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ABSTRACT Since people became aware of the power of quantum phenomena in the domain of traditional
computation, a great number of complex problems that were once considered intractable in the classical
world have been tackled. The downsides of quantum supremacy are its high cost and unpredictability.
Numerous researchers are relying on quantum simulators running on classical computers. The critical
obstacle facing classical computers in the task of quantum simulation is its limited memory space. Quan-
tum simulation intrinsically models the state evolution of quantum subsystems. Qubits are mathematically
constructed in the Hilbert space whose size grows exponentially. Consequently, the scalability of the straight-
forward statevector approach is limited. It has been proven effective in adopting decision diagrams (DDs)
to mitigate the memory cost issue in various fields. In recent years, researchers have adapted DDs into
different forms for representing quantum states and performing quantum calculations efficiently. This leads
to the study of DD-based quantum simulation. However, their advantage of memory efficiency does not let
it replace the mainstream statevector and tensor network-based approaches. We argue the reason is the lack
of effective parallelization strategies in performing calculations on DDs. In this article, we explore several
strategies for parallelizing DD operations with a focus on leveraging them for quantum simulations. The
target is to find the optimal parallelization strategies and improve the performance of DD-based quantum
simulation. Based on the experiment results, our proposed strategy achieves a 2–3 times faster simula-
tion of Grover’s algorithm and random circuits than the state-of-the-art single-thread DD-based simulator
DDSIM.

INDEX TERMS Decision diagrams (DDs), parallelization, performance, quantum computation, simulation.

I. INTRODUCTION
In 2019, Google demonstrated quantum supremacy using its
Sycamore processor, which can support 53 qubits [2]. With
the hope of realizing quantum power in practice, researchers
from various fields have begun to explore the possibility of
using quantum computation to address problems that were
once considered intractable in the classical world [3], [4], [5].
Other tech giants like IBM have also constructed their phys-
ical quantum computers.
Building infrastructure and pushing research progress re-

quires a broad collaboration beyond just dominant compa-
nies. Nevertheless, constructing physical quantum comput-
ers still requires an inaccessible amount of resources to the
majority of researchers. Consequently, quantum simulators

are still an indispensable part of the quantum toolchain. Ef-
fective quantum simulations not only allowmore researchers
to obtain access to the quantum resources but also permit
the efficient testing and verification of quantum algorithms
before launching on the physical device. We have also wit-
nessed several different teams simulating Google’s quantum
supremacy claim using just classical means. The statevector-
based approach, i.e., using matrices and arrays to repre-
sent quantum operators and quantum states, works fine for
abstract calculations. However, it requires an exponentially
large memory size to be implemented on classical machines.
This drawback considerably limits the number of qubits
that can be simulated. Companies and research institutions
with abundant resources can leverage supercomputers of
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thousands of nodes and petabytes of memory to increase
the simulation scale. However, this becomes impractical to
general researchers.
Quantum algorithms are expressed as a unitary evolution

of a quantum state. Quantum states and quantum evolution
are, respectively, modeled using vectors and matrices in the
Hilbert space. Both vectors and matrices grow exponentially
with respect to the number of subsystems, i.e., qubits. The
evolution can be mathematically modeled using a sequence
of matrix–vector multiplications. A straightforward method
to simulate quantum algorithms is to represent quantum
states and operators as one- and 2-D arrays, and perform a se-
quence of matrix–vector multiplication following the struc-
ture of the simulated quantum circuits. The critical downside
of this approach is the exponential growth of the array size
which limits the simulation scale. Binary decision diagrams
(BDDs) are a canonical tool for solving the state explosion
issue in model-checking and formal verification. They have
also been engineered to simulate quantum circuits. In BDDs,
nodes represent matrices or submatrices, and edges represent
quantum state transitions. DDs are memory efficient in the
sense that identical submatrices across all matrices can be
represented using a unique node. Variants of BDDs have
been proposed with different targets in mind, for example,
Quantum information decision diagram (QuIDD) [6] and
quantum decision diagram (QDD) [7]. The original BDDs
are modified by attaching weights to edges and creating more
terminals. The discussion in this article is based on quantum
multiple-valued DDs (QMDDs) [8]. The added features of
QMDDs are the explicit support of complex-valued entries
and multiple-valued basis states.
Using DDs in quantum simulation mitigates the memory

