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ABSTRACT This article explores the performance of quantum communication systems in the presence
of noise and focuses on finding the optimal encoding for maximizing the classical communication rate,
approaching the classical capacity in some scenarios. Instead of theoretically bounding the ultimate capacity
of the channel, we adopt a signal processing perspective to estimate the achievable performance of a
physically available but otherwise unknown quantum channel. By employing a variational algorithm to
estimate the trace distance between quantum states, we numerically determine the optimal encoding protocol
for the amplitude damping and Pauli channels. Our simulations demonstrate the convergence and accuracy of
the method with a few iterations, confirming that optimal conditions for binary quantum communication
systems can be variationally determined with minimal computation. Furthermore, since the channel knowl-
edge is not required at the transmitter or at the receiver, these results can be employed in arbitrary quantum
communication systems, including satellite-based communication systems, a particularly relevant platform
for the quantum Internet.

INDEX TERMS Classical–quantum computing, classical communication, quantum channels, variational
algorithms.

I. INTRODUCTION
The ultimate form of quantum communication systems is the
vision of quantum Internet that offers a number of unique
quantum advantages, including security, efficiency, and en-
abling distributed quantum computing and sensing [1], [2],
[3]. A critical challenge in deploying the quantum Inter-
net lies in establishing reliable and long-range communi-
cation links between any two points on earth [4]. This im-
plies envisioning solutions that can overcome path loss in
quantum communication systems, the primary noise source
through telecom fibers and free-space medium [5], [6]. To
address this, the most promising approach involves lever-
aging the low channel losses offered by free-space optical
links to envision networks where satellites serve as inter-
mediate nodes, connecting distant locations seamlessly [4],
[7]. This approach requires us to focus on satellite-to-ground
and deep-space communication systems, schemes particu-
larly relevant for classical communications over quantum
channels. By addressing these facets, we can pave theway for
next-generation communication networks and the quantum
Internet.

The transmission of classical information through a quan-
tum channel offers unique advantages in free-space opti-
cal communication systems. The main reason lies in the
fundamental nature of the signal states and the devices
used to detect them, i.e., while classical optical commu-
nication systems are limited to detection schemes oper-
ating over the shot noise level and classical states of
an electromagnetic field, quantum communication systems
can employ fundamentally different states of light [8] and
more accurate detection schemes [9], [10]. In particular,
one can achieve a lower bit error rate compared with the
classical counterpart [9], [11] and operate under the shot
noise level (or standard quantum limit) [12], [13], [14],
having the potential application in communication scenar-
ios where the received signal is extremely weak, such
as satellite-to-ground, underwater, and deep-space commu-
nication. Regarding the first, a comparison of quantum
and classical detection for communication employing dif-
ferent modulations has recently been made for illustra-
tive system parameters for different satellites’ orbits [15].
Given the fundamentally different nature of quantum
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channels, employing them in a communication scenario
offers promising applications.
Evaluating a communication system’s performance can be

approached through two distinct perspectives: information
theory and signal processing. Information theory primarily
seeks to determine the maximum reliable transmission rate,
known as the channel’s capacity. However, calculating this
capacity often necessitates a comprehensive tomographic re-
construction of the underlying channel [16], which is often
impractical in real-world scenarios. Alternatively, one can
apply application-specific conditions to narrow the range
of possible channels, making it easier to analyze specific
properties [17], [18]. While this approach is computation-
ally more feasible, it only provides bounds for the capac-
ity of particular channels [19], [20]. We embrace a signal
processing perspective to circumvent these challenges, fo-
cusing on directly determining optimal signal states. This
framework’s main objective is the optimal discrimination
of quantum signal states [9], [10], [15]. This task is more
straightforward than the information-theoretic approach, as
it revolves around a quantum hypothesis testing scenario [21,
Sec. 2], where the goal is to minimize the probability of
error when determining the transmitted state at the receiver.
Consequently, from a signal processing standpoint, we aim
not to theoretically bind the channel’s ultimate capacity but
to assess its real-world performance.
We show that the performance of a binary quantum com-

