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ABSTRACT The light’s image is the primary source of information carrier in nature. Indeed, a single
photon’s image possesses a vast information capacity that can be harnessed for quantum information pro-
cessing. Our scheme for implementing quantum information processing on a discretized photon wavefront
via universal multiport processors employs a class of quantum Fourier optical systems composed of spatial
phase modulators and 4f-processors with phase-only pupils having a characteristic periodicity that reduces
the number of optical resources quadratically as compared to other conventional path-encoding techniques.
In particular, this article employs quantum Fourier optics to implement some key quantum logical gates that
can be instrumental in optical quantum computations. For instance, we demonstrate the principle by imple-
menting the single-qubit Hadamard and the two-qubit controlled-not gates via simulation and optimization
techniques. Due to various advantages of the proposed scheme, including the large information capacity of
the photon wavefront, a quadratically reduced number of optical resources compared with other conventional
path-encoding techniques, and dynamic programmability, the proposed scheme has the potential to be an
essential contribution to linear optical quantum computing and optical quantum signal processing.

INDEX TERMS CNOT gate, discrete unitary operator, Fourier optical quantum computing, Hadamard gate,
linear optical quantum computing, quantum Fourier optics, universal multiport interferometer, universal
multiport processor.

I. INTRODUCTION
Quantum light has a central role in quantum information
science and engineering. It culminates without substitution
in various quantum information processing domains such
as quantum communications [1], [2] and quantum imag-
ing [3], [4]. Accordingly, and also due to the key role com-
putation plays in information science and technology, op-
tical quantum computation receives considerable attention,
which may eventually cause the achievement of an integrated
all-quantum optical information processing system. These
attempts have already led to various optical quantum com-
putation approaches, such as boson sampling [5] and linear
optical quantum computing [6], which rely on universal mul-
tiport unitary processors [7], [8] to process quantum optic
signals.
Furthermore, nonphotonic quantum systems such as

atoms, ions, and superconducting circuits pose various chal-
lenges to quantum computation. One of the main hindrances

of information processing on nonphotonic quantum systems
is their limited quantum life (coherence time), narrowing
the allowed time for quantum information processing and
computation. On the other hand, photon-based quantum
computations also suffer from scalability problems due to
the lack of interphoton interaction; for example, performing
controlled (entangling) gates on two single-photon qubits is
challenging.
The seminal work of Knill, Laflamme, and Milburn

(KLM) [9] proposed a solution to this problem of
quantum computation by photons. It introduces universal
quantum computing based on single-photon sources,
number-resolving photodetectors, and linear optical
elements. The operation on the quantum state of single
photons is implemented via linear optical elements, namely,
beam-splitters and phase-shifters. In the KLM protocol,
projective measurement at the output of the linear optical
operation, probabilistically, enables and also heralds the
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entangling gates. In addition, it presents a near-deterministic
teleportation scheme with linear optics, enhanced by
quantum error correction coding, to achieve scalable
teleportation-based quantum computing [10].
Despite the high challenges and resource demands of

KLM protocols, it gives a good insight into how to achieve
optical universal quantum computation. The KLM protocols
and various linear optical quantum information processing
schemes rely heavily on the fact that any N × N unitary op-
eration on the multioptical-ports is realizable via a sequence
of, at most, N(N−1)

2 beam-splitters and phase-shifters [7]. Due
to the interferometric nature of such linear optical unitary
processors, the increase in the optical depth and number of
optical devices for implementation can significantly reduce
the fidelity and success of quantum operations in practice.
Therefore, several attempts have been made to reduce the op-
tical depth and required number of optical elements [8], [11].

Matrix factorization analysis [12], [13] shows that any
N × N matrix is the product of a sequence of at most 2N − 1
alternating diagonal and circulant matrices, quadratically
fewer than the corresponding matrix factorization into
the product of beam-splitter and phase-shifter matrices,
which is of order O(N2). Since the discrete Fourier
transform F can diagonalize circulant matrices [14],
an alternating circulant (C) and diagonal (D) matrices
product is equivalent to the alternating discrete Fourier
transform and diagonal matrices product, more precisely,
C1D1 . . .DN−1CN = FD′

1F
†D1F . . .DN−1FD′

NF
†, where

D′
j is the diagonal eigenvalue matrix ofCj, i.e.,Cj = FD′

jF
†.

In other words, alternating diagonal operation on Fourier
dual spaces such as time and frequency [11] can render any
unitary transformation.
Fourier optics is an alternative approach to implementing

any unitary transformation via an alternating diagonal oper-
ation on the Fourier dual spaces [12], [15], [16], [17]. Ac-
cordingly, quantum Fourier optics [18] provides a platform
to implement quantum information processing and quan-
tum computing. Spatial light modulation technology allows
Fourier optical quantum computation to be electronically
programmable [19], [20], [21], a feature that offers many
promises [22]. Moreover, due to the 2-D spatial wavefront,
as opposed to the 1-D frequency comb techniques limited
to the operating frequency range of the involved optical
elements, Fourier optical quantum information processing
is more desirable for scalability purposes. For example, a
1 cm2 area for wavefronts of telecom wavelength photons,
e.g., λ = 1.55μm, can provide 108 discretized ports con-
strained by the diffraction limit. More importantly, pro-
grammable Fourier optical quantum information process-
ing, compared to the Mach–Zehnder interferometer-based
path encoding with beam-splitters and phase shifters [19],
requires quadratically fewer devices [7], [13] and is more
stable over time [23], enhancing the practical fidelity of the
implemented quantum gates.
Recent work on the fundamentals of quantum Fourier

