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ABSTRACT In superconducting architectures, limited connectivity remains a significant challenge for the
synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation
where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ)
states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation
primitives such as multiqubit Pauli rotations and fan-out gates. We derive bounds on the circuit size for
several well-studied problems, such as CZ circuit, CX circuit, and Clifford circuit synthesis. In particular,
in an architecture using one such entanglement bus, we give a synthesis scheme for arbitrary Clifford
operations requiring at most 2n+ 1 layers of entangled state injections, which can be computed classically
in O(n3) time. In a square-lattice architecture with two entanglement buses, we show that a graph state can
be synthesized using at most � 1

2n� + 1 layers of GHZ state injections, and Clifford operations require only
� 3
2n� + O(

√
n) layers of GHZ state injections.

INDEX TERMS Clifford circuits, Greenberger–Horne–Zeilinger (GHZ) states, long-range entanglement,
quantum circuit synthesis.

I. INTRODUCTION
Unlike classical random access memories where direct ac-
cess to arbitrary bits comes at a low cost, quantum operations
across nonadjacent qubits often incur significant additional
overhead. One common resolution is to use swap gates to
bring qubits to adjacent positions. However, when we use
swap gates for qubit routing, we may suffer an overhead in
depth that is linear in the number of qubits. While this is not
concerning for exponential speedups in theory, in practice,
this overhead could render quantum algorithms with only
mild polynomial speedups useless and otherwise dull the
quantum competitive edge.
Another solution is to use long-range entanglement to im-

plement nonlocal operations. Local measurements with feed-
forward corrections allow us to prepare quantum states with
long-range entanglement in constant depth [6], [7]. Using
gate teleportation and similar techniques, these states can be
used as a resource to implement long-range two-qubit gates
and even global n-qubit gates [2]. This observation suggests
the following trade: sacrifice a constant fraction of the qubits
to act as an “entanglement bus” and obtain a certain flavor of
all-to-all connectivity in exchange.

These techniques are widely considered in surface code
architectures, especially lattice surgery [2], which reformu-
lates Clifford + T circuits in terms of ancilla-assisted multi-
qubit Pauli rotations. Works on surface code routing leverage
constant-depth preparation of Bell states to facilitate long-
range cnot gates [7], [8]. Other models leverage Hamilto-
nian time evolution to implement certain n-qubit gates and
discuss their utility toward implementing permutations [9]
and Clifford operations [10], [11], [12]. It is also well known
that certain families of interesting quantum states in physics
are easy to prepare using measurement and feedback [13],
[14]. Using entangled states as a resource for computation
is a central idea in the field of measurement-based quantum
computation [15], whose techniques enable us to trade circuit
depth for circuit width.
Previous works on surface code compilation have per-

formed numerical studies either on the speed of implement-
ing fixed sequences of cnot gates [7] or on asymptotic
bounds on the implementation of permutations using entan-
glement routing [8]. Our work takes inspiration from these
proposals while also exploiting the particular structure of the
Clifford group and studying the leading coefficient in the
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TABLE 1 Comparison of Best Known Upper and Lower Bounds on Circuit Depth for Graph States and Clifford Operations

synthesis performance. This approach allows us to incorpo-
ratemore sophisticated optimizations and achieve highly par-
allelized circuits with competitive upper bound guarantees
using a smaller fraction of ancillary qubits.
Efficient circuit synthesis of Clifford operations is not

just central to the implementation of fault-tolerant quan-
tum algorithms, but it is also extensively studied in noisy
intermediate-scale quantum (NISQ) models. In particular,
using single-qubit gates and two-qubit entangling gates, such
as the cnot and cz gates, we can show that arbitrary Clifford
circuits can be synthesized using at most 7n− 4 layers of
two-qubit gates with linear nearest neighbor (LNN) archi-
tecture [3] and at most 2n+ O(log2(n)) layers of two-qubit
gates with all-to-all connectivity [4]. When we allow global
operations, an algorithm exists that computes the optimal
decomposition of a Clifford operation into Pauli rotations,
achieving a worst case gate count of 2n+ 1 [5]. Finally, in
architectures that allow a more powerful global tunable gate,
Clifford operations may require only constant depth [12].

The rest of this article is organized as follows. First, we
will describe the Greenberger–Horne–Zeilinger (GHZ) bus
models in detail in Section II and relate them to other pro-
posals in prior work. Then, in Section III, we will present
several optimization techniques to efficiently synthesize var-
ious classes of Clifford circuits, starting with CZ circuits, CX
circuits, and Hadamard-free circuits in Sections III-A–III-C,
respectively. In particular, our construction for CZ circuits
achieving depth � 1

2n� + 1 in a model with two GHZ buses
can also be applied to the synthesis of graph states. Then,
combining these optimization techniques, we arrive at our
main results on Clifford synthesis in Section III-D: first, in a
model with one GHZ bus, we present a simplified construc-
tion achieving the optimal GHZ injection depth guarantee
of 2n+ 1 in [5]; second, in a more powerful model with
two GHZ buses with square lattice connectivity, we present
a highly parallelized construction achieving GHZ injection
depth � 3

2�n+ O(
√
n) for Clifford synthesis. Our results are

summarized in Table 1, with some lower bound derivations
deferred to the Appendix.

