,
the iterates approach feasibility.

2) Objective convergence: f(xx)+ h(yx) — p* as k —
oo, i.e., the objective function of the iterates ap-
proaches the optimal value.

3) Dual variable convergence: iy — A* as k — oo,
where 1* is a dual optimal point.

See, for instance, [24] and [62], while for convergence rate
analysis see, for example, [30] and [35].

Nonconvex results (when the cost functions are noncon-
vex) are less ubiquitous in the literature and, in general,
more restrictive in terms of assumptions. However, ADMM
still behaves quite favourably in nonconvex cases and at-
tracts a considerable amount of attention from the research
community.

B. MIXED-BINARY ADMM
In this article, we start by modifying (1) by considering that
x is now constrained to live in the nonconvex set {0, 1}", or
equivalently that each of the component of the vector x, i.e.,
x@), i € {1, ..., n}, is constrained as x(;(1 — x(;)) = 0. We
compactly write this as requiring x € X', where X represents
the said binary set.

Let now 1y : R" — R U {400} be the indicator function
of the set X', which is by construction closed and proper (but
obviously nonconvex), and consider the new function

N0 = F(0) + tr ).

The function fNC(x) is nonconvex by construction, yet one
could still attempt at using the ADMM approach (2) with the
new function fNC (x) in lieu of the “old” one f(x), with the
goal of solving the MBO

minimize f(x) + h(y) (3a)
xeX,yeRm
subject to: Ax + By = 0. (3b)

This is in general a heuristic. However, under some more
restricting conditions the sequence generated by ADMM
converges also in this case as follows.

Theorem 1 (Convergence of mixed-binary ADMM [37]):
Consider the following assumptions.

Al) (Coercivity). The objective function fNC(x) + h(y)
is coercive over the set Ax + By = 0.

A2) (Feasibility). Im(A) € Im(B), where Im(-) returns
the image of a matrix.

A3) (Lipschitz subminimization paths). There exists a
positive constant M, such that for any iterate counters
ki and k,, we have

”-xkl - xk2” =< M”A)Ckl - Axkz ”
||)’k1 _yk2|| =< M”B}’kl —B}’k2|| (4)
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A4) (Objective f-regularity). Function fNC(x) is lower
semicontinuous.

AS5) (Objective h-regularity). Function h(y) is Lipschitz
differentiable with constant Lj,.

Define the augmented Lagrangian
Lo,y 1) = fNC(x) + h(y) + AT(Ax + By)
0
+3 [ Ax + By||3.

Then, Binary ADMM converges subsequently for any suffi-
ciently large o, that is, starting from any xo, o, X9, it gener-
ates a sequence that is bounded, has at least one limit point,
and that each limit point (x*, y*, A*™) is a stationary point of
Loy, namely, 0 € 9L, (x*, y*, 1).

In addition, if £, is a Kurdyka—t.ojasiewicz (KL) func-
tion [63]-[65], then (xi, yg, Ax) converges globally to the
unique limit point (x*, y*, A™).

Theorem 1 is a special case of the more general [37, Th. 1]
adapted to our problem setting (and where we have chosen
to use a stronger version of A3) for sake of clarity and ease
of implementation). Functions satisfying the KE.property are,
for example, semialgebraic functions and locally strongly
convex functions. We recall that a semialgebraic function can
be defined based on its graph as follows.

Definition 1 (See [66]): A subset of R” is called semi-
algebraic if it can be written as a finite union of sets of the
form

xeR": pi(x)=0,qi(x) <0,i=1,..., p}

where p;, g; are real polynomial functions.

A function f: R" — R U {400} is semialgebraic if its
graph is a semialgebraic subset of R+,

The following hold:

1) finite sums and products of semialgebraic functions are
semialgebraic;

2) scalar products are semialgebraic;

3) indicator functions of semialgebraic sets are semialge-
braic;

4) generalized inverse of semialgebraic mappings are
semialgebraic;

5) composition of semialgebraic functions or mappings
are semialgebraic; see [66].

From this discussion, ¢ y (x) (besides being lower semicon-
tinuous) is semialgebraic, since it is the indicator functions
of semialgebraic sets {x(;)(1 —x;)) = 0} V i, and fNC(x) is
semialgebraic if f(x) is semialgebraic.

Theorem 1 (or its broader version) is fairly tight, and
counter-examples exists in which some of the assumptions
are not verified and ADMM fails to converge. Relaxing some
of the assumptions, for example, A3), is a topic of current
research, e.g., by leveraging the slightly different setting
in [48].
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To understand better the implications of 1, we consider
a toy example, which verifies all the assumptions of the
theorem.

Example 1: Consider the problem

min —2v + w?, subject to: v = w. ®))
vef0,1},weR

The unique optimal solution is v* = w* = 1. If we ap-
ply ADMM to it, as for Theorem 1, we can obtain con-
vergence for sufficiently large o starting from any initial
Vo, W, Ag. For example, we can start with vg = 1, wg = 1,
Ao = 0 with o = 100. Then, we can see that the ADMM
algorithm converges to the solution v =w =0= X1 =0,
which is a stationary point of the augmented Lagrangian
Lo(v, w, 1). If we start with a different starting point vgp = 0,
wo = 0.5, Ag = 0 with the same p, then convergence is at-
tained to the point v = w = 1, A = 2, which is the optimal
solution of the original problem, and another stationary point
of the augmented Lagrangian.

From the abovementioned example, one can understand
the implications of convergence of ADMM in the noncon-
vex setting, where one may converge to a feasible point, but
not necessarily optimal for the problem. This is in general
not a very unsatisfactory behaviour, especially in nonconvex
setting, where one is often concerned about finding “good”
feasible points.

C. MIXED-BINARY THREE-BLOCK ADMM
We move now to generalize the mixed-binary ADMM to
three-block implementation. The reason behind the three
blocks is that the assumptions in Theorem 1 are restrictive
for MBO problems and they would not be satisfied in general
(as we see later).

Consider the prototypical (mixed-binary) problem

minimize  fy(x) + f1(X) + h(y) (6a)
xeX,7€R! yeR"
subject to: Apx + A1 X+ By =0 (6b)

where we have introduced the functions fy : R” — R, fj :
R! — R, the matrices Ay € R"*?, A; € R'*P and we have
put ourselves already in the mixed-binary case. (For com-
pleteness, recall the definition of function 4 : R”™ — R U
{+o00} as closed convex proper function, and matrix B €
R™X p_)

Then, the three-block ADMM is the following algorithm.

1) Initialize the sequences (Xg)ieN> (Xi)ieN> (Vk)keNs
MreNn as xp € R", X € R! yo € R™, Ap € RP.
Choose a penalty parameter ¢ > 0.

2) Fork=1,2,... do:

1) First block update

X = arg min fy(x) + ty(x)
xeR"

+ )»,1;1 (Agx + A1 Xx—1 + Byk—1)

o _
+ S IAox + At + By 3. (7a)
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2) Second block update
X = argmin fi()+2]_| (Aoxg+A 1% + Byr_1)

ieR!
+ %nonk + A%+ By |12, (7b)
3) Third block update

vk = arg min h(y) + )‘11—1 (Apxr + A1 X + By)
yeR™

Q _
+ 5 Aoxi + Arsi + Byl5. (7¢)
4) Dual variable update
Ak = A1 + 0(Aoxx + A1Xx + Byr).  (7d)

This is in general a heuristic. However, under some more
restricting conditions the sequence generated by ADMM
converges also in this case as follows.

Theorem 2 (Convergence of Mixed-Binary Three-Block
ADMM [37]): Consider the following assumptions.

Al) (Coercivity). The objective function f(l)\fc(x) +
f1(¥) 4+ h(y) is coercive over the set Agx+
A1X + By =0, where we have defined fé\lc(x) =
Jo(x) + tx(x).

A2) (Feasibility). Im(A) € Im(B), where A = [Agp, A{].

A3) (Lipschitz subminimization paths). There exists a
positive constant M, such that for any iterate counters
ki and k,, we have

llxe, — Xiy || < Ml Aoxi, — Aoxg, |
”Xkl - sz” S M”Alikl _Alikzn
vk, — Yi, Il < M| Byr, — By, |- (8)

A4) (Objective f-regularity). Function fé\lc(x) is lower
semicontinuous and f(X) is restricted prox-regular.

AS) (Objective h-regularity). Function A(y) is Lipschitz
differentiable with constant L.

Define the augmented Lagrangian

Lo(x, %y, 0) = fYC() + fi(®) + h(y)
+ AT(Agx + A X + By)

0 _
+ 5||AOx+A1x+By||§. 9)

Then, mixed-binary three-block ADMM converges subse-
quently for any sufficiently large o, that is, starting from any
X0, X0, Yo, Ao, it generates a sequence that is bounded, has at
least one limit point, and that each limit point (x*, ¥*, y*, A*)
is a stationary point of £,, namely, 0 € 9L, (x*, x*, y*, 1*).

In addition, if £, is a Kktfunction [63]-[65], then
(Xk, Xk, Yk, Mx) converges globally to the unique limit point
(x*, X*, ¥, A%).

Theorem 2 is a special case of the more general [37, Th. 1]
adapted to our problem setting (and where we have chosen
to use a stronger version of A3) for sake of clarity and ease
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of implementation). Functions satisfying the restricted prox-
regularity assumptions are, for example, convex functions,
including indicator functions of convex sets (which will be
the ones that we will use in the sequel).

What is now fundamental in the three-block ADMM is that
we can restrict variable x to be binary, and shift all the other
constraints on X (any restricted prox-regular constraints, e.g.,
linear inequalities). This without affecting the variable y,
which stays unconstrained, and whose function A(y) needs
to be smooth (so one cannot add an indicator function to
represent additional constraint there). This “trick” was first
explored in [38] in the context of distributed computations
and discussed in the following example.

