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ABSTRACT Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific
and industrial areas. Network routing optimization with multiobjective performance demands falls into this
problem class, and finding good quality solutions at large scales is generally challenging. In this work, we
develop a scheme with which near-term quantum computers can be applied to solve multiobjective combi-
natorial optimization problems. We study the application of this scheme to the network routing problem in
detail, by first mapping it to the multiobjective shortest-path problem. Focusing on an implementation based
on the quantum approximate optimization algorithm (QAOA)—the go-to approach for tackling optimization
problems on near-term quantum computers—we examine the Pareto plot that results from the scheme and
qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and nu-
merical scaling analyses of the resource requirements and performance of QAOA and identify key challenges
associated with this approach. Finally, through Amazon Braket, we execute small-scale implementations of
our scheme on the IonQ Harmony 11-qubit quantum computer.

INDEX TERMS Approximation algorithms, hardware, networks, optimization, quantum circuit, quantum
computing.

I. INTRODUCTION
Multiobjective optimization problems (MOOPs) arise natu-
rally in many scientific and industrial areas, where the inter-
play between multiple conflicting objectives gives rise to a
set of optimal solutions, rather than a unique one. They are
especially prevalent in engineering contexts, where complex
systems involving multiple objectives are encountered [1],
[2], [3]. In particular, we focus on the case where the state
space and, hence, the set of optimal solutions are discrete,
where they are referred to as multiobjective combinatorial
optimization problems (MCOPs). An example of such an
MCOP is the multiobjective network routing problem, which
asks for paths between specified source and destination nodes
in a graph that is optimal with respect to multiple objec-
tives. This optimization problem arises in contexts, such as
the design of wireless ad-hoc/sensor networks [4], [5], [6],
[7] and next-generation communication networks [8], [9],

[10], where large-scale networks with multiple requirements
have to be simultaneously satisfied to meet performance
demands.
However, the solution to such problems is generally dif-

ficult, as finding the global optima—also known as Pareto-
optimal solutions—of general MCOPs is NP-hard [11], [12].
Direct methods based on sorting [13], [14], [15] require com-
putational times that scale polynomially with the size of the
state space, which becomes intractable for large-scale prob-
lems. On the other hand, physics- and biology-inspired meta-
heuristic classical algorithms have been particularly success-
ful in this area in the past two decades [15], [16], [17] due to
their scalable computational costs and are the go-to methods
for industrial use-cases. Even so, due to the importance and
complexity of MCOPs, there is a need to develop theoretical
and algorithmic tools to solve large-scale problems in more
memory and time-efficient ways.
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Besides developments in classical computers, quantum
computers are currently experiencing explosive growth, both
in theory and realization. Noisy intermediate-scale quantum
(NISQ) computers with qubit counts in the small hundreds
are now available, and there is a growing body of work inves-
tigating their ability to solve challenging optimization prob-
lems in areas ranging from chemistry [18] to finance [19],
with the hope that they can outperform existing classical
algorithms in the near future. In particular, there has been
a strong focus on variational quantum algorithms (VQAs)
such as the quantum approximate optimization algorithm
(QAOA) [20], which can be used to tackle combinatorial
optimization problems with existing quantum computers. A
natural question is whether similar methods can be applied
to efficiently obtain high-quality solutions to MCOPs such
as the network routing problem, to satisfy the performance
demands of next-generation wireless networks.
In this context, a significant challenge is the fact that, for a

given use-case, investigating the performance of VQAs such
asQAOA typically requires an empirical approach. However,
given the relatively small sizes of currently available quan-
tum computers and the complexity of simulating quantum
computations classically—an affair that also depends on the
density and connectivity of the underlying problem [21]—
the scope for experimentation is currently rather limited [22],
[23], [24]. Nonetheless, in this work, we adopt a pragmatic
approach, using the standard form of QAOA [20] as a solu-
tion method for MCOPs. This permits us to: 1) use small-
scale problem instances to draw insights on how the QAOA
solution relates to Pareto-optimal solutions of the MCOP
and 2) analyze the scalability of the QAOA approach against
known generic limitations of VQAs.
The key results of our work are summarized as follows.

1) We develop a general framework with which near-term
quantum computers can be used to solve MCOPs, by
producing multiple Pareto-optimal solutions in both a
priori (with the preferences of the decisionmaker taken
into account prior to optimization) and a posteriori (in-
dependent of the decision maker’s preferences) man-
ners. This is achieved by casting themultiple objectives
and constraints of an MCOP in a quadratic uncon-
strained binary optimization (QUBO) form and scalar-
izing it to obtain a cost function, which can be vari-
ationally optimized with a VQA. For small problem
instances, visualization of the output quantum state on
Pareto plots provides insights, which we analyze and
explain in a qualitative manner.

2) We provide a formulation of the network routing prob-
lem that is amenable to implementation with QAOA
on near-term quantum computers. Using results from
graph theory, we determine its resource requirements
and provide a scaling analysis. In particular, we show
that this encoding scheme possesses resource require-
ments that scale mildly with the connectivity of the

underlying graph, which is, in principle, compatible
with resources available on current NISQ hardware.

3) Numerical simulations of small problem instances us-
ing standard QAOA (as described in [20]) show that
this framework can produce high-quality solutions effi-
ciently. Concretely, by increasing the circuit depth, we
observe a correspondingly proportional increase in the
probability of successfully obtaining Pareto-optimal
solutions. However, as we explain in Section IV-A, in
terms of problem size, the efficacy of the QUBO-based
QAOA approach is limited by the large fraction of
infeasible solutions in the underlying search space, re-
sulting from the presence of optimization constraints.

4) We run a number of demonstrative test cases on the
11-qubit IonQ Harmony quantum computer, accessed
through Amazon Braket. The results obtained are in
clear agreement with those of numerical simulations.

The rest of the article is organized as follows. We begin
by fully describing our approach to obtain optimal solutions
of an MCOP and discuss interpretations of resulting Pareto
plots in Section II. We then describe the network routing
problem, a concrete example of a generally difficult MCOP,
which we study throughout the article, along with relevant
objectives that arise from reasonable assumptions in Sec-
tion III. This is followed by theoretical and numerical analy-
ses on the scaling of resources and performance of the proce-
dure in Section IV, and experiments on quantum computers
in Section V.

We refer the reader to the appendices for a survey of rel-
evant work in the usage of near-term quantum algorithms
in solving MCOPs and the shortest-path problem (see Ap-
pendix A), a review ofMOOPs (see Appendix B), the mathe-
matical formulation of the multiobjective shortest-path prob-
lem (see Appendix C), graph theoretic ideas used in this
work (see Appendix D), the formulation of the network rout-
ing problem along with complete specifications of physical
parameters used to model its objectives (see Appendix E),
specifications of problem instances considered in our numer-
ical calculations and experiments (see Appendices F and H),
additional numerical results for the chosen parameter initial-
ization scheme (see Appendix G), and additional discussions
on the Pareto plot (see Appendix I).
Numerical simulations and the set-up of quantum com-

putations in this work were performed through Open-
QAOA [25], an open-source Python package tailored for
QAOA and its variants.

II. SOLVING MCOPS WITH QUANTUM COMPUTERS
In this section, we describe our approach to solve MCOPs
using near-term quantum computers with VQAs, such as
the QAOA, starting with brief introductions to the QAOA,
MCOPs, and combinatorial optimization/QUBO problems.
For more in-depth discussions on the previous topics, we
refer the reader to the work in [2], [3], [20], and [26], re-
spectively, along with the appendices.
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A key component of our procedure is the QAOA. Belong-
ing to the class of VQAs, it was introduced to allow NISQ
computers to provide approximate solutions to combinatorial
optimization problems such as graph partitioning, coloring,
and constraint satisfaction problems [20]. A QUBO problem
can be defined by an upper triangular matrix with real val-
ues. It is specified within QAOA through a corresponding
cost Hamiltonian Hc expressed as a sum of l local terms
Hc = ∑l

i=1 hi, which can be obtained by converting the bi-
nary variables of the QUBO problem to Ising variables [26].
This allows the quantum state |ψ (�β, �γ )〉 to be prepared by a
p-layer state-preparation ansatzUQAOA(�β, �γ )

|ψ (�β, �γ )〉 = UQAOA(�β, �γ )|+ · · · +〉

=
p∏
i=1

e−iβi
∑n

j=1 Xj e−iγiHc |+ · · · +〉
(1)

where the real vectors �β = (β1, . . ., βp) and �γ =
(γ1, . . ., γp) are variational parameters and |+ · · · +〉 is
the initial quantum state. By sampling from a quantum
computer, the expectation values 〈ψ (�β, �γ )|Hc|ψ (�β, �γ )〉
can be computed and taken as the cost function for the
optimization problem

(�β∗, �γ ∗) = argmin
�β,�γ

〈ψ (�β, �γ )|Hc|ψ (�β, �γ )〉. (2)

In practice, the optimization problem is solved in a varia-
tional manner with the usage of a classical optimization al-
gorithm, yielding a quantum state |ψ (�β∗, �γ ∗)〉 that approxi-
mates the ground state ofHc. This, in turn, allows the solution
of the underlying QUBO problem to be extracted. Increasing
the number of layers p leads to an increase in the expressibil-
ity of the ansatz and, hence, the potential quality of the output
solution, at the expense of longer computation times [27].
We have chosen to investigate the original form of QAOA
described in [20] in our work, motivated by its relative sim-
plicity and amenability to the implementation on currently
available quantum computers, with a few tens of qubits. In
principle, variants of QAOA (such as recursive-QAOA [28],
[29], and tailored mixer and initialization choices [30], [31],
[32]) are expected to yield better results and can be straight-
forwardly adapted for our framework to solve MCOPs.
Next, we provide a general description of MCOPs. Given

L objective functions that map states from a state space to
real numbers, multiobjective optimization asks for states that
are optimal with respect to all of the L objectives. Since the
objectives generally produce competing effects with one an-
other, states that are simultaneously optimal in all objectives
generally do not exist. In this case, we ask instead for a set of
Pareto-optimal/efficient states, which are optimal in the sense
that no other states, which improve on at least one individual
objective without deteriorating in others can be found. On
top of the objectives, a number of additional constraints may
also be present, imposing further complications.

