
Quantum Internet Engineeringuantum
Transactions onIEEE

Received 29 July 2023; revised 1 December 2023; accepted 3 December 2023; date of publication 11 December 2023;
date of current version 12 January 2024.

Digital Object Identifier 10.1109/TQE.2023.3341151

A Linear Algebraic Framework for
Dynamic Scheduling Over
Memory-Equipped Quantum Networks
PAOLO FITTIPALDI1 , ANASTASIOS GIOVANIDIS1,2 ,
AND FRÉDÉRIC GROSSHANS1
1Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2Ericsson AI Research and Systems, 91300 Paris, France

Corresponding author: Paolo Fittipaldi (e-mail: paolo.fittipaldi@lip6.fr).

This work was supported in part by the French state through the Program d’Investissements d’Avenir managed by the Agence
Nationale de la Recherche under Project ANR-21-CMAQ-0001 and in part by the European Union’s Horizon 2020 Research and
Innovation Program under Grant 820445 and Project “Quantum Internet Alliance.” An earlier version of this paper was presented in
part at the 2022 IEEE International Conference of Quantum Computing and Engineering [DOI: 10.1109/QCE53715.2022.00066].
This work did not involve human subjects or animals in its research.

ABSTRACT Quantum internetworking is a recent field that promises numerous interesting applications,
many of which require the distribution of entanglement between arbitrary pairs of users. This article deals
with the problem of scheduling in an arbitrary entanglement swapping quantum network—often called
first-generation quantum network—in its general topology, multicommodity, loss-aware formulation. We
introduce a linear algebraic framework that exploits quantum memory through the creation of intermedi-
ate entangled links. The framework is then employed to apply Lyapunov drift minimization (a standard
technique in classical network science) to mathematically derive a natural class of scheduling policies for
quantum networks minimizing the square norm of the user demand backlog. Moreover, an additional class of
Max-Weight-inspired policies is proposed and benchmarked, reducing significantly the computation cost at
the price of a slight performance degradation. The policies are compared in terms of information availability,
localization, and overall network performance through an ad hoc simulator that admits user-provided network
topologies and scheduling policies in order to showcase the potential application of the provided tools to
quantum network design.

INDEX TERMS Dynamic scheduling, integer programming, Lyapunov methods, quantum communication,
quantum entanglement, quantum networks, queuing analysis, scheduling, scheduling algorithms, teleporta-
tion.

I. INTRODUCTION
As experimental demonstrations of quantum repeater links
and small-scale quantum networks [2], [3], [4] start to sur-
face, the vision of a future quantum Internet moves closer to
reality [5], [6], [7], [8].

Despite it still being a long-term goal, the road is partially
paved by the development of the classical Internet that identi-
fied and solved all the problems intrinsic to scaling a network
up and operating it in a distributed way. The solutions to such
problems are not directly translatable to quantum networks
in general because quantum hardware is fundamentally dif-
ferent, creating the need for a new branch of network science
with its own set of specialized tools. The present work aims
to describe a novel framework to formulate and solve the
problem of scheduling entanglement swapping operations in

quantum networks, and showcase its potential through some
application examples.
In classical networks, communication is achieved by mak-

ing information packets hop through a series of network
nodes until they reach their destination. Whenever several
packets from different users need to pass through the same
node, the node needs to have a specific discipline that regu-
lates the order in which the packets are relayed. Depending
on the application, the network might want to minimize all
wait times, prioritize the packets that have certain proper-
ties, or use more sophisticated specialized algorithms to de-
termine the order of passage. The set of rules that a node
applies to solve this problem is called a scheduling policy,
and it is an integral part of every well-functioning network
architecture [9].

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 4100118

https://orcid.org/0009-0007-6393-1979
https://orcid.org/0000-0002-7121-4802
https://orcid.org/0000-0001-8170-9668

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

Switching to quantum networks, the concept of packet
going from a source to a destination no longer applies. The
cornerstone of a large and varied set of communication appli-
cations [10], [11] in the quantum domain is quantum entan-
glement, and the ultimate task of a quantum network system
is to distribute entanglement to arbitrary sets of users. Due to
the difficulties that come with distributing entanglement over
a long link, the task is achieved in practice through entan-
glement swapping operations at intermediate nodes [12] that
may serve several distinguished pairs of end users. The chal-
lenge of scheduling in quantum networks revolves, therefore,
around entanglement swapping operations, which must be
scheduled by the nodes following what will be addressed in
the following as a quantum scheduling policy.
Despite there being several solutions that yield an ex-

tensive choice of well-established policies for classical net-
works, the scheduling problem remains an active challenge
for quantum networks: pioneeristic effort has been under-
taken to solve the scheduling problem in specific quantum
networking settings [13], [14], [15], [16], [17], but no triv-
ial generalization of the results presented in these works to
medium- and large-scale networks is possible.
In this context, our work aims to provide a framework that

can be employed for designing and benchmarking schedul-
ing policies on general quantum networks. We stress that
our findings pertain to arbitrary network topologies with no
theoretical limit on scale and enable users to work with mul-
tiple commodities requesting streams of entangled pairs. Fur-
thermore, our framework actively exploits quantum memory
slots: even when not all elementary links along a given route
are ready, the network is still allowed to create intermediate
entangled pairs that cover a part of the route exploiting the
available links and store them in memory for future use.
The idea of intermediate links has already appeared in other
works [18], [19], [20], and we seek to extend it to our general
setting as a core mechanism of operation of the network
systems we model.
It should be noted that, while some scheduling policies are

proposed and analyzed in the following, the broader focus
of this work is on describing the framework as a practical
tool and providing examples of its application to nontrivial
scenarios.
Our work is primarily aimed at first-generation quan-

tum networks, as detailed in [21], but our methods might
prove interesting for a future treatment of second- and third-
generation systems as well.
The rest of this article is organized as follows. In Section

II, the relevant scientific literature is reviewed and compared
with our contribution. Section III provides a detailed descrip-
tion of the system we are modeling and the various compo-
nents of our algebraic framework. We follow up with Section
IV, where we introduce and analyze an array of scheduling
policies through the tools we propose. SectionV is devoted to
presenting numerical results obtained by applying our tools
to several network setups. Section VI discusses limitations.
Finally, Section VII concludes this article.

II. CONTEXT AND RELEVANCE OF THIS WORK
As a cross-disciplinary topic, quantum networks are interest-
ing to both quantum physicists and classical network scien-
tists: many protocol-level questions already have an estab-
lished answer in the classical domain, but the fundamental
differences specific to quantum hardware require careful re-
consideration of the preexisting knowledge base. Much like
our work, Skrzypczyk and Wehner [13] provide a formula-
tion of the scheduling problem on quantum networks, the
main difference being that the cited work approaches the
problem through architecture design and heuristic schedul-
ing, whereas our contribution is more geared toward building
a general algebraic framework to mathematically derive and
compare scheduling policies.
Concerning purely theoretical results, an optimal theoreti-

cal bound for entanglement distribution across a line network
with a single commodity is derived in [14] and expanded
upon in [17].
Works [16], [22], and [23] are all examples of stochas-

tic analysis of a single quantum switch to characterize the
scheduling policies that stabilize it. The physical model em-
ployed in these works is deeper, in that it accounts for purely
quantum imperfections that we neglect, but their scope is
somewhat narrower than ours because they all consider a
single quantum switch that has to serve a set of users in a
star-like configuration.
More specifically, relevant to our work, the authors of [24]

and [25] detail the application of Lyapunov stability the-
ory to a quantum switch and the subsequent derivation of a
throughput-optimal Max-Weight [26] policy, much like it is
done for the quadratic policies we propose. The key differ-
ences rely in the generality of our work, which applies to
arbitrary topologies with multiple commodities, and in the
fact that the cited papersmodel a switch as a single-hop queu-
ing system dealing with entanglement requests, i.e., requests
arrive at the switch and are served after waiting in a queue.
Here, we extend this idea by also keeping track of entangled
qubit pairs (referred to as an ebit [27] hereafter) through a
multihop queuing model: generation and usage of ebits are
naturally modeled through simple enqueuing and dequeuing,
while entanglement swapping operations entail simultaneous
dequeuing from two parent queues and enqueuing in a child
one.
This new set of queues for ebits acts as a variable re-

source that the network must regulate according to a suitable
scheduling policy. The two queuing models are described in
more detail in Section III.
The usage of memory in our framework is physically sim-

ilar to the virtual quantum link idea first introduced in [18]
and revisited in [17], [19], and [20]: the introduction of mem-
ory at the nodes enables them to seek a balance between
depleting their supply of entangled pairs for swapping and
conserving it for future use or direct user consumption. The
deeper implication of this point is that the network is free
to create intermediate links and store them: this leads to dis-
tributing pairs across a service route in a “growing” fashion,

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

which both increases performance and removes the need for
end-to-end link state information, while naturally adapting to
a multihop queuing scenario.
As a final remark, we stress that due to the abundance

of interesting research that has been carried out to perform
quantum routing on several network topologies [15], [19],
[28], [29], we assume the existence of a set of static pre-
computed routes that connect each end users’ pair, under the
premise that our work should be easily integrable with amore
refined routing technique.
To conclude the section, we summarize the key contribu-

tions of the present manuscript.

1) We introduce a general framework for scheduling in
quantum networks that poses no assumptions on topol-
ogy, number of commodities, or choice of scheduling
policy (see Section III).

2) We extend the idea of intermediate virtual link to the
general network case (see Section III).

3) Through the help of our framework, we derive a
throughput-efficient quadratic scheduling policy that
works over our multihop model. We then formulate
different versions of this policy that relax information
requirements (see Section IV-D).

4) Finally, we propose a novel Max-Weight-inspired
class of scheduling policies that is shown to perform
satisfactorily while posing feasible communication
constraints on the network (see Section IV-D).

III. SYSTEM DESCRIPTION
In this section, we describe the physical model that we will
rely on to develop our framework. Since the framework we
provide is composed of two interconnected queuing models,
we devote subsections III-A and III-B to describe respec-
tively the details behind ebit queues and demand queues. As a
preliminary step, we clarify the notation conventions that are
adopted in this work: lower case for scalars (x), bold lower
case for vectors (x), bold upper case for matrices (X) and
calligraphic upper case for sets (X). Well-known matrices
such as the identity matrix or the null matrix are indicated in
blackboard bold and subscripted with their dimension, as in
In and 0n×m.