Example 2: Consider the problem

min —2v + wz, subject to: v = w. (10)
ve(0,1},w=>1/2
This problem does not satisfy the assumptions of Theo-
rem 1, since y is now constrained (although ADMM here
is nonetheless converging in practice). But a possible way
to overcome this (without adding constraints on the binary
variable v), is to use the relaxed problem

Qv+ v+ ng, subjectto: v =0 + w

(1)

min
vef0,1},0>1/2,weR

for a large B8 < o.

Starting vg = Vg = wy = Ag = O with B = 1000 and p =
1001, we obtain a sequence converging to v=1,v =
0.998, w = 0.002, A = 1.996, which is close to the optimal
solution of the original problem.

In [38], a proper dualization of the constraint w = 0 is
imposed, but the convergence of the then two-level approach
has more restricting assumptions that the ones that we con-
sider here, in particular ¥ needs to be constrained in an hy-
percube [38, As. 4.2].

IV. TWO AND THREE-BLOCK ADMM ALGORITHMS FOR
MBO

A. FROM MBOS TO TWO-BLOCK ADMM

We are now ready to tackle MBOs. In this article, we will
consider the following reference problem (P):

minimize g(x) + ¢(u) (12a)

xeX ucUCR!
subject to: Gx =b, g(x) <0 (12b)
g(-xv M) =< 0 (120)

with the corresponding functional assumptions.
Assumption 1 (Functional Assumptions): The following
assumptions hold.

1) Function ¢:R" — R 1is quadratic, ie., ¢g(x)=
xTQOx +aTx for a given symmetric squared matrix
Qe R"xR" Q=QT, and vector a € R".
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2) The set X =1{0, 1}" = {x; (1 — x;)) =0, Vi}
enforces the binary constraints.

3) Matrix G € R" x ]R”/, vector b € ]R“/, and function g :
R" — R is convex.

4) Function ¢ : R/ — R is convex and I/ is a convex set.

5) Function £ : R" x R! — R is jointly convex in x, u.

Problem (P) with the required functional assumptions can
still capture many relevant problems in mathematical pro-
gramming, such as vehicle routing [1], [67], [68] and facility
location [69]. Formulations for bin packing (BP) and knap-
sack problems will be discussed in Section VI.

In order to put problem (P) in the ADMM standard form,
we need to write problem (P) as problem (3). First, in this
article, following mainstream quantum practice (see [18] and
[21]) and because we need to retrieve a QUBO, we soft-
constrain the equality constraint (whenever present) as an
augmented term in the cost function. Then, we introduce the
new variable z € R” and problem (P) can be written as the
soft-constrained problem (P’)

minimize qx) + ¢ |Gx — b||% + ¢(u) (13a)
xeX,zeR" uelU<R! 2

subject to: g(z) <0, £(z,u) <0 (13b)

xX=z (13¢)

for a large positive constant ¢ > 0. Problem (P’) is a soft-
constrained version of problem (P) (it would be equivalent
if G = 0 and b = 0): it is, however, a convenient splitting of
binary and continuous variables.

Now, call X = [zT, uT]T, m = n+ [, define fy(x) := g(x)
+ §||Gx — b||%, J1(X) = @(u) + 1 3(X), where the set X =
{zeR", uell)|gz) <0, £(z,u)<O0}. Then, (P') reads
as problem (P”)

minimize fo(x) + f1 (%) (14a)
xeX xeRm
subject to: Apx +A1x =0 (14b)

where Ag = I,, and A| = [—1,;, 0;5;].

A first possible strategy to use ADMM on (P”) is sum-
marized in Algorithm 1, in a two-block implementation (2-
ADMM-H). As we discussed in Section III and Example 2,
this strategy is in general a heuristic, since the variable ¥ is
constrained, however, in some cases Algorithm 1 can de-
liver good solutions (as we will explore). In order to keep
track of the solution quality during the iterations, we com-
pute a merit value associated with each iterate x. Let ¢ =
max(g(xx), 0) + max(l(xx, Xx), 0) be the violation of the con-
straints on decision variable x in problem (P) at iteration k,
and p be a penalization for ¢;. Then, the merit value 7y of x;
is a linear combination g(x;) + ¢(Xx) + £&x of the constraint
violation and solution cost in problem (P). Iterates with high
merit value are both not likely to be of optimal value and
close to feasibility for problem (P), hence, the minimum
merit value solution is returned by Algorithm 1.
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Algorithm 1: 2-ADMM-H Mixed-Binary Heuristic.

Algorithm 2: 3-ADMM-H Mixed-Binary Heuristic.

Require: Initial choice of xg, yg, Ag. Choice of
o, ¢, u > 0, tolerance € > 0, and maximum number of
iterations Kpax.

1:  while k < Kinax and ||[Aoxk + A 7| < €, do

2: First block update (QUBO):

, c
x; = arg min g(x) + =||Gx — b||3 + Al Agx
xe{0, 1} 2

4 _
+ 5 lAox + Argi |
3: Second block update (Convex):

i} . _ 0 i,
X = argmin (%) +A] | A1X+ EHAOXk + A2

xeRm
4: Dual variable update:
Ak = Ag—1 + 0(Aoxy + A1 Xy)

5: Compute merit value:

Nk = q(x) + o)
+ w(max(g(xx), 0) + max(/(xg, X), 0))

6: end while
7. return xpx, Xp+, ypr, with k* = min ny.

The strength of Algorithm 1 is that the original MBO is
now split into a QUBO (that can be solved on the QUBO
oracle, or on quantum devices) and a convex problem that
can be solved with off-the-shelf solvers, such as SPDT3 [70]
and MOSEK [71].

Remark 1: In [36], the authors explore a slightly different
decomposition of the same MBO problem (12). In particular,
the authors let fi(X) = ¢(u) + LpuiGr=p (X) + ¢(X), while
fo(x) = 0. In this way, the QUBO problem (first block up-
date) becomes a projection problem of dimension # onto the
one dimensional constraint {0, 1}, which is easily solvable,
while the convex problem (second block update) becomes
the convex relaxation of the MBO problem (with an addi-
tional penalization term). This nonconvex ADMM heuristic
is effective in finding approximate solutions to a wide variety
of problems in classical computation, depending on an ap-
propriate setting of the initial parameters. However, it is not
readily applicable on quantum devices, as it does not involve
QUBOs.

B. FROM TWO-BLOCK TO THREE-BLOCK ADMM

FOR MBOS

To overcome the limitation imposed by the convergence
theorems (see Theorems 1 and 2) on the smoothness of
function fi(¥), we use the same approach explored in
Example 2, as well as in [46]. We exploit a three-block
implementation of ADMM (3-ADMM-H) onto the
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Require: Initial choice of xy, Xo, yo, Ag. Choice of
0, B, ¢ > 0, tolerance € > 0, and maximum number of
iterations Kpyax.
1:  while k < Kpax and [[Agx* + A7 — || < €, do
2: First block update (QUBO):

) c
X, = arg min g(x) + =||Gx — b||%
xe{0,1) 2

e -
+ Al Aox + ) I Aox + ArFe—1 — ye—11I*
(15)
3: Second block update (Convex):

X = argmin f1(X) + A} A%
xeRm

o _
+ 2 A0k + A1E = e 1> (16

4: Third block update (Convex+quadratic):

B
v = arg min lyl3 — ALy
yeR”

o -
+ 5 IAoxi + A% = yII®
5: Dual variable update:
M= A1 + 0(Aoxk + A1 Xk — yi)

6: Compute merit value:
Me = q(x) + ¢ () + p(max(g(xg), 0)
+ max({(xg, %), 0)) a7)
7:  end while

8:  return xpx, Xpx, yp+, with £* = ming ny.

soft-constrained problem (P")

.. . _ ﬂ 5
minimize )+ 1)+ = 18
xeX,xeR™ yeR" fO( ) fl( ) 2 ||)’||2 ( )
subject to: Agx +A X =y (18b)

where the only difference with (14) is the introduction of
variable y, which penalizes constraint violations.

Algorithm 2 reports the 3-ADMM-H algorithm, along
with stopping criteria and evaluation metrics. As we can see,
once again, problem (18) is split into a QUBO, that can be
solved by a QUBO oracle, and convex optimization prob-
lems. We note that the two-block implementation is a par-
ticular case of the three-block algorithm, with yo = 0 € R",
and skipping third block update (i.e., step 4 of 2).

We are now ready for the convergence results for Algo-
rithm 2 (3-ADMM-H). First, we present the results when
continuous variables are not present, and then extend it to
continuous variables.

Theorem 3 (Convergence of Algorithm 2): Consider Prob-
lem (12) with no continuous variable u and let Assumption 1
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hold. Define the augmented Lagrangian
C
Lo(6, %3, 2) = fo¥) + L) + 5 1Gx — blI3
B )
+ fi(®) + 5||y||§ +AT(Agx + A1X —y)
o - 2
+§||A0x+A1x—y||2. (19)

Then, Algorithm 2 converges subsequently for any suf-
ficiently large o > max{p, c}, that is, starting from any
X0, X0, Yo, Ao, it generates a sequence that is bounded, has at
least one limit point, and that each limit point (x*, x*, y*, A*™)
is a stationary point of L,, namely, 0 € 9.L,(x*, ¥*, y*, A*).

In addition, if f;(x) is a KL function [63]-[65], then
(xk, X, Yk, Ax) converges globally to the unique limit point
(x*, X*, y*, A%).

Proof: We are going to leverage the results of Theorem 2 to
prove Theorem 3. In particular, we are going to check that all
the assumptions in Theorem 2 are satisfied and determine a
necessary condition on how large ¢ must be for the algorithm
to converge.

Al) (Coercivity). Coercivity holds since x lies in a
bounded set, h(y) = §|| y||% is quadratic, therefore coercive,
and the same holds for x.

A?2) (Feasibility). Im(A) € Im(B) holds by direct compu-
tation, since A = [Ag, A1l = [y, —1,, 0;;] and B = —1,,.