More concretely, we require that the L individual ob-
jectives and K constraints of the problem can be cast into
a QUBO problem. This yields an encoding of the states
x = (x1, . . ., xn) as vectors of n binary decision variables
x1, . . ., xn ∈ {0, 1} in a state space S = {0, 1}n, L quadratic
objective functions Ci : S → R of the form

Ci(x) = x�Qix, i = 1, . . .,L (3)

and K quadratic penalty functions Pj : S → R that enforce
the K constraints

Pj(x) = x�Pjx, j = 1, . . .,K (4)

where Qi’s and Pj’s are upper triangular matrices with real
entries. To compute these functions with quantum comput-
ers, we write the objective and penalty functions in terms
of Ising variables s = (s1, . . ., sn) ∈ S′ = {−1, 1}n, with si =
2xi − 1 ∈ {−1, 1}, to eventually convert them into equivalent
Hamiltonians and denote the corresponding objective and
penalty functions in terms of s as ECi (s) and E

P
j (s), respec-

tively. The MCOP is then

min
s∈S′ (E

C
1 (s), . . .,E

C
L (s)) (5)

subject to the minimization of EP1 (s), . . .,E
P
K (s).

Numerous classical methods exist to solve the previous
optimization problem. Of particular interest to us is linear
scalarization, which seeks for a solution of (5) by first solving
a simpler problem obtained by aggregating the objective and
penalty functions of the full MCOP in a linear manner

min
s∈S′

⎛
⎝ L∑

i=1

wiE
C
i (s) + wP

K∑
j=1

EPj (s)

⎞
⎠ (6)

where the scalarization weights wi ≥ 0, and the penalty
weight wP > 0 controls the degree at which infeasible solu-
tions are penalized. A choice of wP that is sufficiently large
ensures that the solution of (6) is necessarily a Pareto-optimal
solution of (5) that satisfies the P constraints imposed (i.e., a
feasible solution) [3], [33], [34]. In practice, smaller values
can be used, and we set wP = 1 throughout this work in
an empirical manner, and set wi ∈ [0, 1] without the loss of
generality (since only the relative weight wP/wi matters).

For further details and references on MCOPs and scalar-
ization, we refer the reader to Appendix B. Furthermore,
Appendix A presents a survey of relevant work in the usage
of near-term quantum algorithms in solving MCOPs and the
shortest-path problem.

A. OBTAINING THE PARETO FRONT WITH THE QAOA
We now describe our procedure for solving MCOPs with
near-term quantum computers, which is summarized in
Fig. 1.

Following (6), the QUBO objective vector �EC(s) =
(EC1 (s), . . .,E

C
L (s)) is first scalarized by aggregating them

as a convex sum with weights �w = (w1, . . .,wL) with wi ∈
[0, 1] and

∑L
i=1 wi = 1. This is added to the penalty terms

VOLUME 5, 2024 3101419
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FIGURE 1. Summary of workflow to approximate the Pareto front of an MCOP. (a) Visualization of the conversion from the problem’s underlying graph
to the Hamiltonian corresponding to the QUBO formulation of the MCOP. The graph (with solid lines denoting its edges and circles denoting its nodes) is
converted to the Hamiltonian (8) that incorporates the objective and constraints of the problem. The Hamiltonian itself can be represented by a graph,
GH (bottom right graph, with dotted lines denoting edges and circles denoting qubits). The illustration describes the conversion for the multiobjective
routing problem, which is elaborated in Section III. (b) Quantum-classical optimization with QAOA to solve the optimization problem (2) for the
scalarized cost Hamiltonian (8). The p-layer QAOA circuit is run at different angles according to the feedback of a classical optimizer, navigating the cost
landscape until it converges to a minima. (c) Aggregation over results of one or more scalarization choices, determination of Pareto front with classical
solver, and extraction of final result(s).

∑K
i=1 E

P
i (s) with each penalty function weighted equally by

1, resulting in a scalarized QUBO cost function

Escalar(s) = �w · �EC(s) +
K∑
i=1

EPi (s). (7)

Minimization of this cost function then yields a feasible so-
lution that corresponds to a Pareto-optimal solution s∗ of the
MCOP (5). This optimization can be performed on a quan-
tum computer by constructing equivalent objective Hamilto-
nians HC

1 , . . .,H
C
L and penalty Hamiltonians HP

1 , . . .,H
P
K via

transformation to Ising variables, and aggregating them to
result in an analogous scalarized cost Hamiltonian

H scalar = �w · �HC +
K∑
i=1

HP
i (8)

whose ground state encodes the same solution s∗, where
�HC = (HC

1 , . . .,H
C
L ). We perform the ground state search

with a VQA, chosen to be QAOA in our work due to its
simplicity and amenability by current quantum computers.
That is, we variationally optimize the QAOA circuit of (1)
to produce an optimized output quantum state |ψ (�β∗, �γ ∗)〉
that approximates the ground state of H scalar, which is then
sampled from k times to yield a set of candidate solutions
B = {b1, . . ., bk}, with k always chosen to be at most poly-
nomial in the number of qubits n. The setB then constitutes a
reduced search space within which Pareto-optimality can be
efficiently checked with any classical method (such as brute
force). The output of this procedure is therefore expected to
be a set of feasible solutions that are Pareto-optimal within
B. As the number of QAOA layers is increased to ∞, the
QAOA ansatz supports an increasingly better approximation
of the ground state of (8). Provided that it can be found in the
variational procedure, sampling this state would then return
solutions that are also Pareto-optimal within S, with high
probability.

The aforementioned scalarization procedure involves the
linear aggregation of objectives. The convex weights wi can
be interpreted as a priori preferences that the decision maker
can select, which biases the resulting solution according to �w.
While other scalarization schemes that involve higher-order
terms (such as quadratic scalarization) and inequality con-
straints (such as Chebyshev scalarization) are available, we
focus on the linear scheme, as it preserves the QUBO form
of the individual objectives and constraints. The resulting
scalarized cost function (7) then contains only linear and
quadratic terms. We discuss possible limitations and exten-
sions of this approach in Appendix B.
So far, this procedure belongs to the class of a priori meth-

ods, where the decision makers’ preferences are specified
before the optimization to bias the output of the optimization
procedure (cf. Appendix B for details). To recover the entire
Pareto front in an unbiased way, this procedure can be con-
verted into a completely a posteriori method by repeating the
procedure with numerous choices of �w in a problem-agnostic
manner, with, e.g., uniform random sampling of the weights
or a discretization over all possible weights. The full proce-
dure to recover the Pareto front with QAOA is illustrated in
Fig. 1: M different scalarization weights are chosen corre-
sponding to M QAOA runs, resulting in M sets of candidate
solutions B1, ..,BM , which are aggregated as

⋃M
i=1 B

i. A
classical method then checks for Pareto-optimality within
this set, yielding a set of feasible solutions that approximates
the Pareto front.

B. VISUALIZATION OF SOLUTIONS IN THE PARETO PLOT
The state space of an L-objective MCOP can be visualized in
a Pareto plot [2], [3], which is an L-dimensional plot with 2|S|
points. Each point corresponds to a state/bitstring s, with the
value of the L objectives as its coordinates. Pareto-optimal
solutions then constitute points located at the boundary of
the region populated by the 2|S| points [2].
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FIGURE 2. Pareto plot of a four-objective problem projected on two of the metrics. Shown in (a), each point in the plot corresponds to a possible
state/solution (for a total of 2nqubit points), with feasible solutions marked as blue and Pareto-optimal solutions marked as red. We also select the top
k = 100 most probable states from |ψ(�β∗,�γ∗ )〉 and color code them according to their probability (colored crosses). We plot the results for three
different scalarization choices, with the gradient of the scalarization weight vector visualized (black dotted lines passing through the origin). The
scalarization vectors are �w = (0,1,0,0) for (b), �w = (1/4,1/4,1/4,1/4) for (c), and �w = (1,0,0,0) for (d). The underlying network is a triangular lattice
graph with 6 nodes and 9 edges, requiring 13 qubits to encode.