Since the term is ubiquitous in the following, we state the
definition of a quantum switch as a device that is equipped
with quantum memories to store qubits, a Bell state mea-
surement (BSM) apparatus to perform entanglement swap-
ping operations, and local quantum processing capabilities.
An entanglement swapping operation is assumed to be in-
stantaneous and always successful, and the classical com-
munication overhead that comes with entanglement swap-
ping (such as sharing measurement results) is considered
free. We assume our quantum switches to be connected to
a classical communication infrastructure to coordinate con-
trol operations for protocols and, if the chosen scheduling
policy so requires, exchange status information with other
nodes and/or a central scheduling controller.Moreover, every

node is assumed to possess unlimited memory slots. While
this might look like too coarse of an assumption, both the
literature [22], [30] and some preliminary results we present
here suggest that, while indeed being an important modeling
point, limiting the memory slots might not be the first net-
work limitation that must be taken into account.
The physical system we consider is a network of quantum

switches connected by lossy fiber links. We model it as an
arbitrary connected graph G = (V, E), where the switches
are deployed at the locations specified by the vertices V and
interconnected by edges (i, j) ∈ E that represent a fiber link
plus a generic elementary entanglement generation scheme
(such as a χ (2) crystal or a Bell state analyzer in the mid-
dle [31] or at one of the stations [12, Sec. V-C]). Every
switch has a number of memory slots, assumed to be in-
finite in this work, in which qubits may be stored. ebits
are generated by each fiber link with a given constant av-
erage rate, which may be heterogeneous across links but
is constant in time, and stored inside memories at the end
nodes of the respective link. Among the network nodes, there
are n pairs {(Alice1,Bob1), . . . , (Alicen,Bobn)} that request
ebits in a random way to realize a generic application. Each
(Alicen,Bobn) pair is connected by one or more routes that
are not necessarily disjoint from the ones connecting other
users and, therefore, can create congestion that needs to be
managed by a scheduling policy. We stress that since we
assume unlimited memory we are choosing to focus on the
link congestion case, we leave node congestion for future
investigation.
Given this starting point, the purpose of a quantum net-

work is to perform entanglement swapping operations in or-
der to distribute ebits to its users in a way that maximizes
a given performance metric. In pursuing this objective, the
network must rely on a scheduling policy to minimize con-
gestion by carefully deciding which swaps to perform when,
while also being hindered by link-level fiber losses and by
quantum memory imperfection causing the loss of stored
ebits.
Memory and fiber losses are the only two sources of im-

perfection that are accounted for in this article: for simplicity
reasons, we neglect sources of state degradation other than
losses in this formulation of our algebraic model, since they
require a far lower level of abstraction, and lead to more
complex multiobjective problems [32], [33]. However, our
model could be reinterpreted in the context of more modern
error-corrected networks if we state that each link generates
entangled pairs with a given logical rate, i.e., the rate of
creation of error-corrected ebits.
For practical reasons, we discretize the time axis: since

the scheduler is supposed to take decisions at fixed times, it
is natural to take a discrete time step �t as the time unit of
interest.
Between two subsequent clock ticks, the system is free

to evolve stochastically, and at the end of each time step,
a scheduling decision is taken. This places a lower bound
on �t: no decision can happen before all information has

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

been successfully communicated to all deciding agents; thus,
�t must be at least as large as the classical communication
delay introduced by state-related information exchange. We
note that, while at the moment our work does not take into
account finite communication delays, the design process of
a real system would need to consider that a policy that re-
quires more communication, despite being better informed,
will suffer from more losses (as they depend on the length of
the time step) and be less reactive to instantaneous change.

A. EBIT QUEUES
To model ebits stored at memory nodes, the concept of an
ebit queue is introduced: each pair of nodes e = (i, j) inside
the extended edge set Ẽ = V × V is said to possess an ebit
queue qi j(t). Furthermore, among ebit queues, every qi j(t)
associated with an edge (i, j) ∈ E corresponds to an elemen-
tary entanglement generation link and is, therefore, called
a physical queue, whereas all other ebit queues are called
virtual queues. Ebit queues are, therefore, a piece of classical
control information introduced to keep track of which nodes
share entanglement: qi j(t) = n means that there are n qubits
at node i and n qubits at node j, taking up n memory slots
at the respective nodes and sharing pairwise entanglement.
In the following, we describe how all the processes that ebits
undergo in our model are translated to queue operations.

1) EBIT GENERATION
At each time step, every fiber link—and thus every physical
queue—generates a random number of ebits ai j(t). This term
can be seen as an open interface to the specific random pro-
cess that models ebit generation, and it is treated hereafter
as a Poisson process—which in our discrete model becomes
a Poissonian random variable. For the sake of simplicity,
we assume ai j(t) to have a constant mean value αi j ≥ 0,
i.e., at every time step, αi j ebits are generated on average.
It should be noted that αi j is the final generation rate after
accounting for link-level imperfections—finite brightness of
the source, propagation losses, finite success probability of
pair-generation BSMs, etc.—as a cascade of Poisson filtra-
tion processes, at the end of which we obtain a value for
αi j. Thus, ebit generation is modeled by a direct enqueuing
operation along the relevant queue. It should be noted that,
since this operation models entanglement generation at the
physical level, it only concerns physical queues. For virtual
queues, ai j(t) = 0∀ t.

2) EBIT LOSSES
To model (symmetrical) memory loss, we employ a stan-
dard quantum memory model and calculate the storage-
and-retrieval efficiency of the memories as η = exp{(−�t

τ
)},

where τ is the expected lifetime of a qubit in the memory and
�t is the duration of a time step. This figure of merit models
the probability to correctly retrieve a qubit from a memory
after it has been stored in it for one time step. We assume
losses to be symmetrical in that whenever one loss event

happens, either both ends of the link lose their respective
qubit or one end loses it and instantly communicates loss to
the other concerned node. Therefore, one loss event always
models the loss of one complete ebit.
At every time step, every queue throws as many biased

coins as there are stored qubits and removes as losses all the
ones that fail the random check. Losses are, therefore, mod-
eled by the binomially distributed random variable �i j(t),
with as many trials as there are ebits stored in queue (i, j)
and probability to lose one pair 1 − η. It should be clear that
the number of trials for the geometric distribution is based on
qi j(t), i.e., on the pairs present at the beginning of the time
step, meaning that new arrivals are immune to losses for the
ongoing time step.
We remark that the statistical distribution of ebit survival

times follows the geometric distribution defined by η, whose
mean value 1

1−η
tends to the expected τ

�t for small �t
τ
, with

τ being the expected lifetime of ebits in the memories. The
remaining difference is an effect of the discretization. Finally,
we stress that accounting for losses in such a time-dependent
way makes the presented framework valid as a tool to de-
termine the optimal frequency at which scheduling decision
should be taken, given the technological parameters.

3) ENTANGLEMENT SWAPPING
After covering generation and loss, the last mechanism that
can modify the amount of ebits in a queue is entanglement
swapping. Entanglement swapping always involves consum-
ing two “shorter” pairs to obtain one longer pair, which
naturally translates to our queue-based formalism as two
removals from the parent queues and one addition to the
child queue. We introduce the following notation: let ri[j]k(t)
indicate the number of swapping operations that happen at
a given time step, at node j, from queues (i, j) and (j, k)
to queue (i, k): as a notation example, rA[B]C(2) = 3 means
that the scheduler has ordered three BSMs to be performed at
node B to swap three pairs from queues AB and BC to AC at
time step 2. There will be as many ri[j]k(t) terms as there are
transitions allowed by the chosen routing: if, for instance,
there are two parallel paths ABCD and AB′C′D across the
Alice–Bob pair AD, but only ABCD is explicitly routed, the
system will include terms rA[B]C(t) and rA[C]D(t), but not
rA[B′]C′ (t) and rA[C′]D(t), effectively ignoring the second path.
This is a limitation that directly arises from assuming that
routing is static and known, but is also easily circumvented
by adding more paths to the routing, since we place no the-
oretical limit on the number of routes that can serve a user
pair.
To clarify how all the pieces introduced until now fit

together, suppose that we have the Alice–Bob pair AD
connected by route ABCD, as shown in Fig. 1. Assume
the average generation rates to be αAB, αBC, and αCD =
1 (time steps)−1. Finally, assume that all the memories in the
system have η = 0.9 storage-and-retrieval efficiency for the
chosen time step duration. Fig. 1 shows how the full system
evolves throughout two time steps, while Fig. 2 shows the

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

FIGURE 1. Explicit example of two successive time steps over a simple
chain topology. Continuous lines represent physical links and, therefore,
correspond to physical queues in our model, whereas dashed lines
symbolize virtual queues, i.e., pairs of nodes that are not directly
connected by fiber but may share ebits after some entanglement
swapping operations. Gray circles represent ebits in the queue at the
beginning of the current time step. Their number is encoded in q(t) in
our model. Red circles represent ebits arrived during that time step
(a(t)). Blue crosses represent loss of an ebit (�(t)). Upper figures (a)
represent the state at the beginning of the corresponding time step, and
lower figures (b) at the end of it. Passing from time step 1 to 2, the
scheduling decision rA[B]C (t = 1) = 1 has been applied, which removed
one ebit each from queues AB and BC and added one to AC.

FIGURE 2. Same example as Fig. 1, as seen internally by queue AB to
highlight the timing of the various phenomena at play. Queue snapshots
qi j (t) are taken at the very beginning of a time step, whereas arrivals
and losses happen stochastically. At the end of each time step, arrivals
and losses are counted and the scheduling decision is taken. Note that
ebits arriving during the current time step are not subject to losses in
this model.

same test run but focusing on queue AB, to highlight the
timing of the various phenomena at play.