II. MODELS
Our results are chiefly inspired by surface code architectures,
in which the allocation of “entanglement bus” qubits to facil-
itate long-range interactions is common in several works [2],
[7]. Rather than studying the capabilities of a complex ar-
chitecture for large quantum circuits in practice, we design
simplified models to capture only the impact of GHZ state

injection on an architecture with otherwise poor connectivity.
We expect improved connectivity to be the primary benefit of
GHZ state injection, and this architecture lets us quantify the
improvement.
In the rest of this section, we define the models we con-

sider in Section II-A and describe in detail the operation
primitives enabled, as well as the cost metric we consider.
We also include a comparison of our model to prior work in
Section II-B.

A. ARCHITECTURE DETAILS
First, let us define the GHZ bus architecture enabling a set of
k-qubit Clifford operations as primitive logical operations.
Definition 1: GHZ bus architectures enable a set of gates

acting on n qubits. With the qubits enumerated 1, . . . , n, the
operations are as follows:

1) all single-qubit gates;
2) k-qubit gates acting on k adjacent qubits i, . . ., i+ (k −

1) from the following families:
a) CNOT fan-out: if a control qubit is |1〉, apply X to

any subset of the other k qubits;
b) Pauli rotation: for any phase angle φ and any

multiqubit Pauli operator P supported on k
qubits, apply the unitary exp(iφP).

Each of the k-qubit logical operations can be implemented
with constant overhead given a GHZ resource state, as pre-
sented in Fig. 1(c) and (d). Another primitive that can be
implemented is the k-qubit Pauli measurement; however,
since our synthesis schemes rely only on Pauli rotations and
CNOT fan-outs, we do not include Pauli measurements in our
definition. A GHZ state injection refers to the consumption
of a GHZ state to implement a k-qubit logical operation. The
correctness proof is given using ZX calculus in Fig. 2. Since
each operation consumes on the GHZ state, we believe that
these families of operations equivalently capture the power of
GHZ state injection. Certainly, it is easy to see how to prepare
a single GHZ state using cnot fan-out. We can also prepare
a GHZ state by applying exp(iπ4Y

⊗n) to |0n〉 or by measuring
the X⊗n observable on |0n〉 and applying a Pauli correction.
Interconversions between the operations are less simple, and
circuits achieving these are given in Fig. 3. We find that to
transform one of these operations into any of the other two,
an additional ancilla qubit is required. This makes sense for
Pauli measurements since they require an additional degree
of freedom to be measured in order to avoid damaging the
coherence of the input state. However, the smallest circuit
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FIGURE 1. Architectures and primitive operations considered in this
article. (a) LNN architecture with a “GHZ bus”: a “rail” of ancilla qubits
reserved for the preparation of GHZ states (see Fig. 4). (b) “Dual snake”
architecture compatible with a square lattice of qubits featuring two
intertwining GHZ buses. In the limit of many qubits, only about half of
the chip area is dedicated to ancillae. This architecture permits the
parallelization of two layers of primitive operations, provided that they
act on disjoint sets of qubits. (c) Implementation of a fan-out gate using
a GHZ state prepared on the GHZ bus. (d) Implementation of a Pauli
rotation gate via injection of a GHZ state.

FIGURE 2. Derivation of GHZ state injection circuits using ZX
calculus [16]. (a) ZX calculus identities. (b) Derivation: fan-out. (c)
Derivation: Pauli rotation. (d) Derivation: Pauli measurement.

without an extra ancilla for implementing fan-out requires
two Pauli rotations: one on all the qubits, and on all but
the target. Even with the additional ancilla, the synthesis of
fan-out gates demands an additional cnot gate. Despite these
limitations, there is plenty of evidence that these three circuit
primitives have roughly the same capabilities up to constant
factors.

FIGURE 3. Circuits for interconversion of the three GHZ-state-enabled
n-qubit gates considered in this article: Pauli measurement, Pauli
rotation, and fan-out. All of these conversions require an ancilla qubit,
and the synthesis of fan-out requires an additional CNOT gate. Otherwise,
this is evidence that these three operations have roughly the same
power.

FIGURE 4. (a) Preparation of a GHZ state on the ancillae of the GHZ bus
using parity check qubits, as well as two CNOT layers and a mid-circuit
measurement. (b) GHZ state injection implementation of another
primitive not leveraged in our work: measurement of an n-qubit Pauli
observable.

The GHZ bus can be implemented efficiently with the
instruction set of both fault-tolerant architectures on sur-
face code logical qubits and NISQ architectures on physical
qubits. In a surface code architecture, a large rectangular
ancilla patch can be prepared to implement multiqubit Pauli
measurements in a single code cycle [2]. On physical qubits
where two-qubit cnots are the native, a GHZ state can be
synthesized using a constant depth quantum circuit with two
layers of nearest neighbor cnot gates and one measurement,
as presented in Fig. 4(a).
We use circuit depth in terms of GHZ state injection lay-

ers to quantify the cost of implementing a set of operations
on the GHZ bus architecture. First, we note that whenever
operations act on nonoverlapping ranges of qubits l1. . .r1
and l2. . .r2 such that r1 < l2, they can be performed si-
multaneously. A layer of parallel gates consisting entirely
of k-qubit gates is called a GHZ state injection layer. We
consider single-qubit gates to be free: such approximations
are often made for synthesis tasks both in the NISQ setting
where the dominant cost comes from implementing entan-
gling gates [3], [4], [17] and in the fault-tolerant setting
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where single-qubit Clifford gates can either be implemented
transversally or be tracked in software [2], [18].