optics [18] has developed the required mathematical

models and tools for Fourier optical quantum computation.
The current article employs these mathematical models to
introduce a novel discrete variable quantum information pro-
cessing based on the photon’s wavefront information capac-
ity. For this purpose, the previous work [18] is extended to
encounter the following two essential concepts. First, we
must know how to discretize and, moreover, maintain the
discreteness of photons’ wavefronts at the outputs of the
quantum computational gates. We call such apparatus mul-
tiport discretized quantum Fourier optical processors. Sec-
ond, we must address the multiphoton scalability issue in the
quantum Fourier optics domain. In general, scaled multipho-
ton optical systems exhibit unique quantum features, such
as quantum interference [24], which is critical for quantum
information science and engineering.
The rest of this article is organized as follows. Section II

studies quantum Fourier optics, focusing on discretized pho-
ton wavefronts. Section III introduces a generic class of 4f-
processors, which preserves photon-wavefront discretization
at their output. Furthermore, the matrix representation of
such a 4f-optical configuration corresponds to unitary circu-
lant matrices. Section IV combines the introduced circulant
matrix 4f-processors with diagonalmatrix spatial phasemod-
ulators to make arbitrary unitary transformation or universal
multiport quantum Fourier optical processors. To demon-
strate the concept of quantum computation, it implements
a set of Fourier optical-based quantum gates, namely the
single-qubit Hadamard gate and the two-qubits entangling
C-Not gate. These gates are supported by simulation results
illustrating quantum interference in the Fourier optics do-
main. The Hadamard gate is simulated for three photons to
address the scalability of quantum Fourier optics in further
detail. Finally, Section VI concludes this article.

II. QUANTUM FOURIER OPTICS
Classical Fourier optics studies the light’s wavefront trans-
formation while propagating through optical systems com-
posed of lenses and spatial light modulators and filters. In
addition to the photon wavefront evolution, quantum Fourier
optics also includes the Fock representation of the quantum
light. Indeed, when the input of the optical system is coherent
(Glauber) states or the input light is composed of photons
with identical wavepackets (wavefronts), classical and quan-
tum Fourier optics yield the same result.
The fundamentals of quantum Fourier optics [18] demon-

strate the evolution of a generic class of pure quantum
states |ψ〉 = f (â†ξ )|0〉 [25], [26] through Fourier optical sys-
tems, where function f is an arbitrary analytic (infinitely dif-
ferentiable), normalized function of the photon-wavepacket
creation operator â†ξ (ξ denotes the shape of the photon-
wavepacket)

|ψ〉 = f (â†ξ )|0〉 =
∞∑
n=0

cn
â†nξ√
n!

|0〉 =
∞∑
n=0

cn|n〉ξ (1)
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where cn corresponds to the nth Taylor coefficient of func-
tion f (â†ξ ), |0〉 is the vacuum state, and |n〉ξ represents the
n-photon Fock state with wavepacket ξ .
This article assumes the input photons of the Fourier op-

tical systems occupy an identical single spectral mode with
angular frequency ω and an identical polarization mode with
polarization p. Consequently, under paraxial approximation,
the only degree of freedom for photons’ occupation mode is
their normalized wavefront, shown by symbol ξ∫∫

dxdy |ξ (x, y)|2 = 1 . (2)

Therefore, the photon-wavepacket creation operators [27]
take the photon-wavefront as their subscript. In other words,
the creation operator â†ξ creates a single photon with wave-
front ξ (x, y)

â†ξ =
∫∫

dxdy ξ (x, y)â†x,y (3)

where â†x,y creates a photon at the position with Cartesian
coordinates x and y. It obeys the following canonical com-
mutation relation:[

âx,y, â
†
x′,y′

]
= δ(x− x′)δ(y− y′) . (4)

Note that the quantum state of a single-photon, f (â†ξ ) =
â†ξ , according to (1) and (3), is as follows:

|ψ〉 = â†ξ |0〉 =
∫∫

dxdy ξ (x, y)|1〉x,y . (5)

A. DISCRETE SPATIAL MODES
In this article, we consider the photon wavefront as the car-
rier of quantum information. To encode quantum informa-
tion into the photon wavefronts as a discrete-mode (discrete-
variable) such as qubits or generally qudits, we assume at
z = 0 the photon-wavepacket ξ can have a nonzero ampli-
tude only at the lattice-points separated by lx and ly in the
x–y plane (see Fig. 1). Let ξnm denote the single-photon
probability amplitude at the lattice-point x = nlx, y = mly.
Therefore, similar to (2), the normalization condition of a
single-photon quantum state implies that∑

n

∑
m

|ξnm|2 = 1 . (6)

The creation operator for such a lattice-like photon-
wavepacket is representable as

â†ξ =
∑
n

∑
m

ξnmâ
†
nm (7)

where â†nm denotes the photon creation operator in posi-
tion x = nlx, y = mly, and their commutation relations are as
follows: [

ânm, â
†
n′m′

]
= δnn′δmm′ (8)

FIGURE 1. Discretized (digitalized) photon-wavepacket. (a) shows the
propagation of a single photon in the z-direction, which has a lattice-like
wavefront at z = 0. (b) shows the photon’s wavefront of a at z = 0. Its
phase is color-coated according to the color map in the lower-left corner.
The intensity of the colors corresponds to the amplitude of the
photon-wavefront.

where δ denotes the Kronecker delta function. It is worth
noting that (6) to (8) of the discrete spatial modes correspond
to (2) to (4) of the continuous spatial mode, respectively.
The quantum state of a single-photon, f (â†ξ ) = â†ξ , is, ac-

cording to (1) and (7), expressible as

|ψ〉 = â†ξ |0〉 =
∑
n

∑
m

ξnm|1〉nm . (9)

The equation above indicates d-dimensional quantum infor-
mation encoded on a single-photon, a qudit. Let us consider
N lattice points to the x-direction andM lattice points to the y-
direction for photon occupation. Therefore, the d-dimension
of a single-photon Hilbert space equals d = NM, e.g., in
Fig. 1, N = M = 7, and d = 49.