munication system can be evaluated under the constraints of
noisy intermediate-scale quantum (NISQ) computers. It is
well known that the maximum probability of discriminat-
ing two input states correctly in a binary quantum testing
scenario is linearly related to the trace distance between the
output states [22, Ch. 9]. Besides the panoply of mathemat-
ical properties, the trace distance between arbitrary states
can be efficiently estimated using a variational trace distance
estimation (VTDE) algorithm [23]. As shown in [24] and
[25], variational algorithms fit in a hybrid quantum–classical
computation framework, a well-suited framework for the
NISQ era. Therefore, since hybrid algorithms can efficiently
estimate the trace norm, the performance of a binary quantum
modulator can be empirically assessed under the constraints
of today’s quantum computers.
Given the importance of classical communication over

quantum channels for next-generation connectivity, we con-
sider a general communication scenario in the presence of
noise whose description is unknown but stationary. We are
interested in finding binary signal states that render optimal
communication, i.e., that minimize the probability of error
in the discrimination of received states and possibly achieve
Holevo’s channel capacity. Based on the close relation be-
tween optimal detection and quantum state distinguishabil-
ity, we implemented the VTDE algorithm presented in [23]
to numerically find the optimal encoding for the amplitude
damping and Pauli channels. In particular, we show the
convergence of our method with a few iterations. Address-
ing this problem is of utmost importance, not only by the

significant challenge of designing optimal communication
schemes but also by fully unlocking the applications of free-
space communication systems such as the quantum Internet.
In short, the key technical contributions of this article can be
summarized as follows.

1) We develop a framework to identify the optimal signal
states of binary quantum communication systems by
estimating and maximizing the trace distance at the re-
ceiver’s end. In particular, we do not make any assump-
tion on the underlying channel, except that we restrict
our exploration to the binary case alone. This assump-
tion limits our results to quantum channels where the
binary signal states are optimal.

2) We demonstrate the efficacy of our framework by con-
sidering the amplitude damping and Pauli channels.
We evaluate two different ansatzes as the starting point
of optimization and compare the obtained performance
in terms of convergence speed and the quality of ob-
tained solutions.

3) We also demonstrate the convergence behavior of our
developed framework in terms of maximizing the trace
distance and Holevo information, achieving Holevo’s
capacity for Pauli channels.

The rest of this article is organized as follows. In
Section II, we provide preliminaries and set some notation. In
Section III, the problem of finding the optimal encoding for
maximizing the classical communication rate of noisy chan-
nels is presented. We present the signal processing frame-
work in Section IV, applying it to the amplitude damping and
Pauli channels in Section V. Finally, Section VI concludes
this article and provides possible future directions.

II. PRELIMINARIES
We employ the following notations throughout this article.
For a finite Hilbert spaceH, we denote by B(H) the algebra
of bounded linear operators acting on H, by B(HA,HB)
the space of linear operators taking HA to HB, and by
D(H) = {ρ ∈ B(H) ; ρ ≥ 0 and Tr ρ = 1} the set of quan-
tum states.1 Specifically, a pure state ψ is a state for which
we can associate a normalized vector |ψ〉 ∈ H, such that
ψ = |ψ〉〈ψ |. We use subscripts to identify different Hilbert
spaces that are unclear from the context, e.g., HA and HB

are the Hilbert spaces associated with systems A and B, re-
spectively. A positive operator-valued measure (POVM) is a
set of operators {� j} such that � j ≥ 0∀ j and ∑

j� j = I,
where I denotes the identity.

Any physical system of two levels ρ, known as qubit, can
be decomposed in the so-called Bloch representation

ρ = I + r · σ
2

(1)

where r = (x, y, z) ∈ R3 and σ = (σx, σy, σz) are the Bloch
andPauli vectors, respectively. In this representation, a Bloch

1The mathematical description of a physical system.
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vector is given by

r = Tr ρσ. (2)

Moreover, any qubit is mapped to a point in a sphere of radius
1, the Bloch sphere, with pure states (mixed) lying on its
surface (interior).
A quantum channel N : B(HA) → B(HB) is a linear,

completely positive, and trace-preserving map, where HA

and HB are the Hilbert spaces associated with the sys-
tems A and B. Moreover, every quantum channel admits a
Choi–Kraus decomposition

N (OA) =
d−1∑
l=0

VlOAV
†
l (3)

whereOA ∈ B(HA),Vl ∈ B(HA,HB), for all l ∈ {0, . . ., d −
1},∑d−1

l=0 V
†
l Vl = I, and d ≤ dim(HA)dim(HB). In what fol-

lows, we comment on the Pauli and amplitude damping
channel.
Pauli channels have the following Choi–Kraus

decomposition:

NP(ρ) =
∑
μ

pμσμρσμ (4)

in which {√pμσμ}3
μ=0 are the Kraus operators. Here, σ0 = I,

σk, k ∈ {x, y, z} are Pauli matrices, and pμ is a probability
distribution (i.e.,

∑
μ pμ = 1 such that pμ ≥ 0). Pauli chan-

nels can be seen as a mathematical generalization of the
bit flip and phase flip channels. By specifying pμ = (1 −
p, 0, 0, p) in (4), one finds the phase flip channel, i.e.,

NPF (ρ) = (1 − p)ρ + pσzρσz. (5)

The expression shows that the state remains unchanged with
probability (1 − p) and undergoes a sign inversionwith prob-
ability p.

Another useful parameterization for the Pauli channel is
choosing pμ to be the eigenvalues of the following d2 × d2

exponential correlation matrix [26], [27]:

�(γ ) = 1

d2
[
γ |i− j|]

0≤i, j≤d2−1 (6)

in ascending order. It is important to note that when γ = 0,
(6) gives a completely depolarizing channel characterized by
high noise levels. Conversely, γ = 1 yields an ideal noiseless
channel. In addition, as γ increases, the channel parame-
ters become increasingly ordered, resulting in channels with
reduced noise levels [26].
The Pauli channel, or dephasing channel, characterizes

the type of noise that can occur during the transmission of
quantum information. Importantly, it represents a distinctly
quantum process wherein informationwithin a quantum state
is lost without any energy dissipation [28]. Due to its particu-
larities, the Pauli channel is frequently employed to simulate
and understand errors in various quantum applications.
The amplitude damping channel describes the stochastic

degradation of quantum information resulting from energy

dissipation within quantum systems. This channel is a valu-
able tool for modeling scenarios involving open systems
where environmental interactions lead to energy dissipation.
A typical application of this channel is in modeling the spon-
taneous decay of an excited quantum state. In such phenom-
ena, a physical system in an excited state |1〉 decays to its
ground state |0〉 with some probability κ , i.e., after this pro-
cess, the system is more likely to be measured in the ground
state than before [22]. The Kraus operators A0 = √

κ|0〉〈1|
and A1 = |0〉〈0| + √

1 − κ|1〉〈1| of the amplitude damping
channel, defined in terms of κ , act on a qubit decreasing
the probabilities of being in an excited state—as explained
in [22].
Unitary evolutions are a special kind of quantum channel

for which one associates a groupGwith elements g. A unitary
evolution of an operator O ∈ B(H) is then expressed as

Ug(O) = UgOU
†
g (7)

where Ug satisfies UgU†
g = U†

gUg = I. Following the repre-
sentation (1), the unitary evolution of a qubit can be pictured
as a rotation of its associated Bloch vector. Since the group
of special unitaries SU(2) is associated with a 2-D Hilbert
space, one can represent its transformations as rotations in
R3. We define a rotation of angle θ along the axis e by Re(θ )
and express the rotated qubit by Re(θ )ρR

†
e (θ ). A rotation of

a system comprising more than one qubit will be denoted
by Uθ , where θ indicates that more than one parameter θ is
needed.
The trace norm of an operator O ∈ B(H) is defined as

‖O‖1 := Tr
√
O†O. This norm naturally induces a distance

measure ‖O− O′‖1, called the trace distance. The normal-
ized trace distance between two states ρ0 and ρ1 is denoted
by

D(ρ0, ρ1) := 1

2
‖ρ0 − ρ1‖1. (8)

For a pair of qubits, ρ0 and ρ1, the above equation equals
the Euclidean distance between their corresponding Bloch
vectors, i.e.,

D(ρ0, ρ1) = ‖r0 − r1‖2 (9)

where r0 = (x0, y0, z0) and r1 = (x1, y1, z1) are the Bloch
vectors of the states ρ0 and ρ1, respectively. This gives
us a straightforward geometric interpretation of the trace
distance, which we will use to find our analytical results.

III. PROBLEM STATEMENT: QUANTUM
COMMUNICATION SYSTEMS WITH NOISE
This section presents the formalism of two-state minimum
error discrimination and its relation to the trace distance. The
reader is referred to [21] for a detailed treatment.