1) During time step 1:
a) at the beginning of the time step (see 1a in Fig. 1),

the queue states are qAB(1) = qCD(1) = 1 and
qBC(1) = 0;

b) at the end of the time step (see 1b in Fig. 1),
new ebits have been generated across AB and BC
(aAB(1) = 2, aBC(1) = 1, red circles) and one
has been lost across CD (�CD(1) = 1, crossed-
out gray circle). The scheduling decision is taken
from this configuration as rA[B]C(t = 1) = 1: one
swap at nodeBwith queuesAB andBC as parents
and AC as child. The time step is concluded by
the application of the scheduling decision.

2) During time step 2:
a) the initial configuration (see 2a in Fig. 1) sees

two stored pairs in AB that were not employed
in the last time step (qAB(2) = 2) and the freshly
swapped one in AC (qAC(2) = 1);

b) at the end of the time step (see 2b in Fig. 1), one
pair was lost acrossAB (�AB(2) = 1) and onewas
generated across CD. The scheduler may now
decide rA[C]D(2) = 1 to move to AD or store the
pairs for future use.

TABLE 1. M Matrix for the Linear ABCD Network

To categorize transitions in terms of their net effect on
queues, we say that a given transition i[j]k is incoming for
queue (i, k), because it adds pairs to it, and outgoing for
queues (i, j) and (j, k), because it takes pairs from them. A
queue’s evolution can, therefore, be summarized as follows,
i.t. and o.t. being abbreviations for incoming and outgoing
transitions, respectively:

qi j(t + 1) = qi j(t) + ai j(t) − �i j(t) −
∑
o∈o.t.

ro(t)+
∑
k∈i.t.

rk(t).

(1)

For clarity, we reiterate that while all terms of (1) are cal-
culated for every queue, ai j(t) across a virtual queue will
always be zero, because virtual queues do not generate ebits.
Moreover, it is quite rare for a physical pair to have incoming
transitions, but not impossible: it may happen in a peculiar
topology such as the ABC triangle with AB as an Alice–Bob
pair and ACB as service route. In this edge case, transition
A[C]B is incoming for a physical queue.
Conversely, it should be stressed that the loss term �i j(t)

is calculated in the same way for all queues, because ebit
storage is always handled by memories at the network nodes.

4) VECTOR FORMULATION
A description of the whole system requires |Ẽ | equations
like (1), ushering a natural transition to a model built with
matrices and vectors.
The first vector terms are q(t), a(t), and �(t), whoseNqueues

entries correspond to the individual qi j(t), ai j(t), and �i j(t)
values (the ordering is irrelevant as long as it is consistent).
Moreover, since the effect of swapping on the queues is lin-
ear, it is possible to describe it by introducing the vector r(t),
which has Ntransitions elements—and a matrixM with Nqueues

rows and Ntransitions columns to translate the transition rates
into their net effect on queues.
The r(t) vector embodies the scheduling decision, and

it is a mere list of all the ri[j]k terms, while the M matrix
introduces an efficient encoding of the network topology and
routes: For each of its columns, associated with transition
i[j]k, the M matrix has −1 on the rows associated with
queues (i, j) and (j, k) and +1 on the row associated with
queue (i, k). All other terms are zero. An example of the M
matrix is given in Table 1 in order to provide the reader with
intuition on how it is built. We remark that in all nontrivial
examples that are analyzed in this work, the M matrix is
automatically generated by our simulator.

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

System-wide queue evolution can be restated as the
following simple linear equation:

q(t + 1) = q(t) − �(t) + a(t) + Mr(t). (2)

Looking at Table I, notice that, as this work only involves
bipartite entanglement, all columns ofM have two −1 terms
and one 1. It would be possible to generalize this model to
n-party entanglement by introducing multipartite queues and
defining transitions that are added to them by drawing from
three or more bipartite queues to model a protocol similar to
the ones shown in [34] and [35]. For the sake of simplicity
and avoiding the severe scaling problems this generalization
would create, we focus on bipartite states for now. This en-
tails that every column of M sums to −1, i.e., every swap
operation has the net effect of removing one pair from the
system.

5) EBIT CONSUMPTION
Up to now, the scheduler can freely swap pairs in the network,
but there is no mechanism for users to employ the received
pairs. The missing piece of the puzzle for ebit queues is con-
sumption: whenever there is availability of entangled pairs
across one of the final (Alicen,Bobn) pairs, the scheduler
must be able to use the available pairs to serve requests, i.e.,
consume the distributed resource. This is implemented in the
model by extending the matrixM through the concatenation
of a negative identity block to obtain M̃ = [M| − INqueues]
and the r(t) vector to have Ntransitions + Nqueues components.
What this extension achieves is to have a set of new transi-

tions that only remove one pair from a given queue, modeling
actual consumption of the distributed pair by the users. Ex-
tendingM to M̃ empowers the scheduler but also adds a new
facet to the decision problem: if a given queue has n pairs
inside, the scheduler not only needs to balance swapping and
storage for future use, it might also have to account for direct
consumption of some of the available ebits.
Putting all the terms together, the vector of ebit queues

evolves as

q(t + 1) = q(t) − �(t) + a(t) + M̃r(t). (3)

B. DEMAND QUEUES
The ultimate purpose of a communication network is to serve
the requests that users issue. Therefore, we need to include
in our discussion a mechanism that allows us to keep track
of user demand: at any given time, every (Alicen,Bobn)
pair will issue a random number of demands and store them
in a backlog called the demand queue. Every time a direct
consumption operation is scheduled and a pair is consumed
along link i j, a demand is contextually removed from the
demand queue of link i j. This physically corresponds to the
users measuring their qubits and “consuming” one ebit to
realize the specific application they are implementing.
Thus, it becomes natural to introduce another set of queues

to describe the evolution of demands. Similarly to ebits, de-
mands arriving to the system and being held for future service

are modeled through queues: alongside every ebit queue,
there exists a demand queue di j(t) that keeps track of the
number of user-issued requests (as introduced in [23] for a
single switch and generalized in this work for an arbitrary
topology). At each time step, every demand queue di j(t)
receives bi j(t) demands, which, for simplicity and general-
ity, are again modeled as a Poisson process with a constant
average value βi j (as in the case of ebit generation, this term
may be interpreted as an open interface to more refined traffic
patterns). To maintain the model’s uniformity, all edges be-
longing to Ẽ have a demand queue, but only the ones that are
associated with an (Alicen,Bobn) pair have nonzero arrivals.
For all the other links, bi j(t) = 0∀ t.

Demand queues have a simpler evolution than ebit queues,
since a demand is only a request for one ebit to be dis-
tributed across a given (Alice,Bob) pair: demands enter
their queues when they are received and exit when they are
served. Demand service can be naturally controlled by the
i j terms of the r(t) vector, i.e., the same terms that control
ebit consumption. We, therefore, introduce the matrix Ñ =
[0Nqueues×Ntransitions | − INqueues] as a mean of interfacing with
the consumption part of the r(t) vector without being affected
by the scheduling one, which is irrelevant to demand queues.
Demand evolution may, therefore, be stated as

d(t + 1) = d(t) + b(t) + Ñr(t). (4)

By construction, the last Nqueues components of the r(t) vec-
tor regulate both demand and ebit consumption: one demand
always consumes one ebit.

IV. SCHEDULING POLICIES
A. GENERAL OVERVIEW
After introducing all the components of the model, we move
to describing scheduling policies and how they can be tested
through our tools. We first outline what a scheduling policy
is in the context of our work and follow up with subsections
dedicated to three categories of scheduling policies: Section
IV-C describes the Greedy scheduler, i.e., the simplest policy
we analyze in this article; Section IV-D features a mathemat-
ical derivation of a quadratic family of scheduling policies;
Section IV-E shows how the quadratic schedulers can be
modified to obtain a class of policies that perform similarly
but require lighter computations. We define a scheduling pol-
icy as any arbitrary set of rules that at every time, step t takes
as its input some degree of information about the network
state and returns a scheduling decision r(t), i.e., a scheduling
vector as defined in the previous section.
We first subdivide policies according to their localization

degree: in distributed policies, the nodes themselves deter-
mine the operations to perform; in centralized ones, the sys-
tem features a physical scheduler to which all the nodes com-
municate their status information and receive orders from.
It is, moreover, possible to categorize policies in terms of
information availability: we remark that in all the policies
that we analyze in the following, we work on the assumption
that (q(t),d(t)), i.e., the exact state of the system at the

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

beginning of time step t, is known to all parties. However,
since networks are distributed systems, it may happen that
some crucial information (such as the realizations of the
random processes ai j(t) and �i j(t) for faraway queues) is not
available or outdated when the scheduling decision is taken,
introducing the notion of feasibility of a scheduling decision,
which is detailed in the following section.

B. MANAGING INFEASIBILITY
To start discussing how infeasible decisions are handled, let
us assume a centralized scheduler, with complete access to
information. Let I (t) be the set of information accessible
to the scheduler at time t. For example, a fully informed
scheduler will have access to the information set IFI(t) =
{q(t),d(t), a(t), �(t),b(t)}, i.e., the state (q(t),d(t)) of the
system at time t plus the realizations of all the random quan-
tities at play, making it so that the scheduler perfectly knows
the state of the system at the end of the time step. Other more
realistic schedulers will only have access to a subset of this
information, as we will see later.
As shown in Section III, the net effect of a scheduling

decision r(t) on the ebit and demand queues is given by
M̃r(t) and Ñr(t), respectively. We can set two bounds on the
decision.

1) The net number of outgoing ebits from any given queue
can never exceed what is physically available

−M̃r(t) ≤ q(t) − �(t) + a(t). (5)

2) Along a queue, the number of consumed ebits should
never be higher than the demands

−Ñr(t) ≤ d(t) + b(t). (6)

We refer to those bounds as the feasibility bounds.
If we now suppose (as will be the case for most of the

scheduling policies presented hereafter) to have incomplete
access to information, one or more of the random processes’
realizations become inaccessible, making it impossible to
exactly formulate the feasibility bounds. Despite it still be-
ing possible to design scheduling policies that perform well
while only using educated guesses based on averages, it is not
possible to guarantee that their decisions at each time instant
will respect (5) and (6).