This article, for the sake of simplicity, takes the rectangular
lattice-like wavefront. The formalism is easily extendable to
other 2-D lattices, such as hexagonal lattices. Therefore, the
introduced discrete spatial point creation operator â†nm is as-
sociated with a quantum optical source with a central point at
(〈x〉, 〈y〉) = (nlx,mly) and its diffraction-limited waist con-
fined in the area of size lxly. So, there is no overlap between
the sources associated with different lattice points, and there-
fore the commutation relation (8) holds.

Optical fiber arrays and quantum-emitter arrays [28] can
be utilized to realize lattice-like wavefronts, making the pro-
posed scheme practical and interesting for various discrete-
modes (discrete-variable) quantum information encoding
techniques.
An effective quantum Fourier operation for such a dis-

cretized wavefront is a class of 4f-processors preserving the
discretization of the wavefront at their output. The following
section presents details about this topic.

VOLUME 5, 2024 3100111
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FIGURE 2. Circulant matrix operation via 4f-processing systems. (e)
shows a 4f-processing system composed of two lens operators and one
spatial phase modulator (see [18] for its quantum modeling details) and
simulates the intensity propagation of a single photon through the
system. (a) displays the discretized photon-wavefront at the input. The
phase modulation of the 4f-system’s pupil can be seen in (b). Since it
has aspecific spatial periodicity, the photon-wavefront at the output (c)
has a lattice structure similar to the input. In this figure, colormap (d) is
used to show the phases of the modulator and photon wavefront. Color
intensity corresponds to wavefront amplitude. (f) shows a
one-dimensional photon-wavefront propagating through a 4f-processor.
It illustrates the transformation of creation field operators associated
with the pupil phase modulator’s Fourier expansion coefficientt qr . For
each point z of the propagation, we show only the relative phases and
ignore the no-observable net displacement phase factor eikz .

III. CIRCULANT MATRIX OPERATION VIA
4F-PROCESSING SYSTEM
Consider a 4f-processing system that comprises two identical
lenses with focal length f and a pupil on the confocal plane
(see Fig. 2). Assume the pupil is a periodic phase-only spatial
modulator P(x, y) = e−iφp(x,y) with periods dx and dy (spatial
angular frequencies κx = 2π

dx
and κy = 2π

dy
) in the x and y

directions, respectively. Therefore, the pupil’s Fourier series
expansion is as follows:

P(x, y) = e−iφp(x,y) =
∑
r

∑
s

qrse
i(rκxx+sκyy) (10)

where qrs is the 2-D Fourier expansion’s coefficient of the
periodic pupil phase factor.
As shown in [18, Eq. (52)], the corresponding quantum

operator F̂Fφp of such a 4f-system transforms creation op-

erator â†〈x〉,〈y〉 associated with a localized source at coordi-
nate (〈x〉, 〈y〉) on the input plane is as follows:

F̂Fφp â
†
〈x〉,〈y〉 F̂F

†
φp

=
∑
r

∑
s

qrs b̂
†
x(r)−〈x〉,y(s)−〈y〉 (11)

where b̂†
x(r)−〈x〉,y(s)−〈y〉 denotes the 4f-processor’s output field

operator associated with its pupil’s diffraction order (r, s) in
direction (x, y), and

x(r) = rx(1) = r
fκx
k

y(s) = sy(1) = s
fκy
k

(12)

f is the lenses’ focal length, and k is the photon wave
vector. In (11), we have dropped the trivial constant phase
factor −ei4k f (a global phase factor), which does not affect
the overall shape of the photon wavepacket and the corre-
sponding quantum state. This global phase shift is due to the
net displacement through the 4f-system. However, to be pre-
cise, one may pull the phase by adding it to the transforma-
tion coefficient qrs. Equation (11) denotes that the output of
such a 4f-processor is lattice-likewith lattice constants x(1) =
fκx
k and y(1) = fκy

k in the x- and y-directions, respectively.
Therefore, to extend and adapt (11) for lattice-like input
quantum states with photon creation operator (7) and match
the output lattice with the input lattice, we assume the pupil’s
spatial angular frequencies for the x- and y-directions are
κx = 2π

dx
= klx

f and κy = 2π
dy

= kly
f , respectively. This choice

of periods for the pupil makes the 4f output lattice-constants
equal the input lattice-constants, i.e., x(1) = lx and y(1) = ly.
Accordingly, we use the same formalism as (7) for the output
creation operators and write b̂†

x(r)−〈x〉,y(s)−〈y〉for 〈x〉 = nlx and

〈y〉 = mly asb̂
†
r−n,s−m. Thus, (11) becomes

F̂Fφp â
†
nmF̂F

†
φp

=
∑
r

∑
s

qrsb̂
†
r−n,s−m

=
∑
r

∑
s

qn+r,m+sb̂†r,s (13)

where in the second line, r is substituted with n+ r and s
with m+ s.

