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ABSTRACT We consider the problem of optimizing the achievable EPR-pair distribution rate between
multiple source-destination pairs in a quantum Internet, where the repeaters may perform a probabilistic
Bell-state measurement and we may impose a minimum end-to-end fidelity as a requirement. We construct
an efficient linear programming (LP) formulation that computes the maximum total achievable entanglement
distribution rate, satisfying the end-to-end fidelity constraint in polynomial time (in the number of nodes in
the network). Our LP formulation gives the optimal rate for a class of entanglement generation protocols
where the repeaters have very short-lived quantum memories. We also propose an efficient algorithm that
takes the output of the LP solver as an input and runs in polynomial time (in the number of nodes) to produce
the set of paths to be used to achieve the entanglement distribution rate. Moreover, we point out a practical
entanglement generation protocol that can achieve those rates.

INDEX TERMS Entanglement distribution, end-to-end fidelity, linear programming, multi-commodity
flow, routing, quantum internet.

I. INTRODUCTION
The quantum Internet will provide a facility for communi-
cating qubits between quantum information processing de-
vices [1]–[4]. It will enable us to implement interesting ap-
plications such as quantum key distribution [5], [6], clock
synchronization [7], secure multiparty computation [8], and
others [4], [9]. To implement a full quantum internet the
network needs to be able to produce entanglement between
any two end nodes connected to the network [10]–[13]. The
performance of such networks will depend on the quantum
channels aswell as the classical control units [14].We refer to
the book [1] and the papers [15]–[18] for a detailed technical
introduction of a quantum Internet.
In this article, we consider the problem of optimizing the

achievable rates for distributing EPR-pairs among multiple
source-destination pairs in a network of quantum repeaters
while keeping a lower bound on the end-to-end fidelity as a
requirement.We propose a polynomial time algorithm (in the
number of nodes in the network) for solving this problem

and we show that, for a particular class of entanglement
distribution protocol and a relevant noise model, our solution
is tight and achieves the optimal rate. Our algorithm is in-
spired by multicommodity flow optimization, which is a very
well-studied subject and has been used in many optimization
problems, including classical Internet routing [19]. In the
context of a classical internet, a flow is the total number of
data packets, transmitted between a source and a destination
per unit time (rate). In this context, a commodity is a demand,
which consists of a source, destination, and potentially other
requirements like the desired end-to-end packet transmission
rate, quality of service, etc. In a classical network, a source
and a destination can be connected via multiple communica-
tion channels as well as a sequence of repeaters and each of
the communication channels has a certain capacity, which
upper bounds the amount of flow it can transmit. In this
context, a flow must satisfy another restriction, called flow
conservation, which says that the amount of flow entering a
node (inflow), except the source and destination node, equals
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the amount of flow leaving the node1 (outflow). With these
constraints, one of the goals of a multicommodity flow op-
timization problem is to maximize the total amount of flows
(end-to-end packet transmission rates) in a network given a
set of commodities (demands). There exist linear program-
ming (LP) formulations for solving this problem and if we
allow the flows to be a fraction then this LP can be solved in
polynomial time (in the number of nodes) [20].
In a quantum Internet, we abstract the entire network as a

graph G = (V,E,C), whereV represents the set of repeaters
as well as the set of end nodes, and the set of edgesE abstracts
the physical communication links. Corresponding to each
edge, we define edge capacitiesC : E → R+, which denotes
the maximum elementary EPR-pair generation rate. We as-
sume that the fidelity of all the EPR-pairs, generated between
any two nodes u, v ∈ V such that (u, v) ∈ E, is the same
(say F). We refer to such EPR-pair as an elementary pair
and the physical communication link via which we create
such an elementary pair is called an elementary link. We give
a brief overview of the elementary EPR-pair generation in
Appendix D. Flow in such a network is the EPR-pair gen-
eration rate between a source-destination pair. Depending
on the applications, the end nodes may need to generate
EPR-pairs with a certain fidelity. Keeping the analogy with
the classical internet, here we refer to such requirement as a
demand (commodity) and it consists of four items, a source
s ∈ V , a destination e ∈ V , end-to-end desired entanglement
distribution rate r, and an end-to-end fidelity requirement
Fend. We denote the set of all such demands (commodities)
as D. In this article, we are interested in computing the max-
imum entanglement distribution rate (flow). Given a quan-
tum network G and a set of demands D, we investigate how
to produce a set of paths Pi, and an end-to-end entangle-
ment generation rate ri (flow), corresponding to each demand
(si, ei,Fi), such that the total entanglement generation rate∑|D|

i=1 ri is maximized. In the rest of this article, we refer to
this maximization problem as a rate maximization problem.
What is more, here, we also investigate what type of practical
entanglement distribution protocol achieves such rates.
In the case of the quantum Internet, we can use an

LP for maximising the total flow
∑|D|

i=1 ri. However, the
working principle of quantum repeaters is different, un-
like classical networks, the repeaters extend the length of
the shared EPR-pairs by performing entanglement swapping
operations2 [15]–[18]. However, entanglement swapping

1Assuming that the intermediary repeater nodes do not lose packets while
processing them.

2Entanglement swapping is an important tool for establishing entan-
glement over long-distances. If two quantum repeaters, A and B are both
connected to an intermediary quantum repeater r, but not directly connected
themselves by a physical quantum communication channel such as fiber,
then A and B can nevertheless create entanglement between themselves with
the help of r. First, A and B each individually create entanglement with r.
This requires one qubit of quantum storage at A and B to hold their end of
the entanglement, and two qubits of quantum storage at r. Repeater r then
performs an entanglement swap, destroying its own entanglement with A
and B, but instead of creating entanglement between A and B. This process

operations might be probabilistic depending on the repeater
technology used in the quantum Internet. This implies that
the usual flow-conservation property, which we use in clas-
sical networks does not hold in the quantum networks, i.e.,
the sum of the inflow is not always equal to the sum of
the outflow. Hence, the standard multicommodity flow-based
approach cannot be applied directly. For example, if the re-
peaters are built using atomic ensemble and linear optics then
they use a probabilistic Bell-state measurement (BSM) for
the entanglement swap operation [21]–[23]. Due to the prob-
abilistic nature of the BSM, the entanglement generation rate
decays exponentially with the number of swap operations.
Another difficulty for using the standard multicommod-

ity flow-based approach for solving our problem occurs due
to the end-to-end fidelity requirement in the demand. In
a quantum network, the fidelity of an EPR-pair drop with
each entanglement swap operation. This implies that longer
path-length results in lower end-to-end fidelity. One can en-
hance the end-to-end fidelity using entanglement distillation.
However, some repeater technologies are unable to perform
such quantum operations (for instance, the atomic ensemble-
based quantum repeaters). Hence, for such cases, one can
achieve the end-to-end fidelity requirement only by increas-
ing the fidelity F of the elementary pairs and reducing the
length of the discovered path. The first of these two options,
the elementary pair fidelity, depends on the hardware param-
eters at fabrication. The second option is related to the path
length and it is under the control of the routing algorithm
that determines the path from the source to the destination.
For the routing algorithms, one possible way to guarantee the
end-to-end fidelity is to put an upper bound on the discovered
path lengths. The standard multicommodity flow-based LP-
formulations does not take into account this path-length con-
straint. However, there exists one class of multicommodity
flow-based LP-formulation, called length-constrained mul-
ticommodity flow [24], which takes into account such con-
straints. In this article, our proposed LP-formulation is in-
spired by the length-constrained multicommodity flow prob-
lem, and it takes into account the path-length constraint.
Given these differences, one might use the LP-formulation

corresponding to the standard multicommodity flow-based
approach, which we described before, but this would lead
to a very loose upper bound on the achievable entanglement
generation rate [25]–[32] in this setting.
In our setting, it is not clear whether one can still have an

efficient LP-formulation for the flow maximization problem
in a quantum Internet. In fact, recently in [33], the authors
mention that multicommodity flow optimization-based
routing in a quantum Internet may, in general, be an NP-hard
problem. In this article, we show that for some classes of
practical entanglement generation protocols, one can still
have an efficient LP-formulation, which maximizes the total

can be understood as repeater r teleporting its qubit entangled with A onto
repeater B using the entanglement that it shares with B.
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flow for all the commodities in polynomial time (in the num-
ber of nodes). Our proposed method gives the optimal rate if
due to the short memory storage time the intermediate quan-
tum repeaters have to perform the entanglement swapping
operations just after creating EPR-pairs with its neighbors.
The organization of this article is as follows. Section II-

A provides a summary of our results. In Section II-C, we
give the exact LP-formulation for solving rate maximization
problem. In Section III, we prove that our LP formulation
solves the desired rate maximization problem. Later, in the
same section, we show how one can achieve the entangle-
ment generation rates proposed by the LP-formulation using
an entanglement distribution protocol. We also analyze the
complexity of our proposed algorithms in Section III. We
conclude this article in Section IV.

II. RESULTS
A. OUR CONTRIBUTIONS IN A NUTSHELL
In this article, all of our results are directed towards solving
the rate maximization problem in a quantum Internet, where
given a quantum network and a set of demands, the goal is
to produce a set of paths such that the total end-to-end en-
tanglement generation rate is maximized and in addition for
each of the demands the end-to-end fidelity of the EPR-pairs
satisfy a minimal requirement. In this section, we summarize
our contributions.

1) In order to solve the maximization problem, we pro-
pose an LP-formulation called edge-based formulation
where both the number of variables and the number of
constraints as well as the algorithm for solving such
LPs scale polynomially with the number of nodes in
the graph. However, it is nontrivial to see whether this
formulation provides a valid solution to the problem
or not. In this article, by showing the equivalence be-
tween the edge-based formulation and another intuitive
LP-formulation, called path-based formulation, we
show that the edge-based formulation provides a valid
solution.

2) A disadvantage of the solution of the edge-based for-
mulation is that it only gives the total achievable rate,
not the set of paths that the underlying entanglement
distribution protocol would use to distribute the EPR-
pairs to achieve such rate. In this article, we provide an
algorithm, called the path extraction algorithm, which
takes the solutions of the edge-based formulation, and
for each of the commodities, it extracts the set of
paths to be used and the corresponding entanglement
distribution rate along that path. The worst case time
complexity of this algorithm is O(|V |4|E||D|), where
|V |, |E| denote the total number of nodes and edges in
the network graph G and |D| denotes the total number
of demands. What is more, we point out that there
exists a practical entanglement distribution protocol
along a path, called the prepare and swap protocol,
which achieves the rates (asymptotically) proposed by
the path extraction algorithm.

