@IEEE Transactions on,
Quantum Information uantumEngineering

Received 12 November 2023; revised 12 February 2024; accepted 2 March 2024; date of publication 6 March 2024;
date of current version 18 April 2024.

Digital Object Identifier 10.1109/TQE.2024.3373903

Application of Quantum Recurrent
Neural Network in Low-Resource
Language Text Classification

WENBIN YU'!-2:4® (Member, IEEE), LEI YIN'®,
CHENGJUN ZHANG?3-4® (Member, IEEE), YADANG CHEN?
AND ALEX X. LIU5® (Fellow, IEEE)

!'School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

2Nanjing University of Information Science and Technology, Wuxi Institute of Technology, Wuxi 214000, China

3School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

“#Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information
Science and Technology, Nanjing 210044, China

3Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center
in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

(Member, 1IEEE),

Corresponding author: Chengjun Zhang (e-mail:zhangcj5 @ gmail.com).

This work was supported in part by the National Natural Science Foundation of China under Grant 62071240, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20231142, and in part by the Innovation Program for Quantum Science and
Technology under Grant 2021ZD0302901.

ABSTRACT Text sentiment analysis is an important task in natural language processing and has always
been a hot research topic. However, in low-resource regions such as South Asia, where languages like
Bengali are widely used, the research interest is relatively low compared to high-resource regions due to
limited computational resources, flexible word order, and high inflectional nature of the language. With the
development of quantum technology, quantum machine learning models leverage the superposition property
of qubits to enhance model expressiveness and achieve faster computation compared to classical systems.
To promote the development of quantum machine learning in low-resource language domains, we propose
a quantum—classical hybrid architecture. This architecture utilizes a pretrained multilingual bidirectional
encoder representations from transformer (BERT) model to obtain vector representations of words and com-
bines the proposed batch upload quantum recurrent neural network (BUQRNN) and parameter nonshared
batch upload quantum recurrent neural network (PN-BUQRNN) as feature extraction models for sentiment
analysis in Bengali. Our numerical results demonstrate that the proposed BUQRNN structure achieves a
maximum accuracy improvement of 0.993% in Bengali text classification tasks while reducing average
model complexity by 12%. The PN-BUQRNN structure surpasses the BUQRNN structure once again and
outperforms classical architectures in certain tasks.

INDEX TERMS Natural language processing (NLP), quantum machine learning, quantum recurrent neural
network.

L. INTRODUCTION

As one of the classical subfields of machine learning [1],
[2, pp. 14-16], [3, pp. 5-25], natural language processing
(NLP) [4], [5] has been a hot research topic in recent years.
Text sentiment analysis (SA) [6], as a subtask of NLP, aims to
classify text into positive and negative sentiment categories
by detecting the polarity of the text. SA has been applied in
various domains, including lexicon-based SA [7], machine-
learning-based SA [8], and deep-learning-based SA [9,
pp- 2-31]. Remarkable results have been achieved in SA for

high-resource languages, such as English and Chinese [10],
[11]. However, due to the complexity of language grammar,
limited usage, and expensive computational resources, SA
in low-resource languages has not been extensively explored.
With the development of the Internet, a large influx of textual
comments has made SA in low-resource languages feasible.
In general, effective SA tasks can be achieved by combining
good word-embedding models with efficient feature extrac-
tion models. In the case of studying word embeddings for
Bengali texts, a significant challenge lies in capturing the rich

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024

2100213

https://orcid.org/0000-0003-4786-4036
https://orcid.org/0009-0003-7905-4959
https://orcid.org/0000-0002-4458-5843
https://orcid.org/0000-0002-4448-2617
https://orcid.org/0000-0002-6916-1326

@IEEE Transactions on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

expressions of sentiment present in the Bengali language.
Due to the complexity of grammar rules, the extraction of
features for sentiment classification becomes intricate as
sentiment information may be expressed differently in sen-
tences. The emergence of pretrained language models [12],
[13] has improved feature extraction in Bengali sentiment
classification tasks, as they can effectively capture sentiment
information within Bengali sentences by learning rich lan-
guage representations and contextual understanding.

Despite the positive role of pretrained language models
in Bengali sentiment classification tasks, traditional feature
extraction models still face efficiency challenges. Quantum
deep learning [14], [15] combines the concepts of quantum
computing and deep learning, leveraging the parallelism ad-
vantage [16] of quantum computing to accelerate the train-
ing and inference processes of models. By utilizing quan-
tum neural networks (QNNs) and quantum gate operations,
quantum deep learning models can handle complex senti-
ment classification tasks more efficiently [17]. A quantum—
classical hybrid recurrent neural network (QRNN) model
based on the variational quantum circuit (VQC) core was
proposed in [18]. Such networks have been successfully ap-
plied as feature extractors in text classification tasks for high-
resource languages, demonstrating better performance com-
pared to their classical counterparts. Considering the char-
acteristics of low-resource languages, this sparks the idea of
using quantum algorithms to improve low-resource text SA
tasks. However, previous studies have shown that QRNNs
may struggle to effectively capture semantic information and
may even result in information loss when dealing with longer
sequences. The current challenges can be summarized as
follows.

1) Due to the limitations of current noisy intermediate-
scale quantum (NISQ) devices [19], it is necessary to
match the dimensionality of the input sequence with
the number of qubits. Previous QRNN models em-
ployed parameter-sharing linear layers to reduce the
dimensionality of the input data, which may poten-
tially result in the loss of semantic information to
some extent.

2) Previous QRNN models did not optimize the VQC
specifically but instead utilized parameter-sharing lin-
ear layers for optimization across all the VQCs.

In response to the first situation mentioned above, we
designed and utilized a batch uploading quantum neural
network (BUQNN), which is essentially a structure that
incorporates VQCs. The BUQNN divides the input feature
sequence into batches and loads them into the circuit to
obtain the complete semantic information. We refer to the
QRNN model that utilizes this BUQNN as the batch up-
loading quantum recurrent neural network (BUQRNN). By
adopting this approach, we can alleviate the semantic infor-
mation loss caused by previous methods with an § number
of qubits.

2100213

Regarding the second situation mentioned, in [20], a
nonparameter-sharing linear layer was applied after the VQC
to enhance the expressiveness of the circuit. We followed this
idea and made improvements by using nonparameter-sharing
linear layers both before and after each VQC. This allows
for independent optimization of each VQC, which is advan-
tageous for the model.

Our contributions are as follows.

1) We proposed a BUQRNN specifically designed for se-
quential data. This method requires only an § number
of qubits and mitigates the loss of semantic information
caused by previous approaches.

2) We introduced a parameter nonshared batch upload
quantum recurrent neural network (PN-BUQRNN)
that employs independent linear layers for each VQC,
enabling independent optimization of each VQC in the
model structure.

3) For the first time, we applied quantum algorithms to
address sentiment classification tasks in low-resource
languages, such as Bengali, which holds significant
importance for advancing the development of quantum
in low-resource languages.

The rest of this article is organized as follows. Section II
focuses on the text classification process and discusses word
embedding techniques and the QRNN for low-resource lan-
guage text classification. Section III presents the specific
implementation approach to address the aforementioned is-
sues. Section IV describes the numerical simulation results.
Finally, Section V concludes this article, providing insights
into future directions and prospects.

Il. RELATED WORK

Sazzed et al. [21] employed a combination of multilin-
gual bidirectional encoder representations from transformers
(MBERT) embeddings and RNN for text classification tasks
in Bengali. In this section, we will introduce an improved
quantum—classical hybrid model based on its architecture.
We will discuss various methods for text classification in the
low-resource language domain and provide an overview of
Bengali-specific word-embedding techniques and the QRNN
model.