A. SYSTEM MODEL: BINARY COMMUNICATION OVER
QUANTUM CHANNELS
In a binary quantum communication system, a classical
source emits a symbol x drawn from the alphabet {0, 1} with
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probabilities q0 and q1 = 1 − q0. Based on the emitted sym-
bol, the transmitter (Alice) prepares and sends a quantum
state ψx through a quantum channel. On the other side of
the communication line, the receiver (Bob) performs a set
of measurements to guess the received state and the original
symbol. While for the ideal channel, the transmitted states
are received at the receiver end without any noise, for general
channels N , the received states are noisy and, therefore,
described by a set of density operators {ρ0, ρ1}, in which
ρx = N (ψx).

B. QUANTUM BINARY DETECTION THEORY
According to quantum detection theory [29], [30], the detec-
tion system used by Bob for choosing among the possible
states {ρ0, ρ1} is characterized by a POVM {�0,�1}. The
probability that the detection device outputs the symbol x,
provided that the received quantum state is ρy, is given by

p(x|y) = Tr
(
�xρy

)
, x, y ∈ {0, 1} . (10)

In particular, for an equiprobable binary communication
system, the probability of correct detection is

pc = 1

2
[p(0|0) + p(1|1)] = 1

2
[Tr�0ρ0 + Tr�1ρ1]. (11)

The optimization of the detection system reduces to finding
the POVM elements �0 and �1 that maximize (11). The
optimal probability of correct detection is [22, Sec. 9.3]

Pc = max
�0,�1

pc (12)

= 1

2
[1 + D(ρ0, ρ1)]. (13)

The latter expression shows the operational meaning of the
trace distance. The probability of correct decision is one
when ρ0 and ρ1 are orthogonal, i.e., maximally distinguish-
able D(ρ0, ρ1) = 1.

Our main goal is to devise analytical and numerical means
for finding the set of optimal input states {ψ0, ψ1} that, after
being transmitted through a quantum channelN , maximizes
D(ρ0, ρ1) and therefore (13). Formally, we are seeking for

Y∗ = arg max
ψ0,ψ1

D(ρ0, ρ1) (14)

in which ρx = N (ψx). As we are constrained to an equiprob-
able distribution, these two states generally do not attain the
Holevo capacity. Nevertheless, as outlined in [31], a collec-
tion of two states is sufficient to attain Holevo’s capacity for
the Pauli channel—one of the channels we will analyze.

IV. MAXIMIZATION OF STATE DISTINGUISHABILITY
This section explores the analytical and numerical means
for finding the maximally distinguishable pair of states for
amplitude damping and Pauli channels.

A. ANALYTICAL SOLUTION
The normalized trace distance between the output qubits
{ρ0, ρ1} has a geometrical interpretation in terms of the input

states in the following way:

D(ρ0, ρ1) =
√∑

k

α2k [(r0 − r1) · ek]2 (15)

where αk = 1
2TrN (σk )σk and α0 = 1 are the eigenvalues of

the channel N , and r0 − r1 is the Pauli vector of ψ0 − ψ1
found by (2). Furthermore, αk ∈ R since the Pauli matrix σk
is Hermitian. Therefore, all terms in the above expression are
positive.
The maximally distinguishable pairs of states are orthog-

onal and have their Pauli vector components aligned toward
the greatest α2k . The orthogonality r0 = −r1 of any pair of
maximally distinguishable states follows from maximizing
the second factor in (15), i.e., themaximal of (15) only occurs
for orthogonal states. Moreover, these states are associated
with a direction in R3, for which the corresponding Pauli
vectors are aligned. Specifically, these vectors lie along the
direction ek∗ , where k∗ is such that α2k∗ = maxk{α2k }. This
condition defines three cases based on the relations between
coefficients αk.

1) If all the coefficients are equal, any orthogonal pair of
states is maximally distinguishable. That is, if αx =
αy = αz, then α2k∗ = {α2x , α2y , α2z } and ek∗ can be any
linear combination of ex, ey, and ez.

2) If two coefficients are equal and greater than the third
one, then any pair of orthogonal states, with vectors
lying on a plane defined by the greater coefficients, is
maximally distinguishable. That is, if αk = αk′ > αk′′ ,
then α2k∗ = {α2k , α2k′ } and ek∗ can be any linear combi-
nation of ek and ek′ , where k, k′, k′′ ∈ {x, y, z};

3) If all the coefficients are different to each other, then the
pair of orthogonal states, with Pauli vectors aligned to
ek∗ , is maximally distinguishable. That is, if αx = αy =
αz, then ek∗ is uniquely defined by α2k∗ .