pressure, however, they tend to be slower than the straight-
forward statevector-based approach. We argue that the time
inefficiency is due to the lack of parallelization in DD op-
erations. Parallelization has proven its success in large-scale
scientific computations. We also consider it a potent tool in
quantum simulation. Both statevector and tensor network-
based quantum simulations have been parallelized in previ-
ous works to boost the performance. However, it is yet to
be answered how DDs can be efficiently parallelized. We
consider this absence due to the following factors. First, DDs
are proposed with the goal of avoiding data duplication. As
a result, the typical tradeoff between time and space requires
synchronization mechanisms for correct updates. Second,
DDs rely on a few auxiliary data structures for better perfor-
mance, such as the operation cache and the unique table [9].
Parallelization strategies for these data structures are not
unique and can exhibit different performance characteristics
in different applications. Third, parallelism can be achieved
via different primitives. They also affect the performance of
the simulation task.
This article answers these questions by investigating dif-

ferent strategies for parallelizing QMDD-based quantum
simulation on a shared-memory machine. Three paralleliza-
tion primitives are examined in this article: tasks, threads,

and fibers. Fiber-based concurrent programming is common
in writing game engines. However, it has not been explored
for the task of quantum simulation. Our experimental results
answer when and how fibers can benefit DD-based quantum
simulation. Meanwhile, the effects of the operation cache
and the unique table are examined, revealing results not sug-
gested before. One example of our findings is the different
performance of global and local caches under different levels
of parallelization, as well as different numbers of qubits.
We summarize our findings here: parallelization can affect
DD-based quantum simulation. Whether it benefits the per-
formance depends on the characteristics of the simulated
circuit (e.g., randomness) and the simulation scale (e.g., the
number of qubits). When the number of qubits is large, using
fibers combined with thread local operation caches is the
optimal solution. On our machine, this threshold is found to
be above 30 qubits. For an intermediate number of qubits,
e.g., 20 to 30, using fibers with a global operation cache
beats other alternatives. For a small number of qubits, adding
parallelization incurs extra costs and hurts the performance.
We have found that for certain quantum algorithms with
highly random circuits, the operation cache hit ratio becomes
nearly 0 and should be removed. We observe 2–3 times faster
simulation results of the Grover’s algorithm and random cir-
cuits in the experiment using our proposed strategies com-
pared with the state-of-the-art single-thread DD simulator
DDSIM [10], [1].

The rest of this article is organized as follows. Section II
reviews simulation approaches and the basic of fibers. Sec-
tion III covers the design of our parallel simulation strat-
egy. Section IV provides the experiment results. Finally,
Section V concludes this article.

II. REVIEW OF SIMULATION APPROACHES AND FIBERS
A. STATEVECTOR
The most straightforward approach to simulating quantum
circuits is storing quantum states and gates using 1-D and
2-D arrays. The obvious disadvantage of this approach is
its exponential memory usage: given n qubits, it needs 2n

amplitudes to describe the composite system. The simula-
tion scale (i.e., the number of qubits) entirely depends on
the memory size. Nevertheless, given sufficient memory, this
approach is often faster than others, as arrays can be stored
contiguously in memory to accelerate memory accesses. A
plain array-based approach is easy to implement while only
supporting a few qubits. Distributed and supercomputers are
adopted to extend memory size with multithreading process-
ing [11], [12], [13], [14]. Fang et al. [15] proposed to parti-
tion the circuit into hierarchical subcircuits with the iterative
construction of smaller state vectors. State vectors can also
be compressed. Different compression techniques offer dif-
ferent compression ratios at the cost of accuracy [16], [17].

B. TENSOR NETWORK
Tensors are a mathematical concept that encapsulates
the idea of multilinear maps. A collection of tensors
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FIGURE 1. QMDD subtree.

connected by edges is a tensor network. The edges specify
which indexes are contracted [18]. Tensor networks are
a well-established tool for analyzing quantum systems,
and they have also been adapted for simulating quantum
circuits [19], [20], [21]. Quantum states and quantum
gates are represented by low-rank tensors. The output state
amplitudes of a quantum circuit are calculated by contracting
the network, and it is generally known that the speed of the
contraction is determined by the contraction order [22].
Finding the optimal contraction order is an NP-hard
problem. Huang et al. [23] proposed to slice the network into
portions with no dependency and contract them in parallel.
Reinforcement learning is utilized in [24] to extract efficient
contraction orders. Gray and Kourtis [25] implemented
randomized protocols and conceived the tensor network
as a hypergraph to find a close-to-optimal contraction
order. One downside of tensor networks is their inability to
support intermediate state measurement. As its space cost is
exponential with the treewidth of the underlying graph, plus
the fact that tensors are still stored using arrays, the qubit
count it can simulate tends to be lower than DDs [26], [27].