In our case, we must also account for the penalty terms
EP1 (s), . . .,E

P
K (s), whose contribution should be reflected in

the Pareto plot in a consistent way. This can be achieved by
defining a point �r = (r1, . . ., rL) in the L-dimensional Pareto
plot as follows:

ri(s) =
K∑
j

EPj (s) + ECi (s), i = 1, . . .,L. (9)

This definition has the property that the cost function arising
from linear scalarization with weights �w can be interpreted
as the projection of points in the Pareto plot onto the vector
�w, since

�r · �w =
∑
j

EPj (s) + �w · �EC(s) (10)

which is exactly the scalarized cost function (7) that is
minimized in our procedure.
We now give a brief qualitative discussion of some notable

features of the Pareto plot obtained from the application of
QAOA to an MCOP. We remark that the precise details of
a Pareto plot will naturally differ depending on the specific
problem instance, but the observations we make in the fol-
lowing were general to all the cases we have considered in
this work. We consider a small network routing problem that
can be cast into a QUBO problem in the form of (3) and
(4) (to be detailed in Section III), defined on 13-qubits for
illustration. The underlying network consists of six nodes
arranged as a single row of a triangular lattice, with the source
and destination nodes located at endpoints of the row, with
parameters specified in Table 6.
Fig. 2(a) shows the Pareto plot for our 13-qubit network

routing problem, resulting from noiseless classical simula-
tions of the algorithm for different scalarization choices. The
problem involves four objective functions, and the figures
show a projection onto the plane of two of those objectives.

Each point in the plot corresponds to a possible state (a
bitstring), with feasible states marked as blue and Pareto-
optimal solutions marked as red. The top-k most probable
states from |ψ (�β∗, �γ ∗)〉 are marked with crosses and color
coded according to their probability (colored crosses). In
Fig. 2(b)–(d), we illustrate the solution returned by QAOA
with different scalarization weights [�w = (0, 1, 0, 0) for (a),
�w = (1/4, 1/4, 1/4, 1/4) for (b), and �w = (1, 0, 0, 0) for
(c)].
A few important observations from these plots are the

following.

1) The states with highest sampled probability in the out-
put state |ψ (�β∗, �γ ∗)〉 are in the low-energy sector
of the Pareto plot: This is a direct consequence of
the quantum-classical optimization loop that results in
an output quantum state |ψ (�β∗, �γ ∗)〉 that has mini-
mal scalarized energy when optimized. Sampling from
|ψ (�β∗, �γ ∗)〉 then leads to a set of candidate states
Bi that are biased to contain high-quality/low-energy
states of the scalarized problem, which we can observe
from the clustering of the colored crosses in the bottom
left region of the Pareto plot.

2) States sampled from |ψ (�β∗, �γ ∗)〉 are squeezed in
the direction of the scalarization line: Scalarization
amounts to projecting points on the Pareto plot to the
line passing through the origin with a gradient equal
to the scalarization weight vector (black dotted line).
Different choices of scalarization, therefore, result in
different regions in the Pareto plot that are favored.
This feature can be observed clearly through the Pareto
plots by the clustering of high probability states (yel-
low, light-colored crosses) along the direction of the
scalarization line. As an example, for the scalarization
choice corresponding to weighting Metric 2 with unit

VOLUME 5, 2024 3101419
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weight (the second of the four plots in Fig. 2), the sam-
pled states can be observed to be squeezed vertically,
toward the bottom of the Pareto plot.

3) Points in the Pareto front corresponding to solutions
of other scalarization choices can be sampled: If there
are other Pareto-optimal states close to the solution of
the scalarized problem, in the sense that they are low-
energy eigenstates of the scalarized problem, the set
of candidate states Bi sampled from |ψ (�β∗, �γ ∗)〉 may
contain these nearby Pareto-optimal solutions with rel-
atively high probability. In principle, this allows mul-
tiple Pareto-optimal states to be obtained from a single
iteration of the procedure, which is a desirable feature
in situations where a thorough coverage of the entire
Pareto front is required, instead of only a single solu-
tion [3]. For example, in Fig. 2, the rightmost red point
(a Pareto-optimal solution) is sampled with relatively
high probability in all three scalarization choices; even
though it is not a solution of any of these scalarized
Hamiltonians, it remains a low-lying excited eigenstate
and can, thus, be sampled. We observe that this is often
the case in problem instances we consider.

4) Points in the Pareto front located in locally concave
regions can be sampled: Again, because states near the
target Pareto optimal point can be sampled with high
probability from |ψ (�β∗, �γ ∗)〉, states located at locally
concave regions of the Pareto front can in principle
be sampled as long as they are near the target (in the
Pareto/objective space), even with linear scalarization.
This allows Pareto-optimal points located at concave
regions to be identified, even though they can never
correspond to solutions of scalarized cost functions.
Using the rightmost red point in Fig. 2 as an example
again, we observe that it is sampled with relatively high
probability, despite being located at a locally concave
region, which cannot be obtained as the solution of any
scalarized Hamiltonian.

The latter two observations indicate a degree of robustness
to the choice of scalarization and the concavity of the Pareto
region, due to QAOA being a sampling-based algorithm,
which requires sampling from the optimized quantum state
in order to extract information it. This introduces a tradeoff
between the ability of QAOA to approximate the ground
state (by increasing p), and for |ψ (�β∗, �γ ∗)〉 to remain as a
superposition of energy eigenstates so that low-energy states
can be sampled (by keeping p small), potentially imposing a
less stringent scaling of p with problem size.
Finally, we remark that most points in the Pareto plots

correspond to infeasible solutions, which violate at least one
of the problem constraints encoded in the penalty terms of
(8). As we explain in Appendix I, in general, the fraction
of feasible to infeasible solutions decreases rapidly with the
network size. This fact represents a challenge for QUBO ap-
proaches where the encoding of constraints as penalty terms
is unable to restrict the search through solutions to remain

solely within the feasible subspace [30], [31], [32]. We dis-
cuss this point further in Section IV-A in the specific context
of QAOA.

III. APPLICATION TO THE NETWORK ROUTING
PROBLEM
With a general description of our algorithm for MCOPs
established, we now consider the concrete example of the
multiobjective network routing problem.
We consider a generic multihop wireless network with

relay stations distributed throughout a geographical area.
This can be modeled as an undirected weighted graph G =
(V (G),E(G)) (which we also refer to as the network’s graph)
with nodes V (G) that correspond to relay stations and edges
E(G) defined by possible transmission paths between sta-
tions (directed graphs can be included with a more general
formulation [33]). Two nodes are specified to be the source
and destination nodes (denoted s and d, respectively). The
routing problem then asks for data transmission routes be-
tween s and d that are Pareto optimal with respect to multiple
objectives, which can be written as functions of the node
and edge weights of the graph. This is an instance of the
multiobjective shortest-path problem, which is a combina-
torial optimization problem known to be NP-hard [35]. Its
solution is relevant across a wide range of network design
and optimization tasks [4], [5], [6], [8], [9], [10], especially
beyond current wireless network protocols based on indi-
vidual objectives such as the optimized link state routing
protocol [36] which only considers hop count and is, thus,
unable to maximize network resource utilization.
The form of the objectives depends on specific perfor-

mance demand requirements.We consider the following four
objectives in our work.

1) Path loss: Transmission between two stations incurs an
energy cost that is dependent on their physical distance.

2) Node Delay: Signal processing at each station incurs a
time delay, which sums up to an overall delay.

3) Data rate: The total data output rate of a transmission
path is determined by the minimum data rate along its
path.

4) Bit error: Bit errors occur with finite probability during
transmission between two stations, which depends on
the path loss and the channel’s noise profile.

To solve this problem with our approach, a QUBO formu-
lation of the multiobjective shortest-path problem with the
previous objectives is needed. This can be achieved by first
considering the QUBO formulation of the constraints of the
shortest-path problem [in the form of (3)], and formulating
the objectives defined earlier as node or edge weights to be
scalarized [in the form of (4)]. The QUBO formulation of
the shortest-path problem is well-studied, especially in the
context of quantum annealing [33], [34], [37]. Following the
work in [33], we provide a complete description in terms of
binary variables together with the form of the quadratic cost
function in Appendix C.
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Subsequently, we provide formulations of the above four
objectives in Appendix E. Along with reasonable assump-
tions on network parameters based on software-defined radio
use cases [38], the associated objective and penalty Hamilto-
nians HC

i and HP
i can then be constructed explicitly, thereby

fully specifying the inputs for our procedure in Fig. 1. As
we will detail in Section IV, the resource requirements of the
resulting quantum circuit is

n = |V (G)| + |E(G)| − 2,

D1 ≤ 2�G,
(11)

where n is the number of qubits required, D1 the depth of
each layer of the QAOA circuit, and�G themaximum degree
of G.