Infeasibilities, in general, arise when n ebits are available
in a queue and n′ > n are scheduled out of it; they may be
caused by a central scheduler relying on outdated informa-
tion and scheduling more pairs than available, or by conflicts
between two node-local schedulers (see Section IV-D5) that
try to draw from the same queue.
Infeasible decisions themselves do not prevent a network

from operating (performing more measurements than there
are available ebits simply results in failure of the excess
measurements), but infeasibility that is not properlymanaged
may entail sensible degradation of performance. Therefore,
a working quantum network stack also needs a specific disci-
pline to manage infeasible orders. In the context of this work,

conflicting requests are managed in a random order to mimic
a real network adopting a first-come first-serve discipline.
As an example, suppose that we have one ebit in queueBC.

It may happen that a scheduling policy requests rA[B]C = 1
and rB[C]D = 1, two operations that feature BC as a par-
ent and, therefore, compete for the single available ebit. At
this point, one needs to choose the discipline according to
which priority is assigned: whereas this basic example may
be solved by simple random selection, we illustrate in the fol-
lowing a more in-depth example to show the full complexity
of this problem and the solution we adopt in our work.
It could happen that the scheduler ordered to feed qAC

through rA[B]C = 1, exploit the new AC pair in rA[C]D = 1,
and finally serve one request with rAD = 1. Each of these
operations depends on the one before it, and if the execution
sequence is not respected, the system will serve one less AD
request, possibly also wasting the intermediate links in the
process and ultimately degrading performance.
Therefore, to ensure that proper priority is respected, we

introduce a ranking system for swapping and consumption
operations to preserve execution order. Swapping transitions
and consumption orders are grouped by ranks, and the ranks
are executed sequentially. All conflicts inside a rank are man-
aged through random selection.
To form the ranks, we start by assigning rank 0 to con-

sumption orders from physical queues: these orders will be
executed first. Second, swapping operations whose parents
are physical queues are assigned rank 1, so that they are
executed second. After that, ranks are assigned in iterative
order: for n = 0, 1, 2 . . ., even ranks 2n are assigned to con-
sumption orders along queues that are fed by transitions of
rank at most 2n− 1 and odd ranks 2n+ 1 to transitions
whose parent queues have rank at most 2n, as depicted in
Fig. 3. Such a system allows for a good balance between
fair management of conflicting requests while preserving
the sequentiality of “ascending” entanglement distribution
operations and is also easily implemented in practice: we
assume that every node knows the rank of the queues and
transitions that involve it, and we envision to send, instead
of a single “apply decision” control signal, a series of “apply
rank n operations” signals. To help intuition, an example of
how the ranking systemworks is provided and commented in
Fig. 3. In the following sections, we propose some examples
of scheduling policies and provide details on their degree of
localization and information availability.

C. GREEDY SCHEDULER
The greedy scheduler is a nontrivial distributed scheduling
policy that works with minimal communication between the
nodes. It is a natural and immediate solution to the schedul-
ing problem, and it is commonly found in classical network
literature as a test case. Under a greedy scheduling policy,
all nodes perform swapping operations as soon as they are
available, regardless of user demand. When several compet-
ing operations are available, the node selects randomly. It
should be noted that, although it disregards user demand, the

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

FIGURE 3. Scheme of our rank system for an ABCDE chain topology.
Every square with only two letters inside (e.g., DE) represents a
consumption operation along a given link, while three-letter squares
(e.g., C[D]E) represent swapping transitions. A set of squares at the same
height are grouped in one rank, starting from zero at the top (direct
consumption from physical queues) and increasing going down. Arrows
represent the “paths” to follow to obtain one of the final user-requested
pairs. Focusing on the bright red squares in this scheme, which all
involve node C in some way, we can provide an example of how the
conflict-management system works. Whenever it needs to apply a
scheduling order, node C will sequentially: 1) perform transition B[C]D
(rank 1) as many times as requested; 2) satisfy consumption orders
along CE and AC in a random order, since they are competing rank 2
operations; and 3) perform transitions B[C]E and A[C]D in a random
order, since they are competing rank 3 operations. As discussed in the
main text, CE and AC’s consumption orders are satisfied in a random
order, but always after the upstream B[C]D transition and always before
the downstream B[C]E and A[C]D transitions.

greedy scheduler we examine is still routing-aware: if the
route ABCD is to be served, the scheduler will never attempt
“downward” transitions like A[D]C.

The greedy scheduler’s advantage lies in the fact that it
requires no additional communication infrastructure on top
of the one already employed by ebit generation and swap-
ping, since the policy works on strictly local information.
The downside to such simplicity is found in the low perfor-
mance of this policy, that is only interesting as a lower bound
for other policies to beat in order to justify the additional
communication overhead required. Simulation data for the
greedy policy, as well as a comparison with more refined
schedulers, are provided in Section V-B.

D. QUADRATIC SCHEDULING
We now turn to mathematically stating and solving the
scheduling problem through the lens provided by our frame-
work. Before solving the problem and displaying results, we
introduce our mathematical tools.

1) DRIFT MINIMIZATION
Lyapunov drift minimization (LDM) is a standard technique
that is often used in classical network science to stabilize
queuing systems [36, Sec. 8.4]. In this section, we provide
a demonstration of how and why LDM works and follow up
with its application to quantum networks. As a first step, let
the Lyapunov FunctionV (q(t),d(t)) := V (t) be an arbitrary,
nonnegative, convexNn −→ R function of the current state of

the queues. In short, choosing an arbitrary Lyapunov function
and showing that it satisfies certain conditions allows us to
infer that the system is stable. This method entails great
simplification of the analysis of highly multivariate systems,
because it reduces the problem to a scalar one: when V (t)
is small, all the queues are small, and when it is big, at
least one queue is accumulating. A common convention [37]
in network science is to use the square norm of the queue
backlog vector as V (t).
After choosing a suitable Lyapunov function, the next step

is to define its drift �V (t) as

�V (t) = E [V (t + 1) −V (t)|I (t)] . (7)

We recall that I (t) is defined as the set of available infor-
mation at time t, and that we assume all policies presented
in this work to have at least knowledge of the state of the
queues at time t (q(t),d(t)). Some intuition about the drift
formulation can be gained by thinking of the Lyapunov func-
tion as a potential, akin to the electrical one in physics: the
drift is positive if from t to t + 1, the system evolves into an
higher potential less stable state, and negative otherwise. It
is possible to prove [36, Sec. 8.4.2] that if �V (t) is negative
on the entire state space of the system, except possibly for a
compact subset of (q(t),d(t)) values, then the Markov chain
describing the system is positive recurrent, i.e., the network
is stable and user requests will not accumulate boundlessly.
Such a property is known as the Foster–Lyapunov criterion.
Intuitively, the drift being positive only on a compact set
means that there is a region of the state space in which the
system evolves away from stability: since the drift is negative
everywhere outside the said region, the system is always
pushed back inside it, so that the Lyapunov function is never
allowed to diverge. To visualize this, one may think of a
charged particle in a potential well: even if it manages to
exit in some way, it is eventually pushed back by the higher
potential region. In its most general form, the Foster–
Lyapunov criterion can be phrased as

�V (t) ≤ − f (t) + g(t) (8)

where f and g are two nonnegative functions and the right-
hand side is positive on a compact region of the state space
of our system. Therefore, the practical goal is to find a bound
for the drift and minimize it, in order to satisfy the Foster–
Lyapunov criterion

min
R(t)∈R

�V (t) ≤ − f (t) + g(t) (9)

where R is the set of all feasible scheduling policies.
Notice that everything in our equation is defined only in

terms of t and t + 1: the optimization must be repeated at
every time step because of the t dependence, and since the
system only sees up to t + 1, we call this process a myopic
optimization. Solving the myopic problem at every time step
can be proven [38, appendix] to be a suboptimal solution to
the infinite horizon Markov decision problem of stabilizing
the network at steady state.

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

2) APPLICATION TO THE FRAMEWORK
We now move to the application of drift minimization to
our quantum problem. We first remark that we only seek to
stabilize demand queues, because ebit queues play the role of
a resource, and their accumulation is not an indicator of the
ability of the network to serve user demand (accumulating
ebit queues merely amount to more ebits being available
and more freedom to the scheduler, especially under un-
limited memory assumptions). In addition, we remark that
experimental quantum networks will have a finite number of
quantum memory slots at every node, enforcing a hard upper
bound on q(t).
To make our analysis apply to any arbitrary scheduling

decision inNn, we refine our definition of d(t)

d(t + 1) = (d(t) + b(t) + Ñr(t))+ (10)

where (·)+ is a shorthand for max (·, 0). This is a failsafe
measure that prevents the queues in our mathematical model
from going negative even if a scheduling policy prescribes
more service than there are requests.
To apply drift minimization to our case, the first step is to

choose a Lyapunov function that satisfies the requirements
detailed above. As is customary in classical networks, we opt
for the square norm of the queue backlog

V (t) = 1

2
dT (t)d(t). (11)

From there, we obtain the drift

�V = 1

2
E

[
dT (t + 1)d(t + 1) − dT (t)d(t)

∣∣I (t)] . (12)

If we let d(t) + b(t) = d̃(t) and note that [max (x, 0)]2 ≤ x2,
we can bound the drift as

1

2
E

[
dT (t + 1)d(t + 1) − dT (t)d(t)

∣∣I (t)]
≤ 1

2
E

[
(d̃(t) + Ñr(t))T (d̃(t) + Ñr(t)) − dT (t)d(t)

∣∣I (t)]
= 1

2

[
E

[
d̃T (t)d̃(t)

∣∣I (t)] − dT (t)d(t) +U (r(I (t)), t)]
(13)

where

U (r(I (t)), t) := 2E
[
d̃(t)

∣∣I (t)]T Ñr(I (t))
+ rT (I (t))ÑT Ñr(I (t)). (14)

We could pull d(t) out of the expectation because it is fully
determined by I (t) (d(t) ∈ I (t) for all schedulers by as-
sumption). Furthermore, we have chosen to enforce that the
scheduling policies we consider are deterministic and their
decisions are completely determined by I (t), allowing us to
also pull r(t) ≡ r(I (t)) out of the expectation.