B. FROM THE FIDELITY CONSTRAINT TO THE
PATH-LENGTH CONSTRAINT
In a quantum network, the fidelity of the EPR-pairs drops
with each entanglement swap operation. The fidelity of the
output state after a successful swap operation depends on the
fidelity of the two input states. If a mixed state ρ has fidelity
F , corresponding to an EPR-pair (say |φ+〉 = 1√

2
(|00〉 +

|11〉)) then the corresponding Werner state [34] with param-
eterW can be written as follows:

ρ =W |φ+〉〈φ+| + 1 −W

4
I4

where I4 is the identity matrix of dimension 4. The fidelity
of this state is 1+3W

4 .
In this article, we assume that all the mixed entangled

states in the network are Werner states. The main reason is
that Werner states can be written as mixing with isotropic
noise and, hence, form the worst-case assumption. For the
Werner states, if a node performs a noise-free entanglement
swap operation between twoEPR-pairs with fidelitiesF , then

the fidelity of the resulting state is 1+3W 2

4 , which is equal to
1
4 + 3

4 (
4F−1
3 )2 [35]. In general, if a node performs a noise-

free entanglement swap operation between two EPR-pairs
withWerner parametersW1,W2 then the fidelity of the result-
ing EPR-pair is 1+3W1W2

4 . This is a well-known result in the
community. However, for the completeness in Appendix D,
we give the calculation of the value of the Werner parameter
after a successful entanglement swap operation.
Here, each demand (si, ei,Fi) (where 1 ≤ i ≤ |D| = k)

has Fi as the end-to-end fidelity requirement. We assume
that the fidelity of each of the elementary pairs is lower
bounded by a constant F > 0.5. Note that, in our model,
we do not consider entanglement distillation, so in order
to have a feasible solution, here we assume that the fi-
delity requirement of the ith demand, Fi is at most the fi-
delity of the elementary pair F . Corresponding to a demand
(si, ei,Fi), if we start generating the EPR-pairs along a path
p = ((si, u1), (u1, u2), . . . , (u|p|−1, ei)), then the total num-
ber of required entanglement swap operations is |p| − 1,
where the path length is |p|. As with each swap operation
the fidelity drops exponentially, this implies the end-to-end
fidelity will be 1+3W |p|

4 = 1
4 + 3

4 (
4F−1
3 )|p|. In order to satisfy

the demand, 1
4 + 3

4 (
4F−1
3 )|p| should be greater than Fi, i.e.,

1
4 + 3

4 (
4F−1
3 )|p| ≥ Fi. From this relation, we get the follow-

ing constraint on the length of the path:

|p| ≤
⎢⎢⎢⎣ log

(
4Fi−1

3

)
log

( 4F−1
3

)
⎥⎥⎥⎦ . (1)

This implies, for the ith demand all the paths should have

length at most 	 log(
4Fi−1

3 )

log( 4F−1
3 )


. In the rest of this article, for the
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ith demand we assume

li :=
⎢⎢⎢⎣ log

(
4Fi−1

3

)
log

( 4F−1
3

)
⎥⎥⎥⎦ . (2)

Using this constraint on the number of intermediate re-
peaters, we can rewrite the demand set D in the following
way:

D = {(s1, e1, l1), . . . , (sk, ek, lk )}. (3)

C. LP-FORMULATION
In this section, we construct the LP-formulation for comput-
ing the maximum flow in a quantum network. For simplicity,
we consider the network G = (V,E,C) as a directed graph
and construct all the LP-formulations accordingly. Note that,
one can easily extend our result to an undirected graph, just
by converting each of the edges which connects two nodes
u, v in the undirected graph into two directed edges (u, v)
and (v, u).
For the entanglement distribution rate, here we let

the achievable rate between two end nodes si, ei ∈ V
along a repeater chain (or a path) p = ((si, u1),
(u1, u2), . . . , (u|p|−1, ei)) be rp such that

rp ≤ (q)|p|−1 min{C(si, u1), . . . ,C(u|p|−1, ei)} (4)

where C(u, v) denotes the capacity of the edge (u, v) ∈ E
and |p| is the length of the path and q is the success proba-
bility of the BSM. Later, in Section III, we show that there
exists a practical protocol called prepare and swap, which
achieves this rate requirement along a path. For an idea of
such protocol, we refer to the example of Fig. 1. In the follow-
ing section, we give the LP-construction of the edge-based
formulation.

1) EDGE-BASED FORMULATION
In this section, we present the edge-based formulation for
solving the rate maximization problem. In this formulation,
we assign one variable to each of the edges of the network. As
the total number of edges |E|, in a graph of |V | nodes scales
quadratically with the number of nodes in the graph, the total
number of variables is polynomial in |V |. This makes the
edge-based formulation efficient. However, it is challenging
to formulate the path-length constraint in this formulation.
The main reason is that, an edge can be shared by multiple
paths of different lengths, and the variables of the edge-based
formulation corresponding to that edge do not give any in-
formation about the length of the paths. In this article, we
borrow ideas from the length-constrained multicommodity
flow [24] to handle this problem. In order to implement the
length constraint we need to modify the network graph G as
well as the demand set D. In the following section, we show
how to modify the network graph and the demand set.
Network Modification. To implement the length con-

straint in the edge-based formulation, we define an expanded

FIGURE 1. Repeater chain network with three intermediate nodes and
one source-destination pair s, e. Here, there is a demand to create
EPR-pairs between source s and destination e. The capacity of an edge
(u, v) is given by the function C(u, v). All the repeaters use BSM for the
entanglement swap. Here, we assume that the success probability of the
BSM is q = 1

2 . In the prepare and swap protocol, all the intermediate
repeaters perform the swap operation at the same time. This implies that
expected entanglement generation rate between s and e for this protocol
would be rs,e = (q)4−1 min{C(s, u),C(u, v),C(v, w),
C(w, e)} = 2( 1

2 )3 = 0.25.

graph G′ = (V,′ E,′C′) from G = (V,E,C) such that it con-
tains lmax + 1 copies of each of the nodes, where lmax =
max{l1, . . . , lk} and for all 1 ≤ i ≤ k, li denotes the length
constraint of the ith demand (si, ei, li). For a node u ∈ V ,
we denote the copies of u as u0, u1, . . . , ulmax . We denote V j

as the collection of the jth copy of all the nodes. This im-
plies, V ′ = ⋃lmax

j=0V
j. For each edge (u, v) ∈ E and for each

0 ≤ j < lmax, we connect u j ∈ V ′ and v j+1 ∈ V ′ with an
edge, i.e., (u j, v j+1) ∈ E ′. For each edge (u j, v j+1) ∈ E ′, we
defineC′(u j, v j+1) := C(u, v). In Fig. 2, we give an example
of this extension procedure corresponding to a network graph
of Fig. 3.
According to this construction, the length of all the paths

in G′ from s0i to e
j
i is exactly j, and all the paths from s0i to

e1i , . . . , e
li
i have a path length at most li. This implies, for the

edge formulation, the ith demand (si, ei, li) can be decom-
posed into li demands {(s0i , e1i ), . . . , (s0i , elii )}. This implies
the total modified demand set would become

Dmod := {D1, . . . ,Dk} (5)

where for each 1 ≤ i ≤ k,Di = {(s0i , e1i ), . . . , (s0i , elii )}. Note
that, the new demand set Dmod does not have any length or
fidelity constraint.
Edge-Based Formulation. Here, we give the exact

LP-construction of the edge-based formulation. Note
that, one can use a standard LP-solver (in this article, we use
Python 3.7 pulp class [36]) to solve this LP (see Fig. 4 for
an example).
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FIGURE 2. Extended network graph G′ = (V,′ E,′ C′ ) of the original graph
in Fig. 3. Here, we are interested in finding the paths between s and e
with path length at most 2. For the construction of G′ , we create three
copies u0, u1, u2 of each of the nodes u ∈ G. There are five nodes
s, u, v, w, e in the graph of Fig. 3. This implies, in this modified graph, we
have (s0, s1, s2), (u0, u1, u2), (v0, v1, v2), (w0,w1, w2), (e0, e1, e2), 15
nodes. In this original graph of Fig. 3, if u is connected to v, then in this
modified graph, we connect, u0 with v1 and u1 with v2. Note that, all the
paths from s0 to e1 or e2 has hop length at most 2. In this modified
graph, the new demand set corresponding to the demand D = {(s, e)} in
the original graph G in Fig. 3 is Dmod = {(s0, e1), (s0, e2)}.

TABLE 1. Edge-Based Formulation

In this LP-construction, for the i, jth demand (s0i , e
j
i ) ∈ Di

(where Di ∈ Dmod), we define one function gi j : E ′ → R+.
The value of this function gi j(u, v), corresponding to an edge
(u, v) ∈ E ′ denotes the flow across that edge for the i, jth
demand. We give the edge-based formulation in Table 1.

FIGURE 3. Network graph G = (V, E,C), with demand D = {(s, e, 2)} and
q = 1

2 , i.e., here the source, s wants to share EPR-pairs with e. In this
network, for each edge (u, v) ∈ E , the quantity, C(u, v) denotes the
EPR-pair generation rate corresponding to that edge.

In the objective function (6) of the edge-based formu-
lation, the sum

∑
v1:(s0i ,v

1)∈E ′ gi j(s0i , v
1) denotes the entan-

glement distribution rate between s0i , e
j
i , for a fixed i, j,

when q = 1. Note that, according to the construction of the
graph G′, all the paths between s0i , e

j
i have path-length ex-

actly j. This implies that (q) j−1∑
v1:(s0i ,v

1)∈E ′ gi j(s0i , v
1) de-

notes the entanglement distribution rate between s0i , e
j
i and∑k

i=1
∑li

j=1(q)
j−1∑

v1:(s0i ,v
1)∈E ′ gi j(s0i , v

1) denotes the total
entanglement distribution rate for all the demands. The con-
dition in (8) represents the capacity constraint and condition
(9) denotes the flow conservation property.
Although this construction is efficient, it does not give

any intuition about whether it will solve the rate maximiza-
tion problem. In Section III, we give another intuitive LP-
formulation, called path-based formulation and we explain
the equivalence between the path-based and the edge-based
formulation. This proof guarantees that the solution of the
edge-based formulation gives a solution for the rate maxi-
mization problem.

2) PATH-EXTRACTION ALGORITHM
The edge-based formulation, proposed in the last section is a
compact LP construction and it can be solved in polynomial
time. However, this solution only gives the total achievable
rates for all the commodities, it does not give us any informa-
tion about the set of paths corresponding to each commodity
alongwhich one should distribute the EPR-pairs tomaximize
the entanglement distribution rate. In this section, we give an
efficient method for doing so in Algorithm 1, which takes the
solution of the edge-based formulation and produces a set of
paths as well as the achievable rates across each path for each

VOLUME 1, 2020 4101321
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FIGURE 4. This figure is the graphical representation of the SURFnet
network of Fig. 5. We run our rate maximization algorithm on this graph.
Here, we consider the demand set as D = {(40, 45, 7), (21, 13, 6), (30, 50,
7), (38, 15, 8)}. The end-nodes are represented using hexagonal boxes.
The capacity of each of the link is chosen uniformly at random between
[1,400]-EPR-pairs per second. We assume that the success probability of
the bell-state measurement is q = 0.5 and the fidelity of the each of the
elementary pairs is F = 0.9925 and the value of the corresponding
Werner parameter W = 0.99. Given such a network and demand set, we
run our edge-based formulation proposed in Table 1 and get a total
achievable rate of 18.140625 EPR-pairs per second. Next, we feed the
solution to the path extraction algorithm, proposed in algorithm 1 and
extract the paths for each of the demands. In this figure, all the thick
edges, participate in the paths. For the demand, (45, 40, 7) we get two
paths, ((45, 43),(43, 47),(47, 48),(48, 9),(9, 33),(33, 40)) and ((45, 44), (44,
47), (47, 48), (48, 9), (9, 39), (39, 40)). Note that each of the paths has
path-length 6. Hence the end-to-end fidelity for this demand is
1+3(0.99)6

4 = 0.955. Similarly, for the demand (21,13,6) the extracted path
is ((21, 27), (27, 28), (28, 25), (25, 20), (20, 31), (31, 13)) and end-to-end

fidelity is 1+3(0.99)6
4 = 0.955. For the demand (30,50,7), there is no path of

length smaller than 8. Hence, this demand cannot be satisfied in this
model. For the demand (38, 15, 8), we extract four paths, ((38, 23), (23,
31), (31, 14), (14, 15)), and ((38, 39), (39, 31), (31, 14), (14, 15)), and ((38,
39), (39, 9), (9, 48), (48, 46), (46, 15)), ((38, 39), (39, 9), (9, 6), (6, 48), (48,
47), (47, 43), (43, 15)) and the end-to-end fidelity for the paths are 0.97,
0.97, 0.9625 and 0.9475. If we use the prepare and swap protocol for
generating EPR-pairs, along each of the paths, then we can achieve the
total entanglement distribution rate of 18.140625 EPR-pairs per second.

of the demands. Later, in Section III, we show that the set of
extracted paths satisfies the path-length constraint for each
of the demands and if one uses the prepare and swap method
for distributing entanglement across each of the paths then
one can achieve the entanglement distribution rate suggested
from this algorithm.