The relative cost of the nearest neighbor two-qubit gates
and the GHZ state injections depends on the implementation
of the model. Recall that in a surface code architecture based
on lattice surgery, cnot gates are not native and require an
ancilla qubit in order to implement. Furthermore, the synthe-
sis of large ancilla patches containing GHZ states can be per-
formed simultaneously as the preparation of a cnot ancilla.
Thus, cnot and GHZ state injection layers have the same
cost. A more general layer of nearest neighbor interactions,
such as a layer of swap gates, may need as much time as
three GHZ state injection layers. The situation is reversed
in a model in which some two-qubit gates are native. In
such an architecture, GHZ state preparation (see Fig. 4) and
subsequent injection require three cnot layers and additional
measurement feedback. A similar argument applies to the
parity check qubits: in a surface code architecture, the parity
checks can be performed with no additional space cost, but
this is not the case in a near-term architecture.
Finally, we establish some nomenclature for the variant

architectures. All of the models considered in this article
can be naturally implemented on a surface code architecture
with lattice surgery as in [2]. Logical qubits are encoded
into square surface code patches, which are arranged in a
lattice. Nearest neighbor X ⊗ X or Z ⊗ Z measurements can
be implemented through patch fusion. Through some ancilla
padding, this allows the implementation of nearest neighbor
cnot gates and the preparation of long-range GHZ states on
contiguous regions of logical qubits.
The LNN is a simple architecture featuring several data

qubits in a line. We allow arbitrary single-qubit gates and
arbitrary two-qubit gates on nearest neighbors along the line.
A slightly more complex model is a “Linear GHZ Bus Ar-
chitecture,” where a line of qubits is connected to a parallel
line of ancilla qubits [see Fig. 1(a)]. The ancilla qubits are
reserved exclusively for the preparation of GHZ states. Once
prepared, a GHZ state can be “injected” into the data qubits
to implement long-range operations using circuits shown in
Fig. 1(c) and (d). A surface code quantum computer also
permits a 2-D “square lattice architecture” where data qubits
are in a grid and two-qubit gates are possible on nearest
neighbors (cf. [7]). Just like the linear GHZ bus, such a
square lattice architecture may also be equipped with chains
of ancilla qubits dedicated to GHZ state preparation. The
“dual snake architecture,” depicted in Fig. 1(b), adds two
such intertwining chains of ancilla qubits, whichmay be used
for the simultaneous preparation and injection of GHZ states.
In comparing the performance of these architectures, we

measure cost as the minimum depth of the worst possible
Clifford gate. In architectures with GHZ buses, we count
the number of GHZ injections: implementation of a long-
range gate through circuits in Fig. 1(c) and (d). Otherwise,
we consider cnot depth.We consider single-qubit gates free,
due to their simple implementation as patch rotations.

B. PRIOR WORK
We briefly compare our approach to some other works. First,
Devulapalli et al. [8] consider a broader family of connectiv-
ity graphs than LNN, but instead of GHZ states only focus on
Bell state-enabled long-range swaps, and their impact on im-
plementing permutation circuits. Our interest in LNN specifi-
cally is that it serves as a stepping stone toward square-lattice
architectures that likely capture surface code constructions’
capabilities on superconducting hardware.While the study of
permutation circuits is a natural approach for quantifying the
power of ancilla-enabled long-range gates, we find Clifford
circuits enable a richer family of optimizations.
Second, Beverland et al. [7] investigate the performance

of a square lattice architecture in which each data qubit is
padded with three additional ancilla qubits for routing, lead-
ing to the total qubit footprint of 4n+ o(n) for a program
with n data qubits. In comparison, our dual snake archi-
tecture merely adds one ancilla per data qubit, with a total
qubit footprint of 2n+ o(n). Is the dual snake architecture
slower for implementing Clifford gates than a layout with
more ancillae? A theoretical analysis of the performance of
the parallel cnot routing considered by Beverland et al. [7]
yields thatO(n1.5) layers suffice: n cnot layers suffice to im-
plement a Clifford gate, and each layer requires�(

√
n) oper-

ations. This bound is much looser than the 2n+ 1 synthesis
bound [11] with just a single entanglement bus, as well as
the one we derive for our dual snake scheme, which achieves
� 3
2n� + O(

√
n), despite both needing fewer ancillae.We note

that our dual snake architecture has GHZ buses that cross
each other. This is permitted since Beverland et al. [7] show
that two Bell states can still be prepared simultaneously in
such a layout.
Third, Devulapalli et al. [8] consider implementing per-

mutations of qubits using long-range swaps facilitated by
long-range Bell state preparation. This work differs in many
regards. We are interested in the capabilities of multiqubit in-
teractions facilitated by GHZ state injections rather than two-
qubit swaps. Also, they attempt to attain asymptotic speedups
over routing based on nearest neighbor swaps, whereas we
focus on the leading coefficient. This is because we consider
worst case Clifford synthesis, which is already known to re-
quire�(n) depth in any of themodels we consider, while they
consider permutations specifically. Indeed, they prove an
O(