C. DECISION DIAGRAM AND ITS CONCURRENCY
BDDs are proposed originally for representing Boolean func-
tions as a graphical depiction of applying te Shannon de-
composition [28]. They also provide an efficient means for
modeling digital circuits [29], [30]. When we extend binary
bits to quantum bits, BDDs are no longer the best choice
for modeling quantum circuits. Variants have been proposed
to emulate quantum circuits still using DDs but with added
features to support complex amplitudes and higher dimen-
sions. Our work is based on QMDDs [8]. QMDDs sup-
port complex-valued entries by attaching complex weights
to edges. Quantum states and quantum operations are repre-
sented using QMDDs with two and four child nodes, respec-
tively. This naturally corresponds to dividing a state vector
and a gate matrix into two and four submatrices. Fig. 1 is an
example of QMDD representing the matrix

U =
[
U00 U01

U10 U11

]
. (1)

Weights on the path from the root to a terminal are multi-
plied to get the values at the corresponding position. If Fig. 1
represents a 2 × 2 matrixU , the value ofU00, which is a sin-
gle element, is w × w0. QMDDs achieve memory efficiency

Algorithm 1: sum(A, B).

Algorithm 2:Multiply(A, B).

via the exploitation of redundancy. For example, submatrices
containing identical values can be represented using a single
node, regardless of its size.
The structure of QMDDs makes the implementation of

linear algebra computations straightforward. For example,
assume two matrices A and B are of the form

A =
[
A00 A01
A10 A11

]
B =

[
B00 B01
B10 B11

]
. (2)

Then their product is[
A00 · B00 + A01 · B10 A00 · B01 + A01 · B11
A10 · B00 + A11 · B10 A10 · B01 + A11 · B11

]
. (3)

We can translate this into the pseudocodes for computing
the sum and multiplication between two QMDDs, as shown
in Algorithms 1 and 2.
The proposal of DDs provides both symbolic and com-

pact data representation which exhibit its major advantage
in space efficiency. Given sufficient sharing of gate matrices
and state vectors, replacing the statevector-based representa-
tion with DDs can yield substantially lower memory usage.
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This leads to researchers’ attention to applying DDs to quan-
tum simulation which is a memory-intensive task. Neverthe-
less, its time efficiency compared with the array-based simu-
lation is not yet conclusive due to the difficult paralleliza-
tion incurred by its higher level of data sharing. Zulehner
and Wille [31] revisited the potential of reordering simula-
tion operations in DD-based simulation. In the conventional
array-based simulation, it tends to first multiply gate matrices
with the current state vector since matrix-vector multiplica-
tion is typically cheaper than matrix–matrix multiplication.
Zulehner et al. [31] observed that DD’s symbolic represen-
tation makes quantum gates structurally more compact than
state vectors, thus combining them first can have the prospect
of more efficient simulation. They further discuss and com-
pare the strategies for deciding how many gates to be com-
bined. The combination of quantum gates is also leveraged
in our design. Hillmich et al. [32] recognized the potential
as well as the obstacles of adding concurrency in DD-based
quantum simulation. They identify that subnodes of DDs can
be processed in parallel to speed up simulation. However,
the improvement is not guaranteed due to the possibility of
computing identical operations more than once during con-
current execution. They propose to customize the operation
cache into separate multiplication and addition caches to ad-
dress this issue. We extend this direction by proposing new
parallelization schemas and studying the effects of operation
caches in a concurrent context. Our experiments reveal that
operation caches can be either made thread-local or removed
to speed up the concurrent simulation of certain circuits,
which has not been recognized before in previous work.

D. FIBERS
Fibers are lightweight execution context similar to threads.
The fundamental difference between fibers and threads is
their scheduling mechanism. Modern operating systems run
multiple processes with their own execution context at any
given moment. However, not all processes are running in
parallel. The OS scheduler switches between them quickly
so that they appear to be running in parallel. When threads
are used as the execution context, they do not need to yield
to other threads to allow them to run because the OS sched-
uler preemptively switches among them. There is a list of
points at which the OS will save the state of one thread then
resume another thread. These include IO, interrupts, sleeps,
etc. The overheads associated with this context switching
process begin to become prohibitive when the number of
threads is large [33]. One proposed solution is to move the
context switching decision from the kernel space to the user
space and this effectively leads to the concept of cooperative
scheduling and the implementation of fibers. Fibers include
switching as a part of computation and deliberately decide
when to relinquish control. This allows keeping an excess
number of execution contexts. DD operations can generate
many tasks with unbalanced workloads depending on the
structure of the tree and the caching result. We find that using

fibers can reduce the overheads of maintaining and switching
among many execution contexts.