A. WORD EMBEDDING

In the domain of high-resource languages, there are generally
two methods for generating word vectors: contextual word-
embedding techniques and noncontextual word-embedding
techniques. BERT, as a context-based pretrained language
model, can also be employed for word embedding. In [22],
BERT is utilized to obtain word vectors for English text,
followed by feature extraction using the quantum temporal
convolutional network (TCN). The results demonstrate the
high performance of BERT while also indicating the feasi-
bility of related quantum models in text classification tasks.
Similar to the high-resource language domain, low-resource
languages can be categorized into two main types in terms

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on

of word-embedding methods. The first type is noncontex-
tual word-embedding methods. Al-Amin et al. [23] used the
Word2vec model to generate Bengali word vectors. However,
Word2vec does not handle subword information, such as af-
fixes, and does not consider spelling characteristics of words.
In contrast to Word2Vec, GloVe [24] considers both local
context and global statistical information to generate word
vectors. FastText [25], an open-source word-embedding and
text classification library developed by Facebook AI Re-
search, differs from Word2Vec and GloVe in that it consid-
ers subword information within words. In contrast to non-
contextual word embeddings, the second type, contextual
word embeddings, takes into account the context of words in
specific sentences or texts, enabling better capture of word
semantics. MBERT [26], as a multilingual version of the
BERT model, has been pretrained on Wikipedia texts from
104 languages. An important feature of MBERT is its bidi-
rectional self-attention mechanism using the Transformer
model, which allows for a better understanding of the com-
plex semantics of words within their context. Experimental
results [21] demonstrate that compared to traditional word
embeddings, such as FastText and GloVe, MBERT performs
better in Bengali word embeddings. In addition to employing
classical methods for text word embedding as mentioned
above, Li et al. [27] propose a novel technique for text word
embedding using a quantum language model. The results
indicate that word vectors mapped by the quantum language
model can achieve performance comparable to their clas-
sical counterparts in downstream tasks. In this article, we
will choose MBERT as the word embedding model for Ben-
gali text. The sentence vector x can be represented as x =
(x1, x2, x3, ..., xy) after tokenization, where x; represents the
tth word in the sentence. After passing through the MBERT
model, the corresponding BERT vector representation can be
obtained as follows:

MBERT (x1, X2, x3, ..., %) = (e1, ez, e3,...,¢). (1)

Here, each e, represents the MBERT vector representation of
the sentence with index j at time ¢.

B. QUANTUM-CLASSICAL HYBRID RECURRENT NEURAL
NETWORK

Quantum long short-term memory (QLSTM) [28] is a varia-
tion of the QRNN that incorporates a VQC [29] to construct
quantum-gated units. The VQC adjusts the initial states of
qubits through a series of rotation gates, performs quantum
entanglement operations using a series of CNOT gates [30],
and finally collapses them into classical states through mea-
surement operations. The parameters of the rotation gates
need to be updated through gradient descent. Fig. 1 illus-
trates the structure of the VQC included in the QLSTM
network. In this case, we assume that the circuit is sim-
ulated with four qubits. The input word vector sequence
U = (v,l, v,z, ..., u"), where v; is composed of the current
MBERT output ¢; and the previous hidden layer feature
h;_1. Initially, a linear layer is used to match the number of

VOLUME 5, 2024

uantumEngineering
7 23
v2 —0) — Ry — R, — — M1 — v?
vi —0) — Ry —R; — i — v}
V(o)
—0) — Ry —|R; — — M3 —
pn-2 vp2
‘ —10) —Ry|— Rz — — M4 —
e (7
— =
(a) (b) (o)

FIGURE 1. VQC structure used in QLSTM consists of (a) an encoding
layer, (b) a variational layer, and (c) a measurement layer. The encoding
layer is composed of a series of rotation gates used for encoding.

qubits, and the encoding layer utilizes angle encoding [31]
to embed the input sequence into the circuit. The variational
layer optimizes the rotation angles of the qubits on the Bloch
sphere [32] using a series of rotation gates with updatable
parameters. The measurement part employs Pauli-Z gates to
measure the states of qubits. Measuring in the Pauli-Z basis

1 0 S
o, = 0 1 means projecting the state onto one of the

eigenstates of the Pauli-Z matrix, namely, |0) or |1). The
measured classical bits are then expanded to match the size of
the hidden layer through another linear layer. However, when
I > n (where n is the number of qubits and / is the length
of the feature sequence), the current approach typically re-
duces the input dimensionality to match the number of qubits
through a linear layer, which may result in the loss of seman-
tic information to some extent. We draw inspiration from a
quantum algorithm for image classification on the MNIST
handwritten dataset [33], which differs from the previous
data reuploading approach [34]. The former method slices
the image horizontally and uploads the value of each pixel to
the quantum circuit, while the latter repeatedly uploads the
feature vector to the circuit. Due to the limitations of current
NISQ devices, the latter approach requires significant com-
putational resources for processing high-dimensional feature
sequences, making it difficult to implement. The former ap-
proach, by batch uploading, reduces the dependence on the
number of qubits, and fully loads the feature sequence into
the circuit. We aim to address the first issue mentioned in the
introduction of traditional QRNN using this method.

In addition, the parameters of the linear embedding layer
before each VQC and the linear expansion layer after each
VQC in the traditional QRNN are shared. Taking QLSTM
as an example in [28], the model uses four VQCs to replace
the classical network layers, and these four VQCs share the
embedding and expansion layers. However, this shared linear
layer cannot be effectively optimized for different VQCs.
In [20], nonshared linear layers with separate parameters
were added after each VQC in QLSTM to achieve indepen-
dent optimization of the circuits. We were inspired by this
and made improvements by incorporating nonshared param-
eter linear layers before and after each VQC, along with the
aforementioned batch uploading approach, to achieve more

2100213

@IEEE Transactions on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

Bengali Text MBERT
2 ~.. Sentence Embedding
" \\ | ’a‘ ~~\\
," composition of \\‘ Vector | 4 \‘
BUQNN <«—— v / \
Training/Test Tk ¥ k¥ UV Oa¥
Data
v Batch Uploading Parameter Non-Sharing \/ \/ \
Split the feature vector at time t into p blocks P:\l
and upload them in batches. BUQRNN - = BUQNN,; BUQNN, BUQNN; BUQNN,
BUQRNN ’
U(block ;) —»V(8;) —»U(block ,) =V (8,) -+~ U(block ,) —»V(8,) . - | ! !
~aa \V4 \VJ \/ \/
Fully Connected
Here U represents the encoding layer, and V Wtk ‘m‘\l ‘m\l PR ‘m
represents the variational layer. ! Laxer
\ 7
3, ’
N A Sentiment \ Here VQCrefers to a circuit that utilizes the J
N - Class *._ method of batched uploading. L

FIGURE 2. Framework includes two red dashed sections, showcasing the proposed structures designed to address the mentioned issues.

comprehensive circuit optimization and further improve
the performance of the QRNN.