A3) (Lipschitz subminimization paths). Ag = —B = I,;, so
trivially M = 1 for x and y. Consider now &, since no contin-
uous variables are present A; = —1I,, and M = 1 trivially.

A4) (Objective f-regularity). fo + tx(x) is lower semicon-
tinuous, and f is restricted prox-regular since the sum of a
convex function and the indicator function of a convex set.

A5) (objective h-regularity). h(y) = £|lyll3 is Lipschitz
differentiable with constant 8, so A5 holds.

As for o, from the conditions in [38, Lemma 9], then o >
max{g, c}.

And to finish the proof: fo(x) + tx(x) + 5[|Gx — b||% +
SIVI3 +AT(Aox + AiE—y) + §lApx + 41T —yl3 is a
KL function, since it is semialgebraic, and L, (x, ¥, y, 1) is
KL if f1(x) is KE. O

Theorem 3 describes a set of assumptions for which Al-
gorithm 2 is proven to converge to a stationary point of the
augmented Lagrangian £,, which is a soft-constrained ver-
sion of the original MBO problem (12). We now expand on
Theorem 3 by considering continuous variables.

Theorem 4 (Convergence of Algorithm 2 with Continuous
Variables): The same results of Theorem 3 hold if the fol-
lowing conditions hold.

1) The function ¢(u) is strictly convex and the inequality
constraint £(z,u) < 0 is never active, i.e., for each
7z and u; generated by the algorithm we have
E(Zk, uk) < 0.

2) The inequality constraint £(z, u) < 0 is always active,
i.e., for each z; and u; generated by the algorithm we
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have €(z, ur) = 0, and for any fixed z, the inverse map-
ping u(z) = {ulf(z, u) = 0} is unique and Lipschitz,
ie., |lu(z) —u(@)| < Cllz—7|, for C < o0, and o >
max{C28, ¢ + C?}.

Proof: We have only to show that A3 holds in these cases.
For the first case, the inequality constraint is redundant and uy
is only determined from ¢(u). Since ¢(u) is strictly convex,
uy is unique and the same for all ks, so |[ug, — u, || = 0 and
A3 holds. This is the case, for example, when inequality
constraints are absent.

For the second case, since £(zx,ux) =0 and |ju(z) —
u(Z)|| < C|lz — Z'||, then A3 holds with M = C. And the con-
ditions on p are derived from [38, Lemma 9]. This is the case,
e.g., when the inequalities are linear equality constraints as
Fz+ Hu = g, and H is full rank. O

The conditions of Theorems 3 and 4 are quite mild in many
practical relevant MBO problems. In full generality however,
Algorithm 2 is a heuristic algorithm, especially as we remark
next.

1) Equality constraints: When equality constraints are

presents, they are softened with the augmented term
51Gx — b||% in the cost function. This induces a trade-
off: from the conditions in [38, Lemma 9], then at
least o > max{f, c}; however, to enforce the equality
constraints, these have to be at least as important as
the enforcing of zero residuals, i.e., ¢ > . This intro-
duces the tradeoff of either terminating with a solution
with zero residuals (meaning the convergence has been
reached, but equality constraints are not necessarily
satisfied), or with equality constraints satisfied (with-
out bounds on the magnitude of the residual).
Note that off-loading the equality constraints to vari-
able X and imposing them exactly, only mildly solves
the issues, since residual convergence would be
achieved with y # 0 (in general), and therefore, the
equality constraints will not be satisfied exactly.

2) Continuous variables: When continuous variables are
present, which do not satisfy either of the conditions
of Theorem 4, then assumption A3 is not satisfied,
making Theorem 3 not hold in this situation and Al-
gorithm 2 is still a heuristic for this case.

C. INEXACT OPTIMIZATION AND NOISE

We briefly remark here the effect of inexact optimization of
the binary subproblems, as well as noise in real quantum
devices. The theoretical analysis assumes that the QUBOs
need to be solved exactly to guarantee the validity of the
presented theorems. In practical situations, however, this is
hard to achieve and this requirement needs to be weakened.
For instance, in current noisy quantum computers, noise is
inherent in the computations and an exact optimization is
rather far-fetched. Even in the case of noise-free quantum
computers, solving QUBOs at optimality may be unrealis-
tic, especially in large-scale instances. Within the ADMM
framework, it then makes sense to ask i) whether one can
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tolerate inexact optimization; ii) whether noise has to be
always detrimental for convergence.

On the first point, we do not have an answer yet in the
general case (even though this has been studied abundantly
and with positive answers in the convex case). In [37], the au-
thors show that one can tolerate inexact computations, which
are asymptotically vanishing and summable. In particular, if
one can solve the QUBOs with increasing degree of accuracy
while the algorithm progresses, then convergence can be still
established. This is a promising first result.

The second point is even more interesting and open. It is
fairly understood and it has been experimentally observed
that a small amount of noise can help to “guide” convergence
of first-order algorithms to global optimizers in nonconvex
problems (e.g., by escaping local minima, or saddle-points).
So, itis possible that a small amount of noise, inexactness, or
both, could help convergence instead of jeopardizing it. We
will explore this aspect in the simulation results.

V. SIMPLE EXAMPLES

We discuss here some interesting examples to showcase the
performance of 2-ADMM-H and 3-ADMM-H for MBOs
problems in simple settings, and gain some insights on the
solutions obtained.

A. INEQUALTITY CONSTRAINTS
Example 3: Consider the problem

min v+ w (20)

x€{0,1)2
subject to: 2v 4w <2 21)
v+w > 1 (22)

where x = [v, w]T. We consider the following two cases:
Case 1: 1001 = o > B = 1000 (verifying the necessary con-
ditions for Algorithm 2 to converge, but Algorithm 1 is a
heuristic), and Case 2: o = B8 = 1000, for which both al-
gorithms are heuristics. Fig. 1 shows convergence of the
residual of both Algorithms 1 and 2, where we defined the
three-block residual as r3 = ||Agx + A1X — y||, while the re-
stricted three-block residual as rry = ||[Agx + A X|| (that is
how far we are from the solution of the nonrelaxed problem),
as well as the two-block residual as , = ||Agx + A X]|.

As we can see, in Case 1, Algorithm 2 converges in the
residual sense while Algorithm 1 does not. In particular,
the results (at three significative digits) yield: x = [0, 0], X =
[0.499, 0.500], y = [—0.499, —0.499] for the three blocks,
while x = [0, 1], x = [0.499, 0.999], for the two blocks. We
can also see that, despite Algorithm 2 convergence, the result
x = [0, 0] is not optimal (not even feasible for the original
nonrelaxed problem), while Algorithm 1 delivers one of the
two optimal results x = [0, 1], while not converging.

In Case 2, Algorithm 2 converges in the residual
sense (even though it is not guaranteed to do so) while
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FIGURE 1. Convergence of the residuals for Example 3.

Algorithm 1 does not. In particular, the results (at three sig-
nificative digits) yield: x = [0, 1], ¥ = [0.002,0.999],y =
[—0.002, —0.000] for the three-blocks, while x = [0, 1], X =
[0.499, 0.999], for the two blocks. In this case, both
Algorithms 2 and 1 deliver one of the two optimal results
x =0, 1].

Example 4: Consider the problem

min v+ w+t (23)
xe{0,1)3

subjectto: 2v+ 10w +1 <3 (24)

vtw+r>b (25)

where x = [v, w, t]T and b is either 1 (Case 1) or 2 (Case 2).
We fix o = 1001, 8 = 1000.

In Case 1, as we can see in Fig. 2, both algo-
rithms converge. Algorithm 2 delivering x = [0., 0., 0.], X =
[0.397,0.178, 0.424], y = [—0.397, —0.178, —0.424]; Al-
gorithm 1 delivering a feasible solution x = [1.,0., 1.], ¥ =
[1.,0., 1.].

In Case 2, both algorithms converge and deliver the opti-
mal solution.

B. EQUALITIES AND INEQUALTITY CONSTRAINTS
Example 5: Consider the problem

min v+ w—+t (26)

x€{0,1)3
subjectto: 2v4+2w 4+t <3 27
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FIGURE 2. Convergence of the residuals for Example 4.

vtw+r>1 (28)
v+w=1 29)

where x = [v, w, 1]T. We fix ¢ = 1001, 8 = 1000, and the
penalization parameter for the equality constraint to be ¢ =
900 (Case 1), ¢ = 1100 (Case 2).

In Case 1, Algorithm 2 is supposed to converge. Both
algorithms converge in practice, Algorithm 2 to one op-
timal solution x =[1.,0.,0.], ¥ =[1.,0.002,0.002], y =
[0., —0.002, —0.002]; Algorithm I to a feasible solution x =
[1.,0., 1.], ¥ =1[0.999, 0., 0.999].

In Case 2, Algorithm 2 is not guaranteed to converge.
However, both algorithms seem to converge. Both deliver an
optimal solution: x = [0., 1., 0.].

C. CONTINUOUS VARIABLES
Example 6: Consider the problem

epin L vH WS- 2)° (30)
subjectto: v+2w+r4+u<3 3D
vt+w+1t>1 (32)

v+w=1 (33)

where x = [v, w, t]T. We fix ¢ = 1001, 8 = 1000, and the
penalization parameter for the equality constraint to be ¢ =
900. The inequality constraint with the continuous variable
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Iteration number

FIGURE 3. Convergence of the residuals for Example 5.

is always active, so Algorithm 2 is supposed to converge (as
for Theorem 4).

In Fig. 4, we see how both algorithms converge, but
only Algorithm 2 yields the optimal solution (incurring
zero optimality gap). In particular, Algorithm 2 delivers
the optimal solution x = [1.,0.,0.], ¥ =[1.,0.,0.,2.], y =
[0.,0.,0.], whereas Algorithm 1 delivers the feasible solu-
tionx =[1.,0.,1.],x=1[1.,0., 1., 1.].