It is important to emphasize that these states are opti-
mal in the sense of (14)—as mentioned earlier, they do not
necessarily attain Holevo capacity.

B. VTDE ALGORITHM
Chen et al. [23] have introduced a variational quantum al-
gorithm for estimating the trace norm of a Hermitian oper-
ator H. Their method employs a classical optimization of
a parameterized quantum circuit and requires only single-
qubit measurements of an arbitrary ancillary pure state. Ful-
filling these criteria, their algorithm constitutes an efficient
algorithm for NISQ devices.
Let HS and HA denote the Hilbert spaces associated with

the ancillary qubit and the system of interest, respectively.
Specializing H as (ρ0 − ρ1)/2, where ρ0, ρ1 ∈ D(HA), they
showed

D(ρ0, ρ1) = max
θ

[Lθ (ρ0, ρ1)] (16)
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FIGURE 1. VTDE quantum algorithm [23]. A parameterized quantum
circuit estimates the loss function L

θ j , which is maximized on a classical
computer. Red (blue) indicates quantum (classical) operations, and
dashed boxes represent iteration counts for each part of the algorithm.

in which Lθ (ρ0, ρ1) := p(0|ρ̄0) − p(0|ρ̄1). In the latter
expression

ρ̄x = TrAUθ (ρx ⊗�0) ∈ D(HS) (17)

denotes the final state of the ancillary system and

p(0|ρ̄x) = Tr�0ρ̄x (18)

the probability distribution of obtaining the value zero by
measuring ρ̄x. This enables them to estimate the trace dis-
tance by optimizing over parameterized unitary maps Uθ .
Moreover, by adopting a hardware-efficient ansatz [32], [33],
they could reduce the set of unitaries to a combination of pa-
rameterized single-qubit rotations, along with cnot gates on
adjacent qubits as entanglement gates. For our case, in which
ρ0 and ρ1 are qubits, the global unitaryUθ corresponding to
Uθ is depicted in Fig. 1 —Uθ is defined in terms of single-
qubit rotationsRy(θ ) andRz(θ ), each controlled by a classical
parameter θ . At the jth iteration, θ j = θ j−1 +�θ j−1, where
θ0 is generated randomly and �θ j−1 is a small increment
obtained using the constrained optimization by linear ap-
proximation (COBYLA) minimization algorithm.
In practice, they compute an approximation of D(ρ0, ρ1)

whose deviation from the exact value decreases as the num-
ber of experimental runs N increases. This follows from the
fact that, in practice, we can only compute the frequency of
successful outcomes corresponding to (18) and not its exact
value. However, due to the law of large numbers, we know
that this approximation is sufficiently accurate for many ex-
perimental runs, and so is the corresponding approximation
of D(ρ0, ρ1). In our analysis, N defines an empirical estima-
tion D̂N (ρ0, ρ1) of the exact value of D(ρ0, ρ1) that arbitrar-
ily approximates the second as N increases, i.e.,

lim
N→∞

D̂N (ρ0, ρ1) = D(ρ0, ρ1). (19)

FIGURE 2. Variational quantum algorithm designed to optimize signal
states. In Alice’s lab, the binary alphabet {0,1} is encoded into estimated
quantum states {ψ̂i

0, ψ̂
i
1} using a parameterized circuit U

φi before
transmitting them through the quantum channel N . In Bob’s lab, the
VTDE algorithm estimates the received signal pair’s distance D̂N

φi (ρ̂
i
0, ρ̂

i
1).

This assessment is then maximized on a classical computer in Alice’s lab,
updating the state preparation circuit with φi . Red (blue) indicates
quantum (classical) operations, and the dashed box represents iteration
counts.