1ll. QRNN WE PROPOSE

Regarding the first issue mentioned in Section I, in Sec-
tions III-A and III-B, we demonstrate the replacement of
classical neural networks in classical RNNs with a BUQNN
and apply it to the QRNN, proposing a BUQRNN based on a
classical-quantum hybrid framework. Unlike the traditional
QRNN, which requires matching the number of qubits to
the feature vectors, our approach provides universality and
effectiveness for handling higher dimensional feature vec-
tors. The BUQNN divides input features into batches ac-
cording to a predefined number of qubits and passes them
through a VQC, forming an n-layer encoding-variational hy-
brid structure. This approach allows for processing sequence
data without reducing the dimensionality of feature vectors
and does not require a large number of qubits to handle the
data. Addressing the second issue mentioned in Section I,
Section III-C provides a specific solution. The workflow
for the sentiment classification task in Bengali language is
shown in Fig. 2. The input text is transformed into word
embeddings using MBERT, and then, the word vectors are
fed into the proposed BUQRNN or PN-BUQRNN for fea-
ture extraction. Finally, the extracted features are input into
a fully connected layer for classification. We will now de-
scribe the implementation details of the BUQRNN and the
PN-BUQRNN.

A. BATCH UPLOADING QUANTUM NEURAL NETWORK

In the QNN, the encoding gate, decoding gate, and varia-
tional gate are further divided into encoding layers, decoding
layers, and variational layers, respectively. The selection of
encoding gates is based on the chosen encoding method and
the number of input features. The optimal choice of encoding
method is crucial for successful learning of the QNN model.
We implement the BUQNN using a multilayer encoding-
variational structure. The left portion of Fig. 2 illustrates the
BUQNN structure that we employ. We divide the features

2100213

A B R
A&
A-EE
A-E-E

FIGURE 3. Encoding layer circuit and the variational layer structure that
we use.

Uy = (v}, v2, ..., V") into batches based on the number of
qubits, such that the number of batches is n/N = p. Here,
N represents the number of qubits, and n represents the di-
mensionality of the input word vector features. This assumes
a scenario where the division is evenly divisible. If it is not
divisible, the number of batches p needs to be increased by 1,
and the remaining space is padded with zero elements. After
the division, v; = (batchy, batchs, . . ., batch,), where batch
is a vector containing N features. In this demonstration, we
use four qubits, and there is one variational layer between
any two encoding layers. This restriction is just a design
choice, and alternative design schemes can be chosen. Each
feature batch undergoes angle encoding embedding circuit
and then a variational layer. One feature batch is uploaded to
the circuit at a time, and after loading p times, all the feature
vectors can be embedded in the circuit. It is important to note
that the essence of the BUQNN is a VQC using batch upload-
ing, which differs from the structure of the VQC included in
traditional QLSTM networks. It can directly embed feature
vectors into the circuit without the need for additional linear
layers. The BUQNN with linear layers will be mentioned in
Section III-D of this chapter.

Fig. 3 illustrates the encoding layer circuit and the varia-
tional layer structure that we utilize. In the simulation with n
qubits, let us consider the example of a batch vector batchl =
(!, v2,...,vN), where 1 <i < N.For each v/, we generate
angles 6; | = arctan(v!) and 6; , = arctan(vfz), resulting in a
total of 2i rotation angles. 6; | is applied using the Ry(6; 1)

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on,
uantumEngineering

gate for rotation around the y-axis, while 6; is applied using
the Rz(6; ») gate for rotation around the z-axis. The encoded
data are in a quantum state and undergo a series of unitary
operations, including multiple cNOT gates and single-qubit
rotation gates. R(0, «, y) represents a general parameterized
single-qubit rotation gate and can be expressed as

¢ cos(0)) €% sin(6;))

—e'% sin(6))

R(61, 02, 03) = < e~ 2 cos(0;)

Assume that a quantum circuit consists of four qubits.
The aforementioned process of quantum state changes can
be summarized as follows.

1) First, the initial state of four qubits in the quantum
circuit is denoted as |yg), which is typically a pure
state with all the qubits in the ground state |0), i.e.,
[0) = 0000).

2) Next, batch; is encoded into |y) to form a new quan-
tum state |v;). The encoding operation uses Ry and
Rz gates, the rotation angles of which are determined
by the elements in batch,. We denote this operation
as U (Qat_éh]), so the quantum state becomes |y|) =
U(batchy)|yr).

3) In this step, additional quantum operations, V (0;), are
applied to |¥) to introduce more complex quantum
correlations, generating a new quantum state /() =
V(O)|Y1) = V(01)U(e)|vo). Here, V(6y) is a varia-
tional layer controlled by the parameter 6.

4) Repeat steps 2 and 3, encoding (bat_éhg, . bat_éhp)
into the respective quantum states and perform-
ing unitary operation V(6;) after each encoding,

where i € 1,2, ..., p. The resulting series of quantum
states are [Y), ..., |¥p) and their variational states
[¥5), ..., [¥,). For example, for batchy, the encoded
state is

[v2) = U (barcha) 147)

= U (barchy) Vo)) (batchy) o)

then applying the unitary operation of the vari-
ational layer V(6,) results in [y) = V(62)[¢) =
V (62)U (batchy)V (01)U (batchy) o).

5) Finally, perform the measurement operation M on the
quantum state |1//1/,), and compute the expectation value
of the measurement result, which is usually obtained
by random sampling in the Pauli basis. The expec-
tation E can be represented as E = WHM Wl’,), and
the obtained expectation value is used for subsequent
calculations.

B. BATCH UPLOADING QUANTUM LONG SHORT-TERM
MEMORY (BUQLSTM)

Similar to QLSTM, we replace the classic neural network
in LSTM with the aforementioned BUQNN. Fig. 4 shows
the BUQLSTM network we proposed, which consists of four

VOLUME 5, 2024

Jt)

— D o

Ct—l X

¢ tgl{h
|
‘ X

e

sigmoid Sigmoid | tanh | sigmoid
‘hm+@ s, g, paw, A

(ef)
e

FIGURE 4. Our proposed BUQLSTM.

BUQNN:Ss. The expectation values output by the BUQNN are
combined in the long short-term memory (LSTM) network
after passing through nonlinear activation functions, such as
tanh and sigmoid, to update the values of various gating units.
The calculation process of four BUQNN units is as follows:

Ji = o (BUQNNy) ()
iy = o (BUONN;) (€)]
¢; = tanh(BUQNN,))
szft*ct—l‘f‘ir*gz ()
o; = 0 (BUQNN,) (6)
I’lt = Or * tanh(Ct). (7)

The BUQLSTM that we propose uses four BUQNN:S,
represented by BUONN,,(n € f, i, c, 0). Through the above
calculations, the LSTM network can obtain the hidden state
h; and the cell state ¢, at time step 7.

Algorithm 1 outlines the numerical computation process
of BUQLSTM. Initially, within each gate unit, the input
vector “inputs” is partitioned into several “batch” vectors.
Subsequently, these vectors are sequentially embedded into
the quantum circuit following the encoding-variational order.
The “weights” will be updated as part of the subsequent op-
timization process. Finally, the expectation values of Pauli-Z
operators on the relevant qubits are calculated, and the results
are returned in the form of a list for further computations.
Here is the explanation for the four BUQNN modules used
in BUQLSTM.

1) BUONN;: BUQNN;/ obtains the vector f; by combin-
ing a sigmoid function and maps the expectation value
to the interval [0,1]. f; is a crucial component of the
BUQLSTM network, with its output shown in (2). It
operates on ¢;_1 based on f; * ¢;—1, meaning that it
decides whether to “forget” or “retain” the correspond-
ing elements from the previous cell state ¢,_. For in-
stance, values of 1 or 0 indicate that the corresponding
elements will be entirely retained (forgotten). Typi-
cally, the f; vector affects cell state values between 0
and 1, indicating that only part of the information will

2100213

@IEEE Transactions on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

{ ht— 1

Ca—
0] ‘_ o

Sigmoid Sigmoid tanh
: |

T

/

FIGURE 5. Our proposed BUQGRU.

be retained. Its function is vital for learning and mod-
eling time dependence.