3) EXAMPLE
In this section, we give an example of our algorithms on
a real-world network topology G = (V,E,C). In order to
do so, we choose a SURFnet topology from the Internet

Algorithm 1: Path Extraction and Rate Allocation Algo-
rithm.

Input: The solution of the edge-based formulation,
i.e., {{gi j(u,′ v′)}(u,′v′ )∈E ′ }1≤i≤k,1≤ j≤li .
Output: Set of paths as well as the rate across each
of the paths {Pi, j}1≤i≤k,1≤ j≤li .

1: for (i = 1; i ≤ k; i+ +)do
2: for ( j = 1; j ≤ li; j + +) do
3: m = 0.
4: Fi, j = gi j.
5: Pi, j = ∅.
6: while

∑
v:(s0i ,v

1)∈E ′ Fi, j,m(s0i , v
1) > 0 do

7: Find a path p j,m from s0i to e
j
i such that,

8: ∀(u,′ v′) ∈ p j,m, Fi, j,m(u,′ v′) > 0
9. r̃p j,m = (q) j−1{min(u,′v′ )∈p j,m{Fi, j,m(u,′ v′)}
10: ∀(u,′ v′) ∈ p j,m,

11: Fi, j,m+1(u,′ v′) = Fi, j,m(u,′ v′) − r̃p j,m
(q) j−1 .

12: Pi, j = Pi, j ∪ (p j,m, r̃p j,m ).
13: m = m+ 1.
14: end while
15: end for
16: end for

FIGURE 5. Pictorial view of the Dutch SURFnet network, taken from
Internet topology zoo [37]. In this article, we suppose that this is a
quantum network and all the nodes in this network are quantum
repeater nodes and some of them are the end nodes. We also assume
that the repeaters can generate EPR-pairs using the communication
links, shown in this figure. We run our proposed edge-based formulation
and path-extraction algorithm on this network topology for maximizing
the total end-to-end EPR-pairs generation rate. We refer to Fig. 4 for
detailed description.

topology zoo [37]. This is a publicly available example of
a dutch classical telecommunication network, with 50 nodes
(see Fig. 5). In this network, we assume that each of the nodes
in the network is an atomic ensemble and linear optics-based
quantum repeater. These types of repeaters can generate ele-
mentary pairs almost deterministically [22], [23], due to their
multiplexing abilities. Here, we assume that the elementary
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pair generation is a deterministic process. The elementary
pair generation rate depends only on the entanglement source
and its efficiency. Here, we choose the elementary pair gen-
eration rate uniformly randomly from 1 to 400 EPR-pairs per
second. The success probability for the BSM, q is considered
to be 0.5 for all the nodes. We also assume that the memory
efficiency is one and all the memories are on-demand mem-
ories, i.e., they can retrieve the stored EPR-pairs whenever
required [22].
We additionally assume that the minimum storage time

of all the memories is the maximum round trip communi-
cation time between any two nodes in the network that are
directly connected by an optical fiber. In the SURFnet net-
work, the maximum length of the optical fiber connecting
any two nodes is 50 km. Hence, the minimum storage time is
2×50000

c = 500μs, where c is the speed of light in a telecom-
munication fiber, which is approximately c ≈ 2 × 108 m/s.
In this example, we consider the fidelity of all elementary
pairs to be F = 0.9925. We generate the demands uniformly
at random, i.e., we choose the sources and the destinations
uniformly at random between 1 and 50. We also choose the
end-to-end fidelity randomly from 0.93 to 0.99 for each of
the demands. Substituting these fidelity constraints in (2),
we obtain a maximum path length lmax = 8. Here, we have
generated only four demands and we assume that all the
entanglement distribution tasks are performed in parallel.
We optimize the total achievable rate using the LP solver
available in the Python 3.7 pulp class [36]. The rates and the
paths corresponding to the four demands are shown in Fig. 4.
An overview of the entire procedure is given in Algorithm
2 and the code of this implementation is publicly available
in [38] and the dataset can be found in [39].

III. METHODS
In this section, we provide more details of the results, pre-
sented in the last section. First, we propose an intuitive LP-
construction, called path-based formulation for solving the
rate maximization problem. Later, we give an idea about how
to prove the equivalence between both of the proposed LP-
constructions. Next, we explain the prepare and swap proto-
col in detail and show that using this protocol one can achieve
the optimized entanglement generation rates along the paths
from Algorithm 1. We finish this section with the complexity
analysis of the edge-based formulation and Algorithm 1.

A. PATH-BASED FORMULATION
In this formulation, for each path p corresponding to each
source-destination pair si, ei, we define one variable rp. This
rp denotes the achievable rate between si, ei along the path
p. From (4), we have, for all (u, v) ∈ p

rp ≤ (q)|p|−1C(u, v). (10)

Note that, for the ith demand the total rate ri can be
achieved via multiple paths. Let Pi be the set of all possible

Algorithm 2: Method to Solve the Rate Maximisation
Problem.

Input: Set of demands D, Network Graph
G = (V,E,C).
Output: Set of paths Pi for the i-th demand and rate
rp, across each of the path p ∈ Pi.

1: Convert the fidelity requirement Fi of the i-th
demand (si, ei,Fi) ∈ D into a path-length
constraint li (use equation 2).

2: Compute the modified demand set Dmod from D
according to the path-length constraint which we
compute at the previous step (see subsection II-C1
for details).

3: Compute the extended network G′ from G using
the procedure, described in subsection II-C1.

4: Implement the edge-based LP-formulation,
proposed in Table 1 and compute the total
maximum achievable rate

∑k
i=1 ri using the LP

solver available in the Python 3.7 pulp class [36].
5: For the i-th demand, extract the set of paths Pi and

compute the required rate rp across each of the
paths p ∈ Pi, such that ri = ∑

p∈Pi rp using the
algorithm 1.

paths, which connect si and ei. Hence

ri =
∑
p∈Pi

rp. (11)

From (3), we have that for all the paths p ∈ Pi, |p| ≤ li.
We give the exact LP-formulation, which takes into account
all these constraints in Table 2.
Note that, in this LP-formulation, as we introduce one

variable corresponding to each path so the total number of
variables is of the order O(|V |!). This scaling stops us from
using the path-based formulation for solving the maximum
flow problem. However, this formulation helps us to prove
that the edge-based formulation gives a solution to the rate
maximization problem. In the following section, we give an
idea of the proof. The full details of the proof are given in the
supplementary material.

B. EQUIVALENCE BETWEEN THE TWO FORMULATIONS
The idea of the proof of equivalence is that, first we try to
construct a solution of the edge-based formulation from the
solution of the path-based formulation and then we try to
construct a solution of the path-based formulation from the
edge-based formulation. If both of the constructions are suc-
cessful, then we can conclude that both of the formulations
are equivalent.
In Table 2, we provide the path-based formulation on the

basis of the network graph G = (V,E,C) and the demand
set D, whereas in Table 1, we propose the edge-based for-
mulation using the network graph G′ = (V,′ E,′C′) and the
demand set Dmod. In order to show the equivalence between
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TABLE 2. Path-Based Formulation.

both of the formulations, we first need to rewrite the path-
based formulation using the network graph G′ = (V,′ E,′C′)
and the demand set Dmod. The following section focuses on
this. After that, we focus on proving the equivalence.

1) PATH-BASED FORMULATION ON THE MODIFIED
NETWORK
In this section, we construct the path-based formulation on
the basis of the new demand set Dmod, defined in (5) and the
modified network G′ = (V,′ E,′C′). In this demand set, we
use the term i, jth demand to denote the jth source destina-
tion pair (s0i , e

j
i ) of the ith demand (si, ei) ∈ D. We denote

the set of all possible paths for the i, jth demand as Pi, j and
we assign a variable rp, corresponding to each path p ∈ Pi, j.
From (4), we have, for all the edges (u,′ v′) ∈ E ′ in a path p

rp ≤ (q)|p|−1C′(u,′ v′). (14)

Note that, from the construction of G′ and the new de-
mand set Dmod, the length of all the paths in Pi, j is j. This
implies, if Pi denotes the set of all possible paths for the
ith demand (si, ei, li) ∈ D, then Pi = ⋃li

j=1 Pi, j. For a fixed
source-destination pair (si, ei), if along a path p, the achiev-
able rate is rp then

ri =
li∑
j=1

∑
p∈Pi, j

rp. (15)

We give the exact formulation in Table 3.

2) PATH-BASED FORMULATION TO EDGE-BASED
FORMULATION
In this section, we construct a solution of the edge-based for-
mulation from the solution of the path-based formulation. In
the edge-based formulation, we construct a new demand set
Dmod, where the ith demand (si, ei, li) in the original demand
set D is decomposed into li-demands (s0i , e

1
i ), . . . , (s

0
i , e

li
i ).

Recall that, the quantity li denotes the upper bound on the
discovered path-length, which reflects the lower bound on

TABLE 3. Path-Based Formulation on the Modified Network.

the required end-to-end fidelity of the EPR-pairs generated
between si and ei (see Section II-B for the details). Here,
each of the (s0i , e

j
i ) are the nodes in the modified graph G′.

From the construction of G′, it is clear that all the paths
from s0i to e

j
i have length j. If we have the solutions of the

path formulation, proposed in Table 3, then from there, for
each edge (u,′ v′) ∈ E ′ and for the i, jth demand (s0i , e

j
i ), we

define the value of g̃i j(u, v) as

g̃i j(u,
′ v′) :=

∑
p∈Pi, j,

(u,′v′ )∈p

rp
(q) j−1

. (19)

One can easily check that the definition of g̃i j, defined
in (19) satisfies all the constraints of the edge-based for-
mulation, proposed in (7)–(9). Moreover, with this defini-
tion of the g̃i j, the objective function (6) of the edge-based
formulation becomes same as the objective function of the
path-based formulation. This shows that the optimal value of
the edge-based formulation is at least as good as the solution
of the path-based formulation.

3) EDGE-BASED FORMULATION TO PATH-BASED
FORMULATION
Here, we construct a solution of the path-based formulation
from the solution of the edge-based formulation. We use the
algorithm, proposed in Algorithm 1 for extracting the paths
and corresponding rate along that path. In the algorithm, we
compute the rate r̃p j,m corresponding to a path p j,m for a

demand (s0i , e
j
i ) ∈ Dmod as follows:

r̃p j,m := (q) j−1 min
(u,′v′ )∈p j,m

{Fi, j,m(u,′ v′)} (20)

where the function Fi, j,m(u,′ v′) is related to gi, j(u,′ v′)
and r̃p j,m . Here, Fi, j,0 = gi, j and for all m ≥ 0 we compute
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Fi, j,m+1 as follows:

∀(u, v) ∈ p j,m Fi, j,m+1(u,
′ v′) = Fi, j,m(u,

′ v′) − r̃p j,m
(q) j−1

.

(21)
We give a detailed proof of the fact that the paths as well as

the allocated rate corresponding to each path, extracted from
Algorithm 1 correspond to a feasible solution of the path-
based formulation in Appendix D. Moreover, if we consider
(20) as the definition r̃p j,m , then the objective function of the
edge-based formulation is the same as the objective function
of the edge-based formulation. This shows that this is a valid
solution to the path-based formulation. In the last section, we
showed that the solution of the path-based formulation is at
least as good as the solution of the edge-based formulation.
Hence, the solutions of both the formulations are equivalent.

C. PREPARE AND SWAP PROTOCOL AND THE
LP-FORMULATIONS
Here, we explain the prepare and swap protocol and show
that with this protocol one can achieve the entanglement
distribution rate along a path, proposed by Algorithm 1.
We refer to the Appendices D and D for a brief idea about
the elementary EPR-pair generation and the entanglement
swapping operation. In the following section, we explain the
protocol for a repeater chain with a single demand. After that,
we extend the protocol for the case for multiple demands.