√
n log n) upper bound on the ratio between swap-based

and teleportation-based routing for general graphs, but for
lattices this ratio must be �(1). This is consistent with our
findings for general Clifford gates. Certainly, the O(n1−α )-
depth protocol for implementing the πrainbow permutation
they consider can be implemented directly on the linear GHZ
bus and cannot be improved in our larger gate set since the
bipartite entanglement across a GHZ state is the same as that
of a Bell state.
Fourth, we note that the architecture admits a “clique flip”

operation [defined in Fig. 5(a)], which is equivalent to ap-
plying CZ on all pairs of the k qubits it acts on. The name
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FIGURE 5. (a) “Clique flip” operation is a particular Pauli rotation with
local corrections and can be shown to implement CZ on all pairs of the
involved qubits. This operation is also considered by Maslov and
Nam [10] and van de Wetering [11]. (b) XCX gates have an analog of the
clique flip operation. (c) Clifford circuit is equivalent to -CZ-CX-XCX- up
to some local gates. (d) CX circuit is synthesized using Proposition 6 with
the controls on qubits with descending labels, and the -XCX- circuit can
be built into an upward-facing triangle using Proposition 2. We do not
care about the CZ synthesis since in (e) we use the method from
Proposition 7 to absorb the CZ circuit into the downward-facing part of
the CX circuit. Since XCX clique flips commute with CNOT fan-out targets,
we commute them through and stack on top of the CNOTs in the odd
layers.

of this operation is motivated by CZ circuit synthesis: CZ
circuits are equivalent to graphs, and the clique flip operation
lets us toggle all the edges of the graph within a clique of
our choosing. This operation appeared in [10] and [11] as
a special case of the global Molmer–Sorensen (GMS) gate.
Since clique flip operations are local-Clifford-equivalent to
Pauli rotations exp(iπ4 P), we find that the constructions from
this line of work already capture some, but not all, of the
power of themodel we consider. Indeed, other than the clique
flip operation, GMS gates and GHZ injections seem to have
rather different capabilities and resource requirements. On
the one hand, recent work [12] shows that general GMS gates
can implement Clifford gates in constant depth. On the other
hand, GMS gates are inspired by Hamiltonian evolution on
hardware with all-to-all connectivity (like ion trap quantum
computers). Our GHZ bus model is more inspired by the
limited connectivity of superconducting quantum computers
running surface codes. While GHZ state injection can im-
plement clique flips, a special case of the GMS gate, it is not
clear how to use GHZ injection to implement general GMS
gates. Similarly, while a unitary circuit with two Clique flips
suffices to implement fan-out, it is unclear how to perform
CNOT fan-out with just one clique flip.
Fifth, it is a well-known result in the theory of

measurement-based quantum computation that Clifford
gates can be implemented in constant depth on photonic
hardware [15]. This is achieved by rendering the Clifford cir-
cuit into a sequence of gate teleportations, causing the over-
all width of the circuit to scale with the circuit complexity

instead. We are interested in superconducting architectures
where the width of the circuit is fixed.
Finally, we briefly discuss the feasibility of implementing

this model in current-generation IBM hardware. Broadly,
the hardware seems to have the necessary capabilities: mid-
circuit measurement and feedforward correction via dynamic
circuits, as well as connectivity that enables a limited ver-
sion of the linear GHZ bus model. The GHZ injection cir-
cuits present the opportunity for significant savings in circuit
depth, which may be useful when coherence time is a limi-
tation. However, the mid-circuit measurements they require
also introduce a lot of new noise, and qubits reserved for
GHZ states cannot store data. Under what circumstances are
these sacrifices worth the improvement in depth?

III. DEPTH-OPTIMIZED CLIFFORD SYNTHESIS USING
GHZ STATES
First, recall that up to a layer of single-qubit Pauli gates,
the group of Clifford operations on n qubits is isomorphic
to the 2n× 2n binary symplectic group Sp(2n,F2). The task
of synthesizing Clifford operations using a restricted set of
gates is represented by the diagonalization of a binary sym-
plectic matrix using operations corresponding to the gate
set. For example, when we have only two-qubit entangling
gates {CX,CZ}, Clifford operations can be decomposed into
a layered computation in the form -L-CX-CZ-H-CZ-L- [2],
[19], where -L- denotes a layer of single-qubit Clifford gates,
-CX- and -CZ- denotes layers of circuits consisting entirely
of CX and CZ gates, and -H- denotes a layer of Hadamard
gates applied to all qubits.
Some Clifford operations can be synthesized with GHZ

state injections with simpler circuits. For example, both fan-
out gates and clique flip operations can be implemented
using only one GHZ state injection, while they require a
circuit of depth �(n) in LNN when only two-qubit gates
are available. In general, Pllaha et al. [5] gave an algorithm
that, with some exceptions, decomposes a Clifford operation
into a minimal number of Pauli rotations exp(iπ4 P). Their
decomposition achieves a depth of ≤ 2n+ 1 that can be im-
plemented naturally within our GHZ bus model. However, it
is not often easy to obtain this decomposition since a sub-
routine it relies on—the triangularization of binary matrices
by congruence—fails in some exceptional cases [20]. Fur-
thermore, while Botha [20] does not give an explicit algo-
rithm for obtaining these decompositions, we found that an
algorithm based on their work requires O(n4) time. Finally,
though the decomposition by Pllaha et al. [5] is guaranteed
to use the minimal number of global operations, it does not
leverage our models’ additional powers, such as the ability
to parallelize multiple GHZ state injections.
In the rest of this section, we will present constructive

propositions for synthesizing various Clifford circuits, such
as CZ circuits, CX circuits, and Hadamard-free circuits using
GHZ state injections. Together, they lead to the two main
results: first, in the linear GHZ bus model shown in Fig. 1(a),
we show that any Clifford operation can be decomposed
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into a circuit with at most 2n+ 1 GHZ state injection layers
using O(n3) classical computation time. Second, we show
that square lattice connectivity supporting the dual snake
architecture in Fig. 1(b) can do so in depth≤ � 3

2n� + O(
√
n).

In addition, since graph states can be prepared using a CZ
circuit, our constructions can also be extended to graph state
synthesis. Unless otherwise specified, wewill often use depth
to refer to a circuit’s GHZ state injection depth, that is, the
number of parallel GHZ state injection stages.