2) BUQNN; and BUQNN,: First, the BUQNN; module
processes the input data v; and outputs a set of values
between 0 and 1 through a Sigmoid function, deter-
mining which information can be added to the current
cell state. Simultaneously, the BUQNN, module also
processes the same input data and generates a new cell

state candidate g, through a tanh function [as shown
in (4)]. Equation (5) combines the output of the input
gate with the forget gate f;, the cell state of the previous

moment ¢;_1, and the new cell state candidate gt, and
the resulting vector will be used to update the current
cell state. In other words, the output of the input gate (a
real number between 0 and 1) determines how much of
the new information cN, is added to the current cell state
¢;. This mechanism allows LSTM to better remember
long-term dependencies, avoiding the vanishing gradi-
ent problem of ordinary RNNs.

3) BUQNN,: The goal of BUQONN, is to generate the
output of the cell. In (6), O, obtains its output through
the sigmoid function after obtaining the expectation
value from BU QNN,. In (7), the output o; is multiplied
elementwise with the output of the update gate c;
(which is processed through a tanh activation func-
tion), generating the new hidden state vector A, which
will be passed to the next time step for calculation.

C. BATCH UPLOADING QUANTUM GATED RECURRENT
UNIT (BUQGRU)

Above, we have detailed the structure of BUQLSTM. Similar
in principle to BUQLSTM, in this section, we only provide
a brief introduction to the BUQGRU network. Fig. 5 depicts
our BUQGRU network, where we replace the classical neural
network of the gated recurrent unit (GRU) model with the
BUQNN. Compared to BUQLSTM, it only requires three
BUQNNS. The current input ¢’; and the previous moment’s
h;— are fed into the network. The reset gate, composed of

2100213

Algorithm 1: Algorithm for BUQLSTM.

BUQLSTM(INPUT_SIZE, HIDDEN_SIZE)
inputs = concatenate(input_size, hidden_size)
forget gate : device; = device(backend, wires = wy)
#circuit_forget(inputs, weights):
split inputs intop batches
for batch in p:
encoding(batch, wires = wy)
variation(weights £, Wires = wy)
return ([Expectation(PauliZ(wire) for each wire])
input gate : device; = device(backend, wires = wy;)
#circuit_input(inputs, weights):
split inputs into p batches
for batch in p:
encoding(batch, wires = w;)
variation(weights;, wires = w;)
return ([Expectation(PauliZ(wire) for each wire])
update gate : device, = device(backend, wires = w,)
#circuit_update(inputs, weights):
split inputs into p batches
for batch in p:
encoding(batch, wires = w,)
variation(weights ., wires = w,)
return ([Expectation(PauliZ(wire) for each wire])
output gate : device, = device(backend, wires = w,)
#circuit_output(inputs, weights):
split inputs into p batches
for batch in p:
encoding(batch, wires = w,)
variation(weights,, wires = w,)
return ([Expectation(PauliZ(wire) for each wire])

BUQNN, and the sigmoid activation function, determines
how much of the previous moment’s hidden state informa-
tion should be used when calculating the current candidate
hidden state. The update gate, comprised of BUQNN, and the
sigmoid function, determines how much of the previous mo-
ment’s hidden state information should be preserved when
calculating the current hidden state. Next, BUQNN, com-
bined with the tanh activation function is used to calculate
the candidate hidden state /. Finally, (11) decides whether
the new hidden state /s, should fully accept the candidate
hidden state, retain the previous moment’s hidden state, or
be a compromise between the two

r, = o (BUQNN,) ®)
% = o(BUQNN.))
hy = tanh(BUONN}) (10)
he= (1= 2) % by + 2 % hy. (11)

Here, BUQNN;(i € r, z, h) represent the reset gate circuit,
update gate circuit, and candidate hidden state circuit, respec-
tively. It is important to note that, due to the characteristics

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on,
uantumEngineering

PR R R R e

vac, voc, vac. voc, BUQNN, BUQNN; BUQNN,. BUQNN,

¥ RV PRGN RN RN PN
(a) (b)

FIGURE 6. (a) Parameter-shared VQC. (b) Proposed PN-BUQNN.

TABLE 1. Datasets Used in the Experiment are the BOOK-Reviews
Dataset and the YouTubeB-S Dataset

Dataset Positive Negative All
BOOK-Reviews 996 1004 2000
YouTubeB-S 1005 995 2000

TABLE 2. Comparison of the Number of Model Parameters Used

Model Number of Number of Classical All
Quantum Gates Parameters

LSTM 0 224 224
GRU 0 168 168
QLSTM 96 72 168
QGRU 72 72 144
BUQLSTM 144 20 164
BUQGRU 108 20 128

TABLE 3. Accuracy of Structures with BUQRNN and Baseline Structures
on BOOK-Reviews and YouTubeB-S Validation Sets

Model BOOK-Reviews YouTubeB-S
MBERT+LSTM 84.231 92.394
MBERT+QLSTM 82.235 91.266
MBERT+BUQLSTM 83.121 92.037
MBERT+GRU 84.524 92.214
MBERT+QGRU 83.857 90.735
MBERT+BUQGRU 84.227 91.728

of the GRU network, the input to BUQNN,, differs from
other BUQNN. In the computation of (10), output r; of the
reset gate is multiplied by the hidden state output 4,1 from
the previous time step. This product determines how much
information from the previous time step can be utilized. The
resulting product is concatenated with ¢'. and serves as in-
put to BUQNN),. After passing through the tanh activation
function, a new candidate hidden state is obtained.

D. PARAMETER NONSHARING BUQNN

In this section, we will introduce the proposed PN-BUQNN
to enhance the learning capability of the BUQNN. As shown
in Fig. 6(a), in traditional QLSTM networks, the linear em-
bedding layers before and after each VQC are nonshared
parameters. While this reduces the parameter count of the
model, it may introduce some issues. By using the same

VOLUME 5, 2024

TABLE 4. Accuracy of the Structure With PN-BUQRNN Compared to the
Baseline Structure on the YouTubeB-S and BOOK-Reviews Validation Sets

Model BOOK-Reviews YouTubeB-S
MBERT+LSTM 84.231 92.394
MBERT+PN-QLSTM 84.266 91.416
MBERT+PN-BUQLSTM 84.738 92.681
MBERT+GRU 84.524 92214
MBERT+PN-QGRU 84.343 90.762
MBERT+PN-BUQGRU 85.304 92.690

TABLE 5. PN-BUQRNN Structure With Two Types of Parameter-Unshared
Circuits, Where Superscript (a) Refers to (a) in Fig. 9 and Superscript
(b) Refers to (b) in Fig. 9

Model BOOK-Reviews YouTubeB-S
PN-BUQLSTM (%) 84.547 92.036
PN-BUQGRU (%) 85.047 91.644
PN-BUQLSTM(®) 84.232 89.925
PN-BUQGRU®) 82.435 91.356

linear transformation for all the VQCs, the model’s ability
to learn different input data features could be limited. For
instance, if the forget gate and the input gate need to extract
different features from the input data, a model with shared
parameters may struggle to simultaneously satisfy the re-
quirements of both the gates. Furthermore, during the train-
ing process, all the VQCs backpropagate through the same
linear layer. This can lead to gradient explosion or vanishing
gradients. If the gradient of a particular VQC is exceptionally
large, it may “overwhelm” the gradients of other circuits,
making it difficult for the entire network to learn effectively.
To address the aforementioned issues, we propose the PN-
BUQNN, as depicted in Fig. 6(b).