1) PREPARE AND SWAP PROTOCOL FOR A REPEATER
CHAIN
Suppose in a repeater chain u0 = s, u1, . . . , un, un+1 = e,
where for all 0 ≤ i ≤ n, the nodes ui, ui+1 are neighbors of
each other and swould like to share EPR-pairs with e. In this
protocol, first, all the repeaters generate entanglement with
its neighbors/neighbor in parallel and store the entangled
links in the memory. Here, we assume that entanglement
generation across an elementary link is a deterministic event,
i.e., the entanglement generation probability per each attempt
is one. An intermediate node ui, which resides between ui−1
and ui, performs the swap operation when both of the EPR-
pairs between ui−1, ui and ui, ui+1 are ready. As we assume
that each of the swap operations is probabilistic, so the entan-
glement generation rate with this protocol is lower. However,
due to the independent swap operations, the protocol does
not need a long storage time. This makes the protocol more
practical.
We give an example of such an entanglement generation

protocol on a repeater chain with three intermediate nodes
and one source-destination pair in Fig. 1. In the following
lemma, we derive an analytical expression of the end-to-end
entanglement generation rate in a repeater chain network for
the prepare and swap protocol. Note that, a variant of the
proof of Lemma 1 can be found in the literature [23]. For
completeness, in the appendix, we include the proof of this
lemma.

Lemma 1: In a repeater chain network with n+ 1 re-
peaters {u0, u1, . . . , un}, if the probability of generating an
elementary pair per attempt is one, the probability of a
successful BSM is (q), the capacity of an elementary link
(ui, ui+1) (for 0 ≤ i ≤ n− 1) is denoted by Ci and if the
repeaters follow the prepare and swap protocol for generat-
ing EPR-pairs, then the expected end-to-end entanglement
generation rate ru0,un is

ru0,un = (q)n−1 min{C0, . . . ,Cn−1}. (22)

Notice that, the EPR-pair generation rate for this protocol
is exactly the same as the EPR-pair generation rate, proposed
in (4), which we use for the path-based formulation. In the
aforementioned sections, we show that both of the path-based
and the edge-based formulations are equivalent. This im-
plies, the rates extracted from Algorithm 1 can be achieved
with this prepare and swap protocol.

2) PREPARE AND SWAP PROTOCOL FOR AN ARBITRARY
NETWORK
In a quantum network, if there are multiple demands then
one link might be shared between multiple paths. From Al-
gorithm 1, we get the set of paths and the desired EPR-pair
generation rate rp, across each of the paths p, passing through
an edge (u, v). In this scenario, we use the prepare and swap
protocol for each of the paths in a sequential manner or
round-robin manner.3 From Lemma 1, we get that, to achieve
the rate rp, we need to generate on average

rp
(q)|p|−1 elementary

EPR-pairs per second across each of the elementary links
(u, v) along the path p. Here, we also assume that the el-
ementary link generation is a deterministic event, i.e., the
two nodes u and v connecting the elementary link (u, v) can
generate exactly C(u, v) EPR-pairs per second. Hence, each
of the paths uses the elementary link (u, v) for rp

(q)|p|−1C(u,v)
seconds (on average) for generating the required elementary
EPR-pairs4. For generating rp EPR-pairs per second, all the
nodes along the path p need to use the elementary links for
at most max(u,v)∈p{ rp

(q)|p|−1C(u,v)
} seconds, which is equal to

rp
(q)|p|−1

1
min(u,v)∈p{C(u,v)} seconds. This gives an upper bound

on the average storage time of the quantum memory for
generating the EPR-pairs along the path p. In Fig. 6, we give
an example of allocating EPR-pair generation resources for
multiple demands. For more sophisticated resource alloca-
tion techniques we refer to the techniques that are proposed
in [33].

D. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of the LP for-
mulations as well as the path extraction and rate allocation

3One can use a more sophisticated scheduling algorithm for allocating
the EPR-pair generation resources across an elementary link. The details of
this scheduling algorithm are beyond the scope of this article.

4Note that, if
rp

(q)|p|−1 is a rational number then one can achieve this

average rate. For an irrational value of
rp

(q)|p|−1 we need to approximate it

to a rational number.
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FIGURE 6. Repeater network G = (V, E,C) with the demand set
D = {(s1, e), (s2, e)}. All the repeaters use BSM for the entanglement
swap. Here we assume that the success probability of the BSM is q = 1

2 .
From the Algorithm 1, we get a path p1 = ((s1, u), (u, v), (v, w), (w, e))
for the demand (s1, e) and a path p2 = ((s2, w), (w, e)) for the demand
(s2, e). The desired rate across p1 is rp1 = 0.25 EPR-pairs per second and
the desired rate across p2 is rp2 = 5 EPR-pairs per second. If we use the
prepare and swap protocol along both of the paths separately then we
get the desired EPR-pairs generation rate. However, here, the elementary
link (w, e) is being shared by both of the paths. In this case, a simple
scheduling technique would be to distribute the EPR-pairs sequentially.
For example, at the beginning the elementary link (w, e) generates the
EPR-pairs for the demand (s1, e). For generating on average 0.25
EPR-pairs across the path p1, the elementary link (w, e) has to generate
0.25 × 2|p1|−1 = 2 EPR-pairs per second. As the capacity of the
elementary link is 20 EPR-pairs per second. Hence, it can generate 2
EPR-pairs within 2

20 = 0.1 seconds (on average). Then, it can start
generating the EPR-pairs for the demand (s2, e). For this demand, the
elementary link (w, e) has to generate 5 × 2|p2|−1 = 10 EPR-pairs per
second. Hence, it will take on average 10

20 = 0.5 seconds to generate 10
EPR-pairs.

algorithm (Algorithm 1). The edge-based LP-formulation,
proposed in this article is based on the modified network
graphG′ andmodified demand setDmod and the running time
of the edge-based LP-formulation solver depends on the size
of this network and modified demand set. In the following
lemma, we give an upper bound on the size of G′ and Dmod.
Lemma 2: The edge-based formulation, proposed

in (6)–(9), has at most N = |D||E||V | variables and
M = |V |2|E||D| + |V ||E| + |V |2|D| constraints, where
|V |, |E|, |D| denote the total number of repeater nodes, total
number of edges in the network graph G and size of the
demand set D, respectively.
Proof: The edge-based formulation, is based on the mod-

ified network G′ = (V,′ E,′C′), which we construct from
the actual Internet network G = (V,E,C). In G′, we cre-
ate at most lmax copies of each of the nodes and edges.
This implies, |V ′| ≤ lmax|V | and |E ′| ≤ lmax|E|. As, lmax =
max{l1, . . . , l|D|}, hence, lmax ≤ |V |. This implies, |V ′| ≤
|V |2 and |E ′| ≤ |E||V |. In the construction of the edge-based
formulation, for each demand, we introduce one variable

FIGURE 7. This plot shows the running time of the edge-based
formulation that is proposed in Table 1 as a function of the number of
nodes in a graph. Here, we consider the Erdös–Réyni random graphs
with parameter p = 0.6 as network graphs. We vary the number of nodes
in the graph from n = 40 to n = 70. For each value of n, we generate five
sample random graphs and for each graph we generate four random
demands. The capacity of each of the link is chosen uniformly at random
between [1,400]-EPR-pairs per second. We assume that the success
probability of the bell-state measurement is q = 0.5 and the fidelity of
the each of the elementary pairs is F = 0.9925 and the value of the
corresponding Werner parameter W = 0.99. We compute the running
time of the edge-based formulation for computing the maximum
achievable rates for each of the sample graphs and plot the average
computation time (in seconds) on the Y-axis of the plot. For the
simulation we use a server with CPU Intel Xeon Gold 6230 @ 80x 3.9 GHz
and RAM 4784MiB/193114MiB.

corresponding to each edge of E ′. Hence, the total number
of variables for this formulation is N = |D||E ′| = |D||E||V |.

In the edge-based formulation, the constraint (7)
(gi j(u, v) ≥ 0) holds for all 1 ≤ i ≤ |D|, for all 1 ≤ j ≤ li
and for all edge (u, v) ∈ E ′. This implies, the total
number of constraints corresponding to (7) is |V |2|E||D|.
Similarly, the constraint (8) holds for all the edges
|E ′|. This implies, there are at most |V ||E| constraints
corresponding to (8). The constraint (9) should be satisfied
by all the nodes in V ′ and for all 1 ≤ i ≤ |D|, for all
1 ≤ j ≤ li. This implies, the total number of constraints
corresponding to that equation is |V |3|D|. Hence, the total
number of constraints in the edge-based formulation is
M = |V |2|E||D| + |V ||E| + |V |3|D|. �

The previous lemma implies that the total number of vari-
ables and constraints in the LP-formulation corresponding
to the maximum flow problem scales polynomially with the
number of nodes in the network graph G. This implies, the
time complexity of the LP solvers for this problem also
scales polynomially with the number of nodes in the network
graphG = (V,E,C). Hence, one can compute the maximum
achievable rate for the quantum Internet in polynomial time.
For a better understanding of the running time of the LP-
formulation, we run simulations on the Erdös–Réyni random
graphs with parameter p = 0.6 [40].We refer to Fig. 7 for the
details of the simulation.
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Now, we focus on the complexity of Algorithm 1. The
Algorithm 1 uses the solution of the edge-based formulation
for extracting the set of paths for each of the demands. In
the following proposition, we show that the size of the set
of extracted paths corresponding to each demand is upper
bounded by |V ||E|. Then, we use this result for computing
the running time of Algorithm 1.
Proposition 1: In Algorithm 1

|Pi, j| ≤ |E||V |. (23)

Proof: Due to the flow conservation property of the
edge-based formulation, if for some neighbor of s0i ,
Fi, j,m(s0i , v

1) > 0, then there exist a path p j,m from s0i
to e ji such that Fi, j,m(u,′ v′) > 0 for all (u,′ v′) ∈ p j,m.
Note that, at each step m of the Algorithm 1 there ex-
ist at least one edge (u,′ v′) ∈ E ′ in the discovered path
p j,m, such that Fi, j,m+1(u,′ v′) = 0. As there are in to-
tal, |E ′| number of edges and the algorithm runs until∑

v1:(s0i ,v
1)∈E ′ Fi, j,m+1(s0i , v

1) = 0, so the maximum value of

m could not be larger than |E ′|. From the construction of the
modified network, G′ we have |E ′| ≤ |E||V |. This implies,
|Pi, j| ≤ |E ′| ≤ |E||V |. �
In the worst case, the total number of edges in a graph are

of the orderO(|V |2), hence, from Proposition 1, we conclude
that the total number of paths extracted by Algorithm 1 for
each demand scales polynomially with the number of nodes.
In the following theorem, we show that, running time of
Algorithm 1 is O(|D||V |4|E|).
Theorem 1: The Algorithm 1 takes the solution of the

edge-based LP-formulation and extract the set of paths in
O(|D||V |4|E|) time, where |D| is the size of the demand set,
|V |, |E| denote the total number of nodes and edges in the
network G = (V,E,C).
Proof: In Algorithm 1, we compute the paths based on

the modified network G′ = (V,′ E,′C′), which we construct
from the original network G = (V,E,C). In this modified
network |V ′| ≤ |V |lmax ≤ |V |2. In Algorithm 1 at step 11,
we compute a path in the graph G′. Note that, in the worst
case, it takes O(|V ′|) = O(|V |2) time to find a path between
a source-destination pair in a network. According to Propo-
sition 1, we have that for a fixed 1 ≤ i ≤ |D| and a fixed 1 ≤
j ≤ li the total number of paths discovered by Algorithm 1 is
upper bounded byO(|V ||E|). Hence, for that i, j, the running
time of Algorithm 1 is O(|V |3|E|). As, i ≤ |D| and j ≤ li ≤
lmax ≤ |V |, so in the worst case scenario, the total running
time of Algorithm 1 is upper bounded by O(|D||V |4|E|). �

Note that, one can use the path-based formulation directly
and apply a naive algorithm, like finding a shortest-path and
compare the rate of generation along that path with the com-
puted maximized rate so far. However, in general, there may
be an exponential (in the number of nodes) number of paths
between a source and a destination node in a graph. So, this
type of naive algorithm can have higher time complexity. In
our case, we use Algorithm 1 after solving the edge-based
formulation that is described in Table 1. The edge-based

FIGURE 8. Repeater network G = (V, E,C) with the demand set
D = {(s, e, 3)}. All the repeaters use BSM with success probability q = 1

2
for the entanglement swapping operation. By solving the edge-based
formulation we get the values of the g function. The value of the function
is zero for all of the edges, except g(s, u2) = g(s, u4) = g(u2, e) = g(u4, e)
= 20. From the values of the g function we use the Algorithm 1 and get
two paths p1 = ((s, u2), (u2, e)) and p2 = ((s, u4), (u4, e)). The desired
rate across both p1 and p2 is rp1 = rp2 = 10 EPR-pairs per second. If we
use the naive algorithm, where we consider all of the paths and choose
the paths along, which the achievable rates are maximum, then in this
example we will end up computing the rates across all six possible paths.

formulation in Table 1 is a linear program and it gives the
values of gi, j(u, v) corresponding to each demand across an
edge (u, v). Intuitively, the value of gi, j(u, v) across an edge
is the summation of the rates across multiple paths between
a fixed source-destination pair (si, e

j
i ), i.e., information that

is related to multiple paths is packed inside the value of
gi, j(u, v). The job of Algorithm 1 is to unpack that informa-
tion. In Fig. 8, we describe the difference between Algorithm
1 and the naive algorithm using an example.

IV. CONCLUSION
In this article, we use techniques from the length constrained
multicommodity flow theory for developing a polynomial-
time algorithm for maximizing achievable expected entan-
glement generation rate between multiple source-destination
pairs in a quantum Internet. Here, we have maximized the
end-to-end entanglement distribution rate, satisfying a con-
straint on the end-to-end fidelity for each of the demand.
We have shown that our LP-formulation provides a maximal
solution if it exists. Our path extraction algorithm produces a
set of paths and the achievable rates along each of the paths.
The path-extraction algorithm has high running time as a
function of the path length. Here, we consider the worst case
scenarios, where we assume that the length of the discovered
path scales with |V |. In practical scenarios, without distil-
lation, the end-to-end fidelity of the distributed EPR-pairs
would drop drasticallywith the path length. Hence, it is fair to
consider that the length of the allowed path increases slowly
with the size of the network node set. This would make the
path-extraction algorithm faster.
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One can use any entanglement generation protocol for
distributing EPR-pairs across the paths that are discovered by
the path-extraction algorithm. However, our LP-formulation
is inspired by the atomic ensemble and linear optics based
quantum repeaters, where the storage time is very short
and the entanglement swap operation is probabilistic in na-
ture [21]–[23]. Here, we have also pointed out that, there
exists a practical protocol, called prepare and swap protocol,
which can be implemented using atomic ensemble based
repeaters, and if one uses this protocol for distributing entan-
glement across each of the paths, then one can generate EPR
pairs with the rate proposed by our path-extraction algorithm.
In this article, we focus on maximizing the end-to-end en-

tanglement generation rate. However, one can easily extend
our results for other objective functions, like minimising the
weighted sum of congestion at edges.
In future work, it would be interesting to include the more

realistic parameters like the bounded storage capacity, time
to perform the swap operation, etc., in our model and modify
our current formulations to come up with more sophisticated
routing algorithms.
The proposed LP-formulations give an optimal achievable

EPR-pairs distribution rate with respect to prepare and swap
protocol. This protocol is practical and requires very less
amount of quantum storage time. However, there exists a
more sophisticated protocols that can achieve higher EPR-
pairs distribution rates [41] but require higher quantum stor-
age time. Another interesting future research direction would
be to find out a protocol for distributing EPR-pairs along a
chain that achieves the optimal EPR-pair generation rate and
find an LP-formulation for such protocol.

APPENDIX A: OUTLINE
In the first part of the appendix, we focus on giving a detailed
proof of the equivalence of the path-based and the edge-based
formulation. In the second part of the appendix, we show how
the prepare and swap protocol can achieve the entanglement
distribution rate, which we get as an output from the LP
solver. Before going to the detailed proof, in the following
appendix first, we define again some of the notations, which
we use in the proof. One can find the equivalence of the
edge-based formulation and the path-based formulation in
Appendix D. More precisely, for the clarity, in Appendices D
and D, we rewrite the path-based formulation and the edge-
based formulations. We prove the equivalence between both
of the formulations by showing that one can construct the
solution of the edge-based formulation from the path-based
formulation (see Appendix D) and vice-versa (see Appendix
D). In Appendix D, we give a detailed calculation of the
fidelity scaling with each entanglement swap operation. In
Appendix D, we describe the entanglement distribution rate
for the prepare and swap protocol across a path.

APPENDIX B: NOTATIONS
In this section, we define again some of the notations we are
going to use later in the proofs.We first start with the network

graph G = (V,E,C), which is a directed graph, and it ab-
stracts the quantum network. Here,V denotes the set of quan-
tum repeaters, E denotes the set of quantum communication
links, andC : E → R+ denotes the entanglement generation
capacity of an edge (u, v) ∈ E, i.e., how many EPR-pairs
the nodes u, v can generate per second. A path p between a
source node and a destination node in the graph is a finite se-
quence of edges, which joins a sequence of distinct vertices.
The path-length of a path p between a source-destination pair
(s, e) is denoted by |p|. Next, we define the set of demands
D = {(s1, e1, l1), . . . , (sk, ek, lk )}, where the ith element of
this set (or ith demand) is a triplet (si, ei, li) and si would like
to share EPR-pairs with ei using the multiple paths, whose
path lengths are at most li. Here, we assume the size of the
demand set |D| = k.

APPENDIX C: EQUIVALENCE OF THE PATH-BASED AND
EDGE-BASED FORMULATION FOR THE PREPARE AND
SWAP PROTOCOL
In this section, we prove the equivalence between the
path-based formulation and the edge-based formulation.
Before the proof, for clarity, in the following two sec-
tions, we rewrite the path-based formulation and the edge-
based formulation. Note that for the edge-based formu-
lation of the LP construction, we use the modified net-
work graphG′ = (V,′ E,′C′), which is constructed fromG =
(V,E,C). For the clarity, here, again we rewrite the con-
struction of G′. First, from the demand set, D we com-
pute lmax = max{l1, . . . , lk}, where each of the li is re-
lated to the length constraint of the ith demand (si, ei, li).
Then, for each node u ∈ V , we create lmax + 1 copies of
u. We denote them as u0, u1, . . . , ulmax . We denote V j as
the set of the jth copy of all the nodes in V , i.e., V j :=
{u j : u ∈ V }. For G′, the set of nodes V ′ = ⋃lmax

j=0V
j. For

each edge (u, v) ∈ E and for each 0 ≤ j < lmax, we define,
(u j, v j+1) ∈ E ′. For each edge (u j, v j+1) ∈ E ′, we define
C′(u j, v j+1) = C(u, v).

Note that, by construction, the path length of all the paths
from s0i to e ji is exactly j. For the ith demand, we are in-
terested in finding the paths between si and ei with path
length at most li. Hence, finding paths for the ith demand
in G is same as finding paths from s0i to e1i , . . . , e

li
i in the

modified network G′. For this reason, in the edge-based for-
mulation, we decompose the ith demand (si, ei, li) into li
demands {(s0i , e1i ), . . . , (s0i , elii )} and construct a new demand
set called, Dmod. It is defined as follows:

Dmod := {D1, . . . ,Dk} (24)

where for each 1 ≤ i ≤ k, Di = {(s0i , e1i ), . . . , (s0i , elii )}.

A. PATH-BASED FORMULATION
In this section, we rewrite again the path-based formulation
based on the new demand setDmod and the modified network
G′. Here, for the i, jth demand (s0i , e

j
i ) ∈ Dmod we denote

Pi, j as the set of all possible paths from s0i to e
j
i and for each
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TABLE 4. Path-Based Formulation on the Modified Network.

TABLE 5. Edge-Based Formulation on the Modified Network.

path p ∈ Pi, j we define one variable rp ∈ R+. The variable
rp denotes the flow between s0i to e ji via the path p. The
aim of the path-based formulation is to maximize the sum∑k

i=1
∑li

j=1

∑
p∈Pi, j rp.

We give the exact formulation in Table IV.

B. EDGE-BASED FORMULATION
In this section, for clarity, we rewrite the edge formulation.
Here, for the i, jth demand (s0i , e

j
i ) ∈ Di (where Di ∈ Dmod),

we define one function gi j : E ′ → R+. We give the edge
formulation in Table D.

C. FROM THE PATH-BASED FORMULATION TO THE
EDGE-BASED FORMULATION
In this section, we show that the solution of the edge-based
formulation is at least as good as the solution of the path-
based formulation. In order to do so, we assume that we
have the solution of the path-based formulation proposed
in Table IV. From this solution, we construct a solution of
the edge-based formulation, proposed in Table D. For the
i, jth demand (s0, e ji ) ∈ Dmod, for each edge (u,′ v′) ∈ E ′, we
define a function g̃i j : E → R+, as follows:

g̃i j(u,
′ v′) :=

∑
p∈Pi, j,
(u,′v′ )∈p

rp
(q) j−1

. (32)

Here, we show that this g̃i j is a valid solution for the
edge-based formulation. In order to do so, first, we need to
show that if we assume g̃i j as a solution of the edge-based
formulation then the objective function of the path-based
formulation is the same as the objective function of the edge-
based formulation.
Proposition 2: For all (u,′ v′) ∈ E ′, if we consider (32) as

the definition of the function g̃i j : E ′ → R+ then

k∑
i=1

li∑
j=1

∑
p∈Pi, j

rp =
k∑
i=1

li∑
j=1

(q) j−1
∑

v1:(s0i ,v
1)∈E ′

g̃i j(s
0
i , v

1).

(33)
Proof: According to the definition of g̃i j in (32), we get

g̃i j(s
0
i , v

1) =
∑
p∈Pi, j,

(s0i ,v
1)∈p

rp
(q) j−1

. (34)

This implies ∑
p∈Pi, j,

(s0i ,v
1)∈p

rp = (q) j−1g̃i j(s
0
i , v

1). (35)

In the path-based formulation, for the (i, j)th de-
mand (s0i , e

j
i ) the total entanglement generation rate is∑

p∈Pi, j
rp

(q) j−1 . As s
0
i is the source of all of those paths

p ∈ Pi, j, so we can write the total entanglement generation
rate as follows:∑

p∈Pi, j

rp
(q) j−1

=
∑

v1:(s0i ,v
1)∈E ′

∑
p∈Pi, j,

(s0i ,v
1)∈p

rp
(q) j−1

. (36)

Substituting the definition of (q) j−1g̃i j(s0i , v
1) from (35)

to the right-hand side of (36), we get∑
p∈Pi, j

rp
(q) j−1

=
∑

v1:(s0i ,v
1)∈E ′

(q) j−1g̃i j(s
0
i , v

1). (37)

By taking the summation over all 1 ≤ i ≤ k and 1 ≤ j ≤ li
on the both side of the above-mentioned equation, we can
prove this proposition. �
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In the rest of this section, we show that g̃i j satisfies all
the constraints from (29)–(31). Note that, g̃i j satisfies the
first constraint of the edge-formulation by construction. In
the following proposition, we show that g̃i j satisfies the con-
straint equations: ∀(u, v) ∈ E and for all 0 ≤ t ≤ lmax − 1,∑k

i=1
∑li

j=1

∑lmax−1
t=0 gi j(ut , vt+1) ≤ C(u, v).