A. -CZ- TRANSFORMATIONS AND GRAPH STATE
SYNTHESIS
We first establish some results on synthesizing -CZ- layers.
The central idea underpinning these methods is that -CZ-
layers are equivalent to graphs since cz gates are symmetric,
self-inverse, and mutually commuting. A particularly conve-
nient k-qubit gate formanipulating these graphs is the “clique
flip” operation defined in Fig. 5(a), which implements a CZ
gate on all pairs of qubits involved.
We represent an n-qubit CZ transformation as a graph

G(V,E ), where each vertex in V corresponds to a qubit, and
each edge (v1, v2) ∈ E indicates a CZ gate between qubits
v1 and v2. Since all CZ gates commute and are self-inverse,
concatenating two CZ transformations G1(V,E1),G2(V,E2)
gives a new CZ transformation G3(V,E3), where E3 is the
symmetric difference of E1 and E2. With a slight abuse of
notation, let us also denote G as the adjacency matrix.
Then, G3 = G1 ⊕ G2. We assume without loss of generality
(WLOG) that all CZ transformations share a common set of
vertices. Note that in this representation, the application of
a clique flip corresponds to the concatenation of a complete
graph on a subset of vertices; in other words, it “flips” all the
edges corresponding to a clique, hence the name.
By relating -CZ- circuits to graphs and their adjacency

matrices, we can arrive at the following bound.
Proposition 1: Let G(V,E ) represent an n-qubit CZ cir-

cuit, and let t(G) be the minimum number of clique flips
required to implement G. Then, minrank2(G) ≤ t(G) ≤
minrank2(G) + 1, where

minrank2(G) = min{rankF2 (D⊕ G)|D ∈ diag({0, 1}n)}.
Proof: If t(G) = 1, then G contains exactly one clique,

and minrank(G) = t(G) = 1. In particular, the minrank is
achieved by choosing D = I.
First, let us show minrank(G) ≤ t(G). Suppose t(G) = m

for some m > 1, G = K1 ⊕ . . . ⊕ Km where t(Ki) = 1 for
each i ∈ [m]. Since minrank is subadditive, minrank2(G) =
minrank2(

⊕m
i=1 Ki) ≤ ∑m

i=1 minrank2(Ki) = t(G).
Then, we’ll show t(G) ≤ minrank(G) + 1. Suppose

minrank2(G) = r; then, there exists G∗ = D∗ ⊕ G where
rankF2 (G

∗) = r. Since G∗ is symmetric, we can use
Lempel’s factorization [21] to find an n× r′ dimensional
factor F such that G∗ = FFT , where r′ = r + 1 if G∗ = G
and r′ = r otherwise. Let fi be the ith column of F , we can
rewrite G∗ = ⊕r′

i=1 fi f
T
i . Note fi f

T
i = diag( fi) ⊕ Ki, where

FIGURE 6. Synthesis of CZ circuits using the clique flip operation defined
in Fig. 5(a). (a) Synthesis of a CZ circuit using ≤ n − 1 clique flips from
Proposition 2, also shown by van de Wetering [11]. (b) Illustration of the
optimization from Proposition 3 with two examples of -CZ- layers given
by the graphs in the figure. While each CZ layer individually can be
synthesized using ≤ n − 1 clique flips following Proposition 2, two such
circuits can be slotted together to optimize depth.

Ki is a complete graph on vertices { j|Fi j = 1}. Therefore,
t(G) = t(K1 ⊕ · · · ⊕ Kr′ ) ≤ minrank2(G) + 1. �

We can show stronger bounds when considering specific
classes of CZ circuits. One example application of Proposi-
tion 1 is on CZ circuits represented by random graphs. We
can consider Erdős–Rényi random graphs G(n, 1/2), where
each edge appears with probability 1/2. We know that for
any g ∈ G(n, 1/2), minrank(g) > n− √

2n almost always as
n → ∞ [22]. It also follows that the number of clique flips
needed for a graph sampled randomly from G(n, 1/2) is al-
most always about n once n is large enough. That is, for any
ε, δ > 0, there exists an n∗ s.t. for all n ≥ n∗, t(g) ≥ (1 − ε)n
with probability 1 − δ for randomly sampled g ∈ G(n, 1/2).

Similar to the drawbacks of [5], computation and depth
optimization of the circuit becomes a nontrivial task even
though the algorithm guarantees the optimal number of
clique flips needed. Hence, we will also survey a simpler
method by van de Wetering [11], which works by disentan-
gling qubits one by one, as illustrated in Fig. 6(a).
Proposition 2 (See [11]): Any CZ transformation can be

implemented as a circuit using at most n− 1 GHZ state in-
jections.
Proof: To synthesize G(V,E ), we can find G1, . . .,Gm

s.t. G1 ⊕ · · · ⊕ Gm = G, where each Gi consists of a clique
implementable using one clique flip via a GHZ state injec-
tion. There is a simple algorithm to find these cliques. For
each i ∈ [n], let Si = [

⊕i−1
j=1Gj] ⊕ G be the graph left over

after applying all Gj up to i− 1, and set Gi to be the com-
plete graph on NSi (vi) ∪ {vi},2 that is, a clique on vi and its
neighbors in Si. Notice that vi becomes an isolated vertex in
Si+1 = Gi ⊕ Si since the concatenation of Gi will cancel out
any edges from vi in Si. It follows that Sn = [