III. DESIGN OF PARALLEL SIMULATION ENGINE
The operation cache and unique table [9] are two core
components of DD libraries. They contribute to DDs’ time
and space efficiency, respectively. The unique table stores a
unique node representing all identical submatrices and each
DD containing such a submatrix keeps an identifier referring
to this node, e.g., the key in the table. This substantially
reduces the memory consumption incurred in the statevec-
tor approach which does not explore the repetitiveness of
submatrices. The uniqueness also allows caching calculation
results. Since the identical matrices share a unique identifier,
we can readily check whether the operation performed on
twomatrices has been conducted before. The operation cache
allows the query of results using the matrix identifiers. In
a parallel simulation engine, the first question to answer is
how to synchronize these data structures with the least neg-
ative effects on performance. Synchronization is necessary
to guarantee correct calculation, however, it can come with a
considerable sacrifice of performance without careful tuning.
These points are significant issues in designing a simulator.
One goal of this study is to findwhen and howwe can remove
the need for synchronization in DD-based parallel quantum
simulation. The second goal is finding the parallelization
schema that most appropriately fits quantum simulation. We
propose the architecture in Fig. 2. In general, we find fibers
have better performance than threads- and tasks-based paral-
lelization. The performance improvement comes from their
cooperative scheduling, lightweight bookkeeping, and flexi-
ble load balancing. We examine each of these in this section.
The unique table needs to be global, whereas the choice be-
tween a global and local cache depends on the characteristics
of the simulated circuit. Work stealing can offer automatic
load balancing. This is especially important because it is
not uncommon to have significantly unbalanced DDs. Free
fibers which are assigned subtrees with few child nodes can
take over nodes from busy fibers. Our experiments show this
architecture uses resources better and accelerates simulations
by 2–3 times than a single-threaded DD-based simulation.
This section illustrates each design choice.

A. THREAD LOCAL VERSUS GLOBAL UNIQUE TABLE
DDs achieve a higher memory efficiency by using the unique
table. A single copy of identical nodes is stored in the unique
table and shared among DDs. Thus, we avoid duplicating the
storage of the same matrices. The unique table is essential
to achieve better memory efficiency as long as the matrix
is not entirely random and where no submatrices can be
shared. The unique table needs to support fast inserts and
lookups since it is on the critical path of the simulation. In
our prototype system, the unique table is implemented using
a hashtable and we resolve the hash collision with chaining.
We leave the study of other hashtable variations for future
work. We need to decide between the alternatives of thread
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FIGURE 2. Proposed parallel simulation architecture.

FIGURE 3. Comparison between thread local and global unique table.

local and global unique tables. A thread local unique table
can be accessed with no synchronization. However, it incurs
duplication and higher memory consumption as the same
node not present in a thread’s local table may appear in
other tables. The higher memory cost restricts the supported
qubit number. Besides the extra memory consumption, the
fundamental issue of using a local unique table is that it
renders the operation cache hard to hit. The operation cache
uses the memory addresses of operand nodes as the unique
identifier for equality checking, and if the result is present
in the cache, the complete computation can be eliminated.
Achieving a high operation cache hit ratio is essential in
a high-performance DD-based quantum simulation. Using
thread local unique tables generates different addresses for
the same nodes if they are created by different threads. This
does not impact the computation accuracy; however, the
cache hit ratio dramatically drops.
We conduct an experiment to see the variation in per-

formance from using a thread local or global unique table.
Fig. 3 compares a thread-local and global unique table in a
random circuit. The circuit consists of 100 gates randomly
sampled from the set of RX, RY, RZ, and cnot. The running
time shown in the figure is the average value of ten circuits.
We conclude that a thread local unique table is inferior to a
global unique table for both higher qubit and gate counts. The
former suffers from a considerable drop in the cache hit ratio.
For example, in a circuit with 100 gates and 20 qubits, the
multiplication operation cache hit ratio drops from 17.54%

to nearly none. Therefore, a global unique table is used in
the rest of the comparison. The synchronization is managed
by updating the pointer pointing to the next entry in the
linked list using compare-and-swap. A gradually increasing
number of hashtable entries are preallocated on each thread’s
stack to avoid frequent and fragmented memory allocations.
Other techniques for implementing a concurrent hashtable
with better performance can be applied [34].

B. THREAD LOCAL VERSUS GLOBAL OPERATION CACHE
Having a unique copy of identical nodes in DDs allows us to
cache previous calculation results and later query the results
using the unique node identifier easily. The elimination of
the complete calculation is central to the DD library’s perfor-
mance as well as the simulation speed. In our implementa-
tion, the node address is used as its identifier. The equality of
two submatrices can be simply checked by comparing their
addresses. This is nontrivial to realize in state vector-based
approaches. The equality of two matrices cannot be easily
checked without iterating through all of their elements.
When the operation cache successfully serves the query,

