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In-memory principal component analysis by
analogue closed-loop eigendecomposition
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Abstract—Machine learning (ML) techniques such as principal
component analysis (PCA) have become pivotal in enabling
efficient processing of big data in an increasing number of
applications. However, the data-intensive computation in PCA
causes large energy consumption in conventional von Neumann
computers. In-memory computing (IMC) significantly improves
throughput and energy efficiency by eliminating the physical sep-
aration between memory and processing units. Here, we present
a novel closed-loop IMC circuit to compute real eigenvalues and
eigenvectors of a target matrix allowing IMC-based acceleration
of PCA. We benchmark its performance against a commercial
GPU, achieving comparable accuracy and throughput while
simultaneously securing ×104 energy and ×102÷4 area efficiency
improvements. These results support IMC as a leading candidate
architecture for energy-efficient ML accelerators.

Index Terms—In-memory computing, eigendecomposition,
principal component analysis, machine learning, analog comput-
ing.

I. INTRODUCTION

Among the machine learning (ML) algorithms for statistical
data analysis, principal component analysis (PCA) [1] finds
widespread application to improve the efficacy of classifiers.
Particularly, PCA is a key algorithm in dimensionality reduc-
tion for datasets with highly correlated variables, enabling the
identification of prominent features as opposed to non-sparsity
inducing methods such as linear regression [2]. However, PCA
heavily relies on data-intensive matrix operations [2] which
makes it unsuited for conventional digital processors, where
the physical separation between memory and computing units
causes severe overhead in terms of energy and latency.

In-memory computing (IMC) has recently emerged as a
promising computing paradigm to suppress data movement
with considerable throughput and energy improvements, fur-
ther enhanced by its inherent compatibility with highly-
scalable crosspoint arrays of resistive memories [3]. IMC has
been shown capable of accelerating matrix-vector multipli-
cation (MVM) [4] in open-loop circuits exploiting Ohm’s
and Kirchhoff’s laws to perform in-situ multiplication and
accumulation. In-memory MVM-based acceleration of PCA
was demonstrated using both neural network strategies [5] or
covariance matrix-decomposition techniques [6], which how-
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Fig. 1. Eigendecomposition circuit, consisting of four memory arrays mapping
replicas of the target matrix X and target eigenvalue λ, two TIA sets with
feedback conductances f, δ, and two sets of inverting buffers. The computed
eigenvector appears on the δ-feeback TIAs outputs vout.
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Fig. 2. (a) Example of output transient for a 5×5 random matrix X. After a
linear transient with divergent behavior, saturation of the larger output leads
into a nonlinear regime where the remaining outputs stabilize to a steady-
state value. The dashed line denotes the saturation time (Vsat = 1V),
corresponding to regime crossover. (b) Circuit poles in linear (circles) and
nonlinear (diamonds) regimes. Before saturation, a single pole lies in the
RHP, driving the divergent response. In the nonlinear regime, all poles lie in
the stable LHP.

ever incur significant processing overheads for either weight
update or iterated-MVM process, limiting their efficacy.

Crosspoint array-based, closed-loop feedback circuits [7]
further allow acceleration of inverse problems such as
inverse-matrix-vector multiplication (IMVM), linear, general-
ized [8], and regularized [9] regression. Positive-feedback-
based, closed-loop IMC circuits [10] have been shown capable
of computing eigenvectors, although they are currently limited
to extraction of leading and trailing eigenvectors only.

Here, we present a novel closed-loop IMC circuit for matrix
eigendecomposition, namely extraction of the full set of eigen-
vectors and eigenvalues. We study the circuit performance in
terms of accuracy and speed, highlighting the design trade-
offs and deriving tuning rules for the circuit parameters. We
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Fig. 3. (a) Relative error of the measured outputs with respect to the expected eigenvector, showing a bilinear dependence on f and δ. (b) Saturation time
for different values of f and δ, showing a linear dependence on δ only. (c) Time constant of the positive pole, showing a similar linear dependence on δ and
mostly independent on f . (d) Design space for the circuit parameters. Highlighted equations must be satisfied to locate only one pole in the RHP.

benchmark its performance on the PCA of large datasets and
compare it with a commercial graphic processing unit (GPU).
Simulation results show performance improvements for all
considered metrics while guaranteeing the same accuracy of a
64-bit floating-point (FP64) precision computer.

II. IN-MEMORY EIGENVECTOR CIRCUIT

Fig. 1 shows the eigenvector IMC circuit, consisting of four
crosspoint memory arrays, storing the data matrix X and the
eigenvalue λ whose eigenvector is to be computed. Two sets
of transimpedance amplifiers (TIAs) with feedback conduc-
tances f and δ in inverting and non-inverting configuration
respectively, and two sets of inverting buffers with −1 gain
are used to close the feedback loops. Thanks to the double
array structure [8], the circuit is capable of computing all
eigenvectors of a matrix, thus representing an improvement
of previous in-memory topologies [10], which were limited to
the computation of the leading and trailing eigenvectors only.
Assuming an infinite DC gain of the operational amplifiers
(OAs), the nodal equation at the output vout yields:

vout = δ−1(X− λI)T f−1(X− λI)vout, (1)

which can be rewritten as:

((X− λI)T (X− λI)− fδI)vout = 0. (2)

When fδ is sufficiently small, i.e. fδ ≃ 0, Eq. (2) reduces to:

(X− λI)vout = 0, (3)

which is equivalent to the secular equation Xv = λv for
matrix X. The output voltages vout thus correspond to the
eigenvector v associated to eigenvalue λ for matrix X.