⊕n−1
i=1 Gi] ⊕ G

have only isolated vertices; hence,G = G1 ⊕ · · · ⊕ Gn−1, as
desired. �

van de Wetering et al.’s [11] construction illustrates a
key optimization opportunity: “stacking.” We observe that as

2NG(v) refers to the v’s neighbors in G, i.e., NG(V,E )(v) := {u|u ∈
V, (u, v) ∈ E}.
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each clique flip disentangles a qubit, successive clique flips
contain more isolated vertices, giving ample opportunities
for parallelization. If we pick particular orders to disentangle
the qubits, we can arrange the circuit in various “staircases.”
Using this idea, we arrive at the following constructions for
parallelized circuits implementing -CZ- layers.
Proposition 3: -CZ-L-CZ- can be implemented as a cir-

cuit using 2n− 2 clique flips, implementable in GHZ-state-
injection depth n+ 1 using a linear GHZ bus.
Proof: First, let the vertices be ordered from 1,... to n. For

the first CZ transformation, pick G1 = G1
1 ⊕ · · · ⊕ G1

n−1 as
in Proposition 2 where G1

i accounts for the CZ gates related
to vi. Then, v1, . . ., vi−1 are isolated vertices inG1

i ; hence, the
corresponding clique flip does not act on qubits 1, . . ., i− 1.
This will be our first staircase.
For the second CZ transformation, let us fix the vertices

in reverse: pick G2 = G2
1 ⊕ · · · ⊕ G2

n−1, where G
2
i accounts

for the CZ gates related to vn−i+1. Here, the clique flip cor-
responding to G2

i only acts on v1, . . ., vn−i. This will be our
second upside-down staircase.
It follows that for i = 3, . . ., n− 2, G1

i and G
2
n−i+1 can be

implemented in parallel, giving us a total depth of n− 3 +
4 = n+ 1. �

Finally, we give a construction that exploits the power of
the dual snake model to implement two clique flips simulta-
neously even if their supports overlap, provided that they act
on disjoint sets of qubits. This capability synthesizes a CZ
transformation using GHZ-state-injection depth �n/2� + 1.
Proposition 4: Any CZ transformation can be imple-

mented as a circuit with GHZ-state-injection depth �n/2� +
1 in an architecture with two parallel GHZ buses, such as the
dual snake architecture.
Proof: Let us find a bipartition of the vertices V = Vl �

Vr, where Vl = {v1, . . ., v�n/2�} and Vr = {v�n/2�+1, . . ., vn}.
This bipartition defines a cut on G.
We will first address the CZ gates that cross the cut. For

i = 1, . . ., �n/2�, let Si = [
⊕i−1

j=1G
c
i ] ⊕ G and let Ci be the

edges that cross the cut in Si, where Gci is constructed as

1) two cliques, one on V l
i = NCi (vi) ∪ {vi}, and one on

Vr
i = NCi (vn−i+1) ∪ {vn−i+1}, if (vi, vn−i+1) /∈ Ci;

2) one clique on vertices Vi = V l
i ∪Vr

i , if (vi, vn−i+1) ∈
Ci.

In either cases, we observe that: 1) Ci+1 does not con-
tain any edges that have endpoints vi, vn−i+1 and 2) vertices
v1, . . ., vi and vn − i+ 1, . . .vn are isolated in Gci+1. As a
result of 1), C�n/2�+1 is empty; it remains to deal with the
edges contained inVl andVr. Given 2), we can implement the
clique flips for the two disconnected subgraphs in parallel us-
ing the staircases given in Proposition 3. The parallelization
increases the depth by at most 1. �
The main idea for Proposition 3 is to disentangle qubits in

opposite orders so they can be “stacked” together, as illus-
trated in Fig. 6(b), and the main idea for Proposition 4 is to
cut the graph in two halves, disentangle across the cut, and

FIGURE 7. Example of the synthesis algorithm from Proposition 4. The
algorithm first severs all edges between the groups Vl = {1, 2, 3, 4} and
Vr = {5, 6, 7, 8}. (a) Considering qubits 1 and 8 that are not connected
(case 1), we can eliminate the edges across the cut using two clique flips.
While these clique flips cannot be parallelized in a model with one GHZ
bus, they can be with two GHZ buses. (b) Considering qubits 2 and 7 that
are connected (case 2), we can eliminate the edges with one clique flip.
(c) Similarly, qubits 3 and 6 correspond to case 2. We have removed all
edges across the bipartition using �n/2� layers. (d) Finally, the two
remaining graphs on Vl and Vr can be synthesized using Proposition 2,
and due to the triangular structure of the circuits, this requires only one
additional layer.

deal with remaining edges in the two subgraphs in parallel,
as illustrated in Fig. 7. Proposition 4 will later play a central
role in our construction for general Clifford gates.
Aside from being useful for Clifford synthesis, the ability

to implement arbitrary -CZ- transformations is also closely
related to stabilizer state preparation. As shown in [23], all
stabilizer states are equivalent to graph states up to an -L-
layer, which are a -CZ- layer applied to |+〉⊗n. Thus, Proposi-
tion 4 shows that the dual snake architecture can also prepare
stabilizer states in depth �n/2� + 1.