Proposition 3: For all (u, v) ∈ E ′, if we consider (32) as
the definition of the function g̃i j : E ′ → R+ then, for all 1 ≤
i ≤ k, 1 ≤ j ≤ li, 0 ≤ t ≤ lmax − 1,∀ (u, v) ∈ E

k∑
i=1

li∑
j=1

lmax−1∑
t=0

g̃i j(u
t , vt+1) ≤ C(u, v). (38)

Proof: For any 1 ≤ i ≤ k, 1 ≤ j ≤ li, and 0 ≤ t ≤ lmax −
1 and for any edge (u, v) ∈ E, we define the function g̃i j in
(32) as follows:

g̃i j(u
t , vt+1) =

∑
p∈Pi, j,

(ut ,vt+1)∈p

rp
(q) j−1

. (39)

By taking the sum over all the values of i, j, and t, we get

k∑
i=1

li∑
j=1

lmax−1∑
t=0

g̃i j(u
t , vt+1) =

k∑
i=1

li∑
j=1

lmax−1∑
t=0

∑
p∈Pi, j,

(ut ,vt+1)∈p

rp
(q) j−1

.

(40)
From the constraint (26) of the path formulation, we get

k∑
i=1

li∑
j=1

lmax−1∑
t=0

∑
p∈Pi, j,

(ut ,vt+1)∈p

rp
(q)|p|−1

≤ C(u, v). (41)

Substituting this inequality in (42), we get

k∑
i=1

li∑
j=1

lmax−1∑
t=0

g̃i j(u
t , vt+1) ≤ C(u, v). (42)

�
In the following proposition, we prove that g̃i j satisfies

the constraint proposed in (31), which is, for all 1 ≤ i ≤ k,
1 ≤ j ≤ li, u,′ v,′ w′ ∈ V ′ : v′ �= s0i , v

′ �= e ji∑
u′:(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
w′:(v,′w′ )∈E ′

g̃i j(v,
′ w′).

Proposition 4: For all (u,′ v′) ∈ E ′, if we consider (32) as
the definition of the function g̃i j : E ′ → R+ then, for all 1 ≤
i ≤ k, 1 ≤ j ≤ li, v′ ∈ V ′ : v′ �= s0i , v

′ �= e ji∑
u′:(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
w′:(v,′w′ )∈E ′

g̃i j(v,
′ w′).

Proof: From the definition of g̃i j in (32), we have

g̃i j(u,
′ v′) =

∑
p∈Pi, j,
(u,′v′ )∈p

rp
(q) j−1

. (43)

Using this relation, for any node v′ ∈ V ′, such
that v′ �= s0i , v

′ �= e ji , we can rewrite the expression∑
u′:(u,′v′ )∈E ′ g̃i j(u,′ v′) in the following manner:∑
u′:(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
u′:(u,′v′ )∈E ′

∑
p∈Pi, j,
(u,′v′ )∈p

rp
(q) j−1

. (44)

For each edge (u,′ v′) ∈ E ′ (where v′ ∈ V ′ \ {s0i , e ji }) can
be part of multiple paths p ∈ Pi, j. This implies∑

p∈Pi, j :
(u,′v′ )∈p

rp
(q) j−1

=
∑

w′:(v,′w′ )∈E ′

∑
p∈Pi, j :
(u,′v′ )∈p
(v,′w′ )∈p

rp
(q) j−1

.

Substituting the above-mentioned value of
∑

p∈Pi, j :
(u,′v′ )∈p

rp
(q) j−1

in (44), we get∑
u′:

(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
u′:

(u,′v′ )∈E ′

∑
w′:

(v,′w′ )∈E ′

∑
p∈Pi, j :
(u,′v′ )∈p
(v,′w′ )∈p

rp
(q) j−1

.

(45)

At the right-hand side of the above-mentioned equation,
by interchanging the summation over u′ and w′, we get∑

u′:
(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
w′:

(v,′w′ )∈E ′

∑
u′:

(u,′v′ )∈E ′

∑
p∈Pi, j :
(u,′v′ )∈p
(v,′w′ )∈p

rp
(q) j−1

.

As for an intermediate node v′, the total number of paths,
incoming to it same as the total number of paths leaving it,
so we can rewrite the above-mentioned expression as∑

u′:(u,′v′ )∈E ′
g̃i j(u,

′ v′) =
∑

w′:(v,′w′ )∈E ′

∑
p∈Pi, j :

(v,′w′ )∈p

rp
(q) j−1

.

According to the definition of g̃i j, we have, g̃i j(v,′ w′) =∑
p∈Pi, j :

(v,′w′ )∈p

rp
(q) j−1 . By substituting this relation on the right-

hand side of the above-mentioned expression, we get∑
u′:(u,′v′ )∈E ′

g̃i j(u,
′ v′) =

∑
w′:(v,′w′ )∈E ′

g̃i j(v,
′ w′).

�
Propositions 3 and 4 certifies that g̃i j all the constraints,

proposed in the edge-based formulation and Proposition 2
proves that g̃i j corresponds to the objective function of the
edge formulation. This implies, g̃i j is a valid solution to
the edge-based formulation. In the following section, we
show how to construct the path-based formulation from the
edge-based formulation.

D. FROM THE EDGE-BASED FORMULATION TO THE
PATH-BASED FORMULATION
In this section, we show that the path-based formulation is at
least as good as the edge-based formulation. We assume that
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Algorithm 3: Path Extraction and Rate Allocation
Algorithm.

Input: The solution we obtain from the edge-based
formulation, i.e., {{gi j(u,′ v′)}(u,′v′ )∈E ′ }1≤i≤k,1≤ j≤li .
Output: Set of paths as well as the rate across each
of the paths {Pi, j}1≤i≤k,1≤ j≤li .

1: for (i = 1; i ≤ k; i+ +)do
2: for ( j = 1; j ≤ li; j + +)do
3: m = 0.
4: Fi, j = gi j.
5: Pi, j = ∅.
6: while

∑
v:(s0i ,v

1)∈E ′ Fi, j,m(s0i , v
1) > 0do

7: Find a path p j,m from s0i to e
j
i such that,

8: ∀(u,′ v′) ∈ p j,m, Fi, j,m(u,′ v′) > 0
9: r̃p j,m = (q) j−1 min(u,v)∈p j,m{Fi, j,m(u,′ v′)}
10: ∀(u,′ v′) ∈ p j,m, we define Fi, j,m+1(u,′ v′)

as,

11: Fi, j,m+1(u,′ v′) := Fi, j,m(u,′ v′) − r̃p j,m
(q) j−1 .

12: Pi, j = Pi, j ∪ (p j,m, r̃p j,m ).
13: m = m+ 1.
14: end while
15: end for
16: end for

we have the solution of the edge-based formulation, defined
in Appendix B. From this solution, we extract a solution
for the path-based formulation. We use Algorithm 3 for ex-
tracting the paths and the achievable rates for the path-based
formulation. In Algorithm 3, at step 8, for the i, jth demand
(s0i , e

j
i ) ∈ Dmod, we compute the entanglement distribution

rate r̃p j,m across a path p j,m ∈ Pi, j. In order to be a valid
solution of the path-based formulation, proposed in Table IV,
we need to show that the extracted rates should satisfy the
constraints in (26) and (27). We also need to show that, the
objective function, which is computed from these extracted
rates should be the same as the objective function of the edge-
based formulation. In order to do that, first, we need to prove
some properties of the function Fi, j,m, used in Algorithm 3.
In the following proposition, we show that for all the edges
(u,′ v′) ∈ E ′, the value of the function Fi, j,m ≥ 0.
Proposition 5: In Algorithm 3 for all 1 ≤ i ≤ k,

1 ≤ j ≤ li, m ≥ 0, (u,′ v′) ∈ E ′

Fi, j,m(u,
′ v′) ≥ 0. (46)

Proof: In the Algorithm 3, after each iteration over m,

we compute Fi, j,m(u,′ v′) = Fi, j,m−1(u,′ v′) − r̃p j,m−1

(q) j−1 , where

r̃p j,m−1 = (q) j−1 min(u,′v′ )∈p j,m−1
{Fi, j,m−1(u,′ v′)}. This im-

plies, at least for one edge (u,′ v′) ∈ E ′, Fi, j,m(u,′ v′) = 0
and according to the path-extraction algorithm that edge will
not be part of any other paths. For the other edges (u,′ v′) ∈
p j,m−1

r̃p j,m−1 ≤ Fi, j,m−1(u,
′ v′)(q) j−1.

This implies

Fi, j,m−1(u,
′ v′) − r̃p j,m−1

(q) j−1
≥ 0.

Hence

Fi, j,m(u,
′ v′) ≥ 0. (47)

In the following proposition, we show that for each de-
mand i, j the total number of paths |Pi, j| is upper bounded
by |E ′|.
Proposition 6: In Algorithm 3

|Pi, j| ≤ |E ′|. (48)

Proof: Due to the flow conservation property of the
edge-based formulation, if for some neighbor of s0i ,
Fi, j,m(s0i , v

1) > 0 then there exist a path p j,m from s0i to

e ji such that Fi, j,m(u,′ v′) > 0 for all (u,′ v′) ∈ p j,m. Note
that, at each step m of the Algorithm 3 there exist at
least one edge (u,′ v′) ∈ E ′ in the discovered the path
p j,m, such that Fi, j,m+1(u,′ v′) = 0. As there are in to-
tal, |E ′| number of edges and the algorithm runs until∑

v1:(s0i ,v
1)∈E ′ Fi, j,m+1(s0i , v

1) = 0, so the maximum value of

m could not be larger than |E ′|. �
In the edge-based formulation, we have the flow conserva-

tion for each gi j. In the following proposition, we show that
the flow conservation also holds for all Fi, j,m.
Proposition 7: In Algorithm 3 for all 1 ≤ i ≤ k,

1 ≤ j ≤ li, m ≥ 0, and ∀ v′ ∈ V ′ \ {s0i , e ji }∑
u′:

(u,′v′ )∈E ′

Fi, j,m(u,
′ v′) =

∑
w′:

(v,′w′ )∈E ′

Fi, j,m(v,
′ w′). (49)

In Algorithm 3, for the i, jth demand, we discover a path
with each iteration over m. We denote the set of discovered
paths up to the mth iteration as Pi, j,m. After each discovery
of the path, we allocate the rate rp j,m across that path using
a function Fi, j,m and compute the value of the new function
Fi, j,m+1 by subtracting the allocated rate from Fi, j,m. Form =
0, we have Fi, j,0 = gi j. This implies, for every iteration m,
we can rewrite gi j as a function of Fi, j,m and the sum of the
allocated rates so far. In the edge formulation, the function
gi j satisfies the flow conservation property. Here, we use this
relation and substitute gi j with the function of Fi, j,m, then by
doing some simple algebraic manipulation, we could show
that Fi, j,m also satisfies the flow conservation property.
Proof. In Algorithm 3, suppose for any m > 0, the set

of discovered paths are Pi, j,m−1. This implies, for any edge
(u,′ v′) ∈ E ′

Fi, j,m(u,
′ v′) = gi j(u,

′ v′) −
∑

p j,m−1∈Pi, j,m−1

r̃p j,m−1

(q) j−1
.
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By exchanging the position of gi j(u,′ v′) and Fi, j,m(u,′ v′) in
the abovementioned equation, we get

gi j(u,
′ v′) = Fi, j,m(u,

′ v′) +
∑

p j,m−1∈Pi, j,m−1:
(u,′v′ )∈p j,m−1

r̃p j,m−1

(q) j−1
. (50)

From the flow conservation property (31) of the edge for-
mulation, we have∑

u′:
(u,′v′ )∈E ′

gi j(u,
′ v′) =

∑
w′:

(v,′w′ )∈E ′

gi j(v,
′ w′).