we manage to skip all subsequent calculations. Similar to the
alternatives we have explored in the case of a unique table,
the operation cache can be either global or local. A global
operation cache shares calculation results conducted by any
thread with others, whereas a local operation cache only
serves its owner. The global cache can theoretically cache
more computations with an additional cost of synchroniza-
tion. However, our experiment demonstrates that this does
not necessarily apply to the task of quantum simulation since
quantum simulations exhibit both time and spatial locality.
First, besides some circuit identities, most quantum gates do
not commute, and thus, must be applied in sequence. Fur-
thermore, each quantum gate (i.e., DD) is constructed with
tensor products between identity gates and the target gate.
This makes the resulting matrix contain many subidentities
that can preserve subtrees from the input state to the output
state. The locality supports the use of thread local caches.
QMDDs divide each matrix into four submatrices, and

most cache hits happen among the calculations on these
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FIGURE 4. Comparison between thread local and global operation cache.

submatrices since quantum matrices tend to be structured
(e.g., symmetric). Themajority of these calculations are done
within a single thread. This also implies the use of thread lo-
cal caches. We observe that the hit ratio of using thread local
caches is only lower than that of a global cache to a slight
extent but comes with no cost of synchronization. Notably,
the importance of operation caches also varies according to
quantum algorithms. For example, the Grover’s algorithm
repeatedly applies the same Grover iteration. This makes
the operation cache important. They become less useful in
more random circuits. We can leverage certain linear algebra
properties to improve the cache efficiency. Multiplication is
a typical linear operation. This allows us to normalize the
operands. In the case of QMDDs, the operation cache only
needs to store node addresses but not their edge weights. This
makes the multiplication cache more likely to hit. Instead,
addition commutes. Thus the addition cache needs to check
both orders of the operands. However, since weights are
floating-point complex values, the cache hit ratios depend on
the tolerance used in equality checking and the paralleliza-
tion strategy. This means it is less likely to hit in the addition
cache and its hit ratio will be remarkably lower unless we
set a larger threshold and sacrifice the accuracy. In Fig. 4,
we present a comparison in the Grover’s algorithm. The gap
between the local and global cache hit ratio is small. The
local cache relieves the burden of synchronization and leads
to better performance. We also see that the hit ratio of the
multiplication is tens of times higher than the local cache.
The hit ratios for multiplication and addition are virtually
zero for a random circuit, so they are not shown. We sug-
gest that, from the cost-effectiveness perspective, assigning
a larger memory space to the multiplication cache is more
sensible.

C. FIBERS VERSUS THREADS
Fibers are a lightweight execution context. They are simi-
lar to operating system threads in the sense that they are
both abstract concept and implemented as a data structure
encapsulating data necessary for execution. Fibers are in the
userspace and their implementation relies on the underlying
OS threads, thus, they share some data with the underly-
ing threads. Multiple fibers can be scheduled onto the same
thread. These fibers have their own stacks but share a sin-
gle address space with the underlying thread. This means

FIGURE 5. Grover’s algorithm with different processing orders.

the same amount of memory can support more fibers, and
the context switch among fibers is faster since the operating
system does not need to switch the page table.
The principal difference between fibers and threads is how

they are scheduled. Fibers use cooperative scheduling. The
idea is that they deliberately yield to others at a chosen
point. It should be noted that using fibers does not provide
extra concurrency. The concurrency level still depends on the
number of operating system threads (hardware threads, to be
precise). Within a single thread, only one fiber can execute at
a single point in time. The benefit of this is that no extra syn-
chronization needs to be handled at the level of fibers as long
as threads are appropriately synchronized. Use cases of fibers
often involve many blockings or small computations. When
a fiber blocks due to I/O or locking, it can voluntarily yield
to others. This is less costly than a context switch between
threads. The primary advantage fibers exhibit in quantum
simulation is its automatic load balancing. Depending on the
pattern of a quantum gate matrix, its corresponding DD can
be imbalanced. We approach this by creating a large number
of fibers for carrying out computation on subtrees. Threads
can be kept busy by always having the next fiber available
when they complete one.

D. PARALLELIZATION SCHEMA
We analyze three strategies for parallelizing the simulation
process: 1) task-based outer parallelization; 2) thread-based
inner parallelization; and 3) fiber-based inner parallelization.
Consider a quantum circuit representing the state evolu-

tion of |output〉 = U3U2U1U0|input〉. The task-based outer
parallelization launches a fixed number of worker threads
and creates tasks for each multiplicationUi+1Ui orUi|state〉.
The noncommutativity of multiplication induces dependen-
cies among tasks. Task dependencies are handled by con-
structing a task graph with nodes representing operations
and edges representing task prerequisites. Fig. 6 shows a
toy example. In the task graph, we use MulMV and MulMM
to represent the operation of matrix–vector multiplication
and matrix–matrix multiplication. Such a task graph does

2500212 VOLUME 5, 2024



Li et al.: PARALLELIZING QUANTUM SIMULATION WITH DDs Engineeringuantum
Transactions onIEEE

FIGURE 6. Task graph with linear dependency.