C. VARIATIONAL OPTIMAL SIGNAL STATE ESTIMATION
ALGORITHM
Our algorithm employs the above VTDE algorithm as an
intermediate step to determine the optimal signal states of
a given channel. Parameterizing the input states in terms of
unitary maps Uφx and using the VTDE algorithm to estimate
the trace distance between two output states, (14) becomes

Ŷ∗ = argmax
φ

D̂Nφ (ρ0, ρ1) (20)

in which ρx = N [Uφx (|0〉〈0|)] and Ŷ∗ ∼= Y∗. The parameter
φ = (φ0,φ1) parameterized the global unitary map Uφ =
Uφ0 ⊗ Uφ1 . This allowed us to determine the optimal pair of
signal states employing a parameterized state preparation cir-
cuit, the VTDE algorithm [23], and a classical maximization
routine, as depicted in Fig. 2.

Our algorithm accuracy is associated with the number of
experimental runs N and the number of M iterations. While
the former regards the number of measurements required to
build up the statistics of each probability distribution in the
VTDE algorithm, as explained before, the latter represents
the number of updates on the parameter φ of our classical
optimizer (cf. Fig. 2). Similar to θ , φi = φi−1 +�φi−1 in the
ith iteration, where �φi−1 is a small increment found using
the COBYLA algorithm mentioned before.
The optimization problem defined in (20) is convex in the

asymptotic limit of infinitely many rounds, i.e., the objec-
tive function D̂N

φ
(ρ0, ρ1) is convex for any arbitrary ansatz

φ = (φ0,φ1) as N → ∞. This conclusion stems from the
strong convexity of the exact trace distance and (19). Essen-
tially, as D(ρ0, ρ1) is strongly convex concerning any pair
of states, and D̂∞(ρ0, ρ1) = D(ρ0, ρ1) according to (19), it
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FIGURE 3. In this polar representation, we visualize the convergence of
our estimations toward the maximally distinguishable pair for the
amplitude damping channel (κ = 0.9) using two distinct ansatz (top and
bottom). The radial and angular axes are represented as R̂i and β̂i ,
respectively (cf. Section IV-D). The blue (red) line illustrates the 1st, 5th,
10th, 15th, and 20th estimations based on 103 (106) experimental runs,
capturing the evolution of the estimations toward the maximally
distinguishable pair, marked in black. We also display estimations
obtained using the exact trace distance expression, displayed in green,
to provide a reference.

follows that D̂∞(ρ0, ρ1) also maintains strong convexity. In
addition, for every ansatz φ, we can correlate a pair of states
ρ0,1 = N [Uφ0,1 (|0〉〈0|)], implying that D̂∞

φ (ρ0, ρ1) remains
strongly convex concerning any arbitrary ansatz.
The algorithm can also be regarded as the initial calibra-

tion phase within a communication process, where optimal
signaling states (encoding) are selected over a sequence of
M iterations. In this context, it is crucial to assume station-
ary channels, which signifies channels whose Choi–Kraus
decomposition is constant over time.

D. REPRESENTATION OF OPTIMAL STATES
We chose the polar plane to show how our empirical estima-
tions predict the optimal ensemble. In this plane, a point cor-
responds to the ith estimation of the optimal ensemble using
a given estimation D̂N . More specifically, a point in Fig. 3
is defined in terms of the estimated Pauli vectors r̂i0 and r̂i1
in the following way: its coordinates β̂ i and R̂i are defined
by the relative angle between r̂i0 and r̂i1 and their relative
distance on the xy plane, i.e.,

β̂ i := arccos(r̂i0 · r̂i1) (21)

and

R̂i := 1

2

√
(x̂i1 − x̂i0)

2 + (ŷi1 − ŷi0)
2. (22)

Likewise, in Fig. 4, the radial distance is X̂ i := 1
2 |x̂i1 − x̂i0|.

FIGURE 4. In this polar representation, we visualize the convergence
of our estimations towards the maximally distinguishable pair for
the Pauli channel (γ = 0.9) using two distinct ansatz (top and bottom).
The radial and angular axes are represented as X̂ i and β̂i , respectively
(cf. Section IV-D). The blue (red) line illustrates the 1st, 5th, 10th, 15th,
and 20th estimations based on 103 (106) experimental runs, capturing the
evolution of the estimations toward the maximally distinguishable pair,
marked in black. We also display estimations obtained using the exact
trace distance expression, displayed in green, to provide a reference.

V. APPLICATION: OPTIMAL BINARY QUANTUM
COMMUNICATION SYSTEMS
In this section, we assume a binary quantum communication
system as presented in Section III and find the optimal signal
ensembles for the amplitude damping and Pauli channels,
described in Section II using the variational algorithm pre-
sented in Section IV. We compare these numerical results
with the analytical ones derived from (15). Finally, we eval-
uate the performance of our methods.