Importantly, we observe that for a network with graph G,
the graph of its corresponding scalarized Hamiltonian GH—
that is, the graph with connectivity defined by the quadratic
terms of (8)—can be interpreted as the network graph’s mid-
dle graph [39]. Denoted as M(G), the middle graph of G =
(V (G),E(G)) [39] is the graphM(G) = (V (G) ∪ E(G),E ′),
with vertices u, v that are adjacent if either:

a) u is a vertex in G and v is an edge in G incident to u, or
b) u and v are edges in G that are both incident on the

same vertex.

Using known properties of M(G), we will exploit this
correspondence in the next sections to bound the resources
needed to execute the algorithm. Hamiltonian’s construction
is illustrated in Fig. 1(a). The network’s graph G (top left
graph, with solid lines denoting its connectivity, red circles
denoting source and destination nodes, and blue circles de-
noting remaining nodes) is converted to a Hamiltonian H,
with connectivity defined by the graph GH , which takes the
form ofM(G) (bottom right graph, with dotted lines denoting
the connectivity ofGH orM(G), and circles denoting nodes).
We elaborate on points regardingM(G), including its defini-
tion and properties, in Appendix D.

IV. THEORETICAL AND NUMERICAL SCALING ANALYSES
We now turn to analyze in detail the scalability and per-
formance of the QAOA approach to the network routing
problem.
In Section IV-A, we begin with a short qualitative discus-

sion of the role of the QAOA mixer and its initial state in
determining the efficacy of the algorithm. Subsequently, in
Section IV-B, we discuss and provide a pragmatic analysis
of the hardware resources required to implement a problem
instance of a given size and compare these requirements
against known limitations of VQAs. This allows us to distin-
guish between problem instances that are infeasible for our
approach, from those that are potentially amenable. Finally,
in Section IV-C, we present the results of numerical sim-
ulations that explore the scaling of several success metrics
as a function of problem size and the QAOA depth p. We
remark that due to limitations on the system sizes that can be

simulated on a classical computer, strong conclusions on the
asymptotic performance of the algorithm cannot be drawn at
this stage, and is a subject of ongoing study even for more
generic applications of QAOA [22].

All analyses performed here are based on a single scalar-
ization (i.e., we apply the algorithm in an a priori manner
by specifying the scalarization weights �w beforehand). As
described in Section II-A, if the intent is to recover the en-
tire Pareto front instead, the total run time of the procedure
depends on the number of scalarizations, which introduces
an additional multiplicative overhead in the time required to
obtain the Pareto front. As is also the case with classical
approaches, this additional complexity is highly problem-
dependent.

A. QAOA MIXER AND INITIAL STATE
We begin with a qualitative discussion of the role of the
QAOA mixer and circuit initial state in determining the effi-
cacy of the approach. In this work, we have used the standard
QAOA initial state and mixer pair [20], where the circuit
is initially prepared in an equal superposition of all solu-
tions, i.e., |+〉⊗n, and the mixer Hamiltonian Hm = −∑n

i Xi
drives bit flips across the register. Constraints are enforced
through energy penalties in the cost Hamiltonian (8), with the
search ideally converging toward low-energy feasible solu-
tions. However, the solution space is increasingly dominated
by infeasible configurations as the network size grows (see
Appendix I), motivating the need for alternative ways of
searching the solution space [30], [31].

In the context of the network routing problem, we leave
the question of designing improved initial state and mixer
Hamiltonian pairings for future work (see also our remarks
in Section VI), noting that they do not alter our underly-
ing scheme to solve MCOPs. However, we remark that the
goal of such strategies is to reduce the size of the solution
space to be searched, either by entirely avoiding infeasible
solutions or by avoiding some subset of them. In the former
case, where the search takes place through feasible solutions
only, the penalty terms in (8) can be eliminated. In the latter
case (which may arise if a strategy to search only feasible
solutions cannot be found, or carries impractical resource
requirements), the penalty terms would still be necessary
to enforce constraints indirectly (i.e., through the objective
function).

B. COST HAMILTONIAN: THEORETICAL RESOURCE
ESTIMATIONS
To determine the resource requirements of our QAOA ap-
proach, we examine the runtime and number of qubits nec-
essary for its implementation on quantum hardware. This is
determined by considering the resources needed to imple-
ment each layer of the QAOA circuit, and the number of
repeated executions required to estimate the cost function up
to an error ε.

VOLUME 5, 2024 3101419



Engineeringuantum
Transactions onIEEE

Chiew et al.: MULTIOBJECTIVE OPTIMIZATION AND NETWORK ROUTING WITH NEAR-TERM QUANTUM COMPUTERS

We remark that for a given error tolerance ε, a complete
performance analysis would involve exposing the depen-
dence of the number of required QAOA layers p on prob-
lem size, which is challenging from both an analytic and
numerical perspective. This is further related to the issue of
trainability and existence of barren plateaus of VQAs [40],
[41], [42], which depend strongly on problem class, presence
of noise, and ansatz choice, and is a subject of ongoing study.
Specifically, if the physical circuit depth for an application
scales super-linearly in n, the optimization procedure will
suffer from a noise-induced barren plateau [40], implying
expensive gradient computations that scale exponentially in
n, a phenomenon that is conceptually similar to the issue of
vanishing gradients that previously plagued the training of
neural networks in classical machine learning [43].
We begin by outlining a few assumptions and simplifica-

tions that wewill make. First, the quantum circuit of a p-layer
QAOA consists of p alternating mixer and cost unitary oper-
ations (1). Since elementary gates in the cost unitary e−iγiHc

fully commute with one another, the 1-qubit RZ gates can
be scheduled to be executed first, in parallel. Together with
the fact that the mixer unitary consists only of 1-qubit RX
gates, which can also be executed simultaneously, and that
1-qubit gates execute significantly faster than 2-qubit gates,
we only need to consider contributions from 2-qubit gates.
Second, we neglect compilation overheads arising from qubit
routing, i.e., the need to include additional swap gates to
carry out 2-qubit gates that are not natively executable on
a quantum processor. While this is a valid assumption for
quantum processors with a fully-connected topology (such
as currently available small-scaled ion trap devices, which
we utilize in Section V), the mismatch between the quantum
processor and the cost Hamiltonian’s topologies will gener-
ally require routing (or ion shuttling, in the case of larger ion
trap devices [44]). The routed output depends on the degree
of mismatch and the routing strategy employed, amongmany
other factors that are beyond the scope of our discussion [45].
Nonetheless, we remark that the inclusion of n− 1 addi-
tional layers of swap gates is a naive upper bound [46], [47],
incurring at most O(n) additional layers of quantum gates.
Third, to streamline our argument we ignore quadratic terms
arising from the source and destinations constraints, which
only incur a negligible, constant number of terms (detailed
in Appendix C).
Finally, we remark that in our formulation of the problem,

increasing the number of objectives solely results in addi-
tional linear terms in the cost Hamiltonian (8), since only the
penalties contain quadratic terms. An increase in the number
of objectives, therefore, does not directly incur additional
time and qubit costs.

1) NUMBER OF QUBITS
Since the graph of the cost Hamiltonian GH can be mapped
to the middle graph M(G), the number of qubits involved
is equal to the number of nodes of M(G), resulting in n =

|V (G)| + |E(G)| = O(|V (G)|�G), where �G is the maxi-
mum degree of the network’s graph G [see Appendix D,
(25)]. This implies that problem instances with a maximum
degree independent of problem size are expected to be more
efficient, with n = O(|V (G)|).

2) COST COMPUTATION TIME
The computation time of the p-layer QAOA cost function
is determined by two factors: 1) The number of repetitions
nrep required to estimate the cost function expectation value,
given some specified error tolerance and 2) the depth of each
executed circuit, which we denoteDp for p layers. These two
factors combine to give an execution time of O(Dpnrep), or
O(pD1nrep) in terms of the depth of a single QAOA layerD1.
D1 depends on the number and connectivity of the 2-qubit

terms in the cost Hamiltonian. As they are Ising gates that
are diagonal in the computational basis, they fully commute
with one another and can be scheduled to maximize paral-
lelization. The determination of such a schedule amounts to
the solution of an edge-coloring problem onGH , where edges
(i.e., gates) of the same color are scheduled to be executed
simultaneously. The minimal number of colors required is
commonly termed the edge chromatic number χ ′(GH ), so we
have D1 = χ ′(GH ) layers in total. To estimate χ ′(GH ), note
that the structure of GH is completely determined by (18)–
(20). Intuitively, we expect GH to inherit the local structure
of G, since the squares in (18)–(20) only lead to interactions
between nodes (of GH ) representing nodes and edges inci-
dent to them (i.e., the xixi j terms), and between edges that
are incident on the same node (i.e., the xi jxik terms). It turns
out that this is precisely the relationship between a graph G
and its middle graph M(G)—in other words, GH = M(G),
and hence, χ ′(GH ) = χ ′(M(G)). This realization allows us
to leverage on known properties ofM(G) to show that

χ ′(M(G)) ≤ 2�G (12)

where we delegate the proof and a review of relevant ideas
to Appendix D. We conclude that the depth D1 of each
QAOA layer scales linearly with the maximum degree of the
network’s graph G, i.e., D1 = O(�G).