Substituting the value of gi j(u,′ v′) from (50), we get

∑
u:(u,′v′ )∈E ′

⎛
⎜⎜⎜⎝Fi, j,m(u,′ v′) +

∑
p j,m−1∈Pi, j,m−1:
(u,′v′ )∈p j,m−1

r̃p j,m−1

(q) j−1

⎞
⎟⎟⎟⎠

=
∑

w′:(v,′w′ )∈E ′

⎛
⎜⎜⎜⎝Fi, j,m(v,′ w′) +

∑
p j,m−1∈Pi, j,m−1:
(v,′w′ )∈p j,m−1

r̃p j,m−1

(q) j−1

⎞
⎟⎟⎟⎠ .
(51)

As for an intermediate node v′, the number of the incoming
paths to it is the same as the number of outgoing paths from
it. This implies∑

p j,m−1∈Pi, j,m−1:
(u,′v′ )∈p j,m−1

r̃p j,m−1

(q) j−1
=

∑
p j,m−1∈Pi, j,m−1:
(v,′w′ )∈p j,m−1

r̃p j,m−1

(q) j−1
.

By substituting this relation in (51), we get∑
u′:(u,′v′ )∈E ′

Fi, j,m(u,
′ v′) =

∑
w′:(v,′w′ )∈E ′

Fi, j,m(v,
′ w′).

�
In the following proposition, we show that, the rates we

compute in Algorithm 3 satisfies the condition (26) of the
path-based formulation.
Proposition 8: For all (u, v) ∈ E

k∑
i=1

li∑
j=1

lmax−1∑
t=0

∑
p j∈Pi, j :

(ut ,vt+1)∈p j

r̃p j
(q) j−1

≤ C(u, v) (52)

where r̃p j,m is defined in Algorithm 3 (see step 8).
In Algorithm 3, for the i, jth demand, we discover a path

with each iteration over m. We denote the set of discovered
paths up to the mth iteration as Pi, j,m. After each discovery
of the path, we allocate the rate r̃p j,m across that path using a
function Fi, j,m and compute the value of the new function
Fi, j,m+1 by subtracting the allocated rate from Fi, j,m. For
m = 0, we have Fi, j,0 = gi j. This implies, for every iteration
m, we can rewrite gi j as a function of Fi, j,m and the sum
of the allocated rates so far. In the edge formulation, for

every edge (u, v) ∈ E and for every 0 ≤ t ≤ lmax − 1, we
have that

∑k
i=1
∑li

j=1

∑lmax−1
t=0 gi j(ut , vt+1) ≤ C(u, v). Here,

we use this relation and substitute gi j with the function of
Fi, j,m, then by doing some simple algebraic manipulation we
could show that the sum of the extracted rate is also upper
bounded by the capacity of that edge.
Proof. In Algorithm 3, suppose for anym ≥ 0 and for any

1 ≤ i ≤ k, 1 ≤ j ≤ li, and 0 ≤ t ≤ lmax − 1, the set of dis-
covered paths isPi, j,m. This implies, for any edge (u, v) ∈ E,
and for any 0 ≤ t ≤ lmax − 1

Fi, j,m+1(u
t , vt+1) = gi j(u

t , vt+1) −
∑

p j,m∈Pi, j,m
(ut ,vt+1)∈p j,m

r̃p j,m
(q) j−1

.

From Proposition 5, we have that for all 0 ≤ m ≤ |E ′| and
for all the edges (ut , vt+1) ∈ E ′, Fi, j,m(ut , vt+1) ≥ 0. This
implies, when

∑
v:(s0i ,v

1)∈E ′ Fi, j,m(s0i , v
1) = 0, then

gi j(u
t , vt+1) −

∑
p j∈Pi, j :

(ut ,vt+1)∈p j

r̃p j
(q) j−1

≥ 0

gi j(u
t , vt+1) ≥

∑
p j∈Pi, j :

(ut ,vt+1)∈p j

r̃p j
(q) j−1

. (53)

From the edge-based formulation, we have

k∑
i=1

li∑
j=1

lmax−1∑
t=0

gi j(u
t , vt+1) ≤ C(u, v)

for all the edges (u, v) ∈ E and for all 0 ≤ t ≤ lmax − 1.
Substituting this relation in (53), we get

k∑
i=1

li∑
j=1

lmax−1∑
t=0

∑
p j∈Pi, j :

(ut ,vt+1)∈p j

r̃p j
(q) j−1

≤ C(u, v). (54)

�
We finish this section by showing the equivalence of the

objective functions for both of the formulations.
Proposition 9: In Algorithm 3

k∑
i=1

li∑
j=1

(q) j−1
∑

v1:(s0i ,v
1)∈E ′

gi j(s
0
i , v

1) =
k∑
i=1

li∑
j=1

∑
p∈Pi, j

r̃p.

(55)
Due to the flow conservation property of the function

Fi, j,m, the Algorithm 3 runs until, Fi, j,m+1(s0i , v
1) = 0, for all

the neighbors of the source node s0i . In the previous proposi-
tions, we establish a relation between gi j and Fi, j,m+1 and the
set of discovered paths, i.e., Fi, j,m+1(s0i , v

1) = gi j(s0i , v
1) −∑

p j,m∈Pi, j,m
(s0i ,v

1)∈p j,m

r̃p j,m
(q) j−1 . If all the paths are discovered, then the

value of Fi, j,m+1(s0i , v
1) becomes zero and gi j will only be a
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function of all the discovered paths. Here, we use this relation
to prove the equivalence of the objective functions.
Proof: From Proposition 7, we have that the functions

Fi, j,m follow the flow conservation. From the Proposition 5,
we have that Fi, j,m(u,′ v′) ≥ 0 for all 0 ≤ m ≤ |E ′|. This im-
plies, for a fixed i, j, for any value ofm, we can find one path
p j,m with nonzero r̃p j,m until

∑
v1:(s0i ,v

1)∈E ′ Fi, j,m(s0i , v
1) = 0.

According to the Algorithm 3 after each iteration if an edge
(s0i , v

1) ∈ p j,m

Fi, j,m+1(s
0
i , v

1) = Fi, j,m(s
0
i , v

1) − r̃p j,m
(q) j−1

. (56)

If for some i, j,m, Fi, j,m+1(s0i , v
1) = 0 then from (56), we

have

Fi, j,m(s
0
i , v

1) = r̃p j,m
(q) j−1

.

Using the recurrence relation of (56), we can rewrite the
abovementioned expression as

Fi, j,m−1(s
0
i , v

1) − r̃p j,m−1

(q) j−1
= r̃p j,m

(q) j−1
.

If we continue like this until m = 0, then we get

Fi, j,0(s
0
i , v

1) =
m∑

m′=0

r̃p j,m′

(q) j−1
.

Note that, Fi, j,0 = gi j. This implies

gi j(s
0
i , v

1) =
m∑

m′=0

r̃p j,m′

(q) j−1

m∑
m′=0

r̃p j,m′ = (q) j−1gi j(s
0
i , v

1). (57)

This is true for all m. This implies

(q) j−1gi j(s
0
i , v

1) =
∑
p∈Pi, j

(s0i ,v
1)∈p

r̃p. (58)

By taking sum on both sides on i and j, we get

k∑
i=1

li∑
j=1

(q) j−1
∑

v:(s0i ,v
1)∈E ′

gi j(s
0
i , v

1) =
k∑
i=1

li∑
j=1

∑
p∈Pi, j

r̃p.

(59)
�

APPENDIX D: NOISE MODEL AND THE CAPACITY OF
THE ELEMENTARY LINKS
In this section, we calculate the capacity of the elementary
links using a noise model for elementary EPR-pair genera-
tion. Moreover, we also explain how to approximate deter-
ministic elementary EPR-pair generation.
In this model, the EPR-pairs are distributed between two

quantum memories within an elementary link by means of
entangled photon pair sources and linear-optic Bell state

measurements. The setup is shown in Fig. 9. The photon pair
sources on both ends of an elementary link generate entan-
gled photon pairs and send one photon to the middle Bell-
state measurement station, and send the other photon to their
quantum memories. In the middle Bell-state measurement
station, an entanglement swapping operation is performed.
Note that, here for a successful entanglement swapping op-
eration it is necessary for both of the photons to arrive at the
middle station at the same time. The result of the Bell state
measurement is heralded by the middle station to the cor-
responding two quantum repeaters. Due to the losses, other
noise in the communication channel, and the probabilistic na-
ture of the entanglement swapping operations the EPR-pair
generation is a probabilistic process. We can abstract the im-
pact of all of the losses using a term 0 ≤ Pgen ≤ 1. It denotes
the probability of generating an EPR-pair in one attempt. To
boost the success probability of a single attempt, we consider
that the entangled photon pair sources can generate multiple
entangled photon pairs with different frequency modes in
a single attempt. Suppose the source can generate m such
frequency modes and each of them can create an EPR-pair
with probability Pgen. We can create an elementary EPR-pair
if the middle station manages to perform a successful Bell
state measurement operation for at least one out of mmodes.
For this scenario, the probability of generating an EPR-pair
per attempt is at least (1 − (1 − Pgen)m). Here, we assume
that the photon pair source can attempt to generate the m
entangled photon pairs at a rate μs per second and each of
such attempts can create an elementary EPR-pair with prob-
ability at least (1 − (1 − Pgen)m). Hence, the capacity of an
elementary link is μs(1 − (1 − Pgen)m).

In this article, for the prepare and swap protocol, we as-
sume that we can choosem high enough such that the success
probability (1 − (1 − Pgen)m) is as close to one as desired.
More concretely, for any ε > 0 we choose m such that

(1 − (1 − Pgen)
m) = 1 − ε.

From this equation, we get the number of required modes as

m = log ε

log(1 − Pgen)
.

If (1 − (1 − Pgen)m) ≈ 1, then the capacity of an elemen-
tary link (u, v) is

C(u, v) = μs. (60)

Note that, during the elementary link creation, all of the
operations may introduce some noise in the shared EPR-
pairs. In this article, we abstract the impact of the noise using
the elementary EPR-pair fidelity F .

APPENDIX E: QUANTUM MEMORIES AND THE
ENTANGLEMENT SWAPPING OPERATION
This section gives a brief overview of the entangle-
ment swapping operation and how to compute its success
probability q.

VOLUME 1, 2020 4101321



Engineeringuantum
Transactions onIEEE

Chakraborty et al.: ENTANGLEMENT DISTRIBUTION IN A QUANTUM NETWORK

FIGURE 9. Abstract view of the elementary links, quantum repeaters and the success probabilities. Please see Appendices D and E for a detailed
description.

In our model, a quantum repeater stores its part of the
shared EPR-pairs inside its quantum memories. An inter-
mediate quantum repeater retrieves its part of the shared
EPR-pairs from the memories in a repeater chain network
if it manages to create EPR-pairs with both of its neighbors.
After successfully retrieving the photons from the memories,
an entanglement swapping operation is performed using a
BSM (see Fig. 9). All of the operations involved—retrieving
the photons frommemory, transmitting them to the Bell-state
measurement station, and the measurements themselves—
can be probabilistic. We abstract the total success probability
of the combined operation using the parameter q.