D. INEXACT UPDATES

Example 7: We reconsider now Example 4, in Case 1. There,
as we could see in Fig. 2, both algorithms converged, but Al-
gorithm 2 was delivering an infeasible solution. We consider
here the case in which the QUBO is solved with some errors,
and we model these errors as probability of a bit-flip of the
QUBO optimal solution. In particular, for each component
Xi(iy of the QUBO solution, with value either O or 1, we con-
sider that there is a certain probability for it to flip to 1 or O,
respectively. We also consider that this probability decreases
as 50/k% as the number of iterations k increases, to model
the fact that we are solving the QUBO subproblems more and
more accurately. This allows M-ADMM-H to escape bad re-
gions of the solution space at first, and to intensify the search
for higher quality solutions in the consequent iterations.

In Fig. 5, we see how both algorithms converge, but now
Algorithm 2 yields an optimal solution x = [1.,0.,0.], X =
[1.,0.002,0.002], y = [0.0, —0.002, —0.002]; Algorithm 1
delivers the same feasible solution as before.

VOLUME 1, 2020



Gambella and Simonetto: Multiblock ADMM Heuristics for Mixed-Binary Optimization

@IEEE Transactions on,
uantumEngineering

—8— Residual Three-block
10-1 4 ~#— Restricted residual Three-block
—— Residual Two-block
1072
3 1073
3
3
B 104
210
105
107
1077 T T T T T T
0 3 6 9 12 15 18 21
Iteration number
103
—8— Three-block
102 4 —4— Two-block
10t
Q
)
> 10°
§
£ 107!
Q
o
1072
1073
1074 T T T T T T
0 3 6 9 12 15 18 21

Iteration number

FIGURE 4. Convergence of the residuals and optimality gap for
Example 6.

Case 1 with Inexact updates
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FIGURE 5. Convergence of the residuals for Example 7.

This example showcases how noise in real setting can help
the algorithms to converge to optimal solutions. Note that in
Case 2, the same optimal solution is achieved also with noise
in this setting.

Vi. MBO PROBLEMS

As shown in the simple examples presented in Section V,
3-ADMM-H (see Algorithm 2) and 2-ADMM-H (see Algo-
rithm 1) are heuristics, in the general case. In the best case,
3-ADMM-H is guaranteed to converge and it delivers an
optimal solution for the original MBO. In the worst case, both
algorithms fail to deliver feasible solutions. In the middle,
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3-ADMM-H may converge, but the soft-constrained solution
is not feasible with respect to the hard-constrained formu-
lation, or both algorithms could converge to a feasible but
not optimal solution. With this in mind, we are now ready to
apply the algorithms to two well-known MBO problems: BP
problem and mixed integer setup knapsack (MISK) problem.
The computational results will be discussed in Section VII,
where we will show that despite the heuristic nature of M-
ADMM-H, we can still obtain feasible solutions in many
cases. This is not trivial in general for combinatorial opti-
mization problems [72], [73].

The BP is arguably one of the most studied combinato-
rial problems [74]. Being strongly NP-hard, it stimulated the
study of heuristics, metaheuristics, and worst-case approxi-
mation bounds. Given n items, each having an integer weight
w;j, j=1,..., n, and midentical bins of integer capacity O,
the aim of BP is to pack all the items into the minimum
number of bins so that the total weight packed in any bin
does not exceed the capacity. Applications of BP in logis-
tics and scheduling are numerous, and include cutting stock
problems, containers loading, data storage, job scheduling,
and resource allocation.

The MISK belongs to the class of knapsack problems [75],
[76]. The classical knapsack problem is that of deciding
which items to pack in a capacitated knapsack, so as to max-
imize the profit of the items in the knapsack. In the setup
knapsack problem (SKP), each item belongs to a family, and
an item can be assigned to the knapsack only if a setup charge
for the correspondent family is paid [77]. SKP can model
capacitated scheduling problems. In the MISK, items can
be fractionally assigned to the knapsack. MISK appears as
a subproblem of the capacitated coordinated replenishment
problem.

A. BINARY LINEAR PROGRAMMING FORMULATION

FOR BP

Let &; € {0, 1} be the binary decision variable (BinVar)
which, if 1, indicates that item j is assigned to bin i. Let
xi € {0, 1} be the BinVar which, if 1, indicates that bin i is
containing items. A natural mathematical formulation for BP
problem is then given by the binary linear program

m
minimize i 34a
i gljx (34a)
m
subject to: Zs,j =1 j=1,...,n (34b)
i=1
n
Y owiE<0x  i=1....m  (34c)
j=1
El‘jE{O,l} lZl,.. ,m
j=1,...,n (344)
xi € {0, 1} i=1,....,m (34e)
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MBO ———{ M-ADMM-H Decomposition

iterative approach:

1. QUBO solution

QUBO Solution

VOQE

2. Convex problems solution [CPLEX]
3. Dual update
4. Evaluate merit metric

5.Goto1.

outer iterations

Either:

(i) Classical [CPLEX]
(i) Quantum [VQE/QAOA] =

Solves QUBO as
ming (v ()| H[¥(9))
by iterating as

1. Choose @ with a classical optimizer:
Either: (i) SPSA or (ii) COBYLA

2. Evaluate ((0)|H|v¢(6))
and its gradient on the quantum device
3.Goto1l

inner iterations

FIGURE 6. lllustration diagram of M-ADMM-H with VQE as quantum solver. The optimization solvers adopted for the numerical results are specified
(i.e., CPLEX, VQE, SPSA, and COBYLA). There are two nested loops for the selected implementation, specifically the outer ADMM loop with outer

iterations, and the inner VQE loop, with inner iterations.

In particular:

1) The objective function (34a) is the number of bins in
solution.

2) Constraints (34b) enforce the assignment of each item
into a bin.

3) Constraints (34c) ensure the packed items do not ex-
ceed the bin capacity.

4) Constraints (34d) and (34e) express the bounds on the
decision variables.

The presence of inequalities to express the capacity con-
straints (34c) forbids the straightforward mapping to an Ising
Hamiltonian model, and the direct application of quantum
optimization algorithms, such as VQE [6] and QAOA [8].

B. MIXED-BINARY FORMULATION FOR THE MISK

The MISK has received limited attention in the literature. The
mixed-integer formulation proposed in [78] is presented in
this section. The items belongs to K nonoverlapping families.
Each family k has T items, and a setup cost Sy > 0, when
included in the knapsack. Each item ¢ of family k has a value
Cyy < 0, and a resource consumption Dy, < 0, if assigned to
a knapsack with capacity P. The decision variables are the
fraction & of item ¢ that is included in the knapsack, and
is the binary decision yxj to setup family & in the knapsack.
MISK can then be formulated as

K K T
minimize Sk xr + C 35a
it ; KXk ;Z ke Skt (352)
= =1 1=1
K T
subject to: Z ZDklé:kt <P (35b)
k=1 t=1
& < Xk k=1, JKe=1,...,T
(35¢)
&k >0 k=1,....K,t=1,...,T
(35d)
xx € {0, 1} k=1,...,K (35e)
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The aim is to minimize the setup costs and maximize
the value of the assigned items via the objective function
(35a). Constraints (35b) ensures that the capacity of the
knapsack is not violated: this is a fixed charge capacity
constraints, because setup capacity consumption is not
considered. Constraints (35¢) impose that if item ¢ of family
k is assigned to the knapsack, then the setup cost of family
k is paid accordingly.

VIl. COMPUTATIONAL RESULTS

We discuss here the multiblock (M-ADMM-H) results on BP
and MISK. The algorithm has been implemented in Python
on a machine with 2.2 GHz, Intel Core i7 processor, and
a RAM of 16 GB; the simulations on quantum devices to
solve the QUBOs have been conducted by using the Qiskit
framework [79] (specifically, giskit version 0.15.0, giskit-
aqua version 0.6.1, giskit-terra version 0.10.0, giskit-aer ver-
sion 0.3.2), while IBM ILOG CPLEX 12.8 has been chosen
as classical optimization solver. !

In Fig. 6, a summary of the proposed approach and im-
plementation choices are presented with VQE and QAOA as
quantum QUBO solvers. It is important to note the presence
of two nested iterations: the outer one due to ADMM and the
inner one due to the classical solver for VQE/QAOA. In the
following, we consistently call the ADMM iterations “outer”
iterations, while the classical solver ones are “inner” iter-
ations. The choice of simultaneous perturbation stochastic
approximation (SPSA) or constrained optimization by linear
approximation (COBYLA) affects the choice of number of
inner iterations, therefore, we often say: SPSA/COBYLA
inner iterations. Furthermore, for all simulations reported in
the following subsections.

1) The M-ADMM-H algorithm has been run with a time
limit of 1 h, a limit of 500 outer iterations, and with
merit parameter i = le + 3.

IBM, IBM Q, Qiskit are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product or
service names may be trademarks or service marks of IBM or other compa-
nies.
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FIGURE 7. Prototype circuit used in the simulation results to evaluate |y(0)) = U(6)|0), here exemplified for three qybits (g =3) and a depth d =4,
consisting of d + 1 layers. The first operations consists in single-qubit Y rotations, with one variational parameter ¢/ per qubit to determine the rotation
angle. Each additional layer after the first contains entangling gates, more specifically controlled-Z gates applied to all qubit pairs, followed by another
set of single-qubit Y rotations with one variational parameter each to represent the angle. The variational form is then parametrized over q(d + 1)

angles, arranged in a vector § = [0,!'],-=,’_,_,q;,-=,,__,’d“ .

In addition, to avoid large penalization factors o from
the first outer iteration, we start with the value o =
le 4+ 4, which is then increased by 10% at each it-
eration, until it exceeds the value of le + 7. The pe-
nalization ¢ of equality constraints has been set to
le + 5. The penalization g of residual ||y is initially
set to le + 3 and then updated according to scheme
described in [38], specifically gK+1 = y gk, if ||| <
ol 1, with @ = 0.5 and ¥ = 2, so to foster exact
penalization.