FIGURE 7. Task graph without linear dependency.

not offer any true concurrency: later threads must wait for
the completion of previous threads. For example, allMulMV
nodes must be executed in a linear sequence. We improve
this by leveraging the fact that multiplication is associative.
Thusworker threads can simulate different parts of the circuit
simultaneously as long as the order is respected.We use asso-
ciativity to construct the task graph in Fig. 7. Dependencies
among MulMV nodes are removed, and thus, they can be
executed in parallel. We call this outer parallelization since
subtrees of a single DD are all processed by the same thread.
The whole task graph is processed in parallel by multiple
threads. Nevertheless, we find this approach performs poorly
in our experiment.
Past works have observed that matrix–vector multiplica-

tion is generally faster than matrix–matrix multiplication for
simulating quantum circuits [31]. This also applies to DDs.
Therefore, it is more efficient to reduce the dimension faster
and earlier by allocatingmore resources (i.e., worker threads)
to compute matrix–vector multiplication rather than matrix–
matrix multiplication. However, MulMV nodes in Fig. 7,
the only type of node generating a vector and reducing the
dimension, were taken by a single thread.
The solution is constructing a task graph in which de-

pendencies are set such that tasks are processed in batches
following the flow of the circuit. This means worker threads

FIGURE 8. Equivalence between IdentM and a matrix-matrix
multiplication.

work jointly in a subpart of the circuit (i.e., gates closer
to each other) to accelerate the dimension reduction and to
avoid working on arbitrary parts of the circuit (i.e., gates
further apart). We construct such a task graph by introducing
a node of type reduce. It serves as a hub in the graph. The
reduce nodes segregate the graph and enforce worker threads
to work on earlier parts of the circuit before later parts can be
processed. Fig. 9 shows an example of such a graph. We use
the node IdentM to mean a unitary gate matrix multiplied by
an identity matrix to save space. The equivalence is shown
in Fig. 8. In this example, we add three reduce hub nodes.
These hubs enforce worker threads to concentrate on smaller
parts of the circuit so that caches are more likely to hit. The
update of Fig. 9 from Fig. 7 is that worker threads are no
longer allowed to work on arbitrary parts of the circuit. They
are forced to first reach the reduced node and then proceed to
the next subregion of the circuit. In our experiment, we find
the inclusion of reduce nodes improves the performance by
approximately two times compared with the other two kinds
of task graph.
The vital problem of the outer parallelization is its poor

cache utilization. As threads may take arbitrary task nodes,
DDs processed by a single thread can come from remote parts
of the circuit, and thus, exhibit low similarities. This means
cached results are rarely reused, leading to a lower cache hit
ratio. In Fig. 5, we run the Grover’s algorithm with a single
thread using the same task graph but different processing
orders: one for sequentially multiplying DDs and one for
picking DDs randomly. It illustrates that random processing
decreases the cache hit ratio and leads to a longer execution
time.
Inner parallelization does not simulate the entire circuit

concurrently. Quantum gates are applied to the start state
vector in sequence following the circuit order, and only one
main thread carries this out. What distinguishes this strat-
egy is that different threads will process subtrees of a single
DD instead of working on different parts of the circuit. We
create fibers when the operation is recursively applied on
child nodes until a lower bond of qubit count is reached to
avoid having too many fibers. We determine this threshold
by benchmarking the time spent in constructing two fibers for
two DDs of a certain qubit number (this involves the creation
of data structures and the addition to the fiber manager’s
task queue) and the time spent in multiplying these two DDs
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FIGURE 9. Task graph with reduce nodes.

without using fibers. If the latter is faster, it suggests we
should stop creating new fibers at this number of qubits. The
results on our machine are provided in Table 5. We fix this
threshold to 4 qubits in all experiments. Inner parallelization
with fibers offers the following advantages. First, fibers are
dynamic, whereas task graphs are static. This means we can
query the operation cache first and avoid launching a new
fiber if it returns a hit. Second, inner parallelization boosts
cache efficiency. Quantum circuits tend to evolve the input
state gradually. At each step, quantum gates are applied to
the state vector locally. This means a majority of subtrees in
theDD remain unchanged across each gate. Third, workloads

on different subtrees are imbalanced (i.e., different tree sizes)
due to the gate matrix pattern. Fibers can be inexpensively
created, destroyed, andmigrated among threads. Free threads
can pick fibers from the fiber pool and this realizes an auto-
matic load balancing. In our experiment, we discover that
worker threads spend over 50% of time idling and waiting
for tasks in outer parallelization. In fiber-base inner paral-
lelization, this falls to approximately 10%.