APPENDIX F: FIDELITY SCALING AS A FUNCTION OF
THE NUMBER OF SWAP OPERATIONS
This section shows for completeness how the fidelity of the
EPR-pairs drops with the number of entanglement swapping
operations. First, we give a bit more technical details of the
entanglement swapping operations. Note that, here, we as-
sume that the reader has a basic understanding of quantum
information, i.e., the reader is familiar with the concept of
bra-ket notation, projective measurements, etc.
Suppose, there are two EPR-pairs, one of them is of

the form |φ+〉AB = 1√
2
(|00〉 + |11〉)AB (the subscript AB de-

notes that the first qubit is stored in the quantum mem-
ory A and the second qubit is stored inside the quan-
tum memory B) and the other one could be of the form
|φ±〉B′C or |ψ±〉B′C. Here, |φ±〉B′C = 1√

2
(|00〉 ± |11〉)B′C

and |ψ±〉B′C = 1√
2
(|01〉 ± |10〉)B′C. In the introduction, we

mention that, if we perform an entanglement swapping oper-
ation between the two qubits stored in the memories B,B′,
then the qubits in the memories A and C (also qubits in
B,B′) share an EPR-pair. More technically, entanglement
swapping operation is a two-qubit projective measurement
(Bell-state measurement), where the projective operator is
of the form {|ψ±〉BB′ 〈ψ±|, |φ±〉BB′ 〈φ±|}. After the measure-
ment the state of the qubits in the memories B,B′ is randomly
projected onto one of the Bell-states |ψ±〉, |φ±〉. After the

measurement, depending on the state in the memories B,B′,
we get another EPR-pair in the memories A,C. We explain
the step by step process with an example.
If A,B and B,′C share EPR-pairs of the form |φ+〉AB ⊗

|φ+〉B′C, then we can write the joint state as

(|φ+〉 ⊗ |φ+〉)ABB′C = 1

2
(|0000〉 + |0011〉

+ |1100〉 + |1111〉)ABB′C. (61)

After interchanging the qubits that are stored in the mem-
ories, we get

(|φ+〉 ⊗ |φ+〉)ABB′C = 1

2
(|0000〉 + |0110〉

+ |1010〉 + |1111〉)ACBB′ . (62)

It is easy to verify that one can write |00〉 =
1√
2
(|φ+〉 + |φ−〉), |01〉 = 1√

2
(|ψ+〉 + |ψ−〉), |10〉 =

1√
2
(|ψ+〉 − |ψ−〉), |11〉 = 1√

2
(|φ+〉 − |φ−〉). Substituting

these relations for the qubits that are stored in the memories
B,B′ in (62), we get

(|φ+〉 ⊗ |φ+〉)ACBB′ =
1

2
√
2
(|00〉 ⊗ (|φ+〉 + |φ−〉) + |01〉 ⊗ (|ψ+〉 + |ψ−〉)+

|10〉 ⊗ (|ψ+〉 − |ψ−〉) + |11〉 ⊗ (|φ+〉 − |φ−〉))ACBB′ .

We can rewrite the abovementioned expression and get the
following form:

(|φ+〉 ⊗ |φ+〉)ACBB′ = 1

2
(|φ+〉 ⊗ |φ+〉 + |ψ+〉 ⊗ |ψ+〉+

|ψ−〉 ⊗ |ψ−〉 + |φ−〉 ⊗ |φ−〉)ACBB′ .

From the right-hand side of the above-mentioned expres-
sion, it is clear that after the Bell-state measurement on the
qubits in B,B′ the qubits in A,C share one of the four EPR-
pairs, and its form depends on the BSM outcome. If A,C
would like to share |φ+〉 after the BSM, then we need to
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apply some single qubit Pauli operations on the qubits that
are stored in the memories A,C. Of course, this correction
depends on the measurement outcome of the BSM. If we
keep the same set of corrections corresponding to the out-
come of the BSM and if we vary the initial shared EPR-pair
between the memories B,′C then after the BSM, the shared
state |�〉AC between A,C changes. Using the same technique
that we explain in the last paragraph, one can verify that
|�〉AC can have the following forms:

|�〉AC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|φ+〉 Input state: (|φ+〉 ⊗ |φ+〉)A,B,B,′C
|ψ+〉 Input state: (|φ+〉 ⊗ |ψ+〉)A,B,B,′C
|ψ−〉 Input state: (|φ+〉 ⊗ |ψ−〉)A,B,B,′C
|φ−〉 Input state: (|φ+〉 ⊗ |φ−〉)A,B,B,′C.

(63)
In the following lemma, we use these techniques for

computing the Werner parameter of the shared state af-
ter performing entanglement swapping operations between
multiple Werner states.
Lemma 3: The Werner parameterWn of the shared EPR-

pair after performing n ≥ 1 successful entanglement swap
operations between n+ 1 Werner states with parameter W
is

Wn =Wn. (64)

Proof: We prove this lemma by induction.
We denote the set of n+ 1 Werner states

{ρX0,X1 , ρX1,′X2 , . . . , ρXn,′Xn+1
}

where each of the states are of the form W |φ+〉〈φ+| +
1−W
4 I4. Here, the state ρXi,Xi+1 (or ρX ′

i ,Xi+1
, for 1 ≤ i ≤ n) is

shared between two quantummemoriesXi (X ′
i , for 1 ≤ i ≤ n)

and Xi+1 for 0 ≤ i ≤ n. We consider that they are swapped in
sequence. First ρX0,X1 is swapped with ρX1,′X2 . If the entan-
glement swap is successful it results in a state that we denote
ρX0,X2 . Then, the state ρX0,X2 is swapped with ρX2,′X3 , etc.

For the base case n = 1, we perform the entanglement
swapping operation between two EPR-pairs that are stored
in the memories X1 and X ′

1. The joint state ρX0,X1 ⊗ ρX ′
1,X2

is
of the form

ρX0,X1 ⊗ ρX ′
1,X2

=
(
W |φ+〉〈φ+| + 1 −W

4
I4

)⊗2

X0,X1,X ′
1,X2

(65)

=
(
W 2|φ+〉〈φ+| ⊗ |φ+〉〈φ+| + Y

)
X0,X1,X ′

1,X2

(66)

where

YX0,X1,X ′
1,X2

=(
W

1 −W

4

(|φ+〉〈φ+| ⊗ I4 + I4 ⊗ |φ+〉〈φ+|))
X0,X1,X ′

1,X2

+
(
1 −W

4

)2

I16. (67)

Note that, from (63), we get that after performing the en-
tanglement swapping operation between two EPR-pairs the
resulting state |�〉X0,X2 looks like

|�〉X0,X2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|φ+〉 Input state: (|φ+〉 ⊗ |φ+〉)X0,X1,X ′
1,X2

|ψ+〉 Input state: (|φ+〉 ⊗ |ψ+〉)X0,X1,X ′
1,X2

|ψ−〉 Input state: (|φ+〉 ⊗ |ψ−〉)X0,X1,X ′
1,X2

|φ−〉 Input state: (|φ+〉 ⊗ |φ−〉)X0,X1,X ′
1,X2

.

(68)
Note that, we can write

I4 = 1

4

(|ψ+〉〈ψ+| + |φ+〉〈φ+| + |φ−〉〈φ−| + |ψ−〉〈ψ−|) .
If the input state (unnormalized) is YX0,X1,X ′

1,X2
, then using

the relation in (68), we get the resulting state (unnormalized)
after a successful entanglement swapping operation between
the qubits in memories X1 and X ′

1 as

YX0,X2 = 2W
1 −W

4
I4 + 4

(
1 −W

4

)2

I4

= 1 −W 2

4
I4. (69)

From the first case of (68), we get that if X1 performs a
successful entanglement swapping operation between two
states of the form |φ+〉X0,X1〈φ+| ⊗ |φ+〉X ′

1,X2
〈φ+| then the

resulting state is of the form |φ+〉X0,X2〈φ+|. Hence, after the
successful entanglement swapping operation the shared state
between X0,X2 is of the form

ρX0,X2 =W 2|φ+〉〈φ+| + YX0,X2 . (70)

By substituting the expression of YX0,X2 in the above-
mentioned expression from (69), we get the following form
of ρX0,X2 :

ρX0,X2 =W 2|φ+〉〈φ+| + 1 −W 2

4
I4. (71)

Hence, the Werner parameter of the state ρX0,X2 isW
2. This

proves the base case of the lemma.
For the induction step, we assume the lemma is true for

any n = n′. This implies

ρX0,Xn′ =Wn′ |φ+〉〈φ+| + 1 −Wn′

4
I4. (72)

For the case of n = n′ + 1, an entanglement swapping op-
eration is being performed between the qubits stored in the
memories Xn′ and X ′

n′ . The joint state can be written as

ρX0,Xn′ ⊗ ρXn′ ,Xn′+1
=(

Wn′ |φ+〉〈φ+| + 1 −Wn′

4
I4

)
X0,Xn′

⊗

(
W |φ+〉〈φ+| + 1 −W

4
I4

)
X ′
n′ ,Xn′+1
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=
(
Wn′+1|φ+〉〈φ+| ⊗ |φ+〉〈φ+|

)
X0,Xn′ ,X ′

n′ ,Xn′+1

+

YX0,Xn′ ,X ′
n′ ,Xn′+1

(73)

where

YX0,Xn′ ,X ′
n′ ,Xn′+1

=(
W

1 −Wn′

4
I4 ⊗ |φ+〉〈φ+|

)
X0,Xn′ ,X ′

n′ ,Xn′+1

+

(
Wn′ 1 −W

4
|φ+〉〈φ+| ⊗ I4

)
X0,Xn′ ,X ′

n′ ,Xn′+1

+

(1 −W )(1 −Wn′
)

16
I16.

Using the relation in (63) and substituting I4 =
1
4 (|ψ+〉〈ψ+| + |φ+〉〈φ+| + |φ−〉〈φ−| + |ψ−〉〈ψ−|) for the
YX0,Xn′ ,X ′

n′ ,Xn′+1
part of the shared state, we get the resulting

state (unnormalized) after a successful entanglement
swapping operation as

YX0,Xn′+1
=
(
Wn′ 1 −W

4
+W

1 −Wn′

4

)
I4+

4

(
1 −Wn′

4

)(
1 −W

4

)
I4

= 1 −Wn′+1

4
I4. (74)

Hence, the resulting state after Xn′ performs the entangle-
ment swapping operation is given by

ρX0,Xn′+1
=Wn′+1|φ+〉〈φ+| + 1 −Wn′+1

4
I4. (75)

Hence, the Werner parameter of the state ρX0,Xn′+1
isWn′+1.

This proves the induction step. Hence, by the principle
of mathematical induction, we conclude that the statement
Werner parameter Wn after the n successful swap operation
isWn is true for any n ≥ 1. �

APPENDIX G: PREPARE AND SWAP PROTOCOL
In this appendix, we prove the EPR-pair generation rate
across a repeater chain using prepare and swap protocol.
Lemma 4: In a repeater chain network with n+ 1 re-

peaters {u0, u1, . . . , un}, if the probability of generating an
elementary pair per attempt is one and the probability of a
successful BSM is (q) and the capacity of an elementary
link (ui, ui+1) (for 0 ≤ i ≤ n− 1) is denoted byCi and if the
repeaters follow the prepare and swap protocol for generat-
ing EPR-pairs, then the expected end-to-end entanglement
generation rate ru0,un is

ru0,un = (q)n−1 min{C0, . . . ,Cn−1}. (76)

Proof: In the entanglement generation protocol, first, the
repeaters start generating the elementary pairs in parallel. As
a elementary pair generation is a deterministic event, so each
of the node ui can generate Ci EPR-pairs with its neighbor
ui+1 (0 ≤ i ≤ n− 1) per second. After generating the ele-
mentary pairs, the intermediate nodes perform the swap op-
erations independently of each other. This implies, if all the
swap operations are deterministic then the end-to-end entan-
glement generation is min{C1, . . . ,Cn}. However, each of the
swap operations succeeds with probability (q). The end-to-
end entanglement generation probability is equal to the prob-
ability that all elementary links are successfully swapped,
which is (q)n and there are min{C1, . . . ,Cn} such elementary
links. This implies, the expected end-to-end entanglement
generation rate is ru0,un = (q)n−1 min{C0, . . . ,Cn−1}. �
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