We chose to make the dependence of U on both t and
r(I (t)) explicit to highlight the role of the scheduling de-
cision: whereas stochastic quantities directly depend on t,
r(I (t)) behaves as a control parameter: starting from I (t),

the scheduler must tune r(I (t)) in order to make the con-
trollable part of the drift as negative as possible. Notice that
choosing r(I (t)) = 0 leads to U (r(I (t)), t) = 0: therefore,
either the optimal scheduling decision is to take no action or
there is an optimal decision that makes U negative, playing
the role of − f (t) in (8).

3) FULLY INFORMED QUADRATIC SCHEDULER
The derivation presented in the previous section yielded an
expression that has a direct effect on stability: the more neg-
ative U (r(I (t)), t) is, the more stable the network. In other
words, the task of a scheduler in this context is to choose at
every time step a decision r(t) such that U (r(I (t)), t) is as
negative as possible.
The natural tool to solve this problem is optimiza-

tion. Assuming, as an initial ideal case, that all informa-
tion about the network state is available (and therefore
dropping the expectation from U (r(I (t)), t) since IFI(t) =
{q(t),d(t), a(t), �(t),b(t)}, i.e., the realizations of all ran-
dom variables are exactly known), it is possible to formulate
a central scheduling policy that, at each time step, solves the
following quadratic integer program:{

minwFI(t) · r(t) + 1
2r(t)

T ÑT Ñr(t)
s.t. r(t) ∈ RFI(t)

(15)

with weights

wFI(t) = (d(t) + b(t))T Ñ). (16)

Since we assumed complete information availability, we can
use as constraints the feasibility conditions mentioned in
Section IV-A (d being a shorthand for the dimension of r(t))

RFI(t) = {
r(t) ∈Nd | − M̃r(t) ≤ q(t) − �(t) + a(t),

−Ñr(t) ≤ d(t) + b(t)
}
. (17)

This constraint set binds the system so that, along every
queue, we have the following:

1) no more outgoing transitions are scheduled than there
are stored ebits;

2) no more ebits are consumed than there is demand.

Solving this problem at every time step will yield a
scheduling decision r(t) that relies on the complete informa-
tion set, even though such a policy carries a crucial flaw that
hinders its experimental realizability: since this is a central-
ized policy, there must be a physical scheduling block that
acts as an authority; all the nodes in the network submit local
status information and receive a scheduling decision to apply.
In the time it takes for the information to reach the scheduling
agent and for the decision to be relayed back to the nodes
and applied, the physical layer of the network has continued
stochastically generating and losing ebits, so that when the
decision finally arrives, it is based on outdated information.
Two possible solutions to this problem are addressed in the

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

following, in the form of two policies that rely on less infor-
mation being available.

4) PARTIALLY INFORMED QUADRATIC SCHEDULER
One solution to the stale information problem detailed in the
previous section could be to replace all unavailable informa-
tion with sensible expectation values and thus implement a
partially informed quadratic scheduler. We assume that for
each queue, the scheduler has access to the following:

1) average arrival rate α;
2) loss parameter η;
3) average demand rate β;
4) system state (q(t),d(t)) at the beginning of each time

step;

i.e. IPI(t) = {q(t),d(t), α, β, η}. This information set re-
laxes the requirements because the network can take a snap-
shot of its state at the beginning of each time step and
exploit the leftover time to communicate it to the sched-
uler. The scheduler will, in turn, use average parameters
to build an expectation for the queues’ state at the end of
the time step and take its decision based on that. Note that
if these requirements are still too tight, it is always possi-
ble to formulate a policy that knows the exact state of the
system with n time steps of delay, or even hybrid local-
ized policies where every node knows the state of the sur-
rounding queues with a delay that depends on their physical
distance.
To formulate our partially informed policy, we reuse the

problem (15), replacing every quantity for which informa-
tion is not available with an expected value. Of course, such
a heuristic modification degrades the performance of the
scheduling policy. To rely only on information contained in
IPI(t), we change the weights of the problem to

wPI(t) = E
[
(d(t) + b(t))|IPI(t)

]T
Ñ (18)

= (d(t) + β1dim (d))
T Ñ (19)

where 1dim (d) is the vector of all ones with appropriate
dimension, and the constraints to

RPI(t) = {
r(t) ∈Nd

∣∣ − M̃r(t)

≤ E
[
q(t) − �(t) + a(t)|IPI(t)

]
,

− Ñr(t) ≤ E
[
d(t) + b(t)|IPI(t)

]}
(20)

which, in practice, reads

RPI(t) = {
r(t) ∈Nd

∣∣ −M̃r(t) ≤ ηq(t) + α1dim (d) ,

−Ñr(t) ≤ d(t) + β1dim (d)
}
. (21)

This class of partially informed policies still outperforms
greedy ones but removes the stale information problem.
It should be stressed that, since this policy relies on a

heuristic guess made using averages, it is not guaranteed that

its decisions will satisfy the feasibility conditions (conflicts
are managed as shown in Section IV-B).
The performance of this policy is reviewed in Section V-B.

5) NODE-LOCALIZED QUADRATIC SCHEDULER
As mentioned before, information availability is one of the
main points to consider when choosing a scheduling policy:
a well-designed policymust be able to take sensible decisions
while leveraging the available information to the best extent
possible.
Following this idea, we propose a distributed optimi

zation-based original policy and subsequently benchmark it
to assess its expected performance.
Since we are describing a distributed policy, we shift our

point of view to that of a node in the network: we assume that
every node i in the network has access to all relevant average
values, which can be communicated before the network is
booted or measured in a rolling average fashion.
In addition, let node i have access to the queue state of the

full network at the start of each time step (q(t),d(t)), where
the same remarks we gave in the previous section apply.
Finally, due to how entanglement generation and swapping

are implemented, node i should have access to how many
qubits are stored in its memory slots and with whom they are
entangled, which means that node i also knows exact arrivals
and exact losses for all the queues connected to it, both phys-
ical and virtual, and can exploit this additional information
when taking a scheduling decision.
To formalize this, let Ci be the set of queues connected to

node i, i.e., the set of edges e in the extended set Ẽ such that
e is connected to node i. Using this concept, we can define
a node-local version of the information set ILI

i (t), which
contains the entirety of the information available to node i

ILI
i (t) = {q(t),d(t), η, β, α, ae(t), �e(t), be(t), ∀e ∈ Ci}

where ae(t), �e(t), and be(t) correspond to the additional lo-
cal exact information that is unique to each node.
Instead of phrasing a global optimization problem, node

i may now formulate an individual problem and solve it to
obtain a strictly local scheduling decision to apply directly,
without waiting for a discrete scheduler to send back a de-
cision. To do so, the node builds all the relevant quantities
(backlogs, arrivals, losses) with exact information from the
queues it is connected to and expectation values from the
other queues. The i-localized quadratic integer program can;
thus, be written as{

minwLI
i (t) · r(t) + 1

2r
T (t)ÑT Ñr(t)

s.t. r(t) ∈ RLI
i (t)

(22)

where the weights are given by

wLI
i (t) = E

[
d(t) + b(t)|ILI

i (t)
]T

Ñ. (23)

In accordance with its previous definition, the setRLI
i (t) of

all possible scheduling decisions r(t) at time slot t localized

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

at node i is defined as

RLI
i (t) = {

r(t) ∈Nd
∣∣

−M̃r(t) ≤ E
[
q(t) − �(t) + a(t)|ILI

i (t)
]
,

−Ñr(t) ≤ E
[
d(t) + b(t)|ILI

i (t)
]}

. (24)

In practice, each individual expected value in the weights
and constraints’ expressions will locally resolve to a form
similar to (17) and (16) (i.e., all exact values) for queues that
are connected to node i and to (21) and (23) (all averages)
for queues that are not. As an example, node A will be able
to formulate a problem that includes the constraint −M̃AB, ·
r(t) ≤ qAB(t) − �AB(t) + aAB(t) (where M̃AB, is row AB of
M̃) because queue AB is directly connected to it, but will
have to resort to −M̃CD, · r(t) ≤ ηqCD(t) + α for queueCD,
because it has no up-to-date information about it.
The locally informed quadratic scheduler provides a prac-

tically implementable alternative to the globally informed
policy while still retaining good enough performance. We
remark once again that, whereas the centralized fully in-
formed method came from abstract mathematical arguments,
this scheduler was modified and is, thus, partially heuristic.
Therefore, it is reasonable to expect some degree of perfor-
mance degradation: one of the tasks of our analysis is to
characterize this margin of degradation in order to gauge
how close a distributed scheduler can get to its centralized
idealistic variant.

E. MAX-WEIGHT SCHEDULING
The quadratic policies that have been detailed in the previ-
ous section are valid solutions to the scheduling problem in
quantum networks. However, situations might arise in which
computational complexity is a stricter constraint than net-
work performance. To accommodate such cases, we present
in this section a class of policies that perform almost as well
as the quadratic ones, for a fraction of the computational cost.
Looking at the policies presented until now, we notice two

interesting points.

1) The objective function features a linear term that de-
pends on queue length plus a quadratic penalty that
does not.

2) The linear terms are reminiscent of the objective func-
tion for the max-weight [26] policy, an extremely well-
established result of classical network theory.

It is, therefore, natural to propose a class of semiheuris-
tic scheduling policies derived by taking our quadratic ob-
jectives and suppressing the quadratic penalty, which does
not depend on the queue backlog. For brevity, we explicitly
formulate only the fully informed variant of the Max-Weight
scheduler. The partial and local information quadratic sched-
ulers can be turned to their linear variants following the same
steps. The fully informed Max-Weight problem is obtained

by simply suppressing the quadratic term from (15){
minwFI(t) · r(t)
s.t. r(t) ∈ RFI(t)

(25)

and solving it with the same weights and constraints as (17).
The partial and local information policies may be similarly
constructed by suppressing the quadratic term from the re-
spective quadratic policy. The performance analysis for the
globally, partially, and locally informed linear schedulers is
provided in Section V-B.

V. NUMERICAL ANALYSIS
In this section, we give an overview of how our simulation
tool works and then provide results for the numerical analysis
of all the proposed schedulers.