Equation (13) (see also Fig. 2) indicates that the 4f-
processor with a periodic phase-only pupil transforms each
input lattice-point creation operator â†nm into a linear combi-
nation of output lattice-point creation operators b̂†r,s. The cor-
responding transformation amplitude is given by qn+r,m+s,
which are the Fourier coefficients of the pupil phase factor
of the 4f-processor (10).
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A. 1-D QUANTUM 4F-TRANSFORMATION
For the sake of simplicity, in the rest of the article, we con-
sider 1-D wavefronts for the photon-wavepacket. This as-
sumption reduces (13) to

F̂Fφp â
†
nF̂F

†
φp

=
∑
r

qrb̂
†
r−n =

∑
r

qn+rb̂†r . (14)

The above transformation has the following matrix
representation:

F̂Fφp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

â†2
â†1
â†0
â†−1

â†−2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
F̂F

†
φp

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

. . .

. . . q4 q3 q2 q1 q0 . . .

. . . q3 q2 q1 q0 q−1 . . .

. . . q2 q1 q0 q−1 q−2 . . .

. . . q1 q0 q1 q−2 q−3 . . .

. . . q0 q−1 q−2 q−3 q−4 . . .

. . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

b̂†2
b̂†1
b̂†0
b̂†−1

b̂†−2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15a)

and in the short form, it is

F̂Fâ†F̂Fφp = C.b̂† (15b)

where â† and b̂† are column vectors with elements of
creation operators â†n and b̂†r , respectively, and C, the 4f-
transformation matrix C is a circulant-type matrix with
elements

(C)n,r = qn+r . (16)

Furthermore, as is shown in [18], the pupil phase factor’s
Fouriercoefficients qr are cyclic orthogonal, and therefore,
C is a unitary circulant matrix.
To conclude, the 4f-transformation with the appropriate

periodic pupil phase factor keeps the discreteness and the
lattice-like structure of the input wavefront. Therefore, ma-
trix multiplication can represent the 4f-transformation. Fur-
thermore, the 4f-transformation matrix is a unitary circulant
matrix.

IV. UNIVERSAL MULTIPORT OPERATION
Asmentioned earlier, anyN × N matrixT is factorizable to a
product of at most 2N − 1 alternating N circulant and N − 1
diagonal matrices [13], i.e., T = C(1).D(1) . . .D(N−1).C(N),
hence implementable via a Fourier optical system [12].
Section III-A (15) shows that a 1-D 4f-system quantum

operator with the periodic pupil performs a circulant matrix

operation on the input single-photons’ lattice-like encoded
quantum information. Furthermore, a spatial phase modula-
tion operator performs the diagonal matrix operation [18].
The quantum operator of a lattice-like spatial phase modula-
tor is as follows:

Ûφ = e−i
∑

r,s φrsn̂rs =
∏
r,s

e−iφrsn̂rs (17)

where n̂rs = b̂†rsb̂rs is the number operator associated with the
quantum state of the 2-D lattice point (r, s). The phase φrs is
the phase the spatial phase modulator applies to the lattice
cell with a central point at coordinate (rlx, sly). One can drop
the subscript s in (17) for a 1-D lattice, transforming the 1-D
lattice creation operator b̂†r as follows:

Ûφ b̂
†
r Û

†
φ =

(∏
r′
e−iφr′ n̂r′

)
b̂†r

(∏
r′′
eiφr′′ n̂r′′

)

= e−iφr n̂r b̂†re
iφr n̂r

= e−iφr b̂†r

= Drrb̂
†
r

(18)

where Drr = e−iφr is the rth diagonal element of the diago-
nal transformation matrix D associated with the 1-D spatial
phase modulation operator Ûφ .

To sum up, Fourier optics via a cascade of 4f-operators F̂F,
lattice-like spatial modulation operators Ûφ , whose transfor-
mationmatrices are circulant matrices and diagonal matrices,
respectively, can realize universal multiport transformations
on discretized photon-wavefronts. In the following section,
based on this factorization principle, we demonstrate quan-
tum gates in the quantum Fourier optical platform using an
8f-processing system, a cascade of two 4f-processors inter-
connected with a lattice-like spatial modulator. Therefore, let
us consider an 8f-processor in more detail.

A. QUANTUM-BASED 8F–PROCESSOR

In the 8f-processor, the output of the first 4f-processor F̂F
(1)

(14) goes to a lattice-like spatial phase modulator Ûφ (18),
which gives the following transformation:

Ûφ
(
F̂F

(1)
â†nF̂F

(1)†
)
Û
†
φ =

∑
r

q(1)n+rÛφ b̂
†
r Û

†
φ

=
∑
r

q(1)n+re
−iφr b̂†r .

(19)

The superscript (1) is added to the transformation coeffi-

cient q(1)n+r of the first 4f-operator F̂F
(1)

to discriminate them
from the transformation coefficient q(2) of the second 4f-

operator F̂F
(2)
. Using (14), the transformation by opera-

tor F̂F
(2)

takes the following form:

F̂F
(2)
b̂†r F̂F

(2)† =
∑
l

q(2)r+l d̂
†
l (20)
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where the field operator at the output of the second

4f-processor F̂F
(2)

is expressed as d̂†l . Considering (19)
and (20), the 8f-processing system operator

ÊF = F̂F
(2)
Ûφ F̂F

(1)
(21)

is the cascade of 4f-operator F̂F
(1)
, spatial modulation opera-

tor Ûφ , and 4f-operator F̂F
(2)
, which performs the following

transformation:

ÊFâ†nÊF
† = F̂F

(2)
(
Ûφ F̂F

(1)
â†nF̂F

(1)†
Û
†
φ

)
F̂F

(2)†

=
∑
r

q(1)n+re
−iφr F̂F(2)b̂†r F̂F

(2)†

=
∑
r,l

q(1)n+re
−iφr q(2)r+l d̂

†
l

=
∑
r,l

C(1)
nrDrrC(2)

rl d̂
†
l

(22)

where C(1)
nr = q(1)n+r and C(2)

rl = q(2)r+l are the unitary circu-
lant transformation matrix elements of the 4f-operators F̂F

(1)

and F̂F
(2)
, respectively. Also, Drr′ = e−iφrδrr′ is the rth el-

ement of the unitary diagonal transformation matrix of the

spatial phase modulation operator Û
†
φ . Therefore, the matrix

representation of the above 8f-processor is as follows:

ÊFâ†ÊF
† = TEF.d̂

† (23)

where

TEF = C(1).D.C(2) (24)

is the transformationmatrix of the 8f-operator ÊF, and â† and
d̂† are column vectors with elements of input creation oper-
ators â†n and output creation operator d̂†l of the 8f-processor.

V. QUANTUM COMPUTATION VIA QUANTUM FOURIER
OPTICS
Section IV demonstrates the power of Fourier optical sys-
tems in implementing universal multiport (discrete-variable)
unitary operations [7], [8], [19]. Accordingly, quantum
Fourier optical systems offer a platform for linear optical
quantum computations such as KLM scheme [9] and boson
sampling [5]. It is shown that a product of two circulant
matrices and a diagonal matrix can produce universal quan-
tum gates [11], [29], which corresponds to an 8f-processor
transformation matrix (24). Accordingly, this section uses an
8f-processor to implement the single-qubit Hadamard gate
and the two-qubit controlled-NOT (cnot) entangling gate,
two crucial gates for quantum computation [30].
In our Fourier optical formalism, a qubit is a photon in a

superposition of two different lattice points m and m′. This
article considers single-photon occupation in the neighboring
points m and m′ = m+ 1 as the two computational basis
states of the qubit. We show these basis states as | ⇓〉 =
|1〉m = â†m|0〉 and | ⇑〉 = |1〉m+1 = â†m+1|0〉, respectively.

Therefore, in this formalism, the quantum state of the b th
qubit is expressible by a discretized photon-wavefront cre-
ation operator (7) as follows:

|ψ (b)〉 = ξ
(b)
⇓ | ⇓〉b + ξ

(b)
⇑ | ⇑〉b

= ξmb|1〉mb + ξmb+1|1〉mb+1

= â(b)†ξ |0〉 .
(25)

Assume the Fourier optical system is composed of B qubits.
Since the lattice points of each qubit should be different
from other qubits, we consider the two states of the bth qubit
as | ⇓〉b = |1〉2b and | ⇑〉b = |1〉2b+1, whichmeansmb = 2b,
in (25). Therefore, the state of B separable (nonentangled)
qubits takes the following form:

|
〉 =
∏
b

|ψ (b)〉

=
∏
b

(
ξ
(b)
⇓ | ⇓〉b + ξ

(b)
⇑ | ⇑〉b

)

=
∏
b

(
ξ2ba

†
2b + ξ2b+1a

†
2b+1

)
|0〉 .

(26)

If the quantum state (26) inters 8f-processor ÊF with trans-
formation matrix TEF, the output state would be

|�〉 = ÊF|
〉
= ÊF

∏
b

|ψ (b)〉

= ÊF
∏
b

(
ξ2ba

†
2b + ξ2b+1a

†
2b+1

)
|0〉

=
∏
b

(
ξ2bÊFa

†
2bÊF

† + ξ2b+1ÊFa
†
2b+1ÊF

†
)

|0〉

=
∏
b

(∑
l

(
ξ2b(TEF)2b,l + ξ2b+1(TEF)2b+1,l

)
d†l

)
|0〉 .

(27)

In the following subsections, to implement a quantum gate

with an 8f-processor ÊF = F̂F
(2)
Ûφ F̂F

(1)
, we use optimiza-

tion techniques (see Appendix A) to find appropriate periodic

pupil phase function φp(x) (10) for the 4f-processors F̂F
(1)

and F̂F
(2)
, and step phase function φD(x) for the lattice-like

spatial modulator Ûφ , where φr = φD(rlx) [see (19)]. Fur-
thermore, in the optimizations, we assume that the two 4f-

processors F̂F
(1)

and F̂F
(2)

are equivalent and have similar
pupil phase functions φ(1)

p (x) = φ
(2)
p (x) = φp(x).

A. HADAMARD GATE
Hadamard gate performs the following transformation on a
single qubit:

Ĥ = 1√
2

(
1 1

1 −1

)
(28)
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FIGURE 3. Hadamard gate implementation via an 8f-processor. This Hadamard 8f-processor is made up of two similar 4f-processors with periodic pupil
phase modulation φp(x), shown in b. At the interface of these two similar 4f-processors, there is a spatial modulator with step phase function φD(x), as
displayed in b. Plot azooms out the phase functions of the 4f-systems’ pupils over one period. The 8f-processor performs the Hadamard gate on three
qubits associated with ports (3, 2), (1, 0), and (−1, −2). The propagation simulation, as an example, takes three single photons with quantum
states |+〉 = 1√

2
(|1〉3 + |1〉2), | ⇑〉 = |1〉1, and |−〉 = 1√

2
(|1〉−1 − |1〉−2), as the input of the gate.