On the other hand, it is known that nrep = O(L/ε2) mea-
surements are needed to compute expectation values up to
an error tolerance of ε by operator averaging [48], where L is
equal to the number of Pauli terms in the operator (which is
the cost Hamiltonian in our case). Of the L terms, |V (G)| +
|E(G)| ≤ 1

2 |V (G)|(2 +�G) terms are linear (since the num-
ber of node and edge weights is equal to the total number
of nodes and edges ofG) while |EM(G)| ≤ 1

2 |V (G)|�2
G terms

are quadratic (26), because GH = M(G)), for a total of L ≤
1
2 |V (G)|(2 +�G +�2

G) terms. Thus, nrep scales asymptoti-
cally as O(|V (G)|�2

G/ε
2).

Summarizing, the computation time of a QAOA cost func-
tion up to an error ε scales as O(p|V (G)|�3

G/ε
2), which can

be parallelized up to a factor of nrep.

3101419 VOLUME 5, 2024



Chiew et al.: MULTIOBJECTIVE OPTIMIZATION AND NETWORK ROUTING WITH NEAR-TERM QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

FIGURE 3. Scaling of the approximation ratio and success probability with the number of layers for triangular lattices, square lattices, and cycle graphs
(left to right columns). Different colors indicate different problem sizes, with standard deviations displayed in shaded regions. For cycle graphs
(rightmost column), the legend indicates the number of nodes besides the source and destination nodes. The data were produced after optimization
with linear ramp initialization, two metrics (node based and edge based, respectively), with node/edge weights uniformly randomized between −1 and
1, averaged over 50 instances. Scalarization weights are chosen to be equal for both objectives, i.e., �w = (0.5,0.5).

We remark that this implies efficiency for problem classes
with a connectivity or maximum degree that is independent
of the problem size (such as k-regular/lattice-type graphs),
with only a linear dependence of the computation time in
problem size. This is likely the scenario for large-scale appli-
cations, since the cost of supporting a dense network (such
as fully-connected mesh networks) over large geographical
regions will otherwise be high, rendering it practically infea-
sible. In that case, the computation time (and the number of
qubits needed) becomes at most quadratic in problem size.

C. NUMERICAL SCALING ANALYSES
1) PERFORMANCE METRICS
We now introduce several measures that quantify the degree
to which our scheme has successfully solved the task at hand,
which is to obtain Pareto-optimal points of a multiobjective
problem.
A standard measure of the quality of solution output

by QAOA is the approximation ratio, defined as the ratio
between the energy of the output state and the ground state

rapprox := 〈ψ (�β∗, �γ ∗)|H|ψ (�β∗, �γ ∗)〉
Emin

. (13)

An approximation ratio of 1, thus, implies that QAOA has
found the exact ground state of H.

In our multiobjective context, however, we ask for the
set of Pareto-optimal solutions, which generally cannot be
encoded as ground states of a single Hamiltonian. As a more
pragmatic measure in a multiobjective context, we supple-
ment analyses of rapprox by defining the success probability,
which is the probability that a Pareto-optimal state is sampled

from |ψ (�β∗, �γ ∗)〉
psuccess :=

∑
xi∈Pareto˜front

|〈ψ (�β∗, �γ ∗)|xi〉|2. (14)

A success probability of 1 implies that sampling from
|ψ (�β∗, �γ ∗)〉 will always yield a Pareto-optimal state. Note
that it does not contain information about whether it contains
points from the entire Pareto front.

2) SCALING WITH SYSTEM SIZE AND NUMBER OF LAYERS
In this section, we present results from classical simulations
of QAOA to study the scalability of the approachwith respect
to different problem sizes, graph geometries, and the number
of QAOA layers p. These simulations assume an absence
of both sampling and hardware noise. Taking into account
limitations on the classical simulation and optimization of
general QAOA circuits for large n and p, and the need to av-
erage over multiple problem instances, we consider problems
of sizes up to 16 qubits and p = 10 layers.
Fig. 3 displays the scaling of the approximation ratio and

success probability as a function of p, for different prob-
lem sizes chosen from different graph geometries, namely
triangular lattices, square lattices, and cycle graphs. For all
examples, we consider two linear objectives, one involving
only edge variables [i.e., of the type (17)] and another only in-
volving node variables [i.e., of the type (16)], with node/edge
weights uniformly randomized between −1 and 1, averaged
over 50 instances. The scalarization weights are also chosen
to be equal for both objectives, i.e., �w = (0.5, 0.5). Finally,
initial parameters for QAOA are chosen according to a linear
ramp initialization scheme, which is a heuristic choice that
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linearly ramps up γ ’s and ramps down β’s, based on the anal-
ogy between QAOA and quantum annealing [27]. Additional
numerical results for the performance of this initialization
scheme can be found in Appendix G.

As first observations, we see that both metrics increase
monotonically as a function of p. This is in accordance with
the fact that as p → ∞ with QAOA, we recover the limit
of infinitesimally slow adiabatic quantum annealing and re-
cover the ground state/optimal solution of scalarized cost
Hamiltonians with unit probability. For any fixed value of p,
both metrics also achieve higher values for smaller problems,
again mirroring the increase in annealing time needed for
larger problems. Finally, we observe that problem classes
with higher average connectivity tend to reach saturation at a
slower rate (number of layers to reach saturation, in descend-
ing order: cycle graphs, triangular lattice, and square lattice).
These conclusions hold for generic problem instances of the
same class, due to the average over numerous instances.
Focusing on the success probability (lower row of Fig. 3),

we find that it increases monotonically with p, with indica-
tions of saturation at the maximum value of 1 for the limited
problem sizes we have considered. These results suggest
that, at least for the problem instances considered here, the
procedure indeed outputs Pareto-optimal solutions with in-
creasing frequency as we increase p. This justifies the prag-
matic approach of increasing p to improve the quality of the
procedure.
Nonetheless, we note that the aforementioned difficulty in

classically simulating and optimizing large QAOA circuits
prevents further scaling conclusions from being drawn. We
leave a more complete investigation of these issues, involv-
ing the large-scale benchmarking of our scheme on actual
quantum computers, and more accurate classical simulations
under noisy conditions, as further work. As a final remark, a
positive indication is provided in the closely related context
of quantum annealing, by the polynomially vanishing energy
gap between the ground and the first excited state of the
Hamiltonian (8) [34], which is strongly correlated to a better
performance of QAOA [27].

V. COMPUTATIONS ON QUANTUM COMPUTERS
In this section, we describe an implementation of our scheme
for a small-scale network routing problem on the 11-qubit
IonQ Harmony quantum computer, accessed through the
Amazon Braket cloud quantum computing service with the
OpenQAOA Python SDK [25]. This device is composed of
an 11-qubit chain of 171Yb+ ions that can be entangled in
an all-to-all manner via XX gates [49] and can, therefore,
implement QAOA circuits without the need for swap gates.
These experiments serve to empirically verify that the

scheme can yield Pareto-optimal solutions to the network
routing problem, in a manner consistent with our descrip-
tion in Section II. We consider a 4-node fully-connected
network and a 6-node square-lattice network, requiring 8 and
11 qubits, respectively, to encode in QUBO form. For both
problem instances, we consider four objectives relevant to the

network routing problem: 1) data rate; 2) path loss; 3) node
delay; and 4) bit-error-rate. Further details on the problem
instances can be found in Appendix F, including parameters
used to generate the problem instances in Tables 2–5.

We run the algorithm for the scalarization choice �w =
(1/4, 1/4, 1/4, 1/4), with p = 1 and 2000 shots per circuit
execution, and the standard QAOA circuit involving standard
single-qubit RX mixers and uniform computational basis
state initialization. Starting at initially suboptimal parame-
ters, COBYLA [50] is chosen as the classical optimization
algorithm.
The results of the optimization are shown in Fig. 4, which

displays the trajectory of the parameters β and γ (black line),
plotted on top of the cost function landscape obtained by
classical simulation. The inset at each plot shows the evolu-
tion of the cost function value during optimization. Starting
from suboptimal initial parameters, we observe convergence
to local minima for both problems.
To obtain Pareto-optimal solutions to the network rout-

ing problem, we sample from the optimized quantum states.
Fig. 5 displays the Pareto plot for two pairs of objectives
obtained from the IonQ device, with the top k = 125 most
probable states marked as colored crosses (we limit k for vi-
sual clarity). Consistent with our discussions in Section II, we
observe the clustering of high-probability states close to the
Pareto front in these plots. The observed success probabilities
are also computed to be≈ 0.008 for the 11-qubit problem and
≈ 0.04 for the 8-qubit problem, which are higher compared
to random sampling (3/211 ≈ 0.001 for the 11-qubit problem
and 4/28 ≈ 0.016 for the 8-qubit problem).