A. OPTIMAL ENSEMBLES
For the amplitude damping channel, the maximally distin-
guishable pair of states lies on the equatorial plane of the
Bloch sphere. As discussed in Section IV-A, the orthogonal
pair of states that maximizes (15) have their Pauli vector
components in ek∗ . For the amplitude damping channel, these
coefficients are

αx,y = √
1 − κ αz = 1 − κ (23)

implying in αx,y ≥ αz since κ ∈ [0, 1].
In this relation, the equality holds for κ = 0 (the ideal

channel) and κ = 1 (the completely depolarizing channel),
in which any and none pair of states maximizes (15), respec-
tively. For κ ∈ (0, 1), we have αx = αy > αz, which implies
by the rationale exposed in Section IV-A that any pair of anti-
linear vectors expressed as a linear combination of ex and ey
corresponds to a maximally distinguishable pair of states.
Therefore, we say for short that any pair of states lying on
the equatorial plane (defined by ex, ey) maximizes (15).

For the Pauli channels parameterized according to (6), the
maximally distinguishable pair of states is {|+〉〈+|, |−〉〈−|}.
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FIGURE 5. Optimal signaling for the Pauli channel. Red (blue) lines are
the trace distance (Holevo information) estimations as a function of the
output states of the ith iteration of our algorithm (cf. Fig. 2) for the Pauli
channel with γ = 0.3 (top) and γ = 0.6 (bottom). In dotted, we have the
corresponding exact values. Data shown here are the average estimation
of ten executions.

As before, this comes from an inspection of the coefficients
αk. For a general Pauli channel with probability distribution
pμ, we have [34]

αk = p0 + pk −
∑
k′ =k

pk′ . (24)

Choosing pμ as the ordered eigenvalues of (6) implies in
α2x ≥ α2y ≥ α2z , where the equality holds γ = 0 and γ = 1,
the completely depolarizing and ideal channels, respectively.
For γ ∈ (0, 1), α2x ≥ α2y ≥ α2z and α2k∗ = α21. Therefore, the
pair of states in the direction ex will maximize (15), i.e., the
pair {|+〉〈+|, |−〉〈−|}.

In Figs. 3 and 4, we depict how our empirical estima-
tions predict the maximally distinguishable set of states
for the amplitude damping and Pauli channels, respectively.
As discussed above, these sets, respectively, are any pair
on the equatorial plane of the Bloch sphere and the pair
{|+〉〈+|, |−〉〈−|}. We can see that, according to our polar
representations (cf. Section IV-D), in both cases, all the
estimations converge.

B. ALGORITHM ACCURACY
In red in Fig. 5, we ratify the role of the parameters N andM
in our algorithm accuracy in finding the optimal pair of states,
as discussed in Section IV-B. By comparing trace distance

FIGURE 6. Comparing signal processing and information theory
approaches for the Pauli channel. The green line illustrates the classical
capacity of the Pauli channel [34] as a function of the correlation matrix
parameter γ [cf. (6)]. The red and blue lines represent the maximum
Holevo information for the 20th estimation of the maximally
distinguishable pair with respect to γ , with solid and dashed lines
denoting results based on 103 and 106 experimental runs, respectively.

estimations based on 103 and 106 experimental runs to the ex-
act value D(ρ∗

0 , ρ
∗
1 ), we discern a noteworthy pattern: while

all estimations ultimately converge asymptotically to the ex-
act value as the number of iterations increases, those utilizing
106 experimental runs achieve this convergence with sig-
nificantly fewer iterations than their 103 counterparts. This
demonstrates that N is closely related to the algorithm per-
formance, as discussed before. Moreover, the figure shows
a rapid improvement in all the estimations after the fifth it-
eration. This observation indicates that the algorithm’s com-
putational complexity remains within the practical limits of
the NISQ era. In other words, the algorithm does not require
excessive computational resources, making it feasible and
efficient for real-world applications.
Furthermore, Figs. 5 and 6 compare the signal process-

ing and information-theoretical viewpoints for identifying
the optimal signal states for Pauli channels. The first figure
shows Holevo information estimations (depicted in blue) fol-
lowing the convergence of trace distance estimations (shown
in red). This indicates that the maximally distinguishable
pair of states determined not only maximizes (13) and ap-
proximates (14) but also corresponds to the optimal ensem-
ble needed to attain classical capacity for Pauli channels, as
emphasized in Fig. 6. Although valid for all Pauli channels,
this conclusion cannot be straightforwardly generalized to
other channels since an ensemble consisting solely of two
equiprobable orthogonal states can be insufficient to achieve
Holevo’s capacity [31].