We employ linear layers before and after each BUQNN,
which means that they can learn more appropriate input
and output transformations for themselves. The independent
linear layers imply that each BUQNN can learn and extract
different features, with optimizations being specific to
each BUQNN. During the training process, since each
BUQNN has its own linear layer, its gradient updates
will no longer affect each other. Furthermore, adding a
linear layer before BUQNN can, to some extent, alleviate
the issue of gradient vanishing. The issue of gradient
vanishing is discussed in low-qubit VQCs [35], and a
similar problem exists in the encoding layer of BUQNN.
The input feature vector v/ generates different rotation
angles for the parameters of R, and R, gates using the
arctan function. For the input batchl, the encoding layer
of BUQNN can be represented as: encoding(bat_éhl) =

R. (arctan(v;)*) Ry (arctan (v})) [0) ... R, (arctan (v,N)z)
R, (arctan (v)) 0). It can be observed that the encoding

layer of the BUQNN involves the use of arctan, whose
derivative may lead to gradient vanishing. For instance, the

2100213

@IEEE Transactions on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

Test accuracy

Test accuracy

0850
0825
0.800
0775
g 0730
¥
o728
0700
0675
— ™
— as™
0630 — BUQLSTM
° 10 20 50

ams
aso
ams
% om0

0725

— s

|
§

— BvaLsTM

Test accuracy

0850

o025

0800

0775

¥ 0750

¥

0728

0675

0650

Test accuracy

os

o8

09

o8

] ¥ ¥
o7
. o7
06
06 o
— svoLsTM
os 45
1) o E) £) £ B o 10 % E) © E)
epoch wodh o
Test accuracy Test accuracy Test accuracy
0850 0850 0850
os2s o825 oe2s
0800 0800 0800
oms oms o
y 0750 y 0750 u
" " yore
o725 oms oms
0700 0700 0700
067 oz o673
— o — o — o
— aory s — QoRy — ory
0650 — Buaohy — Buachy 0. — BuacRy
13 o) % 13) % E) 13 o E) E) © EJ
epoch ewoch epoch
(c)
Test accuracy Test accuracy Test accuracy
0% L b
- o8s 085
080 80 00
b H ¥
ors
o7s o7s
o070
on0 070
065
oes — o — o — v
— aory — oohu — cory
) — euory — Buoohy
° 1o % B 10 % P 13) E) E) © %
epoch - eoch

FIGURE 7. Experimental result graph. (a) Comparison results of different LSTM models on BOOK-Reviews. (b) Comparison results of different LSTM
models on YouTubeB-S. (c) Comparison results of different GRU models on BOOK-Review. (d) Comparison results of different GRU models on

YouTubeB-S.

2100213

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on,
uantumEngineering

derivative of Ry(arctan(vt1)) is given as follows:

ORy (arctan (v/)) R, (arctan (vl))T d arctan (v,)
- t

811),' 311),'
12)
darctan (v/) 1 dv} 13)
ow; o 1+ (vtl)2 au)i.

Here, v,1 is an element in bat_éhl, and w; denotes the updat-

able rotation gate parameters. From (13), it is evident that
the value of v,1 should not be too large or too small, as it may
lead to gradient vanishing. Therefore, a clip operation on the
output can be added after the linear layer preceding BUQNN,
restricting the output within a specified range. Through this
approach, it is possible to optimize the weights of the linear
transformation effectively, thus mitigating gradient vanish-
ing to a certain extent. In subsequent experiments, we will
use such a linear layer to control the output within the range
of [-3, 3].

IV. DATASET AND EXPERIMENTAL RESULT
A. DATASET
The experiments utilized two Bengali text classification
datasets. The BOOK-Reviews dataset [36] is a collection of
Bengali book reviews gathered from the Internet (such as
blogs, Facebook, and e-commerce websites). This dataset
is a binary classification dataset (with positive and negative
classes) containing 2000 book reviews. The other dataset
used in the experiment is YouTube-B [21], a collection of
comments on Bengali dramas collected from the YouTube
site. It contains 11 807 comments, of which 8500 are positive
and 3307 are negative. Given the limitations of current NISQ
devices on the efficiency of quantum algorithms in classi-
fication tasks, we selected 2000 entries from the YouTube-
B dataset for the experiment, with 1700 for training and
300 for testing. We named the modified YouTubeB dataset
as YouTubeB-S. The average number of words per sen-
tence in the BOOK-Reviews and YouTubeB-S datasets is 46
and 21, respectively. As shown in Table 1, to prevent long-tail
distribution in the data, the number of data entries in each
category was kept approximately equal. The dataset we used
is available online.!

In the subsequent experimental process, we will use these
two datasets to test the two structures shown on both the sides
of Fig. 2.

B. STRUCTURE WITH THE BUQRNN

In this section, we conducted experiments on the BUQRNN
architecture shown in Fig. 2. We employed the BUQNN
to define BUQLSTM and BUQGRU and conducted exper-
iments using a four-qubit circuit. For comparison, we also
constructed a traditional VQC with four qubits. In (1), the
input vector is passed through the MBERT model, resulting

Uhttps://github.com/nuistyl/Bengali-dataset

VOLUME 5, 2024

in the embedding vector e’j. To facilitate quantum simula-
tion, we combined MBERT with a linear layer to control the
feature size to eight dimensions. We also compared it with a
classical LSTM network with an input size of eight dimen-
sions and 224 parameters. All the experiments used a hidden
layer size of four dimensions, and the feature dimensions
combined with the hidden layer dimensions were fed into the
model. For a fair comparison, the depth of the VQC in the tra-
ditional QRNN was set to 2. Zhang and Zhuang [37] mention
that when the architecture of the VQC is extensive—when
the circuit depth does not decrease the number of gates—the
quantum data classification errors of VQC typically decrease
exponentially with the increase in circuit depth. This rapid er-
ror suppression ends when reaching the final Helstrom limit
of quantum state discrimination. However, considering the
limitations of NISQ devices, it is challenging to train more
parameters. In future work, we plan to further explore the im-
pact of VQC depth on classification accuracy by improving
experimental design and adopting more advanced quantum
devices. The model parameter counts used in the experiments
are shown in Table 2. The experiments were conducted using
the AdamW optimizer and the cross-entropy loss function.
The PennyLane framework was used for modeling the quan-
tum circuits, which includes multiple built-in simulators to
meet different task requirements.

All the aforementioned experiments were conducted un-
der the conditions of a learning rate of 0.01, 50 epochs,
and the use of linear warm-up optimization method. To en-
hance the persuasiveness of the experimental results, we
conducted ten experiments for each trial using datasets di-
vided into different partitions to obtain the mean accuracy.
Due to space constraints, we present only the first three re-
sults for each experiment. Fig. 7 presents the comparison
results of different models on two datasets, where the high-
est accuracy is shown in Table 3. Overall, while quantum
structures have disadvantages compared to classical struc-
tures, the BUQRNN-based structures show improved accu-
racy compared to traditional QRNN structures on both the
datasets. This is because the traditional QRNN utilizes lin-
ear layers to reduce the dimensionality of the input feature
sequence during circuit simulation, which may resultin aloss
of semantic information to some extent.