IV. EXPERIMENTS
To evaluate the effectiveness of each parallelization strat-
egy, we implement a QMDD-based quantum simulator in
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TABLE 1. Results on Grover’s Algorithm

C++ compiled with GCC 11.4.0. We implement our task
graph engine. We use Boost fibers and OpenMP, [35] for
fiber-based and thread-based parallelization. Work-stealing
is enabled for load balancing. The implementation as well as
the benchmark scripts (under. /scripts) is open-sourced for
the proof of concept.1

In the experiments, we compare with the state-of-the-art
QMDD-based simulator DDSIM and Qiskit Aer, [36] with
default qubit state vector-based backend. We conduct the
experiments on a server with AMD Ryzen 9 7950X 16-core
processor and 128 GB RAM. The Linux kernel is 5.19.0. We
set the timeout limit to 7200 s. The Linux kernel manages
out-of-memory abortions. We fix the number of threads to
16 in fiber, taskgraph, and OpenMP experiments. This corre-
sponds to the number of cores in our experiment machine.
Each thread is pinned to a physical core to minimize the
impacts of thread migration. Our experiment parameters are
summarized in table [6].
Table 1 presents the result of the Grover’s algorithm. Our

implementation first creates the unitary gate for one complete
Grover iteration, the number of Grover’s iterations is com-
puted by �π

√
N

4 �(N is the number of qubit). The oracle we
use can be described byU |x〉 = (−1) f (x)|x〉, where f (x) = 1
only for a single input. The number of threads is fixed to 16
for all multithread cases. Each thread is pinned to a sepa-
rate core to remove the impacts from thread migration. The
results show that taskgraph performs poorly for both local
and global cache. Substantial overheads come from travers-
ing the task graph and waiting for dependencies. The cache
hit ratio of the Grover’s algorithm is expected to be high
because of its repeated applications of the Grover’s iteration.
However, we find the hit ratio is below 10% in taskgraph due
to worker threads randomly working on different parts of the
circuit. This pollutes the cache content and leads to unneces-
sary evictions. Another issue is the imbalanced workloads

1https://github.com/Fujitsu-UTokyo-QDD/QDD/tree/journal

from different quantum gates. For quantum gate matrices
with complex structures and random entries, we observe that
many threads are idle while the others are kept busy. This
suggests task-based parallelization is not suitable for simu-
lating quantum algorithms. Qiskit Aer uses the state vector.
It outflows the memory above 18 qubits on our server. Qiskit
Aer provides max_memory_mb to set the maximum size of
memory to store the state vector. In our experiment, we set
this to 0 so it will be set to the maximum allowable system
memory size. We also assign the minimum out-of-memory
score to the experiment process to ensure Linux does not
kill it too early. It is also slower than all the other DD-based
approaches.
Another common approach for adding parallelization is

with OpenMP.WhenOpenMP is used for parallelization, us-
ing a global cache accelerates the simulation for small qubit
counts. The global cache simulates more than ten times faster
than the local cache when the number of qubits is below 24.
Local caches start to boost the performance when the qubit
count gets larger. We also observe the same phenomenon in
the case of fibers. The profiling results suggest the following
reasons. First, higher qubit counts generally require a longer
execution time and more cache accesses. This makes the
costs associated with locking the cache more severe. Second,
the size of DDs also increases with qubit count. Therefore,
more subtrees share the same structure, thus the same cache
bucket. Using separate local caches alleviates cache con-
tention.
The performance of DDSIM is among the first tier. Our

single-thread implementation targets on matching DDSIM
to serve as a reasonable baseline. Therefore, their results
are comparable. DDSIM uses a single thread. However, it
is superior to the 16-thread OpenMP implementation with a
global cache. This confirms the negative impacts of unduly
synchronization. In our experiments, when the qubit count is
below 27, fibers should be used in conjunction with a global
cache. This offers the optimal performance among all strate-
gies we have benchmarked. With more qubits, fibers should
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TABLE 2. Results on Random Circuit (Number of Gates = 200)