2) The QUBO subproblems are solved either classically
with CPLEX, or on the simulated quantum devices
via the Qiskit APIs. A common random seed has been
fixed for all simulations. No limitations on the running
time of the quantum solver have been imposed but only
a maximum number of inner iterations. The variational
quantum eigensolver (VQE) has been invoked with the
RY variational form in a circuit of depth 5 and full
entanglement, and the QASM simulator as Qiskit Aer
backend. Fig. 7 represents the circuit that was used
in the case of three qubits and depth 4. The quantum
approximate optimization algorithm (QAOA) has been
tested with circuit depth 3 and the same backend.

3) VQE is itself an iterative quantum algorithm that in-
volves defining a parametrized variational form and
optimizing classically on the rotation parameter vector
0, while evaluating the variational form and its gradi-
ents on the quantum device. In our simulations, the
classical solvers used by VQE are the model-based
local optimizers SPSA [80], and COBYLA [81]. For
both solvers, the Qiskit implementation has been used.

4) QAOA generalizes VQE because the variational form
is added with parameter vector 8 of length equal to 6.
As for VQE, the classical optimization is performed
via SPSA and COBYLA.

5) For the sake of clarity, we indicate the quantum QUBO
solvers with name quantum algorithm-internal classi-
cal solver. For instance, VQE-SPSA solves QUBOs
with VQE and SPSA as internal classical optimizer.
For the classical optimizers SPSA and COBYLA on
the rotation parameters, sensitivity results are reported
for 10, 20, 50 maximum inner iterations.

The gap of the minimum-merit-value solution with value
v with respect to known optimal value v* is computed as
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¥ .
lel_vlT'jrllv*l. In order to report the computational results, we

have included the number of BinVars, the number of outer
iterations (IT) of M-ADMM-H, the gap (Gap) to optimal-
ity, and percentage of M-ADMM-H solution that are feasi-
ble (Feas) or optimal (Opt) with respect to the constraints
and objective of the original constrained problem. For the
simulations with VQE and QAOA, the number of BinVars
corresponds to the number of qubits.

Remark 2: We notice here that VQE and QAOA do not
solve (in general) a QUBO at optimality (and in this sense,
they are not a perfect oracle), while CPLEX does (for the
considered small instances). In addition, even in cases in
which the quantum algorithm solves the QUBO at optimality,
the optimizer may be different from CPLEX, since multiple
equivalent solutions could exist. In general, then the solution
of the quantum algorithm and CPLEX will be different when
solving the same QUBO and the outer ADMM loop will
be affected by it. In practice, using VQE or QAOA could
either worsen or boost convergence since M-ADMM-H is in
general a heuristic, small errors can be beneficial in some
cases, while worsening performance in others.

We notice that the choice of VQE and QAOA in this article
is due to the current technical status of quantum computing.
In the future, better QUBO solvers may be available, e.g.,
based on (iterative) phase estimation, which might deliver
optimal solutions at scale.

A. BIN PACKING

We first discuss two implementation improvements to re-
duce computational complexity and foster convergence in the
heuristic case for BP.

1) Removing Unnecessary Decision Variables: Let [ be a
lower bound on the number of bins required to pack all items
(for example, the continuous relaxation bound {%]).
Then, it is possible to discard variables xi, ..., x; from the
mathematical formulation. In addition, it is not restrictive
to assume &1 = 1. With these observations, the number of
decision variables required is (mn — n) + (m — ). Typically,
n = m, hence, this boils down to n? — [. The stronger the
bound [ is, the fewer binary variables are introduced. In the
current implementation, the continuous relaxation bound has
been adopted.

2) LS Operator: To improve the convergence of M-
ADMM-H to solutions that are feasible for the equality
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TABLE 1. Feasibility and Optimality Results of M-ADMM-H on 60
Instances With n = 2, 3,4 and Q = 40

3-ADMM-H 2-ADMM-H
Items Gap Feas Opt Gap Feas Opt
2| 0.00% 100.00% 100.00% | 25.00% 50.00% 50.00%
3| 15.83%  90.00% 65.00% 9.17% 90.00% 75.00%
4 | 68.33% 100.00% 5.00% | 20.42% 50.00% 35.00%
2,3,4 | 28.06%  95.08% 55.74% | 18.19% 63.33% 53.33%

constraints (34c), we have implemented an LS operator [82]
to be applied to the solutions of the QUBO in the first
block update of (2) and (1). This operator is based on the
Karmarkar—Karp differencing method [83], and it shuffles
the assignment of items to pairs of bins in such a way to
minimize the difference of the weights of the bin.

BP has been tested on M-ADMM-H on the following two
groups of instances.

1) Small-sized: n = 2, 3, 4. Weights w; have been ran-
domly picked in [1, Q]. The QUBO has been solved
via VQE and CPLEX.

2) Scholl dataset [84], with n = 50. We have considered
20 instances of the dataset. For 10 of the instances the
bin capacity Q is 100, and the weights w; are sam-
pled either from the interval [1, 100], or the interval
[20, 100]. For the remaining half of the instances, the
weights are determined analogously, and the bin capac-
ity is 120.

On the Scholl dataset instances, the QUBO subproblem
has been solved via CPLEX only, to evaluate the quality
of M-ADMM-H solutions. The simulations on quantum de-
vices are not of practical implementation at the moment,
since the number of qubits in QUBO are O(n?) and would
exceed the capabilities of current quantum technology.

1) SMALL-SIZED DATASET

Simulations on classical devices: For the simulations on
CPLEX, Table 1 reports the percentage of instances for
which M-ADMM-H finds feasible or optimal solutions,
grouped by the number of items of the instance. The 3-block
3-ADMM-H implementation is able to find feasible solutions
for over 90% of the instances. The search for optimal so-
lutions becomes more difficult as the number of items in-
creases, and for only 5% of the 4-items instances optimal
solutions are found, and the gap to optimality is close to 70%
on the 4-items instances. For the two-block implementation
2-ADMM-H, the increase of gap is less, however, the search
for feasible solutions is more difficult, as for 63.33% of the
instances feasible solutions are found.

Simulations on quantum devices: For the simulations in
which QUBO is solved via VQE and QAOA, the classical
solvers SPSA and COBYLA have been set with 10, 20, 50
maximum inner iterations on BP instances with N = 2,3
and Q = 40. SPSA is known to be more computationally
demanding than COBYLA, because it requires two function
evaluations per iteration. For each combination of values of
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N and Q, 20 instances have been generated with weights in
[1, O], and average results for each group are reported for
VQE in Table 2. While the choice of ten maximum inner
iterations for the classical optimizer lowers the computa-
tional time each ADMM outer iteration, the convergence
of ADMM is slowed down and the quality of the solution
is also impacted negatively. VQE-COBYLA makes ADMM
converge in one outer iteration to the optimal solution for
instances with two items with 20, 50 maximum inner itera-
tions. Increasing the number of SPSA iterations is detrimen-
tal for the gap, feasibility and optimality of the instances:
this is because SPSA runs for as many inner iterations as
the limit set in Qiskit. Invoking VQE with 50 maximum
inner iterations in COBYLA, enables to increase by 40%,
the number of instances with feasible solutions with N = 3.
Overall, the choice of SPSA as classical solver for VQE
with 20 inner iterations is the best one in terms of solutions
quality for these instances with two and three items, and
outperforms the results obtained with CPLEX displayed in
Table 1. This can be explained by the percentage of QUBO
suproblems solved to optimality by VQE (column QUBO):
while VQE-COBYLA with 20 or 50 inner iterations solves
all QUBOs to optimality when N = 2, VQE-SPSA reports
a nonoptimal QUBO solution in a considerable percentage
of the instances when N = 2. It seems, therefore, beneficial
for ADMM to solve a part of the QUBO suproblems in an
inexact fashion. For instances with N = 3, the number of
qubits increases and VQE hardly ever solves the QUBOs to
optimality. Nevertheless, 3-ADMM-H converges to feasible
and optimal solutions in all instances, with SPSA chosen
as classical solver (cf. Remark 2, and Section IV-C). It is
also interesting to note that VQE-SPSA with ten SPSA inner
iterations solves the QUBO to optimality in 35% more of
the cases w.r.t. 2050 max inner iterations; however, this
is detrimental to the gap, and optimality of the solutions.
The residuals are not guaranteed to decrease in each ADMM
outer iteration, as reported by Fig. 8 on instance N3C40I8. In
this case, 3-ADMM-H explores solutions with three bins for
about 70 outer iterations, and then converges to a nonoptimal
solution of lower value, which makes the residual equal to 0.

The results of 3-ADMM-H with QAOA as quantum solver
are reported in Table 9 in the Appendix. While the con-
vergence of 3-ADMM-H is overall slower w.r.t. VQE, the
quality of the solution obtained is similar when COBYLA
performs the classical subroutines.