VI. CONCLUSION
By employing the VTDE algorithm presented in [23], we
developed a numerical method for finding the optimal
encoding of a binary quantum communication system. We
applied our approach for the amplitude damping and Pauli
channels and demonstrated its convergence and accuracy
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numerically. More specifically, we showed that our method
approximates the analytical predictions (which we have also
derived) as the number of experimental runs N and classi-
cal iterations M increases for specific cases of the above-
mentioned channels. This indicates that the maximally dis-
tinguishable pair of states determined approximates (14) and
corresponds to the optimal ensemble needed to attain classi-
cal capacity for Pauli channels.
This indicates that the maximally distinguishable pair of

states determined approximates (14) and corresponds to the
optimal ensemble needed to attain classical capacity for
Pauli channels. Therefore, our algorithm can efficiently es-
timate the Holevo’s capacity of an unknown and stationary
channel under the constraints of NISQ devices. This has
numerous applicability in various quantum communication
systems encompassing satellite-based communication plat-
forms. More importantly, since our approach is based on
a hybrid classical–quantum architecture, these results show
that the performance of quantum communication systems
can be efficiently evaluated using NISQ devices. These re-
sults ratify the importance of a signal processing approach in
fostering the unique advantages of classical communication
over quantum channels. Efforts can be undertaken to extend
the proposed scheme to accommodate nonequiprobable bi-
nary communication systems. This would broaden the range
of potential signaling encodings, possibly achieving higher
values of Holevo information.
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[34] K. Siudzińska, “Classical capacity of generalized Pauli channels,” J.
Phys. A: Math. Theor., vol. 53, no. 44, Oct. 2020, Art. no. 445301,
doi: 10.1088/1751-8121/abb276.

4100508 VOLUME 5, 2024

https://dx.doi.org/10.1038/nphoton.2007.22
https://dx.doi.org/10.1038/nature07127
https://dx.doi.org/10.1126/science.aam9288
https://dx.doi.org/10.1038/s41566-017-0032-0
https://dx.doi.org/10.1142/p489
https://dx.doi.org/10.1038/s41534-022-00641-0
https://dx.doi.org/10.1109/OJCOMS.2024.3380508
https://dx.doi.org/10.1038/306141a0
https://dx.doi.org/10.1109/TCOMM.2010.02.080013
https://dx.doi.org/10.1109/TCOMM.2010.04.090103
https://dx.doi.org/10.1038/nature05655
https://dx.doi.org/10.1103/PhysRevLett.96.010401
https://dx.doi.org/10.1103/PhysRevLett.96.010401
https://dx.doi.org/10.1103/PhysRevA.87.012340
https://dx.doi.org/10.1103/PhysRevA.101.032306
https://dx.doi.org/10.1109/LWC.2023.3249282
https://dx.doi.org/10.1103/PhysRevA.77.032322
https://dx.doi.org/10.1103/PhysRevLett.89.127902
https://dx.doi.org/10.1103/PhysRevLett.88.217901
https://dx.doi.org/10.1103/PhysRevLett.116.140501
https://dx.doi.org/10.1103/PhysRevA.99.042312
https://dx.doi.org/10.1088/1751-8113/48/8/083001
https://dx.doi.org/10.1017/CBO9781139525343
https://dx.doi.org/10.1088/2058-9565/ac38ba
https://dx.doi.org/10.1038/s41534-019-0167-6
https://dx.doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1109/TIT.2008.924672
https://dx.doi.org/10.1109/ICC45855.2022.9838702
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1007/BF01007479
https://dx.doi.org/10.1109/TIT.1975.1055351
https://dx.doi.org/10.1103/PhysRevA.71.032334
https://dx.doi.org/10.1103/PhysRevA.71.032334
https://dx.doi.org/10.1038/nature23879
https://dx.doi.org/10.48550/arXiv.2009.02559
https://dx.doi.org/10.1088/1751-8121/abb276


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