A. SIMULATOR ARCHITECTURE
All the results shown in this work were obtained through
an ad hoc simulator implemented in Python, relying on the
gurobi [39] solver for the optimization calculations and
networkx [40] as a graph back end. In the following, we
provide a quick breakdown of how our simulator works, from
the point of view of a user that is not necessarily experienced
with writing code. Interested readers may find more informa-
tion on the simulator’s GitHub repository [41].
From a black box perspective, the focus of the code design

phase of our workwas on an object-orientedmodel of the net-
work system that is as modular and layered as possible. The
motivation driving this approach was that an ideal version
of the controlling code should be abstract enough not to be
aware whether it is driving our model, another more refined
simulator, or even a real network. In the following, we give
a brief rundown of the kind of parameters that a user of our
framework and simulator may expect to tune.
The simulator’s input files are composed of two sets of

ingredients for the user to provide: the first set of parameters
is devoted to the generation of the network topology, the
choice of service pairs, and demand rates. Users are free to
choose one of the topologies we propose in this work (with
tunable parameters) or provide an entirely custom network
graph.
After selecting the topology, the user selects the set of

scheduling policies that the simulator will analyze. As be-
fore, it is possible to select one of the policies we analyzed
here or provide a custom one. The code provides seam-
less access to all the information we used in our policies
through simple specification of an “information availability”
parameter.
The second set of input values is related to physics and

low-level simulation parameters, enabling fine-tuning of
generation rates across physical links and losses at nodes,
but also number and duration of the time steps.
A set of parameters related to the optimization of the

simulator’s performance concludes the user inputs for our
code. A discussion of these parameters is out of the scope

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

FIGURE 4. Comparison of the performance of the linear scheduling policies we presented in the main text and their quadratic counterparts. For brevity,
we only report results for the grid topology shown in Fig. 5(a), while stating that the same phenomenon is observed for all topologies: the margin of
performance between Max-Weight and Quadratic schedulers is almost imperceptible in our tests. This figure was calculated with an additional set of
eight random parasitic pairs, whose average load was fixed at 100 kHz. Analogously to the main results in Fig. 7, simulations were run for 1000 time
steps of 1 μs, discarding the first 100 observations to reduce the impact of transients. The white points were skipped by the simulator and directly
deemed unstable, since one or more strictly lower load points were found to be unstable. More details on this computational economy technique can
be found in the main text. (a) Fully informed Max-Weight. (b) Locally informed Max-Weight. (c) Average-only Max-Weight. (d) Fully informed Quadratic.
(e) Locally informed Quadratic. (f) Average-only Quadratic.

of this article as they are only relevant to raw computational
performance, but can be found in the full code documentation
of the simulator on GitHub [41].

B. RESULTS
To avoid excessively prolonging this section, we show in
Fig. 4 that the quadratic schedulers provide a negligible, if
any, increase in performance at the cost of a major increase
in computational complexity (quadratic optimization calcu-
lations are much more taxing than linear ones). They were,
therefore, omitted from the complete discussion of numerical
results that only shows the greedy scheduler and the three
linear ones.
The main goal of the following analysis is to showcase

how the proposed scheduling policies affect the performance
of quantum networks of various topologies, both determin-
istic and randomly generated. The topologies on which our
analysis was run, shown in Fig. 5, are a complete 5×5 grid,
a 6×6 grid with some randomly removed nodes, and two
realizations of theWatts–Strogatz [42] and Erdős–Rényi [43]
models of 25 nodes each.
Since our M matrix is built from the static routes that

connect the service pairs, building a nontrivial example re-
quires more than two routes. To obtain such an example, we

increase the number of users we consider: for each topology,
we run our simulation with ten user pairs, of which two
are manually fixed (red and blue in Fig. 5) and eight are
randomly selected at the beginning of each simulation run to
mimic different traffic configurations (green in Fig. 5). Every
user pair is connected, when possible, by two semidistinct
routes. Since routing is outside the scope of this work, we
simply take the shortest path connecting each user pair, re-
move the edges that compose it with a given tunable proba-
bility, and then take the shortest path in the newly obtained
graph as a second route, under the assumption that in a real
application scenario, users will provide sensibly computed
static routes.
We sweep the demand rate of the two manually selected

pairs, while fixing the random ones to a constant load value L,
and then average together the results of ten runs to remove the
bias that one particular parasitic pair set may entail. For all
individual runs exploited to calculate the results we present
in this section, the simulator was run for 1000 time steps of
1 μs each, discarding the first 100 steps to reduce the impact
of transients.
Fig. 6 provides a showcase of all the results that we obtain

from our simulation: given the complete 5×5 grid topol-
ogy shown in Fig. 5(a) and the fully informed Max-Weight

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

FIGURE 5. Four topologies analyzed in this work. The main service pairs and the routes connecting them have been highlighted in red and blue, with
purple representing shared edges, i.e., edges that appear in both pairs’ service routes. In green, we provide a visual example of the random parasitic
pairs: every green node is paired with another colored node and requests entanglement with a fixed rate. At every run of the simulator, we redraw the
green pairs to study the effect of traffic without bias toward a specific configuration. (a) Complete 5×5 grid. (b) 6×6 grid whose nodes had a probability
p = 0.25 of being removed. (c) Erdős–Rényi random graph, with n = 25 and p = 0.125. (d) Watts–Strogatz random graph, with n = 25, nneighbors = 4, and
p = 0.2.

scheduler, we select the four corners of the grid as the two
main user pairs, randomize the parasitic pairs, and run the
simulation, displaying all outputs.
Since tracing the capacity region of a network requires

gauging its stability, we rely on Fig. 6 as an aid to clarify our
definition of this crucial concept. In the context of dynamical
systems, stability may be defined in several different ways,
depending on the amount of mathematical rigor required.

The established definition states that a system of queues is
stable if the time it takes for the cumulative queue length
to return to zero is finite on average (i.e., the queues keep
returning to zero, regardless of how far they stray). Of course,
such a definition loses meaning in a finite-time context, be-
cause there is no way to tell whether a system would turn
back to zero if left running for a longer wall time, even
though it looks unstable over a finite time window. However,

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

FIGURE 6. Global summary of all the network performance metrics that can be analyzed through our simulator, when running the full information
Max-Weight scheduler over the grid topology from Fig. 5(a). Inside each cell: 1) the plot shows the temporal evolution of total demand from start to
finish; it allows us to easily distinguish stable regime (with finite excursion) from the unstable one (with a linear trend); 2) the background color
represents the average demand backlog throughout a simulation run; and 3) the top-left number is the maximum excursion of the total demand in the
network; in the stable regime, it can be seen as a rough upper bound on the amount of quantum memory required at each node to achieve this
performance level.

arguments can bemade to justify the usage of such a notion in
a context such as ours. First of all, it is safe to say that a queue
whose length is constantly zero is stable. (This is apparent
from Fig. 6, plot in the (0,0) cell, which depicts the tempo-
ral trend of the total demand, with all demand rates set to
zero.) Second, we may state that a queue that has Poissonian
arrivals and is never depleted will accumulate in a roughly
linear fashion, and it will surely be unstable. Third, we claim
that the stability front of a network system is a Pareto bound-
ary: if a given load L = (l1, l2, . . .li, . . ., ln) cannot be served
by the network and is, therefore, outside its stability region,
then all higher loads L′ = (l1, l2, . . .l′i, . . ., ln) such that l′i >

li are unstable (see Fig. 6, upper-right cluster of linear plots,
depicting total demand in a high-load scenario).
These considerations make a finite-time simulation

slightly more insightful: if the queue length returns to zero
several times during the simulation window, the system is
likely stable. If the system shows a clear linear trend, there
is high possibility that it is not. If a cluster of points all
show a linear trend, the possibility of instability further
increases.

Moreover, to conform with standard practice in the classi-
cal network field, we also include as a performancemetric the
average demand queue length, plotted as a color map in the
background of Fig. 6’s cells. This is the metric on which we
focus for the rest of the analysis, since it yields a more easily
legible graph of the stability of a load point and is, therefore,
more suitable for high-resolution plots and/or comparison of
a large number of results. Another reason why we choose
to present the average queue length as a color map is that it
provides a visual approximation of the capacity region of the
network we consider.
To give a sense of scale, we complement our outputs with

the maximum excursion of the cumulative demand backlog,
shown in the top-left corner of every cell.
Running our analysis over all topologies and schedulers

and displaying the average demand backlog, we obtain four
arrays of plots that show the performance of our network as a
function of the information granted to the scheduling policy
(greedy to fully informed global) and the load on the parasitic
pairs, shown in Fig. 7. From these arrays of plots, insight on
several levels may be obtained.

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

FIGURE 7. For each of the four topologies, we provide a grid of plots obtained by simulating different operating points. As mentioned in the main text,
there are ten pairs of users, of which two are fixed and eight randomized. Each cell of the grids is a plot of the average demand backlog versus the load
across the two main pairs (reported in kilohertz on the small axes of the individual cells) under certain operating conditions. The conditions in which
every plot was calculated are fixed by the Information Availability and Parasitic Load meta-axes, the former indicating which scheduler was employed to
control the network (greedy to full information, in increasing order of available information), and the latter the load placed upon the randomized
parasitic pairs in kilohertz. As discussed in the main text, a dark blue point is deemed stable and a yellow one unstable, while the middle grounds are
somewhat ambiguous due to the finite-time nature of the simulation. The white points have not been calculated by the simulator to save time, since a
point at a lower load was found to be unequivocally unstable and the stability region is expected to be a Pareto bound. We recall that every cell in the
grids comes from averaging ten different traffic configurations, where a configuration consists of the same two main pairs and a fresh set of eight
parasitic ones. The shape of each stability region may be seen as a measure of competition between user pairs: the more diagonal the boundary of the
dark blue region, the higher the direct competition between the main pairs. The difference in area of regions along one given column is a direct
measurement of how the main and parasitic pairs compete (and therefore how the network serves requests under increasing stress), while the
differences along one row show how well the scheduler leverages additional information. (a) Complete grid. (b) Grid with probabilistically removed
nodes. (c) Erdős–Rényi random graph. (d) Watts–Strogatz random graph.