On the same groups of BP instances, 2-ADMM-H has
been tested, and average results are reported in Table 3 for
VQE. The convergence is overall slower than the three-block
implementation in terms of number of outer iterations, re-
gardless of the classical solver called by VQE. SPSA makes
M-ADMM-H obtain solutions with higher quality, when its
maximum number of inner iterations is set to 50. COBYLA
yields solutions with lower quality, in the case of N = 3 and
50 maximum inner iterations. As observed for 3-ADMM-H,
the choice of ten maximum inner iterations for SPSA and
COBYLA delivers ADMM solutions with sensibly lower
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TABLE 2. Average Results of 3-ADMM-H on 40 BP Instances With N = 2, 3 and Q = 40. The QUBO subproblems have been solved via VQE with SPSA and

COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA

Instance BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO

N2C40IT10 2 1 50.00% 0.00% 0.00% 0.00% 9 0.00% 100.00% 100.00% 26.98%
N2Q40IT20 2 8 0.00% 100.00% 100.00% 41.81% 1 0.00% 100.00%  100.00%  100.00%
N2Q40IT50 2 13 35.00% 80.00% 65.00% 64.87% 1 0.00% 100.00% 100.00% 100.00%
N3C40IT10 7 115 21.67% 80.00% 70.00% 35.52% | 69 30.00% 20.00% 10.00% 15.86%
N3Q40IT20 7 8 0.00% 100.00%  100.00% 0.00% | 16  72.50% 80.00% 15.00% 0.26%
N3Q40I1T50 7 6 1417% 80.00% 75.00% 0.87% | 12  52.50% 80.00% 55.00% 0.00%

TABLE 3. Average Results of 2-ADMM-H on 40 BP Instances With N = 2, 3 and Q = 40. The QUBO subproblems have been solved via VQE with SPSA and

COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA
Instance BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO
N2C40IT10 2 1 50.00% 0.00% 0.00% 0.00% 6 5.00% 90.00% 90.00% 90.10%
N2Q40IT20 2 21 0.00% 100.00% 100.00%  86.15% 1 0.00% 100.00% 100.00%  100.00%
N2Q40IT50 2 15 0.00% 100.00%  100.00% 1.85% 1 0.00% 100.00%  100.00% 46.40%
N3C40IT10 7 87 4211% 63.16% 42.11% 11.99% | 155 36.67% 30.00% 10.00% 10.00%
N3Q40IT20 7 14 29.17% 95.00% 65.00%  88.75% 49  72.50% 80.00% 15.00%  100.00%
N3Q40IT50 7 5 7.50%  100.00% 90.00% 27.18% 11 41.67% 50.00% 50.00% 11.43%
300 TABLE 4. Computational Results of M-ADMM-H on 20 BP Instances of
the Scholl Dataset [84]. The QUBO subproblems are solved via CPLEX on
2.75 the classical machine.
25501 No LS With LS
2.25 ] Blocks | IT Gap Feas Opt IT Gap Feas Opt
3 54 86.08% 100.00% 0.00% 1 86.08% 100.00% 0.00%
g 2.00 2 471 30.17%  10.00% 0.00% | 21 33.76% 100.00% 0.00%
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FIGURE 8. Plots of solution cost and residuals for instance N3C40I8,
solved by 3-ADMM-H with COBYLA with 20 inner iterations. The optimal
solution value is reported in red dashes.

quality. As observed for 3-ADMM-H, a certain degree of
inexactness in solving QUBOs is beneficial for the quality
of the solutions delivered. In particular, for the instances
with 3 items, 2-ADMM-H delivers the best results when
VQE solves 27% of the QUBOs to optimality. The results
of 2-ADMM-H with QAOA are shown in Table 10 in the
Appendix. The choice of QAOA as quantum solver is bene-
ficial in the simulations with COBYLA with 50 inner itera-
tions on instances with 3 items: in this case, the best results
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in terms of gap, feasibility, and optimality are obtained for
2-ADMM-H.

Finally, the VQE simulations where conducted on
three BP instances with N =4, 0 =4. In this case,
M-ADMM-H cannot perform more than two outer iterations
within the time limit of 1 h. We have also observed that, due
to the size of the search state, VQE is not always able to find
a solution where the equality constraints (34b) are satisfied.
The number of inner iterations of the classical solver invoked
by VQE has to be set to a sufficiently large value that ensures
to explore solutions without augmented Lagrangian penalty
terms. As a representative example, Fig. 9 displays the
allocation of items to the bins on a BP instance (referred
to as instance N4Q4) with weights [2, 3, 2, 2], obtained
from QUBO at outer iteration 1 of 3-ADMM-H. Since
one of the items with weight 2 is assigned twice in the
solution obtained by VQE-SPSA with 50 inner iterations,
it is necessary to increase the inner iterations to 100 to
obtain a solution where all items are assigned to one bin.
In this case, the solution is feasible and optimal. The time
required to perform this outer 3-ADMM-H iteration goes
from 2749.87 s in the 50-inner-iteration simulation case to
5380.40s in the 100-inner-iterations case. This shows that
the BP instances with four items are computationally very
demanding for the 3-ADMM-H algorithm.

2) SCHOLL DATASET

Table 4 reports the results obtained with M-ADMM-H, both
without and with the LS operator described in Section VII-
A, with CPLEX as solver for QUBO. We have included

3102022



@IEEE Transactions on,
uantumEngineering

Gambella and Simonetto: Multiblock ADMM Heuristics for Mixed-Binary Optimization

bins

bins

FIGURE 9. Solution found by VQE for the BP QUBO at outer iteration 1 of 3-ADMM-H, on instance N4Q4. The maximum number of SPSA inner iterations

is set to 50 in the picture on the left, and to 100 in the one on the right.

TABLE 5. Computational Results of 3-ADMM-H on 12 MISK Instances in Group 1. The QUBO subproblems have been solved via VQE with SPSA and
COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA
Instances BinVars | IT Gap Feas Opt QUBO | IT Gap Feas Opt QUBO
K5IT10 5 19  62.13% 100.00% 33.33% 41.56% | 6 100.00% 100.00% 0.00% 100.00%
K5IT20 5 11 76.20% 100.00%  0.00% 25.87% | 6 100.00% 100.00% 0.00% 100.00%
K5IT50 5 6 150.29% 100.00%  0.00% 52.80% | 6 100.00% 100.00% 0.00% 100.00%
K8IT10 8 22 82.41% 100.00%  0.00% 7.69% | 6 546.00% 100.00% 0.00%  83.33%
K8IT20 8 27  38.74% 100.00%  0.00% 8.03% | 6 100.00% 100.00% 0.00% 100.00%
K8IT50 8 12 114.17% 100.00%  0.00% 16.75% | 6 100.00% 100.00% 0.00% 100.00%
K11IT10 11 63 42.80% 100.00%  0.00%  0.00% | 87 96.39% 100.00% 0.00% 0.00%
K111T20 11 12 9857% 100.00%  0.00% 0.00% | 6 100.00% 100.00% 0.00%  45.24%
K11IT50 11 5  94.66% 0.00%  0.00% 2.90% | 6 93.31% 100.00% 0.00% 18.18%
K14IT10 14 31 39.55% 100.00% 0.00% 0.00% | 8 66.83% 100.00% 0.00% 60.71%
K14IT20 14 6 80.91% 33.33% 0.00% 0.00% | 6 100.00% 100.00% 0.00% 15.38%
K14IT50 14 3 118.08% 0.00%  0.00%  0.00% | 6 170.25%  33.33% 0.00% 0.00%

the percentage of time spent in solving the QUBO (col-
umn Blockl1), the convex subproblem (Block2), the con-
vex and quadratic subproblem (Block3), and boolean indi-
cations for the feasibility (Feas) and optimality (Opt) of the
M-ADMM-H solution with respect to the constraints and
objective of the original constrained problem. Without LS,
3-ADMM-H takes on average 54 outer iterations to converge,
and a feasible not optimal solution is found for all instances.
The gap to optimality is 86.08% and it is heavily depended
on the capacity of the bins: the gap increases from 69.49%
on the instances with Q = 100 to 102.68% on the instances
with Q = 120. Applying LS on the QUBO solutions does
not help to increase the solution quality, and in fact the same
feasible solutions are obtained in the LS simulations. The
advantage of LS in this case is to let 3-ADMM-H converge in
one outer iteration. The LS is instead extremely beneficial to
find feasible solutions in the 2-ADMM-H, and it enables to
reach convergence within 21 outer iterations, on average. It
is worthy to note that the 2-block implementation enables to
find solution with average gaps to optimality less than 50%
on those found by the three-block implementation, even if
the convergence is often not reached in 500 outer iterations.
In the two-block implementation, the gap is less dependent
on the capacity of the bins.
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B. MIXED-INTEGER SETUP KNAPSACK

MISK problem has been tested on M-ADMM-H on two
groups of instances. The first group of instances, Group 1, has
been generated by following the guidelines of [78]. To gen-
erate challenging MISK instances, the capacity utilization

w is set to 2.5, data correlation is medium (i.e.,
Dy € [1,10], Ciy € —[Dys — 2, Dy + 21]), and setup costs Sk
are randomly sampled in [40, 60]. A second group of in-
stances, Group 2, has been generated with the aim to test
M-ADMM-H in cases where the continuous decisions have
an impact larger than the binary decisions on the solu-
tions. To this end, the Sj and values Cy, have been lowered,
specifically S; € [0, 1], and Cy € [—60, —40]. In both
groups of instances, 7 has been set to 10, and the number
of families K, corresponding to the number of qubits in the
QUBO, ranges in the set {5, 8, 11, 14}. Both groups have
been initially tested on M-ADMM-H with QUBO solved
via CPLEX on a classical device. In this case, the feasible
solution in which no item is assigned to the knapsack is
very often the only feasible solution found, which can be
arbitrarily far from the optimal value. For the simulations
with VQE, Table 5 reports the average results obtained on
three instances for fixed K in Group 1, with 3-ADMM-H.
While 3-ADMM-H with VQE-SPSA fails to converge within

VOLUME 1, 2020



Gambella and Simonetto: Multiblock ADMM Heuristics for Mixed-Binary Optimization

@IEEE Transactions on,
uantumEngineering

TABLE 6. Computational Results of 3-ADMM-H on 12 MISK Instances in Group 2. The QUBO subproblems have been solved via VQE with SPSA and

COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA

Instances BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO

K5IT10 5 19 6.74% 100.00% 0.00% 23.70% 6 100.00% 100.00% 0.00% 100.00%
K5IT20 5 10 12.88% 100.00% 33.33% 14.78% 6 100.00% 100.00% 0.00% 100.00%
K5IT50 5 7 47.30% 100.00% 0.00% 61.11% 6 100.00% 100.00% 0.00% 100.00%
K8IT10 8 24 9.82% 100.00% 0.00% 12.06% 6 3.94% 100.00% 0.00%  83.33%
K8IT20 8 14 7.56% 100.00% 33.33%  4.29% 6 100.00% 100.00% 0.00% 100.00%
K8IT50 8 11 20.54% 100.00% 0.00% 14.88% 6 100.00% 100.00% 0.00% 100.00%
K11IT10 11 30 14.36%  66.67% 0.00%  0.00% | 107 21.46% 100.00% 0.00% 0.00%
K111T20 11 12 12.74% 100.00% 0.00%  0.00% 6 100.00% 100.00% 0.00%  47.62%
K111T50 11 5 21.56% 0.00% 0.00% 1.52% 8  22.42% 100.00% 0.00%  20.37%
K14IT10 14 19 18.19%  66.67% 0.00%  0.00% 7 28.72% 100.00% 0.00%  57.14%
K14IT20 14 6 21.57% 0.00% 0.00%  0.00% 6 100.00% 100.00% 0.00% 0.00%
K14I1T50 14 3 2411% 0.00% 0.00%  0.00% 6 12.09% 0.00% 0.00% 0.00%

TABLE 7. Computational Results of 2-ADMM-H on 12 MISK Instances in Group 1. The QUBO subproblems have been solved via VQE with SPSA and

COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA

Instances BinVars | IT Gap Feas Opt QUBO | IT Gap Feas Opt QUBO

K5IT10 5 5 66.67% 100.00% 33.33% 70.00% | 2 100.00% 100.00% 0.00% 100.00%
K5I1T20 5 26 41.72% 100.00%  0.00% 24.79% | 22 100.00% 100.00% 0.00% 100.00%
K5IT50 5 1 205.00% 0.00%  0.00% 72.22% | 23 100.00% 100.00% 0.00% 100.00%
K8IT10 8 9 104.15% 100.00%  0.00% 11.67% | 2 546.00% 100.00% 0.00%  50.00%
K8IT20 8 63 0.01% 100.00%  0.00% 11.82% | 17 111.05% 100.00% 0.00% 100.00%
K8IT50 8 25  28.66% 100.00%  0.00%  0.00% | 13  48.43% 0.00% 0.00% 100.00%
K11IT10 11 37 7531% 100.00% 0.00% 0.00% | 93  96.39% 100.00% 0.00% 0.00%
K11IT20 11 12 22.94% 100.00%  0.00%  0.00% | 22 100.00% 100.00% 0.00%  88.56%
K11IT50 11 8 7739% 66.67% 0.00% 0.00% | 23 100.00% 100.00% 0.00%  75.00%
K14IT10 14 25  46.42% 100.00% 0.00% 0.00% | 4 66.83% 100.00% 0.00%  25.00%
K141T20 14 4 135.40%  33.33% 0.00% 0.00% | 12  93.28% 0.00% 0.00% 0.00%
K14IT50 14 3 132.06% 33.33% 0.00% 0.00% | 6 93.77% 100.00% 0.00% 0.00%

TABLE 8. Computational Results of 2-ADMM-H on 12 MISK Instances in Group 2. The QUBO subproblems have been solved via VQE with SPSA and
COBYLA solvers with 10, 20, and 50 maximum inner iterations.

SPSA COBYLA

Instances BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO

K5IT10 5 2 100.00% 100.00% 0.00% 100.00% 2 100.00% 100.00% 0.00% 100.00%
K5I1T20 5 84 0.03% 100.00% 0.00% 13.24% | 27 100.00% 100.00% 0.00% 100.00%
K5IT50 5 86 0.00% 100.00% 0.00%  64.60% 19 98.85%  66.67% 0.00% 100.00%
K8IT10 8 6 28.74% 100.00% 0.00% 2.78% 2 3.94% 100.00% 0.00%  50.00%
K8IT20 8 89 0.01% 100.00% 0.00% 0.00% 2 22.32% 0.00% 0.00% 100.00%
K8IT50 8 29 10.53% 100.00% 0.00% 8.33% 1 16.86% 0.00% 0.00% 100.00%
K11IT10 11 8 31.70% 66.67% 0.00% 0.00% | 113 13.54% 100.00% 0.00% 0.00%
K11IT20 11 36 6.38% 100.00% 0.00% 0.00% | 27 100.00% 100.00% 0.00%  91.83%
K111T50 11 12 4.78% 100.00% 0.00% 0.00% | 27 100.00% 100.00% 0.00%  75.00%
K14IT10 14 20 11.63%  66.67% 0.00% 0.00% 4  28.72% 100.00% 0.00%  25.00%
K141T20 14 5 14.13%  66.67% 0.00% 0.00% 9 37.42% 0.00% 0.00% 0.00%
K14I1T50 14 3  26.63% 0.00% 0.00% 0.00% 6 27.52%  33.33% 0.00% 0.00%

1 h for instances with K > 8, and 20 SPSA inner iterations,
it converges with VQE-COBYLA in a few outer iterations,
and produces more feasible solutions. However, VQE-SPSA
yields better results in terms of optimality gap, especially
when the maximum number of SPSA inner iterations is set to
20. Feasible solutions are found for all instances with VQE-
COBYLA with 20 COBYLA inner iterations. The number of
ADMM outer iterations generally decreases with the increase
of the inner iterations of the classical optimizer.
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The Group 2 instances are solved with average optimality
gap of 18.11% with VQE-SPSA, as shown in Table 6, report-
ing a 65% decrease of this metric with respect to Group 1.
Hence, 3-ADMM-H finds solutions of higher quality in case
the continuous decision variables play an important role in
the MBO model. Using VQE-COBYLA to solve the QUBO
is beneficial for the larger-sized instances with K = 14, since
the average optimality gap drops to 12.09% with 50 maxi-
mum inner iterations, in 1 h of computation.
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FIGURE 10. Plots of solution cost and residuals for instance K11T10I1, solved by 3-ADMM-H with COBYLA with 50 inner iterations. The optimal solution

value is reported in red dashes.

TABLE 9. Average Results of 3-ADMM-H on 40 BP Instances With N = 2, 3 and Q = 40. The QUBO subproblems have been solved via QAOA with SPSA

and COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA

Instance BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO

N2C40IT10 2 1 50.00% 0.00% 0.00% 0.00% 10 0.00% 100.00% 100.00% 93.15%
N2C40IT20 2 273 0.00% 100.00% 100.00%  48.26% 1 0.00% 100.00% 100.00%  100.00%
N2C40IT50 2 137 0.00% 100.00% 100.00% 70.05% 1 0.00% 100.00% 100.00%  100.00%
N3C40IT10 7 110  40.35% 63.16% 52.63% 3.06% | 101 36.67% 20.00% 10.00% 0.00%
N3C40IT20 7 55 17.54% 89.47% 78.95% 0.00% 51  67.50% 60.00% 15.00% 0.26%
N3C40IT50 7 20 24.56% 57.89% 57.89% 1.03% 57 21.67% 80.00% 60.00% 0.14%

Similarly to what observed for the BP problem, the per-
centage of QUBOs solved to optimality by VQE tends to
decrease with the increase of the number of qubits. With
VQE-COBYLA, almost all QUBOs are solved to optimality
for instances with up to eight qubits. The exception is given
by the simulation with ten inner iterations for COBYLA and
K = 8. We observe that, for the Group 2 instances, a lower
percentage of QUBOs solved to optimality corresponds to
M-ADMM-H solutions with value closer to the optimal
(cf. Remark 2, and Section IV-C). Almost half of the QUBOs
are solved to optimality by VQE-COBYLA on the instances
with 11 qubits, while VQE-SPSA solves exactly less than 3%
of the QUBO:s. Fig. 10 shows solution costs and value of the
residuals reported in the 3-ADMM-H outer iterations on in-
stance K11T10I1 with 11 qubits. The solution cost changes at
each outer iteration in a nonmonotonic way, and 3-ADMM-
H converges to a feasible solution in ten outer iterations.

For the 2-ADMM-H implementation, the results are re-
ported in Tables 7 and 8. As observed for 3-ADMM-H,
2-ADMM-H with VQE-SPSA delivers solutions with a
lower average gap to optimality for the Group 2 instances.
The convergence of 2-ADMM-H is slower than 3-ADMM-
H. Instances with 5 and 11 qubits and 20 maximum
COBYLA inner iterations are solved by 2-ADMM-H within
1 h of computation. Setting IT = 10 ensures faster simula-
tions, at the price of solution quality. Regarding the feasi-
bility, on the one hand 2-ADMM-H with VQE-SPSA and
IT > 20 finds feasible solutions for 83.33% of the Group 1
instances, and 91.67% of the Group 2 instances, and on the
other hand 2-ADMM-H with VQE-COBYLA yields feasible
solutions in, respectively, 75% and 50% of the cases. As in
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the 3-ADMM-H case, VQE-COBYLA solves all QUBOs to
optimality on instances with up to 8 qubits, except for the
case of 20 maximum inner iterations. The percentage of QU-
BOs solved on the 11-qubits instances increases substantially
with respect to the 3-ADMM-H implementation.

The simulations of M-ADMM-H with QAOA as quan-
tum solver are reported in Tables 9-14 in the Appendix.
The results further corroborate the claim that for Group 2
instances, M-ADMM-H find solutions of higher quality. This
is observed in the drop of the solution gap in the QAOA-
SPSA simulations, between Groups 1 and 2 instances. The
gap drop corresponds to 76% for 3-ADMM-H, and 51%
for 2-ADMM-H. Hence, the impact of continuous decision
variables in the convergence of M-ADMM-H could deserve
more future studies.