In contrast, the BUQRNN adopts the approach of up-
loading the complete sequence into the circuit in batches.
On the YouTube dataset, the BUQLSTM structure and the
BUQGRU structure achieve improvements of 0.771% and
0.993%, respectively, compared to the QLSTM structure
and the quantum gated recurrent unit (QGRU) structure. On
the BOOK-Reviews dataset, the BUQLSTM structure and
the BUQGRU structure achieve improvements of 0.886%
and 0.370%, respectively, compared to the QLSTM struc-
ture and the QGRU structure. Although the improvements
in accuracy are limited, our proposed BUQRNN model has
fewer parameters compared to the QRNN and the classical
RNN, making it more suitable for low-resource language
domains.

2100213

Q

IEEE Transactigns on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

0ss0
os2s
0800
s
gomo

0725

0675

0650

09

oe

07

06

o0s

acc

090

080

%o

070

Test accuracy Test accuracy Test accuracy
o
200 o0
§ 070 § o750
a0 aro
0675 0675
— s — s — s
~—— PN-BUQLSTM 0.650 = PN-BUQLSTM 0.650 —— PN-BUQLSTM
H » » » = » 3 ® » » % % B » » » % »
wocn oo woch
(a)
Test accuracy Test accuracy Test accuracy
o0 09
a0 o
¥ % 07
as
aeo
— s — s o — T
 Prsvos — mvavoism e
3 » ® » % » 3 ® » » ® P H » » » % »
epoch. ‘epoch. epoch.
Test accuracy Tesw avvuravy Test accuracy
o aso
¥ X
e — e — mvaony
— meavosny meavosny = meavoony
aso
5 » = » % % : 3 » 3 % % B » ® » 3 »
epoch epoch epoch
(c)
Test accuracy Test accuracy Test accuracy
aso a0
am -
%075 % 075
.
029 070
| o065
aso
—— PN-QGRU —— PN-QGRU an —— PN-QGRU
— oo — Mesvoon — Mesvoon
5 % % % % % 5 ® P » ® 3 B ® = % % %
o we ok

FIGURE 8. Experimental result graph. (a) Comparison results of LSTM models with parameter nonsharing on BOOK-Review. (b) Comparison results of
LSTM models with parameter nonsharing on YouTubeB-S. (c) Comparison results of LSTM models with parameter nonsharing on BOOK-Review.
(d) Comparison results of LSTM models with parameter nonsharing on YouTubeB-S.

2100213

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on,
uantumEngineering

T ¥ PR S R s R o

PN AN SRR PN N
(a) (b)

FIGURE 9. (a) and (b) Two modes for parameter nonshared circuits.

C. STRUCTURE WITH THE PN-BUQRNN

In the previous section, we presented the results of
BUQRNN. In this section, we tested the structure equipped
with the PN-BUQRNN, in which independent linear layers
were used before and after each BUQNN. For comparative
experiments, to maintain consistency with the structure of the
PN-BUQRNN, we set the depth of the VQC in the traditional
QRNN to 3 and also used independent linear layers before
and after each VQC, denoted as PN-QRNN.

The experimental settings remained consistent with the
previous section. Fig. 8 illustrates the comparison results of
using the parameter nonshared LSTM model and the GRU
model on the two datasets. The highest accuracy is shown in
Table 4. Due to space constraints, we present only the results
of the first three runs for each experiment. Overall, the PN-
BUQRNN structure outperforms the classical RNN structure
and the PN-QRNN structure on both the datasets. After ap-
plying the parameter nonshared VQC, the PN-QRNN struc-
ture even performs worse in certain tasks. This is due to the
information loss caused by the dimensionality reduction of
the linear layer, which prevents it from working effectively.
In contrast, in the PN-BUQRNN structure, we fully load
the information into the BUQNN circuit and optimize each
BUQNN circuit independently, resulting in better results.

D. ABLATION STUDY ON PARAMETER NONSHARING
CIRCUITS

In previous experiments, we constructed models with param-
eter nonsharing by using separate linear layers before and
after each quantum circuit. However, there is still a question
to be verified. As shown in Fig. 9, what would be the result if
we only use parameter nonsharing linear layers at the input
end of the quantum circuit, or only at the output end?

We tested the PN-BUQRNN structure with two modes
shown in Fig. 9(a) and (b). Fig. 10 and Table 5 present the
experimental results, indicating a decreasing trend in accu-
racy for both the modes on the two datasets. Among them,
mode (a) performs better than mode (b). When using mode
(a), the accuracy slightly decreases compared to the case
where both the input and output ends use parameter non-
shared in the previous section, while mode (b) significantly
affects the experimental results. This verifies the correctness
of our structure, which is that it is necessary to add parameter
nonshared linear layers at both the input and output ends of
the quantum circuit, and it will better optimize the quantum
circuit.

VOLUME 5, 2024

This confirms the correctness of our structure, i.e., adding
parameter nonsharing linear layers at both the input and out-
put ends of the quantum circuit is necessary and will better
optimize the quantum circuit. Therefore, we believe that it is
possible to select the appropriate model structure based on
different task requirements. That is, if accuracy is pursued,
the BUQRNN with parameter nonsharing linear layers be-
fore and after can be used. If both accuracy and efficiency
are pursued, it is also feasible to only use the parameter
nonsharing structure after the BUQNN.

V. CONCLUSION

To address the brute force approach taken by traditional
QRNNs when handling feature dimensions larger than the
number of qubits, we propose a solution that breaks feature
vectors into batches and passes them through the circuit,
thereby increasing the available information. As such, in
this article, we design a novel incremental QNN, termed
BUQNN, and apply it to LSTM and GRU networks, form-
ing BUQRNN. Experimental results on the Bengali corpus
demonstrate that, compared to traditional QRNNSs, our pro-
posed BUQRNN improves accuracy by up to 0.993% while
reducing model complexity on average by 12%. Given that
traditional QRNNS are unable to independently optimize the
linear layers before and after the quantum circuit, thereby
limiting their adaptability to VQC, we are inspired to com-
bine the aforementioned BUQNN design with an RNN with
nonshared parameters, resulting in a model class called PN-
BUQRNN. QNNs constructed using this approach perform
better in experiments, surpassing both classical neural net-
works and traditional QRNNSs on two Bengali text datasets.
As an attempt in the field of low-resource language QNNss,
we demonstrate the feasibility of applying quantum algo-
rithms to address practical issues in the low-resource text
domain. Considering the limited computational resources in
low-resource regions, our method allows for circuit simula-
tion with an § number of qubits, aligning with the charac-
teristics of the low-resource language domain. Finally, our
goal is to introduce our proposed model to NLP tasks in more
low-resource regions in order to address a broader range of
real-world issues.

APPENDIX A

FEASIBILITY EXPLORATION OF THE BUQRNN AS A
WORD-EMBEDDING MODEL

In the discussion of the aforementioned related work, Li
et al. [27] mentioned an approach that utilizes a QNN as a
word-embedding model. The authors employed QLSTM as
the pretraining model and then utilized the obtained word
embeddings for downstream tasks. Due to the similarity with
this work, in this section, we explore the applicability of
the proposed BUQRNN as an embedding layer model on
Bengali text corpora. The experimental data consist of the
aforementioned BOOK-Reviews and YouTubeB-S datasets,
and the specific methodology is outlined as follows.