First, looking at all the plots for any given topology, we ob-
serve that changing the scheduler entails noticeable change
on the capacity region of a quantum network, providing proof
that not only the scheduling problem is an interesting one to
formulate in the context of quantum networking, but its solu-
tion brings nonnegligible performance margins to the opera-
tion of a quantum network. Another piece of information that
may be gathered resides in the shapes of the stability margin:
when the deep blue region is not shaped like a rectangle, it

means that the two plotted pairs are in direct competition, as
increasing demand along one of the axes reduces the amount
of demand that can be served along the other one. To an end
user employing our tool for network design, this would mean
that the network is bottlenecked by routing, since there is a
set of routes across which the scheduler must balance service
to two or more competing commodities.
Another point that can be made from the results in Fig. 7

comes from looking at the difference between the fully

VOLUME 5, 2024 4100118

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

informed global scheduler and the local ones: as mentioned
before, the fully informed Max-Weight scheduler can be
interpreted as a performance upper bound for a Max-Weight
policy. Therefore, when designing an original scheduler, one
may gauge its performance by comparing stability regions
with the fully informed scheduler. There is a noticeable dif-
ference between FI and LI, but it may be deemed acceptable
because of the information tradeoff: the region still has the
same shape and, although smaller, is still comparable to the
upper bound, meaning that the locally informed policy we
propose performs very well in this scenario.
When the stable section of the service region features a

diagonal bound (see Fig. 7(a), fully informed scheduler, 0
load), increasing demand across one of the main pairs di-
rectly impairs service across the other, signaling a bottle-
neck over which the two pairs are competing. Conversely,
a rectangular shape (e.g., Fig. 7(c), fully informed scheduler
column) is an indicator that the two main pairs we selected
are not directly competing over a shared bottleneck. This
does not necessarily mean that the network is not congested:
traffic from the parasitic pairs is still stressing the network (as
demonstrated by the reduction in size of the stability region
when going up along the parasitic load axis) and requiring
careful scheduling decisions.

VI. LIMITATIONS OF THE FRAMEWORK AND FUTURE
OUTLOOK
In this section, we discuss the main limitations and open
questions in our model and propose some seed ideas for
future directions. The first limitation to talk about is the mod-
elization of strictly quantum imperfections, such as decoher-
ence, that degrade the quality of a quantum state without nec-
essarily meaning the state is lost. Despite being well aware of
the paramount importance of noise in quantummodeling, the
history of the classical Internet shows that a successful large-
scale network infrastructure is best thought of in terms of sep-
arate functional layers, and a layered architecture has already
been proposed for a prospective future quantum Internet [44]
that effectively separates the link layer, where quantum error
correction should be implemented, from the network layer,
which is the scope of our work. While we are aware that
in real implementations, especially initial ones, theoretically
separated layers leak and blend with each other, the quantum
Internet should eventually converge to a well-defined net-
work stack, making it redundant to treat noise in the same
layer as scheduling. Thus, while we remain interested in an
expansion of our work that treats quantum imperfections, the
lack of explicit state quality modeling does not make our
work irrelevant.
A similar concern could be raised for the memory at the

network nodes: despite this being another issue that is very
close to hardware, its integration with scheduling policies
would seem crucial because it could intrinsically change how
a scheduling decision is taken: if a node only has a finite num-
ber of memory slots, the scheduler would have the additional
constraint of free space (or lack thereof, in some cases having

to “waste” ebits in order to free up memory). As a matter of
fact, a similar problem has been analyzed over a single switch
in [22] and [30], showing that the memory requirements of
an isolated quantum switch are quite low (on the order of five
slots) to achieve performance comparable to that of a switch
with unlimited memory slots, making the memory problem
not as concerning. Moreover, Coopmans et al. [45] formulate
the problem of exploiting limited memory slots and develops
a Max-Weight memory allocation policy for quantum nodes
that could be adapted to our scenario.
Furthermore, it is possible to look at the memory problem

from a different direction: while a solution inside our frame-
work could, in principle, be to add compound constraints
to the optimization problems, we stress that results such as
Fig. 6 (maximal excursion numbers) gauge the accumulation
of total demand in a stable network, effectively providing an
upper bound for memory requirements in the design of a real
quantum network system.
The third limitation of our work is how the framework

scales: The fact that the number of queues we need to account
for grows quadratically with the number of nodes in the
network entails quick growth of theM matrix, which makes
the integer programs required by several policies presented
here increasingly complex. While this is not as much of a
problem currently as it was in the past decades, it is still
an issue that is worth closely investigating, perhaps to find
scheduling strategies that require only a subset of the ex-
tended edge set (akin to an overlay network, as demonstrated
in [20]).We note here that easing scaling concernswould also
enable a future extension of our framework to multipartite
entanglement: as mentioned in the beginning, an extension in
this direction would require the definition of newmultipartite
virtual queues, together with ad hoc transitions that interface
them with the bipartite ones, greatly increasing the overall
number of queues and, therefore, the problem’s complexity.
Moreover, this work does not provide analytical proofs

of Lyapunov stability or optimality of the proposed fami-
lies of policies, which are of great interest in network sci-
ence and could be promising directions for future work. To
provide a starting point, we direct the interested reader to
the well-known optimality results of Max-Weight on clas-
sical networks [26] and to [24], where Lyapunov stabil-
ity and throughput optimality are analytically proven for a
Max-Weight policy in the case of a switch without quantum
memory serving three users in a star topology: it is pos-
sible to show, by translating the referenced paper’s model
into our framework, that the Max-Weight policy presented
in the cited work is equivalent to the fully informed Max-
Weight analyzed in ours. Furthermore, we stress that in the
case proposed by Vasantam and Towsley [24], our class of
quadratic policies reduces to Max-Weight: since Vasantam
and Towsley [24] employ Bernoullian ebit arrivals and no
quantum memory, the components of the scheduling deci-
sion r(t) can be at most 1. Coupled with the structure of
Ñ, this entails that at all time steps, the quadratic penalty
has the same value across all possible scheduling decisions,

4100118 VOLUME 5, 2024

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING Engineeringuantum
Transactions onIEEE

reducing the more general quadratic objective function to a
Max-Weight one and showing that in this special case, our
policies are optimal, which offers potential for investigation
as to how generalizable the optimality claim is. We note that,
since we included additional information in the Lyapunov
drift definition, a formal proof of stability would also require
averaging over all the additional environmental factors that
were included in the conditioning of (12) other than the queue
state (q(t),d(t)).

Finally, it would be interesting to delve into other physical
imperfections, such as finite speed of communication be-
tween nodes, which entail a stricter definition of what infor-
mation is local and accessible to a node at a given time. One
interesting implication of such analysis would be the case in
which only one of the qubits in an ebit is lost, and what hap-
pens if the loss is not communicated before other swapping
operations are undertaken, i.e., the error propagates along
the swapping route. All these considerations would require
a more refined physical model, which would, in turn, imply
revisions to our mathematical framework, but should not be
excessively difficult to include in the numerical part of our
discussion: the simulator code was written from the ground
up in order to provide a simpler and more agile contribu-
tion, but it was designed with particular attention to keeping
a layered and modular structure that should be reasonably
adaptable to well-established quantum network simulation
packages, such as NetSquid [46] or QuISP [47].

VII. CONCLUSION
In this article, we presented a general framework that allows
us to formulate and solve the scheduling problem in general
lossy memory-endowed quantum networks in a dynamical
way. We then integrated our framework with LDM in or-
der to mathematically derive a throughput-efficient quadratic
scheduling policy for quantum networks and proposed sev-
eral other heuristic policies with various advantages. Finally,
we showcased how our framework may be exploited by peo-
ple interested in policy design to benchmark and fine-tune
a general quantum network’s performance under arbitrary
scheduling policies. Despite a sizable amount of work still
needing to be tackled before a collective quantum network
science exists, the promising results we presented could
eventually become one of many assets in the quest for the
quantum Internet.

REFERENCES
[1] P. Fittipaldi, A. Giovanidis, and F. Grosshans, “A linear alge-

braic framework for quantum internet dynamic scheduling,” in Proc.
IEEE Int. Conf. Quantum Comput. Eng., 2022, pp. 447–453, doi:
10.1109/QCE53715.2022.00066.

[2] H. Bernien et al., “Heralded entanglement between solid-state qubits sep-
arated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, May 2013,
doi: 10.1038/nature12016.

[3] D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Ried-
matten, “Telecom-heralded entanglement between multimode solid-state
quantum memories,” Nature, vol. 594, no. 7861, pp. 37–40, Jun. 2021,
doi: 10.1038/s41586-021-03481-8.

[4] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard,
and R. Hanson, “Qubit teleportation between non-neighbouring nodes in
a quantum network,” Nature, vol. 605, no. 7911, pp. 663–668, May 2022,
doi: 10.1038/s41586-022-04697-y.

[5] W. Kozlowski et al., “Architectural principles for a quan-
tum internet,” RFC 9340, Mar. 2023. [Online]. Available:
https://www.rfc-editor.org/info/rfc9340

[6] S. Wehner, D. Elkouss, and R. Hanson, “Quantum Internet: A vision for
the road ahead,” Science, vol. 362, no. 6412, Oct. 2018, Art. no. eaam9288,
doi: 10.1126/science.aam9288.

[7] A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entan-
glement meets classical communications: Quantum teleportation for the
quantum internet,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3808–3833,
Jun. 2020, doi: 10.1109/TCOMM.2020.2978071.

[8] R. V. Meter et al., “A quantum internet architecture,” in Proc.
IEEE Int. Conf. Quantum Comput. Eng., 2022, pp. 341–352,
doi: 10.1109/QCE53715.2022.00055.

[9] T. Bonald and J. Roberts, “Scheduling network traffic,” SIGMET-
RICS Perform, Eval. Rev., vol. 34, no. 4, pp. 29–35, 2007, doi:
10.1145/1243401.1243408.

[10] “Quantum protocol zoo.” Accessed: Jan. 3, 2023. [Online]. Available:
https://wiki.veriqloud.fr

[11] M. Caleffi et al., “Distributed quantum computing: A survey,” 2022,
arXiv:2212.10609, doi: 10.48550/arXiv.2212.10609.