VI. CONCLUSION AND OUTLOOK
This work proposes and studies a procedure to obtain Pareto-
optimal solutions of MCOPs in a manner amenable to near-
term quantum computers via VQAs. By scalarizing the mul-
tiobjective cost function in QUBO form and variationally
optimizing it with a quantum computer, the procedure al-
lows the Pareto front of MCOPs to be recovered and visu-
alized in an intuitive manner. Focusing on the practically
relevant network routing problem, which is an instance of the
multiobjective shortest-path problem, efficient QUBO for-
mulations for practically relevant objectives were detailed.
Analytical scaling analyses on the resources required for
this procedure point toward implementation feasibility for
real-world problem instances, for networks with bounded
maximum degrees. This is supplemented by numerical sim-
ulations at small scales, which show that high-quality re-
sults can be obtained by systematically increasing the depth
of the QAOA ansatz. Finally, we tested our approach on
an ion trap quantum computer, obtaining consistent results
that verify its applicability, constituting one of the first stud-
ies of multiobjective optimization on actual digital quantum
computers.
Our suggested framework can be readily generalized to

incorporate other MCOPs and VQAs, as long as QUBO
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FIGURE 4. Trajectory of the QAOA parameters during optimization (black line) for both the 8-qubit fully-connected network (left plot) and 11-qubit
square lattice networks (right plot), overlaid on the full cost function landscape obtained by classical simulation of the QAOA circuits. Initial parameters
are displayed as black crosses. The inset shows cost versus iteration plots of the optimization.

FIGURE 5. Pareto plots obtained from sampling the optimized quantum state of QAOA with the IonQ device for both the 8-qubit fully-connected
network (left two plots) and 11-qubit square lattice networks (right two plots). Each point in the plot corresponds to a possible state, with feasible
solutions marked as blue and Pareto-optimal solutions marked as red. The top k = 125 most probable states sampled are plotted as crosses and color
coded according to its probability. The gradient of the scalarization weight vector is also visualized (black dotted lines). (a) Fully-connected graph, 8
qubits. (b) Square lattice, 11 qubits.

formulations of the individual objectives are available. Ad-
ditionally, to further tailor the scheme we have developed
for MCOPs, more general scalarization choices beyond the
simple linear scalarization approach could be explored. Ex-
amples are the Chebyshev and epsilon-constraint scalariza-
tion schemes, which are more powerful and versatile but
incur higher computational costs in the form of additional
inequality constraints [1], [3].

Another improvement is in the direction of tailored state
initializations and mixer designs [30], [31]. Due to the large
fraction of infeasible solutions in the state space, the de-
fault initial state of the QAOA procedure—an equal super-
position of all computational basis states—is highly sub-
optimal. Ideally one would like to be able to: (a) pre-
pare an initial state that is an equal superposition over all
feasible solutions and (b) implement a mixer Hamiltonian
that does not induce transitions to infeasible solutions, so
that the search is fully restricted to the feasible subspace.
In the context of the network routing problem we leave

this as a question for future work, and note that Zhang
et al. [32] describe QAOA mixer Hamiltonians for network
flow optimization. We also remark that the two aforemen-
tioned requirements (a) and (b) may carry a significant re-
source footprint, depending on the complexity of prepar-
ing the initial state and the polynomial degree of the mixer
Hamiltonian.
We can also ask whether it is possible to more directly

leverage the fact that QAOA works with quantum superpo-
sitions of candidate solutions to the optimization problem.
Rather than optimizing based on the energy directly, it may
be fruitful to consider modifying the cost function to one
that favors states, which contain Pareto-optimal configura-
tions with high probability, which shares conceptual simi-
larities with recently developed methods such as the condi-
tional value-at-risk technique [51]. Such a modification can
be performed efficiently on the sample since the Hamiltonian
corresponding to QUBO problems only contains terms that
fully commute with one another.
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Even on classical computers, MCOPs are generally NP-
hard optimization problems that are solved with metaheuris-
tic optimization algorithms, such as particle swarm and ge-
netic algorithms (cf. Appendix B). Can our scheme, or VQAs
in general, outperform them in some respect at large scales
that are challenging for classical approaches. Due to the dif-
ficulty to theoretically analyze the performance of QAOA
at large scales, and the intractability of classical simulations
of quantum computations, general claims about performance
likely must be made empirically, on real quantum computers.
While wewere able to implement and obtain solutions for the
procedure for small-scale problems, applications in practical
settings will require larger and more reliable quantum com-
puters than those available today. Our work serves as a first
step toward answering this question, and alongside existing
studies [22], [23], [24], motivate the need for large-scale
experiments on quantum computers, and benchmarks against
existing classical methods.

APPENDIX A
SURVEY OF RELEVANT WORK
This section briefly discusses relevant work in the usage of
near-term quantum algorithms in solving MCOPs and the
shortest-path problem.
Applications of quantum annealing to the shortest-path

problem were first studied in [33] and [37], which explored
different QUBO formulations of the shortest-path problem.
Krauss and McCollum [33] further provided numerical and
empirical evidence on its performance on a quantum an-
nealer. With the same formalism, Hauke et al. [34] studied a
related problem in the context of chemistry, by again solving
a relatively large problem on a quantum annealer, providing
numerical evidence on its efficiency with increasing system
size through a polynomially (rather than exponentially) van-
ishing ground state energy gap. In the context of VQAs, Fan
et al. [52] studied the application of QAOA to the shortest-
path problem.
On the other hand, the application of near-term quantum

algorithms to MCOPs is a relatively unexplored area. Barán
and Villagra [53] provide theoretical arguments verifying
that adiabatic quantum algorithms can be applied to find
Pareto-optimal points corresponding to the solution of scalar-
ized objective functions. Most recently, Urgelles et al. [54]
applied QAOA to the multiobjective routing problem in the
context of 6G communication networks by sequentially solv-
ing single-objective problems with a lexicographic order-
ing method. After the announcement of our work, Ekstrom
et al. [55] further studied a variational approach that can
simultaneously obtain multiple points on the Pareto front.
In relation to the previous references, our work explores

the solution of the multiobjective routing problem with
QAOA through scalarization and provides an in-depth anal-
ysis on the approach’s scalability and performance. The ap-
proach can be generalized to VQAs beyond QAOA, MCOPs
beyond the routing problem, and techniques beyond linear
scalarization. To the best of our knowledge, experiments

on actual quantum hardware to solve MOOPs (described in
Section V) are new.

APPENDIX B
MULTIOBJECTIVE OPTIMIZATION
This section provides a brief review of relevant notions in
MOOPs and their solutions.
Given m objective functions fi : S → R, i = 1, . . .,m that

map objects from a state space S to real numbers, multi-
objective optimization asks for states that are optimal with
respect to all of the objectives { fi}. Depending on their forms,
the objectives generally produce competing effects with one
another, so states that are simultaneously optimal in all ob-
jectives generally do not exist. In this case, we ask instead for
a set of Pareto-optimal/efficient states, which are optimal in
the sense that no other states that improve on at least one indi-
vidual objective without deteriorating in others can be found.
The set of all Pareto-optimal states is also conventionally
referred to as the Pareto f ront, and they are always located at
the boundary of the region occupied by the set of states [2].
Depending on the form of the objectives, the resulting Pareto
front of the problem will either be convex or concave in the
objectives [2], [3], with the latter posing a higher difficulty
to solve. When the state space S is finite—as is the case for
problems we consider—this is called an MCOP. Depending
on the form of the objectives, MCOPs are generally difficult,
belonging to the class of NP-hard problems [11], [12].
Classically, the most common approach to solve MOOPs

is with scalarization techniques. Instead of optimizing the
set of objectives { fi} directly, scalarization techniques aggre-
gate them into a single-objective function, thereby converting
a multiobjective problem into a single-objective one. This
amounts to projecting an m-dimensional vector onto a line,
and finding the optimal state within it. Depending on the
forms of { fi} and the resources required to compute the ob-
jectives, different scalarization techniques are employed—
this is a well-studied subject in the literature [1], [3]. For our
purposes, we consider linear scalarization, where the final
aggregated objective is a convex sum of the m objectives

flinear(x) =
m∑
i=1

wi fi(x) x ∈ S (15)

where the weights wi are real numbers. This corresponds to
the projection of the m-dimensional vector onto a straight
line with gradient �w. A property of this procedure is that a
solution of the linearized problem is also a point on the Pareto
front, guaranteeing the Pareto-optimality of the linearized
problem’s solution. Therefore, by optimizing over different
choices of the weights, we can, in principle, build up a set of
different points in the Pareto front.
While this is one of the simplest scalarization techniques,

it preserves the quadratic form of the objectives and con-
straints in our MCOP and also allows the scalarization
weights wi to be interpreted as a priori preferences that the
decision maker can select. In the case where the objectives

3101419 VOLUME 5, 2024



Chiew et al.: MULTIOBJECTIVE OPTIMIZATION AND NETWORK ROUTING WITH NEAR-TERM QUANTUM COMPUTERS Engineeringuantum
Transactions onIEEE

result in a convex Pareto front, it can be easily shown that
every state in the Pareto front corresponds to a solution of a
linearized problem. However, this simple linear scalarization
may not be sufficient to capture the entire Pareto front if the
Pareto front is concave, where some points in the Pareto front
may never be captured as solutions to any linearized prob-
lem. This can be overcome with more advanced scalarization
techniques such as Chebyshev scalarization [1], [3], at the
expense of introducing inequality constraints. In the context
of our work, if a nonlinear scalarization scheme is used, the
resulting cost Hamiltonian may contain higher-order terms,
resulting in cost unitary circuit with greater depth due to the
need to implement higher-order gates. Alternatively, one can
consider a more general variational ansatz, and optimize over
a nonlinear cost Hamiltonian.
Finally, to optimize the scalarized objective classically,

suitable heuristic optimization algorithms are usually em-
ployed. Algorithms that work very well in practice are popu-
lation (e.g., ant colony methods) and evolutionary or genetic-
based algorithms, such as NSGA-II [1], [3].