2100213

@IEEE Transactions on,
uantumEngineering

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

Test accuracy

Test accuracy Test accuracy

— PN-BUQLSTM(a)

PN-BUQLSTM(b) |
—— PN-BUQGRU(a) |
— PN-BUQGRU(b)

— PN-BUQLSTM(a)
—— PN-BUQLSTM(b)
—— PN-8UQGRU(a)
— PN-BUQGRU(b)

— PNBUQLSTM(a)

~ PN-BUQLSTM(b)
—— PN-8UQGRU(2)
—— PN-BUQGRU(b)

— PN-BUQLSTM(a) |

— PN-BUQGRU(b)

— PN-BUQLSTM(a)
—— PN-BUQLSTM(b)
— PN-BUQGRU(a)
— PN-BUQGRU(b)

— PNBUQLSTM(a)

PN-BUQLSTM(b)
— PN-BUQGRU(a)
—— PN-8UQGRU(b)

40 50 0 10

FIGURE 10. Experimental results of the two modes are presented on the
two methods on the BOOK-Reviews. (b) Comparison results of the above

1) Pretraining quantum models: We selected the pro-
posed BUQRNN and QRNN mentioned in Sec-
tion IV-B as comparative models. To ensure a fair com-
parison, we kept the experimental parameters consis-
tent with those in Section IV-B, with word-embedding
sizes of 8 for both the BUQRNN and the QRNN and
vocabulary size as the output size.

“© 50 0 10 a0 50

datasets BOOK-Reviews and YouTubeB-S. (a) Comparison results of the above
two methods on the YouTubeB-S.

TABLE 6. Results of Word Vector Representations Obtained Using
BUQRNN and QRNN on the BOOK-Reviews and YouTubeB-S Datasets

Model BOOK-Reviews YouTubeB-S
QLSTM 76.314 82.246
QGRU 77.241 82.436
BUQLSTM 77.243 83.357
BUQGRU 78.923 83.143

2)

Pretraining: The aforementioned models were sepa-

rately trained on the BOOK-Reviews and YouTubeB-S
datasets until convergence. During the language model
training, sentiment labels were disregarded.

3) Model evaluation: We assessed the utility of the pre-
trained embedding vectors in downstream SA tasks.
Specifically, we used the pretrained word embeddings
from the BUQRNN and the QRNN to train a linear-
layer-based classifier. The choice of a linear layer as the
classifier aimed for experimental convenience. Consis-
tent with the discussed methods in related work, we
employed a random subset of language model train-
ing data for evaluation to avoid introducing additional
noise into the model.

We conducted ten experiments to obtain the mean perfor-
mance. Table 6 presents our experimental results. The word
embeddings trained by the BUQRNN demonstrate higher
accuracy compared to the QRNN, indicating the high utility
of our proposed BUQRNN as a word-embedding model in
the low-resource language domain. The primary reason for

2100213

BUQRNN’s superior results lies in its ability to fully load
input vectors into the circuit, thus avoiding the loss of seman-
tic information. This experimental outcome also reinforces
our viewpoint discussed earlier. In future explorations, we
anticipate using the BUQRNN as a word-embedding model
for various downstream tasks in the low-resource language
domain.

APPENDIX B

DIFFERENCE BETWEEN BUQNN AND VQC USING
AMPLITUDE ENCODING

In the VQC, the encoding layer can utilize various encoding
methods, such as the most common angle encoding or am-
plitude encoding. In the BUQNN, we adopt angle encoding
to encode feature vectors into the quantum circuit. However,
can amplitude encoding be used? The nature of BUQNN (es-
sentially a VQC using batch uploading) makes it difficult to
use amplitude encoding for feature encoding; otherwise, the
BUQNN would degrade into a traditional VQC. To compare

VOLUME 5, 2024

Yu et al.: APPLICATION OF QRNN in LOW RESOURCE LANGUAGE TEXT CLASSIFICATION

@IEEE Transactions on,
uantumEngineering

TABLE 7. Comparison of Our BUQLSTM Network With
Amplitude-Encoded QLSTM Network on the BOOK-Reviews and
YouTubeB-S Datasets

Model BOOK-Reviews YouTubeB-S
Amplitude-QLSTM 82.579 91.557
BUQLSTM 83.121 92.037

it with amplitude encoding, we used the BUQLSTM in Sec-
tion IV-B and created a QLSTM using amplitude encoding.
For 8-D input data, amplitude encoding requires four qubits
to encode the features into the circuit. The model layers
and experimental hyperparameters were kept consistent with
Section IV-B.

Table 7 demonstrates the advantages of the proposed
BUQLSTM network. To some extent, amplitude encoding
theoretically offers higher information capacity. However,
in practical applications, the state preparation required for
amplitude encoding is expensive in terms of operations. In
contrast, the encoding method of BUQLSTM is more direct
and requires only a small number of qubits to embed feature
vectors into the circuit.

REFERENCES

[1] J. J. Grefenstette, “Genetic algorithms and machine learning,” in
Proc. 6th Annu. Conf. Comput. Learn. Theory, 1993, pp.3-4,
doi: 10.1145/168304.168305.

[2] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997, pp. 1-19, doi: 10.5555/541177.

[3]1 Z. Zhou, Machine Learning. New York, NY, USA: Springer, 2021,
doi: 10.1007/978-981-15-1967-3.

[4] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural lan-
guage processing: An introduction,” J. Amer. Med. Inform. Assoc., vol. 18,
no. 5, pp. 544-551, Sep. 2011, doi: 10.1136/amiajnl-2011-000464.

[5] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the us-
ages of deep learning for natural language processing,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 604-624, Feb. 2021,
doi: 10.1109/TNNLS.2020.2979670.

[6] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algo-
rithms and applications: A survey,” Ain Shams Eng. J., vol. 5, no. 4,
pp. 1093-1113, 2014, doi: 10.1016/j.asej.2014.04.011.

[7] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-
based methods for sentiment analysis,” Comput. Linguistics, vol. 37, no. 2,
pp. 267-307, 2011, doi: 10.1162/COLI_a_00049.

[8] A. Hasan, S. Moin, A. Karim, and S. Shamshirband, “Machine learning-

based sentiment analysis for Twitter accounts,” Math. Comput. Appl.,

vol. 23, no. 1, pp. 11, Oct. 2018, doi: 10.3390/mca28050101.

B. Agarwal, R. Nayak, N. Mittal, and S. Patnaik, Deep Learning-Based

Approaches for Sentiment Analysis. New York, NY, USA: Springer, 2020.

[10] B. Zhang and W. Zhou, “Transformer-Encoder-GRU (TE-GRU) for Chi-
nese sentiment analysis on Chinese comment text,” Neural Process. Lett.,
vol. 55, no. 2, pp. 1857-1867, 2022, doi: 10.1007/s11063-022-10966-8.

[11] X. Luo, “Efficient English text classification using selected machine
learning techniques,” Alexandria Eng. J., vol. 60, no. 3, pp. 3401-3409,
Feb. 2021, doi: 10.1016/j.2ej.2021.02.009.

[12] B. Min et al., “Recent advances in natural language processing via large
pre-trained language models: A survey,” ACM Comput. Surv., vol. 56,
no. 30, pp. 1-40, Sep. 2023, doi: 10.1145/3605943.

[13] H. Wang, J. Li, H. Wu, E. Hovy, and Y. Sun, “Pre-trained language mod-
els and their applications,” Engineering, vol. 25, pp. 51-65, Apr. 2022,
doi: 10.1016/j.eng.2022.04.024.

[14] L. Alchieri, D. Badalotti, P. Bonardi, and S. Bianco, “An introduc-
tion to quantum machine learning: From quantum logic to quantum
deep learning,” Quantum Mach. Intell., vol. 3, pp. 1-30, Oct. 2021,
doi: 10.1007/s42484-021-00056-8.