TABLE 3. Results on Clifford + T circuit (Number of Gates = 200)

be used with local caches. This combination is the only one
superseding DDSIM in our experiments, and it reduces the
simulation time by 3–4 times.
The issue of a single-thread DD simulator becomes more

evident in a random circuit. In Table 2, a pure random circuit
with 200 gates is tested. We randomly sample 200 gates from
the gate set of RX, RY, RZ, and cnot. Each gate’s rotation
angle and target qubit are also uniformly distributed. DDs
are generally unsuitable for highly random circuits as the
operation cache barely helps, and random memory accesses
incurred from traversing the decision tree further hurt the
performance. Consequently, the no cache case performs the
best for larger qubit counts. Global cache performs worse
than local cache as it cannot obtain a higher cache hit ratio
but adds synchronization overheads. Qiskit’s performance
is satisfactory. It is faster than DDSIM for all qubit counts
before it outflows the memory. We cannot observe any ad-
vantage from using OpenMP than a single-thread imple-
mentation, suggesting that naive parallelization can, in fact,
hurt the performance. Purely random circuits are not com-
mon in practice. A better approach to universal quantum
computation is using Clifford (those generated by cnot,
Hadamard, and Phase gates) and T gates. These gates are
more controlled in rotation angles; thus, the circuits have
potentially more repetitive patterns to be exploited by DDs.
This has been observed in Table 3, where we randomly
sampled from a set of Clifford and T gates. Using fibers
with local caches still performs better than the global cache
in the experiment. This illustrates the relatively large im-
pact of synchronization on performance even with more data
sharing.
Our fiber-based implementation also accelerates the sim-

ulation of the Shor’s algorithm. The Qiskit Aer execution is

TABLE 4. Results on Shor’s Algorithm

TABLE 5. Time of Fiber Construction in Milliseconds

TABLE 6. Summary of Experiment Parameters

killed by theOS out-of-memory killer for factoring 253while
our approach can simulate with a speed-up of several orders
of magnitude. The implementation of the Shor’s algorithm is
based on [37]. Note that the execution time of the Shor’s algo-
rithm is highly dependent on implementation details and the
choice of the coprime. In Table 4, we only show the results
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with local caches which is the best among other alternatives
in our benchmark.

V. CONCLUSION
In this article, we examined DD-based quantum simulation.
Using QMDDs as an alternative to the basic BDDs in quan-
tum simulators has been around for a while. Although its
memory efficiency is superior to state vectors and tensor
networks, its lack of parallelization strategies limits its scale.
Components of DD libraries, such as the unique table and
operation cache, complicate the adaptation to parallelization.
Consequently, traditional thread-based strategies bring lit-
tle, if any, performance improvement. Their synchronization
costs occasionally are even harmful to the results. To address
these problems, we present a comprehensive overview of the
tradeoffs of several parallelization strategies. Furthermore,
we propose a design that allows a faster simulation than the
state-of-the-art single-threaded simulator DDSIM.

A. GARBAGE COLLECTION
Our prototype simulation engine does not implement garbage
collection which limits the supported simulation scale. We
believe that garbage collection is essential to support more
qubits. However, supporting garbage collection in DD-based
quantum simulation is challenging for the following reasons.
First, the performance impact of the stop-the-world garbage
collection is dramatic although it is easier to implement.
On the other hand, a pause-free GC may not guarantee a
complete free of memory and can be harder to implement
correctly. Second, the alternatives between collecting unused
nodes and leaving them for potential future usage require
careful benchmarking to decide. Collecting unused nodes too
aggressively in some quantum algorithms that exhibit a high
reusage of nodes may be detrimental to performance. For
a general-purpose quantum simulator, the designers remain
unknown to the actual simulation circuits, therefore, it is
challenging for them to tune the garbage collector.

B. HYBRID SIMULATION
We observe that when the qubit count drops below a cer-
tain number, the state vector-based simulation performs bet-
ter than the DD-based simulation. The memory saving and
caching benefits of the DD must outweigh its extra com-
plexity over the state vector-based approach. Therefore, we
propose to replace the DD nodes with the 2-D array-based
matrices for the lower part of the tree to combine the benefits
of these two approaches. The state vector-based approach has
the following pros. First, its gate entries are stored linearly in
the memory so that the hardware caches can be effectively
used to speed up the memory access. In DDs, we trace child
nodes using pointers which lead to random memory access.
Second, computations over arrays can be easily parallelized.
There is neither a unique table nor an operation cache to be
synchronized. The threshold for switching to state vector-
based simulation requires a study.

C. DISTRIBUTED SIMULATION
To further extend the simulation scale, it is central to leverage
distributed resources. It is not easy to extend DD-based simu-
lation to a distributed environment by using libraries, such as
OpenMPI due to the existence of the unique table and oper-
ation cache. There are two alternatives. One is to maintain a
global table that allows all machines to read and update. The
other is to let each computing node maintain the table locally.
A global table allows all node to share the work, however,
we face the challenge of keeping the table consistent and its
associated costs. Local tables are easier to maintain correctly
but suffer from the waste of work performed by other nodes.
Whether conducting distributed quantum simulations using
DDs can improve the performance remains to be explored.
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