B. -CX- TRANSFORMATIONS
Now, we turn our focus to -CX-, denoting an n-bit linear
reversible function. Let us represent -CX- as an invertible
binary matrix M, where each column of M corresponds to
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FIGURE 8. (a)–(d) Some identities for commuting a CZ gate through a
CNOT gate.

the output state of a qubit in terms of the inputs. Traditionally,
we find a circuit for -CX- by diagonalizing M with column
operations (corresponding to cnot gates) [1], which has the
best-known depth of 5n in LNN [1] and n+ o(n) in all-to-
all [4].3 With a GHZ bus, we unlock additional abilities to
perform up to n row operations simultaneously using fan-out
and fan-in gates,4 which are implementable using one GHZ
state.
Proposition 5: Up to a relabeling of qubits, any linear re-

versible function can be implemented using n fan-outs using
a linear GHZ bus.
Proof: For i ∈ [n], let ci be the ith column of M and let

σi be the index of the first nonzero element of ci. With one
fan-out, we can add ci (modulo 2) to all columns c j, i �= j,
where c j[σi] is nonzero. This reduces M to the permutation
matrix given by [n] �→ {σ1, . . ., σn}. �
Proposition 6: Any linear reversible function can be im-

plemented as a circuit with GHZ-state-injection depth 2n− 1
using a linear GHZ bus.
Proof: To ensure the previous algorithm reduced M to a

trivial permutation matrix, we need to ensure σi = i for each
i. This requires up to one long-range cnot per fan-out: if
σi = i, we are already done; otherwise, we can find c j, where
σ j = i, and add c j to ci using one long-range cnot. Such c j
always exists for some j ≥ i; otherwise, M cannot be full
rank.
We notice that after performing n− 1 fan-outs controlled

by qubits 1, . . ., n− 1, the last column must have n = σn.
Therefore, no additional cnot is needed for the last fan-out,
giving us the depth of 2n− 1 as desired. �

C. HADAMARD-FREE CLIFFORD TRANSFORMATIONS
Recall that in LNN, a -CZ- layer immediately adjacent to
a -CX- layer can be implemented at no additional cost [3].
This fact also holds in the new model: we give a method for
absorbing the -CZ- layer into the -CX- layer. The method
below relies on circuit identities relating CZ and CX shown
in Fig. 8. For additional clarity, we also give an example of
the procedure in Fig. 9.
Proposition 7: Up to a permutation, any Hadamard-free

Clifford transformation can be implemented as a circuit with
n fan-outs using a linear GHZ bus.
Proof: We begin with the fact that a Hadamard-free

Clifford transformation can be computed as a three-stage
computation, -L-CX-CZ-. Let -CX- be written as n fan-outs

3The asymptotic optimal depth is O( n
log n ) [24]. We do not consider it

here due to its impractically large constant overhead.
4A fan-in is equivalent to fan-out up conjugation by a layer of Hadamard

gates.

FIGURE 9. Example of the optimization performed in Proposition 7,
which absorbs a CZ circuit into a sequence of CNOT fan-outs. (a) We
leverage the identity in Fig. 8(b) to absorb some gates from CZ1 into
some S gates acting on T ⊂ [n], resulting in CZ ′

1. (b) Gates in CZ ′
1

touching the control qubit of the fan-out are extracted into CZ ′
2, with CZ2

left over. (c) CZ ′
2 is absorbed into the fan-out by either removing some S

gates or adding additional targets conjugated by H (resulting in T ′ ⊂ [n]).
(d) After commuting, the CZ circuit does not touch the target of the
fan-out anymore.

as in Proposition 5. First, as illustrated in Fig. 9, we can
commute a layer of CZ gates through fan-out gates while
reducing the width of the -CZ- layer. Given -CZ- circuitCZ1
on qubits 1, . . ., n, and a fan-out gate F with control k and
targets TF ⊂ [n] − {k}, we will describe in three steps how
this commutation is achieved.

1) Commute CZ1 through F using well-known circuit
identities given in Fig. 8. We have F ·CZ1 = CZ′

1 ·
ST · F · ST∪n, where ST denotes a layer of single-qubit
phase gates on qubits in T .

2) Partition CZ′
1 = CZ2 �CZ′

2, where CZ2 =
{CZ(i, j)|CZ(i, j) ∈ CZ′

1, i, j �= n}, and CZ′
2 =

CZ′
1 −CZ2. That is, CZ′

2 consists of all CZ gates
on qubit n and CZ2 consists of all other CZ gates.

3) There are two cases for gates CZ(i, n) ∈ CZ′
2.

a) i ∈ T: In this case, there exists CX(n, i) ∈ F ; the CZ
gate can be implemented using phase gates;

b) i /∈ T: Rewrite CZ (i, n) as Hi CX(n, i)Hi; CX(n, i)
can be merged with F and implemented with no ad-
ditional cost. We obtain a new fan-out gate F ′ = F ∪ {
CX(i, n)}, which is controlled by qubit n (same as F)
with targets T ′ = T ∪ {i}.

It follows that F ·CZ1 = CZ2 · F ′, where CZ2 does not
contain any CZ gates that act on the control of F , and F ′ is a
fan-out gate with the same control as F and (possibly) more
targets, up to conjugation by single-qubit phase gates and
Hadamard gates. F and F ′ can both be implemented using
one GHZ state injection, up to some irrelevant single-qubit
gates.
We can repeatedly commute the CZ circuit to obtain

CZ2, . . .,CZn. Since the n fan-out gates given by Proposi-
tion 5 have distinct controls, each time we pass by a fan-out
layer, the width of the CZ circuit decreases by 1. Hence,
CZn = I; we have implemented -CZ- inside -CX- with no
additional cost, as desired. �
A simple corollary follows that a Hadamard-free operation

can be implemented in depth 2n− 1, since we can still easily
commute CZ gates through the additional cnot layers. Fur-
thermore, we also notice that if CZ1 does not act on qubits
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Qn = {i1, . . ., im}, and k /∈ Qn, where k is the control of F ,
then CZ2 does not act on Qn, and F ′ does not add additional
targets to qubits inQn. For all intents and purposes, the com-
mutation rule given above leaves gates on Qn unchanged.