where the first and second rows (columns) are associ-
ated with the qubit’s basis states up | ⇑〉 and down | ⇓〉,
respectively. In our formalism, for qubit b, the down-
state | ⇓〉b = |1〉2b corresponds to a single-photon at lat-
tice point m = 2b, and the up-state | ⇑〉b = |1〉2b+1 cor-
responds to a single-photon at lattice point m′ = 2b+ 1.
In order for the 8f-system operation (27) performs the
Hadamard gate on the qubit b, the 8f-transformation matrix
(24)’s elements should be (TEF)2b+1,2b+1 = (TEF)2b+1,2b =
(TEF)2b,2b+1 = −(TEF)2b,2b = 1√

2
eiθb , where the phase θn is

associated with the degree of freedom available in defining
a quantumgate. In other words, these four elements of TEF
form a 2 × 2 truncated transformation matrix T, which cor-
responds to the gate operator Ôb on qubit b:

Ôb =
(
(TEF)2b+1,2b+1 (TEF)2b+1,2b

(TEF)2b,2b+1 (TEF)2b,2b

)
(29)

which for a perfect Hadamard operation, it, up to a constant
phase factor equals the Hadamard gate (28), i.e., Ôb = eiθbĤ.
The success probability and the fidelity of the implemented
Hadamard gate on qubit b are defined by [31]

S =
Tr
(
Ô†

b.Ôb

)
d

F =

∣∣∣Tr (Ô†
b.Ĥ

) ∣∣∣2
Tr
(
Ô†

b.Ôb

)
Tr
(
Ĥ†.Ĥ

)
(30)

where d is the matrix dimension of the implemented gate,
which for the Hadamard gate becomes 2.

Fig. 3 shows three Hadamard gates implemented via an
8f-processor. The Hadamard gates operate on the three qubits
associated with b = 1, 0,−1. We used the optimization pro-
cedure (see Appendix A) to find the 4f-pupil’s phase func-
tion φp(x) and the spatial phase modulator’s step phase func-
tionφD(x) of the 8f-processors tomaximize the gate’s fidelity
and success probability. Fig. 3(a) and 3(b) shows the opti-
mized phase functions corresponding to near unity fidelity
and 99% average success probability of the implemented
Hadamard gate on the three qubits. Fig. 3(c) shows these
three qubits’ quantum Fourier optical propagation simulation
through the optimized 8f-Hadamard gate. The simulation
assumes that the qubits associated with b = +1, 0,−1 are in
the quantum states |+〉1 = 1√

2
(| ⇑〉1 + | ⇓〉1) = 1√

2
(|1〉3 +

|1〉2), | ⇑〉0 = |1〉1, and |−〉−1 = 1√
2
(| ⇑〉−1 − | ⇓〉−1) =

1√
2
(|1〉−1 − |1〉−2), respectively. At the output of the 8f-

Hadamard processor, the qubits are transformed to state | ⇑
〉1, |+〉0 and | ⇓〉−1, respectively.
The simulation program gives the Fock state represen-

tation of the quantum light at each z point of the prop-
agation. Fig. 3(c), to picture the state, shows the photon
number (intensity) operator expectation value 〈n̂x〉 = 〈â†x âx〉
at each propagation step. Indeed, the qubit’s basis states
| ⇑〉 and | ⇓〉 are evident at the input and output of the
8f-processors. Furthermore, the interference intensity pat-
terns give clues to discriminating superposition states |+〉
and |−〉 from each other. For example, the central inter-
ference line between the | ⇑〉 and | ⇓〉 of a qubit is bright
if the qubit is in state |+〉, and it is dark for state |−〉
due to the constructive and destructive interference induced
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by the relative phase between the two ports of each qubit,
respectively.
This subsection demonstrated the single-qubit Hadamard

gate’s implementation via an 8f-processor. Other single-
qubit gates, such as the Pauli gates, can similarly be realized.
The 8f-processor implemented single qubit gates’ fidelity
and success probability becomes unity since a single qubit
gate corresponds to a transformation matrix of dimension
N = 2, which can be factorized into 2N − 1 = 3 circulant
and diagonal matrices then is perfectly implementable via an
8f-processor. Note that the matrix factorization of an N × N
matrix into 2N − 1 diagonal and circulant matrices are the
upper limit to matrix factorization and therefore the upper
limit to the required optical modules. For example, Fig. 3
used an 8f-processor to implement the Hadamard gate on
3 qubits which correspond to a transformation matrix with
dimension N = 3 × 2 = 6. Furthermore, in the following
subsection, we show that an 8f-processor is also sufficient to
implement two-qubit gates (a matrix of dimension N = 4).

B. CNOT GATE
In addition to the linear optical transformation (e.g., 8f-
transformation), which is adequate for implementing single-
qubit gates, entangling gates require a projective measure-
ment P̂. This projective measurement reduces the output
state |�〉 (27) of the 8f-processor into state P̂|�〉. Conse-
quently, it reduces the success probability of the gate.
In this section, via an 8f-processor and projectivemeasure-

ment, we implement the entangling cnot gate on the control
qubit b and the target qubit b′. The matrix representation of
the gate is