More broadly, approaches to solveMOOPs can be broadly
categorized into the following three classes.

1) A priori methods take the preferences (e.g., the
weights/relative importance of each objective) of the
engineer/decision maker into account prior to the op-
timization and adapts the optimization process based
on this preference. Scalarization falls into this class
of methods, where the weights of the objectives are
specified in an a priori manner.

2) A posteriori methods aim to solve for either a represen-
tative subset or all possible Pareto-optimal solutions,
only taking preferences of the decision maker into ac-
count after the optimization process.

3) Interactive methods are adaptive and iterative methods
that require the continuous interaction of the decision
maker at each step of the optimization process.

As discussed in the main text, our scheme belongs to
the class of a priori or a posteriori methods, depending on
whether the choice of scalarization weights is made explic-
itly.

APPENDIX C
QUBO FORMULATION OF THE MULTIOBJECTIVE
SHORTEST-PATH PROBLEM
Following the problem statement in Section III, this appendix
details the QUBO formulation of the multiobjective shortest-
path problem. We begin by providing an encoding of the
state space of the problem in terms of binary variables, be-
fore detailing the form of the quadratic cost function to be
optimized. More detailed analyses in the context of anneal-
ing, including an extension to directed graphs, can be found
in [33].
An encoding of the problem can be achieved with |V | +

|E| − 2 binary variables representing each state x in the state
space [33]. (We will use xi’s and xi j’s interchangeably with

x to denote states when the context is clear from now on.)
The first |V | − 2 variables x1, x2, . . ., x|V |−2 correspond to
the nodes in the graph excluding the source and destination
nodes while the remaining |E| variables xi j, where (i, j) ∈ E,
correspond to the edges. With this encoding, we consider
objectives that take the following forms.

1) Node cost: Associates each node in the graph with a
cost, depending on the node’s weight Vi

Enode(x) =
∑
i∈V

Vixi. (16)

2) Edge cost: Associates each edge in the graph with a
cost, depending on the edge’s weight Ei j

Eedge(x) =
∑

(i, j)∈E
Ei jxi j. (17)

With only one objective (for instance, the minimization
of the distance between two points of a graph, which is
an edge cost), the problem reduces to a single-objective
shortest-path problem, which can be solved efficiently in
polynomial time by Dijkstra’s algorithm [56], which takes
O(|E| + |V | log |V |) steps. The presence of multiple objec-
tives constitutes an MCOP.
Equations (16) and (17) allow us to compute the cost

vector associated with a state x. However, of the 2|V |+|E|−2

possible states, not all of them represent actual paths. A valid
path is one that: 1) starts from a specified source node s, 2)
ends at a specified destination node d, and 3) has no broken
links or branches along the path from s to d. States that satisfy
these criteria are called feasible, and infeasible otherwise.
These three constraints can be enforced as quadratic penalty
terms added to our cost function, so that infeasible solutions
have higher total energies than feasible ones.

1) Source constraint: Penalizes paths that do not have
exactly one edge connected to the source node

Es(x) = −x2s +
⎛
⎝xs −

∑
j

xs j

⎞
⎠

2

(18)

where s is the index of the source node, and the sum is
over all edges that are connected to node s. This term
has a minimum value of −1, which occurs for states
where the source node is used (xs = 1), and there is
only one way of leaving the source node (the bracketed
term is equal to zero).

2) Destination constraint: Penalizes paths that do not
have exactly one edge connected to the destination
node

Ed (x) = −x2d +
⎛
⎝xd −

∑
j

xdj

⎞
⎠

2

(19)

where d is the index of the destination node, and the
sum is over all edges that are connected to node d. This
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term has a minimum value of −1, similar to the source
constraint.

3) Path constraint: Penalizes paths that do not have
exactly two edges connected to intermediate nodes:
Epath = ∑

i∈V Ei, such that for each intermediate node
i

Ei(x) =
⎛
⎝2xi −

∑
j

xi j

⎞
⎠

2

(20)

where the sum is over all edges that are connected to
node i. This has a minimum value of 0, which occurs
for states where for all intermediate nodes used (for
which xi = 1), the node degree is equal to 2.

A solution of the multiobjective shortest-path problem is
then a path x that achieves the minimum of the penalties (18),
(19), and (20) and is Pareto-optimal with respect to the node
and edge costs.
As mentioned in the main text, the connectivity of the

graph associated with the sum of the path constraints is pre-
cisely that of the problem’s middle graph, which we review
and exploit in Appendices D-B and D-C, respectively. Fur-
thermore, the constraints (18) and (19) only incur a small
number of linear and quadratic terms (dependent on the local
connectivity of the source and destination nodes), which we
safely ignore for conciseness.

APPENDIX D
DETAILS ON GRAPH THEORY, THE MIDDLE GRAPH,
AND THE PROOF OF (12)
Here, we list down notions in graph theory used in the re-
source estimation part of the main text and provide a proof
for (12).
As mentioned in Section III, the correspondence GH =

M(G) implies that the solution of a shortest-path problem
defined on a network G can be mapped to the ground state
of a Hamiltonian/Ising modelH with graphGH = M(G). Ig-
noring the quadratic terms resulting from the source and des-
tination nodes, which only contribute a negligible constant
overhead, (12) implies that the implementation of the cost
unitary is efficient, depending only linearly on the maximum
degree of the network G.

A. NOTIONS IN GRAPH THEORY
For an undirected graph G = (V (G),E(G)), the degree of
a vertex u ∈ V (G), denoted deg(u), is the number of edges
that are incident to the vertex. The maximum degree, de-
noted �G, is the maximum of its vertices’ degrees �G =
maxu∈V (G) deg(u). The degree sum formula relates them to
the number of edges of G

|E(G)| = 1

2

∑
u∈V (G)

deg(u) ≤ 1

2
|V (G)|�G. (21)

The line graph of G = (V (G),E(G)) is the graph L(G) =
(E(G),E ′) with the edges of G as vertices, such that they are

adjacent if and only if their corresponding edges are incident
on the same vertex. The maximum degrees of G and L(G)
are related by

�L(G) ≤ 2�G − 2. (22)

The middle graph of G = (V (G),E(G)) [39] is the graph
M(G) = (V (G) ∪ E(G),E ′), with vertices u, v that are adja-
cent if either of the following statements applies:

a) u is a vertex in G and v is an edge in G incident to u;
b) u and v are edges in G that are both incident on the

same vertex.

The endline graph of G, denoted G+, is defined as the
graph obtained from G by adding to each of its nodes an
end-vertex (i.e., an edge that is connected to a single node).
The attachment of an end-vertex to each node immediately
implies that

�G+ = �G + 1. (23)

An edge coloring of a graph G is an assignment of colors
to its edges, such that no two edges sharing a vertex can have
the same color. The edge chromatic number/chromatic index
of G, denoted χ ′(G), is the minimum number of such colors
needed. Vizing’s theorem relates the edge chromatic number
of G with the maximum degree for any graph

�G ≤ χ ′(G) ≤ �G + 1. (24)

B. PROPERTIES OF THE MIDDLE GRAPH
We introduce the following properties on M(G) that will be
used.

1) The number of vertices and edges of M(G) are,
respectively,

|V (M(G))| = |V (G)| + |E(G)| ≤ 1

2
|V (G)|(2 +�G)

(25)

|E(M(G))| = 1

2

∑
u∈V (G)

deg(u)2 ≤ 1

2
|V (G)|�2

G. (26)

2) The middle graph and the endline graph of the line
graph of G are isomorphic [39]

M(G) ∼= L(G)+. (27)

This immediately implies that their maximum degree
is also equal

�M(G) = �L(G)+ . (28)

C. PROOF OF χ′(M(G)) ≤ 2�G

The following chain of (in)equalities is true:

χ ′(M(G)) ≤ �M(G) + 1 (29)

= �L(G)+ + 1 (30)

= �L(G) + 2 (31)
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TABLE 1. Network parameters

≤ 2�G (32)

where applying Vizing’s theorem yields the first inequality,
M(G) ∼= L(G)+ yields the second equality, (23) yields the
third inequality, and (22) yields the final equality.

APPENDIX E
QUBO FORMULATION OF THE NETWORK ROUTING
PROBLEM
Following Section III and Appendix C, this section details
how the objectives of the multiobjective network routing
problem (path loss, node delay, data rate, and bit-error) are
formulated in our work, in particular how each objective can
be modeled as either a node, (16), or edge, (17), cost to be
minimized. Network parameters used to generate problem
instances considered in numerical simulations and experi-
ments on quantum computers are summarized in Table 1.