[12] K. Azuma et al., “Quantum repeaters: From quantum net-
works to the quantum internet,” 2022, arXiv:2212.10820, doi:
10.48550/arXiv.2212.10820.

[13] M. Skrzypczyk and S. Wehner, “An architecture for meeting
quality-of-service requirements in multi-user quantum networks,”
2021, arXiv:2111.13124, doi: 10.48550/arXiv.2111.13124.

[14] W. Dai, T. Peng, and M. Z. Win, “Optimal remote entanglement distribu-
tion,” IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 540–556,Mar. 2020,
doi: 10.1109/JSAC.2020.2969005.

[15] T. N. Nguyen, K. J. Ambarani, L. Le, I. Djordjevic, and Z.-L. Zhang, “A
multiple-entanglement routing framework for quantum networks,” 2022,
arXiv:2207.11817, doi: 10.48550/arXiv.2207.11817.

[16] A. Chandra, W. Dai, and D. Towsley, “Scheduling quantum teleportation
with noisy memories,” in Proc. IEEE Int. Conf. Quantum Comput. Eng.,
2022, pp. 437–446, doi: 10.1109/QCE53715.2022.00065.

[17] W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021, arXiv:2111.10994, doi:
10.48550/arXiv.2111.10994.

[18] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner,
“Shortcuts to quantum network routing,” 2016, arXiv:1610.05238,
doi: 10.48550/arXiv.1610.05238.

[19] K. Chakraborty, A. Dahlberg, F. Rozpedek, and S. Wehner, “Distributed
routing in a quantum internet,” APS Mar. Meeting Abstr., vol. 2019, 2019,
Art. no. L28.005, doi: 10.48550/arXiv.1907.11630.

[20] S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quantum overlay
network for efficient entanglement distribution,” 2022, arXiv:2212.01694,
doi: 10.48550/arXiv.2212.01694.

[21] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L.
Jiang, “Optimal architectures for long distance quantum communica-
tion,” Sci. Rep., vol. 6, no. 1, Feb. 2016, Art. no. 20463, doi: 10.1038/
srep20463.

[22] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic
analysis of a quantum entanglement distribution switch,” IEEE Trans.
Quantum Eng., vol. 2, 2021, Art. no. 4101016, doi: 10.1109/TQE.2021.
3058058.

[23] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in quantum
switches: Protocol design and stability analysis,” 2021. arXiv:2110.04116,
doi: 10.48550/arXiv.2110.04116.

[24] T. Vasantam and D. Towsley, “A throughput optimal scheduling policy for
a quantum switch,” Proc. SPIE, vol. 12015, Mar. 2022, Art. no. 1201505,
doi: 10.1117/12.2616950.

[25] N. K. Panigrahy, T. Vasantam, D. Towsley, and L. Tassiulas, “On the ca-
pacity region of a quantum switch with entanglement purification,” 2022,
arXiv:2212.01463, doi: 10.48550/arXiv.2212.01463.

[26] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992, doi: 10.1109/9.182479.

VOLUME 5, 2024 4100118

https://dx.doi.org/10.1109/QCE53715.2022.00066
https://dx.doi.org/10.1038/nature12016
https://dx.doi.org/10.1038/s41586-021-03481-8
https://dx.doi.org/10.1038/s41586-022-04697-y
https://www.rfc-editor.org/info/rfc9340
https://dx.doi.org/10.1126/science.aam9288
https://dx.doi.org/10.1109/TCOMM.2020.2978071
https://dx.doi.org/10.1109/QCE53715.2022.00055
https://dx.doi.org/10.1145/1243401.1243408
https://wiki.veriqloud.fr
https://dx.doi.org/10.48550/arXiv.2212.10609
https://dx.doi.org/10.48550/arXiv.2212.10820
https://dx.doi.org/10.48550/arXiv.2111.13124
https://dx.doi.org/10.1109/JSAC.2020.2969005
https://dx.doi.org/10.48550/arXiv.2207.11817
https://dx.doi.org/10.1109/QCE53715.2022.00065
https://dx.doi.org/10.48550/arXiv.2111.10994
https://dx.doi.org/10.48550/arXiv.1610.05238
https://dx.doi.org/10.48550/arXiv.1907.11630
https://dx.doi.org/10.48550/arXiv.2212.01694
https://dx.doi.org/10.1038/penalty -@M srep20463
https://dx.doi.org/10.1038/penalty -@M srep20463
https://dx.doi.org/10.1109/TQE.2021.3058058
https://dx.doi.org/10.1109/TQE.2021.3058058
https://dx.doi.org/10.48550/arXiv.2110.04116
https://dx.doi.org/10.1117/12.2616950
https://dx.doi.org/10.48550/arXiv.2212.01463
https://dx.doi.org/10.1109/9.182479

Engineeringuantum
Transactions onIEEE

Fittipaldi et al.: LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC SCHEDULING

[27] M. M. Wilde, Quantum Information Theory, 2nd ed., Cambridge, U.K.:
Cambridge Univ. Press, 2017, doi: 10.1017/9781316809976.

[28] B. C. Coutinho, R. Monteiro, L. Bugalho, and F. A. Monteiro, “Entangle-
ment routing based on fidelity curves for quantum photonics channels,”
2023, arXiv:2303.12864, doi: 10.48550/arXiv.2303.12864.

[29] L. Gyongyosi and S. Imre, “Opportunistic entanglement distribu-
tion for the quantum internet,” Sci. Rep., vol. 9, no. 1, Feb. 2019,
doi: 10.1038/s41598-019-38495-w.

[30] P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “On the analysis of
a multipartite entanglement distribution switch,” in Proc. Abstr. SIG-
METRICS/Perform. Joint Int. Conf. Meas. Model. Comput. Syst., 2020,
pp. 49–50, doi: 10.1145/3393691.3394203.

[31] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quan-
tum communication with atomic ensembles and linear optics,” Nature,
vol. 414, no. 6862, pp. 413–418, Nov. 2001, doi: 10.1038/35106500.

[32] L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar, “Distribut-
ing multipartite entanglement over noisy quantum networks,” Quantum,
vol. 7, Feb. 2023, Art. no. 920, doi: 10.22331/q-2023-02-09-920.

[33] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement
distribution in a quantum network: A multicommodity flow-based ap-
proach,” IEEE Trans. Quantum Eng., vol. 1, 2020, Art. no. 4101321,
doi: 10.1109/TQE.2020.3028172.

[34] C. Meignant, D. Markham, and F. Grosshans, “Distributing graph states
over arbitrary quantum networks,” Phys. Rev. A, vol. 100, Nov. 2019,
Art. no. 052333, doi: 10.1103/PhysRevA.100.052333.

[35] A. Pirker andW. Dür, “A quantum network stack and protocols for reliable
entanglement-based networks,” New J. Phys., vol. 21, no. 3, Mar. 2019,
Art. no. 033003, doi: 10.1088/1367-2630/ab05f7.

[36] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
London, U.K.: Springer, 1993, doi: 10.1007/978-1-4471-3267-7.

[37] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, 2006, doi: 10.1561/1300000001.

[38] A. Giovanidis, Q. Liao, and S. Stańczak, “Measurement-adaptive cellular
random access protocols,” Wireless Netw., vol. 20, no. 6, pp. 1495–1514,
Jan. 2014, doi: 10.1007/s11276-014-0689-y.

[39] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual,
Gurobi Optim., LLC, Beaverton, OR, USA, 2023. [Online]. Available:
https://www.gurobi.com

[40] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proc. 7th Python Sci. Conf.,
2008, pp. 11–15.

[41] P. Fittipaldi, “Simulator GitHub repository,” 2023. [Online]. Available:
https://github.com/pfittipaldi/DynSchedSimulator_Journal

[42] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998,
doi: 10.1038/30918.

[43] P. Erdös and A. Rényi, “On the evolution of random graphs,” in The Struc-
ture and Dynamics of Networks. ser. Princeton Studies in Complexity.
Princeton, NJ, USA: Princeton Univ. Press, 2006, pp. 38–82.

[44] A. Dahlberg et al., “A link layer protocol for quantum networks,”
in Proc. ACM Special Int. Group Data Commun., 2019, pp. 159–173,
doi: 10.1145/3341302.3342070.

[45] P. Promponas, V. Valls, and L. Tassiulas, “Full exploitation of limited
memory in quantum entanglement switching,” 2023, arXiv:2304.10602,
doi: 10.48550/arXiv.2304.10602.

[46] T. Coopmans et al., “NetSquid, a NETwork simulator for QUantum in-
formation using discrete events,” Commun. Phys., vol. 4, no. 1, Jul. 2021,
Art. no. 164, doi: 10.1038/s42005-021-00647-8.

[47] R. Satoh et al., “QuISP: A quantum internet simulation package,” in
Proc. IEEE Int. Conf. Quantum Comput. Eng., Sep. 2022, pp. 353–364,
doi: 10.1109/QCE53715.2022.00056.

4100118 VOLUME 5, 2024

https://dx.doi.org/10.1017/9781316809976
https://dx.doi.org/10.48550/arXiv.2303.12864
https://dx.doi.org/10.1038/s41598-019-38495-w
https://dx.doi.org/10.1145/3393691.3394203
https://dx.doi.org/10.1038/35106500
https://dx.doi.org/10.22331/q-2023-02-09-920
https://dx.doi.org/10.1109/TQE.2020.3028172
https://dx.doi.org/10.1103/PhysRevA.100.052333
https://dx.doi.org/10.1088/1367-2630/ab05f7
https://dx.doi.org/10.1007/978-1-4471-3267-7
https://dx.doi.org/10.1561/1300000001
https://dx.doi.org/10.1007/s11276-014-0689-y
https://www.gurobi.com
https://github.com/pfittipaldi/DynSchedSimulator_Journal
https://dx.doi.org/10.1038/30918
https://dx.doi.org/10.1145/3341302.3342070
https://dx.doi.org/10.48550/arXiv.2304.10602
https://dx.doi.org/10.1038/s42005-021-00647-8
https://dx.doi.org/10.1109/QCE53715.2022.00056

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