̂CNOT =

⎛
⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ (31)

where columns (rows) 1, 2, 3, and 4 are associated with the
two-qubits computational basis states | ⇑〉b| ⇑〉b′ , | ⇑〉b| ⇓
〉b′ , | ⇓〉b| ⇑〉b′ , and | ⇓〉b| ⇓〉b′ , respectively.
To implement the cnot gate, we use the scheme proposed

in [32] and [33], which is experimentally favorable to imple-
ment [34], [35] and, when combined with quantum nonde-
molition measurements, can be used to implement the KLM
protocol [9]. Furthermore, its success probabilityP = 1/9 is
higher than the scheme proposed by Knill [36] (P = 2/27).
In the Knill proposal, a demolishing measurement performs
on ancilla photons. Therefore, it has the advantage that a
direct nondemolition quantum measurement on the compu-
tational qubits is not required.
In the scheme proposed by [32] and [33], the projection

is to the quantum light state where only one photon is at
the ports associated with the control qubit b and one pho-
ton at the ports associated with the target qubits b′, which

are ports (2b, 2b+ 1) and (2b′, 2b′ + 1), respectively. There-
fore, the projection operator is

P̂ =
∑

i=2b,2b+1

∑
j=2b′,2b′+1

|1〉i|1〉 j j〈1|i〈1|. (32)

After applying this projection operator to the output state
of the 8f-processor (27), we compose the two-qubit opera-
tor Ôb,b′ on qubits b and b′, which is a 4 × 4 matrix with
the same basis states’ labeling order as the cnot gate (31).
Similar to the Hadamard implementation, we use the op-
timization process [31] to find the 4f-pupil’s phase func-
tion φp(x) and the spatial phase modulator’s step phase func-
tion φD(x),which maximize the fidelity and the success prob-
ability of the implemented cnot gate Ôb,b′ .

Fig. 4 demonstrates the implementation of a cnot gate
via an 8f-processor on the control qubit b = 0 and the target
qubit b′ = −1. Fig. 4(a) and (b) shows the optimized phase
functionsφp(x) andφD(x) associatedwith the cnot gate with
fidelity F = 0.999 and success probability S = 0.99 × 1

9 (
1
9

is the maximum achievable success probability by the above
procedure [32], [33]). Fig. 4(c) shows the intensity measure-
ment expectation values of the input quantum state prop-
agated through the Fourier optical system. The simulation
considers quantum states |+〉0 and | ⇑〉−1 for the control and
the target qubits, respectively. cnot gate entangles such input
qubits. Meaning, that after the projective measurement at the
end of the 8f-processor, these two qubits become entangled.
The simulation shows that the entangled photons coming
out of the 8f-processor and the projector does not exhibit
interference patterns as before.

VI. CONCLUSION
Optical technology advances led to the development of
lattice-like optical fiber arrays. Furthermore, quantum
emitter arrays are on the horizon [28]. These new
advancements can make spatially encoded discrete
variable quantum information sources practically available.
Though, after exiting such sources, quantum light loses its
discreteness due to the Huygens–Fresnel principle. However,
to implement discrete unitary matrix operation on such
lattice-like (discretized) wavefronts, the article introduces a
class of 4f-processors that retain the lattice-like structure at
their output surface. In other words, the 4f-processors with
a periodic phase-only pupil with spatial angular frequen-
cies κx = klx

f and κy = 2π
dy

= kly
f preserve the input lattice

constants lx and ly in the x and y directions, respectively. Such
4f-processors perform unitary circulant matrix operations
on the discretized input wavefront. Therefore, Fourier optics
allows us to implement universal multiport operations and
interferences on discretized photon-wavefront, given that
any matrix can be factorized into a sequence of alternating
diagonal and circulant matrices [13].
We use the quantum Fourier optics theory to study the

evolution of input quantum states of light composed of
various qubits, meaning single-photons with discretized
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FIGURE 4. CNOT gate implementation via an 8f-processor and a projective measurement. Similar to Fig. 3, (a) and (b) show the gate optimized phase
function of the pupils (φp(x)) and the modulator (φD(x)). The phases are optimized to implement the CNOT gate on the control qubit associated with
ports (1, 0) and the target qubit associated with ports (−1, −2). The propagation simulation takes |+〉 = 1√

2
(|1〉1 + |1〉0) and | ⇑〉 = |1〉−1 as the

quantum states of the control and target qubits, respectively. The projection operator (32) is applied to the quantum state of light at the output of the
8f-processor, which entangles the input qubits and reduces the quantum light intensity by a factor of 9.

arbitrary wavefronts. Since the introduced quantum
Fourier optical structure can perform any multiport unitary
operation, it offers a powerful platform for linear quantum
computations, such as KLM protocol and Boson sampling.
As a demonstration, we implement the single-qubit
Hadamard and the two-qubit entangling cnot gates based
on the proposed structures. Furthermore, we also present the
simulation of quantum light intensity through the introduced
implemented gates.
There are several reasons why Fourier optical quantum

computation is a promising candidate for linear optical quan-
tum computation, including the following. The required
modules are quadratically fewer than the common imple-
mentation approach by beam-splitters and phase-shifters.
Compared to the other dimensions of photons, such as path,
polarization, frequency, and time, the photon wavefront has
a higher capacity for quantum information encoding. The
Fourier optical quantum gate can be electrically programmed
with programmable spatial light modulators. Thus, the same
setup can be used for various quantum algorithms. Pro-
grammable Fourier optical setups are more stable over time
than programmable Mach–Zehnder implementations. There
are also many applications of universal multiport transfor-
mations in classical domains, such as optical switching and
routing, where the proposed scheme might be useful.