9

VOLUME 5, 2024

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum deep learn-
ing,” Quantum Inf. Comput., vol. 16, pp.541-587, Dec. 2014,
doi: 10.26421/QIC16.7-8-1.

C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and
weaknesses of quantum computing,” SIAM J. Comput., vol. 26, no. 5,
pp. 15101523, Jan. 1997, doi: 10.1137/S0097539796300933.

W. Lai, J. Shi, and Y. Chang, “Quantum-inspired fully complex-valued
neutral network for sentiment analysis,” Axioms, vol. 12, no. 3, Feb. 2023,
Art. no. 308, doi: 10.3390/axioms12030308.

S. Y. Chen, S. Yoo, and Y. L. Fang, “Quantum long short-
term memory,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2022, pp. 8622-8626, doi: 10.1109/ICASSP43922.2022.9747369.

J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, Aug. 2018, Art. no. 79, doi: 10.22331/q-2018-08-06-79.

Y. Cao, X. Zhou, X. Fei, H. Zhao, W. Liu, and J. Zhao, “Linear-
layer-enhanced quantum long short-term memory for carbon price fore-
casting,” Quantum Mach. Intell., vol. 5, no. 2, pp. 1-12, Jul. 2023,
doi: 10.1007/s42484-023-00115-2.

S. Sazzed, “Cross-lingual sentiment classification in low-resource Ben-
gali language,” in Proc. 6th Workshop Noisy User-Generated Text, 2020,
pp. 50-60, doi: 10.18653/v1/2020.wnut-1.8.

C. -H. H. Yang, J. Qi, S. Y. -C. Chen, Y. Tsao, and P. -Y.
Chen, “When BERT meets quantum temporal convolution learning
for text classification in heterogeneous computing,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2022, pp. 8602-8606,
doi: 10.1109/ICASSP43922.2022.9746412.

M. Al-Amin, M. S. Islam, and S. D. Uzzal, “Sentiment analysis of Ben-
gali comments with Word2Vec and sentiment information of words,”
in Proc. Int. Conf. Elect., Comput. Commun. Eng., 2017, pp. 186—-190,
doi: 10.1109/ECACE.2017.7912903.

P. Chowdhury, E. M. Eumi, O. Sarkar, and M. F. Ahamed, “Bangla
news classification using GloVe vectorization, LSTM, and CNN,” in
Proc. Int. Conf. Big Data, IoT, Mach. Learn., 2017, pp.723-731,
doi: 10.1007/978-981-16-6636-0_54.

M. R. Hossain, M. M. Hoque, and I. H. Sarker, “Text classification using
convolution neural networks with fasttext embedding,” in Hybrid Intelli-
gent Systems, 2021, pp. 101-113, doi: 10.1007/978-3-030-73050-5_11.
T. Pires, E. Schlinger, and D. Garrette, “How multilingual is multilingual
BERT?,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 49965001, doi: 10.18653/v1/P19-1493.

S.S. Lietal., “PQLM—Multilingual decentralized portable quantum lan-
guage model,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10095215.

R. Di Sipio, J.-H. Huang, S. Y.-C. Chen, S. Mangini, and M. Wor-
ring, “The dawn of quantum natural language processing,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2022, pp. 8612-8616,
doi: 10.1109/ICASSP43922.2022.9747675.

M. Cerezo et al., “Variational quantum algorithms,” Nature Rev. Phys.,
vol. 3, no. 9, pp. 625-644, Aug. 2021, doi: 10.1038/s42254-021-00348-9.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum
entanglement,” Rev. Modern Phys., vol. 81, no. 2, 2009, Art. no. 865,
doi: 10.1103/RevModPhys.81.865.

R. LaRose and B. Coyle, “Robust data encodings for quantum classi-
fiers,” Phys. Rev. A., vol. 103, no. 2, Aug. 2020, doi: 10.1103/Phys-
RevA.102.032420.

I. Glendinning, “The bloch sphere,” in Proc. QIA Meeting, 2005, pp. 3—18.
M. Periyasamy, N. Meyer, C. Ufrecht, D. D. Scherer, A. Plinge, and
C. Mutschler, “Incremental data-uploading for full-quantum classifica-
tionn,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2022, pp. 31-3,
doi: 10.1109/QCE53715.2022.00021.

A. Perez-Salinas et al., “Data re-uploading for a universal quan-
tum classifier,” Quantum, vol. 4, Feb. 2020, Art. no. 226, doi: 10.22331/
q-2020-02-06-226.

Z. Hong, J. Wang, X. Qu, C. Zhao, W. Tao, and J. Xiao, “QS-
peech: Low-qubit quantum speech application toolkit,” in Proc. Int.
Joint Conf. Neural Netw., Padua, Italy, 2022, pp. 01-08, doi: 10.1109/
TJCNN55064.2022.9892496.

E. Hossain et al., “Sentiment polarity detection on Bengali book reviews
using multinomial naive bayes,” in Progress Adv. Comput. Intell. Eng.,
2021, pp. 281-289, doi: 10.1007/978-981-33-4299-6_23.

B. Zhang and Q. Zhuang, “Fast decay of classification error in vari-
ational quantum circuits,” Quantum Sci. Technol., vol. 7, no. 3, 2022,
Art. no. 035017, doi: 10.1088/2058-9565/ac70f5.

2100213

https://dx.doi.org/10.1145/168304.168305
https://dx.doi.org/10.5555/541177
https://dx.doi.org/10.1007/978-981-15-1967-3
https://dx.doi.org/10.1136/amiajnl-2011-000464
https://dx.doi.org/10.1109/TNNLS.2020.2979670
https://dx.doi.org/10.1016/j.asej.2014.04.011
https://dx.doi.org/10.1162/COLI_a_00049
https://dx.doi.org/10.3390/mca28050101
https://dx.doi.org/10.1007/s11063-022-10966-8
https://dx.doi.org/10.1016/j.aej.2021.02.009
https://dx.doi.org/10.1145/3605943
https://dx.doi.org/10.1016/j.eng.2022.04.024
https://dx.doi.org/10.1007/s42484-021-00056-8
https://dx.doi.org/10.26421/QIC16.7-8-1
https://dx.doi.org/10.1137/S0097539796300933
https://dx.doi.org/10.3390/axioms12030308
https://dx.doi.org/10.1109/ICASSP43922.2022.9747369
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1007/s42484-023-00115-2
https://dx.doi.org/10.18653/v1/2020.wnut-1.8
https://dx.doi.org/10.1109/ICASSP43922.2022.9746412
https://dx.doi.org/10.1109/ECACE.2017.7912903
https://dx.doi.org/10.1007/978-981-16-6636-0_54
https://dx.doi.org/10.1007/978-3-030-73050-5_11
https://dx.doi.org/10.18653/v1/P19-1493
https://dx.doi.org/10.1109/ICASSP49357.2023.10095215
https://dx.doi.org/10.1109/ICASSP43922.2022.9747675
https://dx.doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1103/RevModPhys.81.865
https://dx.doi.org/10.1103/PhysRevA.102.032420
https://dx.doi.org/10.1103/PhysRevA.102.032420
https://dx.doi.org/10.1109/QCE53715.2022.00021
https://dx.doi.org/10.22331/q-2020-02-06-226
https://dx.doi.org/10.22331/q-2020-02-06-226
https://dx.doi.org/10.1109/IJCNN55064.2022.9892496
https://dx.doi.org/10.1109/IJCNN55064.2022.9892496
https://dx.doi.org/10.1007/978-981-33-4299-6_23
https://dx.doi.org/10.1088/2058-9565/ac70f5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