VIIl. CONCLUSION

In this article, we have proposed an iterative heuristic method
M-ADMM-H, based on ADMM, to solve MBOs on current
noisy quantum devices, as well as on classical computers
whenever a QUBO solver is available. The method relies on a
decomposition of MBO into a QUBO subproblem, which can
be tackled via quantum optimization solvers such as VQE
and QAOA, and convex subproblems. This enables to extend
the range of mathematical optimization problems that can
be solved on quantum devices. The method has been tested
via the Qiskit framework with VQE as quantum QUBO
solver on two representative MBO problems, namely BP
Problem, and MISK problem. The simulations indicated the
effectiveness of M-ADMM-H in finding solutions feasible
for the MBO formulations. In particular, for BP instances
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TABLE 10. Average Results of 2-ADMM-H on 40 BP Instances With N = 2, 3 and Q = 40. The QUBO subproblems have been solved via QAOA with SPSA

and COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA

Instance BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO

N2C40IT10 2 1 50.00% 0.00% 0.00% 0.00% 7 0.00% 100.00% 100.00% 88.39%
N2C40IT20 2 500 0.00% 100.00% 100.00% 62.99% 1 0.00% 100.00%  100.00% 100.00%
N2C40IT50 2 52 0.00% 100.00% 100.00% 69.67% 1 0.00% 100.00% 100.00% 100.00%
N3C40IT10 7 86 47.37% 63.16% 31.58% 6.87% | 106 41.67% 20.00% 10.00% 10.00%
N3C40IT20 7 59 12.28% 84.21% 73.68% 24.42% 75 62.50% 50.00% 15.00% 10.46%
N3C40IT50 7 21 25.44% 68.42% 68.42% 17.56% 83 26.67% 90.00% 65.00% 20.69%

TABLE 11. Computational Results of 3-ADMM-H on 12 MISK Instances in Group 1. The QUBO subproblems have been solved via QAOA with SPSA and

COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA
Instances  BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO
K5IT10 5 19 62.13% 100.00% 33.33% 41.56% 6 100.00% 100.00% 0.00% 100.00%
K5IT20 5 11 491% 100.00% 33.33% 25.87% 6 100.00% 100.00% 0.00% 100.00%
K5IT50 5 7 198.19% 100.00% 0.00% 52.80% 6 100.00% 100.00% 0.00% 100.00%
K8IT10 8 14 103.15% 100.00% 0.00% 7.69% 6 546.00% 100.00% 0.00% 100.00%
K8IT20 8 26 55.69%  100.00% 0.00% 7.55% 6 100.00% 100.00% 0.00% 100.00%
K8IT50 8 11 136.61% 66.67% 0.00% 45.42% 6 100.00% 100.00% 0.00% 100.00%
K11IT10 11 58 33.30% 100.00% 0.00% 0.00% 7 118.73% 100.00% 0.00% 100.00%
K11IT20 11 34 116.66% 100.00% 0.00% 0.00% 8 117.00% 100.00% 0.00% 34.52%
K111T50 11 14 80.41% 66.67% 0.00% 10.19% | 11 81.00% 100.00% 0.00% 18.18%
K14IT10 14 30 48.90% 100.00% 0.00% 0.00% 8 66.83% 100.00% 0.00% 100.00%
K14IT20 14 12 73.31% 66.67% 0.00% 0.00% | 41 54.23% 100.00% 0.00% 0.00%
K14IT50 14 8 116.72% 66.67% 0.00% 0.00% | 19 51.46% 100.00% 0.00% 0.00%

TABLE 12. Computational Results of 3-ADMM-H on 12 MISK Instances in Group 2. The QUBO subproblems have been solved via QAOA with SPSA and

COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA
Instances  BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO
K5IT10 5 19 6.74% 100.00% 0.00% 23.70% 6 100.00% 100.00% 0.00% 100.00%
K5IT20 5 24 9.80% 100.00% 0.00% 14.78% 6 100.00% 100.00% 0.00%  100.00%
K5IT50 5 7 30.65% 100.00% 0.00% 61.11% 6 100.00% 100.00% 0.00% 100.00%
K8IT10 8 24 9.82% 100.00% 0.00% 12.06% 6 3.94% 100.00% 0.00% 100.00%
K8IT20 8 49 2.07% 100.00% 0.00% 3.41% 6 100.00% 100.00% 0.00%  100.00%
K8IT50 8 21 1253% 100.00% 0.00% 14.88% 6 100.00% 100.00% 0.00% 100.00%
K11IT10 11 47 8.59% 100.00% 0.00% 0.00% | 10 13.54% 33.33% 0.00% 0.00%
K11IT20 11 45 3.22% 100.00% 0.00% 0.00% 7 29.84% 100.00% 0.00% 19.84%
K111T50 11 13  14.58% 100.00% 0.00% 0.00% | 10 16.11% 100.00% 0.00% 20.37%
K14IT10 14 30 10.47% 100.00% 0.00% 0.00% 5 28.72% 100.00% 0.00% 35.00%
K14IT20 14 18 12.92% 100.00% 0.00% 0.00% | 41 9.56% 100.00% 0.00% 0.00%
K14IT50 14 6 21.88% 33.33% 0.00% 0.00% | 20 9.63% 100.00% 0.00% 0.00%

TABLE 13. Computational Results of 2-ADMM-H on 12 MISK Instances in Group 1. The QUBO subproblems have been solved via QAOA with SPSA and

COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA
Instances  BinVars | 1T Gap Feas Opt QUBO IT Gap Feas Opt QUBO
K5IT10 5 5 66.67% 100.00% 33.33% 70.00% 2 100.00% 100.00% 0.00% 100.00%
K5IT20 5 2 59.92%  100.00% 0.00% 61.11% 2 100.00% 100.00% 0.00% 100.00%
K5IT50 5 3 40.25% 100.00% 33.33% 41.67% 2 100.00% 100.00% 0.00% 100.00%
K8IT10 8 8 123.85% 100.00% 0.00% 13.06% 2 546.00% 100.00% 0.00% 100.00%
K8IT20 8 29 80.86%  100.00% 0.00% 16.67% 2 100.00% 100.00% 0.00% 100.00%
K8IT50 8 2 78.82%  100.00% 0.00% 16.67% 2 100.00% 100.00% 0.00% 100.00%
K11IT10 11 49 68.36%  100.00% 0.00% 0.00% | 66 121.62% 100.00% 0.00% 100.00%
K11IT20 11 12 64.91%  100.00% 0.00% 0.00% 5 121.62% 100.00% 0.00% 24.44%
K11IT50 11 17 101.24% 100.00% 0.00% 1.96% | 35 110.19% 100.00% 0.00% 0.00%
K14IT10 14 11 110.14% 33.33% 0.00% 0.00% 4 66.83% 100.00% 0.00% 100.00%
K141T20 14 6 122.53% 33.33% 0.00% 0.00% 1 71.15% 0.00% 0.00% 0.00%
K14IT50 14 5 44.43% 66.67% 0.00% 0.00% | 19 46.81% 100.00%  0.00% 0.00%

with two and three items, feasible solutions are found with
an average optimality gap of at most 7.50%. In this case,
setting SPSA in 2-ADMM-H as the VQE solver with 50
iterations delivers the best results. On MISK instances, VQE
is beneficial to explore feasible solutions different to a trivial
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one found via the classical computation with CPLEX. It has
also been highlighted that 3-ADMM-H finds solutions of
higher quality in case the continuous decision variables play
an important role in the MBO model, and this could deserve
future investigation.
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TABLE 14. Computational Results of 2-ADMM-H on 12 MISK Instances in Group 2. The QUBO subproblems have been solved via QAOA with SPSA and

COBYLA solvers with 10, 20, and 50 maximum iterations.

SPSA COBYLA
Instances BinVars | IT Gap Feas Opt QUBO IT Gap Feas Opt QUBO
K5IT10 5 2 100.00% 100.00% 0.00% 100.00% 2 100.00% 100.00% 0.00% 100.00%
K5IT20 5 4 57.44% 100.00% 0.00% 31.94% 2 100.00% 100.00% 0.00%  100.00%
K5IT50 5 2 67.05% 100.00% 0.00% 50.00% 2 100.00% 100.00% 0.00%  100.00%
K8IT10 8 6 28.74% 100.00% 0.00% 2.78% 2 3.94% 100.00% 0.00% 100.00%
K8IT20 8 6 38.58% 100.00% 0.00% 16.67% 2 100.00% 100.00% 0.00%  100.00%
K8IT50 8 2 49.56% 100.00% 0.00% 33.33% 2 100.00% 100.00% 0.00%  100.00%
K110 11 47 8.59% 100.00% 0.00% 0.00% | 10 13.54% 33.33% 0.00% 0.00%
K111T20 11 26 9.60% 100.00% 0.00% 3.04% | 17 14.23% 33.33% 0.00% 0.00%
K11IT50 11 14 15.56% 100.00% 0.00% 6.67% | 23 13.90% 100.00% 0.00% 6.06%
K14IT10 14 30 10.47% 100.00% 0.00% 0.00% 5 28.72% 100.00% 0.00% 35.00%
K14IT20 14 16 18.54% 100.00% 0.00% 0.00% 2 52.21% 100.00% 0.00% 0.00%
K14IT50 14 8 24.77% 100.00%  0.00% 0.00% | 17 9.45% 100.00% 0.00% 0.00%

It is important to observe that M-ADMM-H is a heuristic
optimization algorithm for a class of MBO formulations, and
it is not tailored to the two applications addressed in this
article, namely BP and MISK problems; therefore, the results
in terms of feasibility are not trivial on these combinatorial
problems.

In theory, we have presented formal requirements under
which 3-ADMM-H is guaranteed to converge to a stationary
point of a pertinent augmented Lagrangian, which applies
on quantum and classical computers alike. In practice, we
have offer a glimpse on current research in combinatorial op-
timization in quantum computing, along with assumptions,
challenges, and open problems.

Future works can include the investigation of the im-
pact of continuous decision variables in the M-ADMM-
H convergence, the integration of techniques to enforce the
feasibility of equality constraints of MBO in the QUBO
subproblems [85], different decomposition approaches to
devise QUBO subproblems, the combination of ADMM
with slack variable approaches [21], and alternative de-
composition approaches to devise QUBO subproblems for
MBO.
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APPENDIX
QAOA SIMULATIONS
Simulation results are provided in Tables 9-14.
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