APPENDIX A
OPTIMIZATION AND SIMULATION
This article assumes phase-only pupils for the 4f-systems.
Nevertheless, not every circulant matrix representation of
a 4f-system corresponds to a phase-only pupil. However,
since circulant matrices can be written as F.D.F†, where F

is the unitary DFT matrix and D is a diagonal matrix, the
corresponding diagonal matrix of a unitary circulant matrix
is unitary. Therefore, a unitary circulant matrix is phase-only
at the sampling points.
Furthermore, the discrete Fourier transform (DFT) matrix

multiplication is computationally favorable. Therefore, we
decompose a circulant matrix C as C = F.DFF.F†, where F
is the DFT matrix, and DFF is the corresponding diagonal
matrix of circulant matrix C. The ith diagonal element of
the matrix, (DFF)ii, corresponds to the ith sample of the
4f-operator’s pupil. According to the Nyquist–Shannon sam-
pling theorem, the sampling period of π

κmax
= π

Rκx
, where

κmax = Rκx denotes the maximum spatial angular frequency
of the pupil, is enough to avoid aliasing. Since the pupil is
periodic with period dx = 2π

κx
, 2R samples are theoretically

sufficient to find the pupil’s phase factor P(x) = e−iφp(x).
We use the numerical optimization procedure [31] to find

the required phase for the desired quantum gate. In this
optimization approach, we first maximize the fidelity F of
the implemented gate to near unity. In the second step, the
gate’s success probability S is optimized by maximizing
the penalty function F + μS on the manifold of the unity
fidelity. We modify the optimization parameter μ to get the
best result.
If the phase functions φ(i)

p (x) of 4f-operators i = 1, 2
are periodic, their corresponding phase factors P(i)(x) =
e−iφ

(i)
p (x) become periodic with the same period. There-

fore, we consider the Fourier coefficients of the phase
functions φ

(i)
p (x) as the 4f-operator’s variables to be

optimized, which are the coefficients S(i)n and C(i)
n of the

Fourier expansion of the pupils’ phase functions φ(i)
p (x) =
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∑
n(S

(i)
n sin nκxx+C(i)

n cos nκxx). The amplitudes of the spa-
tial phase modulator’s step phase function φD(x), i.e., φr in
(18), are also the optimization variables.
For the Hadamard matrix, the optimized phase functions

are shown in Fig. 3(a), (b). From this phase functions and
(22)–(24), one can find the 8f-transformation matrix on the
field operators. The truncation of this transformation matrix
to elements n, l = 2b, 2b+ 1 gives the transformation ma-
trix Tb associated with qubit b. The single-qubit gate opera-
tor Ôb equals the transformation matrix Tb. This optimiza-
tion procedure gives the following gate operators Ôb for the
qubits b = +1, 0,−1:

Ô+1 =
(
0.705e0.131i 0.702e0.13i

0.702e0.13i 0.707e−3.011i

)

Ô0 =
(
0.705e−3.085i 0.702e−3.083i

0.702e−3.083i 0.705e0.056i

)

Ô−1 =
(
0.707e−0.035i 0.701e−0.035i

0.701e−0.035i 0.705e3.107i

)
.

(33)

These optimized Hadamard Gates have the fidelity F =
0.99999 and the average success probability of S = 0.99.

Fig. 4(a) and (b) shows the optimized phases of the
8f-processor, which applies the cnot gate on the control
qubit b = 0 and target qubit b′ = −1. The filed operators for
these qubits are â†+1, â

†
0 and â

†
−1, â

†
−2, respectively. The opti-

mized truncated transformation matrix on them is as follows:

T =⎛
⎜⎜⎝

0.58e2.758i 0.0e−0.642i 0.004e2.993i 0.005e−2.713i

0.0e−0.642i 0.568e2.762i 0.576e−1.25i 0.57e1.89i

0.004e2.993i 0.576e−1.25i 0.579e−2.115i 0.006e−2.506i

0.005e−2.713i 0.57e1.89i 0.006e−2.506i 0.574e−2.125i

⎞
⎟⎟⎠ .
(34)

See (15a) for the arrangement and representation of the
field operators’ vectors and transformation matrices used in
this article, which is from the higher to lower indices. The
optimized 8f-transformation matrix (34), together with the
projective measurement (32), gives the optimized cnot gate
operator Ôb,b′ on qubits b = 0 and b′ = −1 as follows:

Ô0,−1 =⎛
⎜⎜⎝
0.336e0.643i 0.003e0.252i 0.002e1.743i 0.003e2.32i

0.003e0.252i 0.333e0.633i 0.002e−1.4i 0.003e−0.823i

0.002e1.743i 0.002e−1.4i 0.003e−3.049i 0.331e0.636i

0.003e2.32i 0.003e−0.823i 0.331e0.636i 0.001e0.253i

⎞
⎟⎟⎠
(35)

which gives fidelity ofF = 0.999 and success probability of
S = 0.99 ∗ 1

9 .
We use our Python scripts to run the simulation (see

also [18]). It considers each state of the qubits as a Gaussian

beam (Gaussian photon-wavepacket) [37] with a width of ≈
10μm. The other parameters of the simulation are as follows:
The lattice distance lx = 100μm, wavelength λ = 650 nm,
the lenses’ focal length f = 2.5 cm for Fig. 3, and f = 2 cm
for Fig. 4. These parameters satisfy the paraxial approxima-
tion (kx/k)2 < 0.01. The Python script creates an OpenVDB
file from the propagation data. The file is imported into the
Blender software and visualized.

A1 OPTIMIZATION AND SIMULATION CODES
This article is accompanied by Python codes and Blender
files, allowing interested readers to reproduce optimization
results and simulation figures [38]. The quantum Fourier
optics program calculates, from first principles, the evolu-
tion of the quantum state of light through Fourier optical
systems and calculates and applies various schemes such as
projection measurement, which, as discussed in the article, is
required for the cnot gate implementation. This program can
design and simulate many quantum Fourier optical systems
and signals.
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