Given this observation, in fact, a second -CZ- layer can
also be implemented at no additional cost when implement-
ing a -CX- circuit exactly using a GHZ bus. We will show
this construction in the next subsection.

D. CLIFFORD TRANSFORMATIONS
Putting everything together, we arrive at the main result for
the linear GHZ bus model. An example of this algorithm is
given in Fig. 5.
Corollary 1: Any Clifford transformation can be imple-

mented as a circuit with GHZ-state-injection depth 2n+ 1
using a linear GHZ bus.
Proof: Let us first consider an alternative decomposition

of Clifford operations, -L-CZ-CX-XCX-L-, where -XCX-
denotes a layer of X-controlled-not-gates: XCX := H⊗2 ·
CZ · H⊗2. We can obtain this decomposition by commuting
the full layer of Hadamard gates through the second -CZ-
layer in the scheme given by Bravyi and Maslov [19].
First, we can synthesize the -CX- layer using Proposi-

tion 6, where odd layers 2i− 1 contain one cnot gate on
qubits i, j, where j > i, and even layers 2i contain a fan-out
controlled by qubit i. From the left, we can push in a -CZ-
circuit using techniques described in Proposition 7. From the
right, we can first decompose the -XCX- circuit as an upside-
down staircase using techniques described in Proposition 3,
and commute them to stack on top of the cnots in the odd
layers. This is always possible since XCX gates commute
with the target of a cnot gate, and the controls of the fan-outs
are in descending order. Overall, the depth is increased by
2. �

We also present a similar result in the dual snake model.
Corollary 2: Any Clifford transformation can be imple-

mented as a circuit with GHZ-state-injection depth � 3
2�n+

O(
√
n) in a square-lattice architecture supporting the dual

snake layout.
Proof: It is sufficient to be able to implement a Hadamard-

free transformation and a CZ transformation [19]. Up to a
permutation, aHadamard-free Clifford transformation can be
implemented in depth n by Proposition 7, and a -CZ- circuit
can be implemented in depth � 1

2�n+ O(1) by Proposition 4.
Finally, a permutation can be implemented in depth O(

√
n)

on a square lattice [25], where adjacent horizontal and verti-
cal swaps can be implemented efficiently by using the ancilla
qubits otherwise dedicated to the GHZ bus. �

APPENDIX
APPENDIX LOWER BOUNDS FOR CLIFFORD CIRCUITS
Here, we present some simple counting arguments.
Proposition 8: Any sequence of m many n-qubit Pauli

rotations that implements an arbitrary element of the Clifford
group will require m ≥ n.

Proof: Recall that log2 |Cn| ≥ 2n2 + n bits are required to
specify an element of the Clifford group [19]. Each Pauli
rotation on n qubits encodes 2n+ 1 bits, so at least (2n2 +
n)/(2n+ 1) = n are required. �

More generally, since we allow Pauli rotations, fan-out
gates following a GHZ state injection, as well as arbitrary
single-qubit Clifford gates, we need to be more careful when
deriving general lower bounds for our model.
Proposition 9: Any circuit consisting m layers of paral-

lelizable Pauli rotation and fan-out gates that implements
an arbitrary element of the Clifford group will require m ≥
0.648n− 2.
Proof: First, we observe that since the Pauli matrices are

normalized by the Clifford group, we can commute all single-
qubit Clifford gates to the beginning of the circuit. This may
alter the elements of the Pauli rotation or change the controls
and the targets of the fan-out gate to arbitrary Paulis (instead
of the Z- and X-targets). Let us call them conjugated fan-out
gates. In addition, since π/2 Pauli rotations are local, we
may ignore the sign of a Pauli rotation. WLOG, we can
consider a canonical form where circuits consist of one layer
of single-qubit Clifford gates followed by m layers of par-
allelizable Pauli rotations and conjugated fan-out gates, and
we are interested in finding a lower bound on m such that
any n-qubit Clifford operation requires at leastm such layers.
Similarly as above, we proceed by finding an upper bound
on the number of bits required to specify one such layer of
global gates. We will furthermore assume that all the gates
are conjugated fan-out gates since they require strictly more
information to specify compared to a Pauli rotation acting on
the same qubits.
Suppose that the layer of the global gate acts nontrivially

on k qubits. Then, there are 3k ways to specify the nonidentity
matrices and k − 1 locations where the string can be uniquely
split. It remains to specify a control qubit for each segment
of the chain, for which there are at most l choices for a seg-
ment containing l nonidentity elements. Overall, with s seg-
ments, there are l1 × · · · × ls choices where l1 + · · · + ls =
k, which is upper-bounded by 2

k
2 when s = k/2. The total

number of possibilities is at most

n∑
k=0

(
3k · 2k−1 · 2 k

2

)
=

(
6
√
2
)n+1 − 1

6
√
2 − 1

≤ 6
√
2

6
√
2 − 1

(
6
√
2
)n

.

(1)

Finally, there are 24n choices for the layer of single-qubit
gates. Since there are 22n

2+n Clifford operations, we will
require at least

m ≥ 2n2 + n− n log(24)

n log
(
6
√
2
)

− log
(

6
√
2

6
√
2−1

) ≥ 0.648n− 2. (2)

�
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