A. NODE DELAY
The node delay quantifies the total time delay incurred by
intermediate processing steps at relay stations along a sig-
nal’s trajectory from sender to receiver and can be written as
a linear objective function

E�(x) =
∑
i∈V

�ixi (33)

where�i is the time delay incurred by node i. In our numer-
ical simulations, we further assume that every node in the
network incurs the same node delay of �i = � = 1ms, so
that the node delay is proportional to the number of nodes
traversed by the signal.

B. PATH LOSS
The path loss metric accounts for the loss in the amplitude
of the electromagnetic signal during transmission between
stations, which increases with distance traveled [57], [58].
Between nodes i and j, it is given by

Li j = PT
PR

=
(
4πdi j
λc

)α
(34)

where PT = 50W is the power at the transmitting station,
PR the power at the receiving station, α = 2.7 the path loss
exponent (typically between 2 in free space and 4 in a lossy
environment), di j the distance between nodes i and j, and
λc = 1.2m the carrier wavelength (resulting in the carrier

frequency of fc = 250MHz, in the VHF regime). The result-
ing total path loss can be written as the sum of linear terms
of the form

EL(x) =
∑

(i, j)∈E
Li jxi j. (35)

C. SYMMETRIZED BIT ERROR RATE
The bit error rate accounts for the probability of introducing
an error into the message during the signal processing phase
at a node. This error takes the shape of bit flip in the message
and depends on the power of the signal and the noise at the
receiving node

pi j = 1

2

(
1 −

√
Ri j

Ri j + 1

)
(36)

where Ri j = PR,i j
log2(M)PN,i j

, M = 4 for QPSK modulation, and

PR,i j = PT (
λc

4πdi j
)α . We model the noise at each node PN,i

to follow a normal distribution with mean μ = −90 dBm
and standard deviation σ = 10 dBm, and additionally aver-
age (and thus symmetrize) the noise at neighboring nodes,
i.e., PN,i j = 1

2 (PN,i + PN, j ). This yields a linear cost function
associated with the connecting edge of the form

EBER =
∑

(i, j)∈E
pi jxi j (37)

so that the total error probability is the sum of the individual
error probabilities for each selected edge. It is a first-order
approximation of the exact total error (equivalent to assum-
ing errors do not occur twice on the same bit).

D. DATA RATE
The data rate metric quantifies the maximum data transfer
rate that can be achieved across a transmission path. The
Nyquist data rate for noiseless signals can be described by
�i j = 2Bi jlog2(M), with M = 4 the modulation level for
QPSK and Bi j the bandwidth of the signal transmitting be-
tween nodes i and j. We model the total available data rate
between two nodes to be the base rate of 5Mb/s minus the
utilized data rate, such that it results in total available data
rates that are uniformly distributed between 0 and 5Mb/s, in
steps of 50 kb/s.
The link with the minimum data rate determines the over-

all data rate along a transmission path, forming a bottle-
neck. In other words, we wish to penalize transmission paths
with low minimum data rates. To express this metric in
QUBO form as a linear sum of edge costs, we use a negative
exponential function to weight the data rates �i j

E� =
∑

(i, j)∈E
xi j · e−β�i j (38)

so that suboptimal links with low data rates are penal-
ized heavily. Here, β is a graph-dependent coefficient that
should be chosen such that for any choice of transmis-
sion path x, the dominant contribution to E� corresponds
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TABLE 2. Node Properties and Parameters of the Fully Connected
Network

TABLE 3. Edge Properties and Parameters of the Fully Connected
Network

TABLE 4. Node Properties and Parameters of the Square Lattice Network

TABLE 5. Edge Properties and Parameters of the Square Lattice Network

to the minimum data rate along the path. It can be esti-
mated by either considering the link in G with the smallest
possible data rate or by determining the value of c(β ) =∑

x∈Paths
(
e−βR

x
min −∑

j �=min e
−βRxj

)
by sampling over dif-

ferent paths. Rxmin is the minimum data rate of path x, and Rxj
are the data rates on all other edges in x.

APPENDIX F
SPECIFICATIONS OF PROBLEM INSTANCES IN QPU
COMPUTATIONS
This section specifies the parameters used to generate
problem instances solved in Section V with the IonQ
quantum computer, with the four objectives defined in
Appendix E. Nodes of the network are distributed within
a (1000m × 1000m) area for the fully-connected networks
and (1000m × 2000m) for the square lattice networks.

A. FULLY CONNECTED NETWORK
The fully-connected network is a 4-node graph with five
feasible solutions, of which 4 are Pareto-optimal. In total, 8
qubits are required to encode this problem.

B. SQUARE LATTICE NETWORK
The square lattice network is a 6-node graph with 4 feasi-
ble solutions, of which 3 are Pareto-optimal. 11 qubits are
required to encode this problem.

APPENDIX G
ADDITIONAL NUMERICAL RESULTS ON PARAMETER
INITIALIZATION
In this section, we briefly verify the validity of the linear ramp
parameter initialization scheme used in our numerical simu-
lations, which is a heuristic choice that linearly ramps up γ ’s
and ramps down β’s, based on the analogy between QAOA
and quantum annealing [27]. Fig. 6 displays numerical scal-
ing results comparing this initialization (labeled as “linear
ramp”) with random initializations for different values of
p. The number of random initializations is scaled as 100p,
which in our numerical examples is sufficient to capture the
global minima in most cases. The best result from the 100p
random initializations (labeled as “random max” to refer to
the maximum approximation ratio achieved) can, therefore,
be taken as the global optimum of the problem. For illustra-
tion, the problem instance is chosen to be a 5-node triangular
lattice with 1 column and 3 rows, an 8-qubit problem.
We observe that the linear ramp initialization, indeed,

greatly outperforms random sampling on average—both the
approximation ratio and success probabilities approach the
global optima in a monotonic fashion as p increases, com-
pared to an average random initialization run, which saturates
and even deteriorates for large p. We will, therefore, proceed
to conduct all experiments presented in this work with the
linear ramp initialization, unless stated otherwise.

APPENDIX H
SPECIFICATION OF PROBLEM INSTANCE OF FIG. 2
Table 6 provides the complete specification of the triangular
lattice graph and the multiobjective cost function for the
problem instance used in Fig. 2. That is, each of the four
objective functions takes the form

ECi (x) =
∑
i

hixi +
∑
(i, j)

Ji jxix j (39)

where hi corresponds to node weights and Ji j corresponds to
edge weights with values as assigned in the table.

APPENDIX I
FRACTION OF FEASIBLE VERSUS INFEASIBLE
CONFIGURATIONS
Here, we provide an intuitive explanation for the observation
made in Section II-B that the ratio of the number of feasible
solutions to the number of infeasible solutions is a decreasing
function of the network size. We will illustrate this from
the standpoint of the constraint described by (20), which
enforces that any intermediate vertex used in a path through
the network must have degree 2. All feasible solutions must,
as a necessary condition, satisfy this particular constraint.
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FIGURE 6. Scaling of the approximation ratio and success probability
with the number of layers for different initializations, for one specific
problem. To produce the random initializations curves, we perform 100p
random initializations and optimize with QAOA. The lighter region
displays a standard deviation around the mean. The average result from
100p random initializations is labeled as “random mean,” the best result
from the 100p random initializations is labeled as “random max” (to
refer to the maximum approximation ratio achieved), and the (one)
result from the linear ramp initialization is labeled as “linear ramp.”

Our argument will be based on how we can construct infea-
sible configurations that violate this constraint, starting from
feasible ones.
Suppose we have a feasible configuration that uses inter-

mediate vertex j (implying x j = 1), with the path entering
vertex j through the edge (i, j), and leaving through the
edge ( j, k) (implying that xi j = x jk = 1). There are multiple
infeasible configurations in the state space that can be ob-
tained from this feasible configuration by simply flipping the

TABLE 6. Weights of Cost Terms of the Triangular Lattice Problem
Instance of Fig. 2 for All Four Objectives, Labeled According to Their
Corresponding Edges or Nodes

value of one variable. For instance, if we set x j = 0 in the
example before, and leave all other variables unchanged, we
have an infeasible configuration that describes a path using
the edges (i, j) and ( j, k), but which never enters the vertex
j. Similarly, if we instead set xi j = 0, and leave everything
else unchanged, we would have a path that leaves vertex j,
but never enters it. If there are more than just two possible
paths in or out of vertex j, we could also have solutions where
the degree of the vertex is larger than two, which would also
represent an infeasible configuration.
The examples just discussed would violate the constraint

of (20), and hence, they represent infeasible configurations.
As we see, for every feasible configuration, we can mini-
mally “perturb” it by flipping the value of individual vari-
ables to obtain infeasible configurations. However, we could
build “even worse” infeasible configurations by introducing
such perturbations in multiple locations simultaneously, not
only around a single vertex or edge. The number of combina-
tions of infeasible configurations we can generate in this way
grows exponentially in the number of variables (i.e., in the
number of vertices and edges). We, therefore, conclude that
the fraction of feasible to infeasible configurations shrinks
exponentially in the problem size.
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