Fig. 2a shows a SPICE simulation of a typical circuit tran-
sient for a random 5×5 matrix. The circuit is operated by first
pre-charging the outputs to random voltages, e.g. by randomly
injecting currents on virtual ground nodes, after which the
circuit is left free to evolve. When f and δ are properly tuned,
the circuit poles are divided into the stable left-half plane
(LHP) and the unstable right-half plane (RHP) as shown in
the root locus in Fig. 2b. The presence of an RHP pole results
in at least one OA being in positive feedback and thus to
divergent behavior of the output voltages vout in the initial
linear regime. As soon as one OA output reaches the supply

voltage, it enters a saturation regime causing a loss of feedback
action, i.e. the saturated OA now operates as a constant-voltage
source, and the corresponding RHP pole vanishes. Unsaturated
OAs still work in a feedback configuration, their poles being
all located in the LHP (Fig. 2b, diamonds). In this nonlinear
regime, the circuit thus operates in negative feedback, allowing
for output voltages vout to stabilize at steady-state values
matching the matrix eigenvector according to Eq. (3).

Conductances f and δ impact both the overall circuit speed
and accuracy by controlling (i) the position of circuit poles
and (b) the magnitude of the fδI term in Eq. (2), which
represents a perturbation of the target secular equation given
in Eq. (3). Figs. 3a-b show the relative error and saturation
time as a function of conductances f and δ, highlighting a
speed-accuracy tradeoff. Particularly, for small values of δ,
the circuit is more precise but suffers from increased saturation
time owing to the smaller displacement of the positive pole
in the RHP, which is directly controlled by δ and represents
the dominant term in defining the circuit solution time. The
latter can be modeled by a weighted sum of exponential terms,
namely [9]:

vout(t) =

n∑
i=1

βi,0vie
t
τi , (4)

where n is the size of matrix X, vi is the i-th matrix
eigenvector, βi,0 is the initial amplitude of the i-th component
as a result of the random precharge. The term et/τi in
Eq. (4) models the exponential transient of the i-th component
which vanishes if τi lies in the LHP, thus leaving only the
RHP-related component v with a positive time constant τ+. By
evaluating the time-dependent ℓ∞-norm of the output vector:

∥vout∥∞(t) ≃ β+,0∥v∥∞e
t

τ+ , (5)

imposing ∥vout∥∞(tsat) = Vsat yields the saturation time:

tsat = τ+ log
(
Vsat/(β+,0∥v∥∞)

)
, (6)

showing a weak logarithmic dependence on the initial
precharge process through β+,0 and a strong linear dependence
on the RHP-pole time constant τ+. Fig. 3c shows τ+ as
a function of f and δ, highlighting the correlation with
the saturation time. As δ increases, Eq.(3) no longer well-
approximates Eq. (2), resulting in increased error with respect
to the target eigenvector, but also in reduced saturation time
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Fig. 4. Sweep-based circuit operation. (a) Output voltages, extracted after 100 µs, for different equivalent values of the eigenvalue conductance λ. Dashed
lines mark the location of the target eigenvalues of the considered matrix, around which the circuit exhibits a non-zero response. (b) Relative error and solution
time inside the ±

√
fδ activity window for λ1 in (a), highlighting a speed-accuracy trade-off. (c,d) Estimated eigenvalues and eigenvectors as a function of

analytic eigenvalues and eigenvectors for 100 eigendecomposition simulations on 5× 5, symmetric positive-definite matrices.

and thus faster convergence. Fig. 3d illustrates the overall
design space of variables f and δ, which can be summarized
in three conditions. First, condition (i) holds for f > δ, which
ensures a faster decay of LHP components with respect to
the growth of the RHP component in Eq. (5). Condition (ii)
fδ < σn−1, where σn−1 is the smallest nonzero singular
value of (X−λI), ensures that at most one pole is located in
the RHP, thus preventing the simultaneous recall of multiple
eigenvectors. Finally, condition (iii) fδ > n/α0 sets a lower
boundary to overcome finite gain non-ideality.

By iteratively reprogramming the eigenvalue conductance
λ, the full set of eigenvectors of X can be extracted. Fig. 4a
shows the circuit output extracted after 100 µs for a random
5 × 5 positive definite matrix X and different values of con-
ductance λ, denoting a nonzero output only around λ ≃ λ1...5,
corresponding to the eigenvalues of matrix X. Each activity
window extends symmetrically around the target eigenvalues
by ±

√
fδ, which thus defines the minimum resolution for

eigendecomposition. Fig. 4b highlights the speed-accuracy
tradeoff, with speed and accuracy maximized at the center
and extrema respectively. Figs. 4c-d shows simulation results
of eigenvalue and eigenvector computation for 100 5 × 5
symmetric matrices X, for 80 dB-gain OAs, f = 0.05, and
δ = 0.01, corresponding to a resolution

√
fδ ≃ 0.02,

demonstrating almost perfect correlation with analytical results
for both computation targets.

III. IN-MEMORY PRINCIPAL COMPONENT ANALYSIS

Computation of eigenvalues and eigenvectors is crucial in
PCA, whose aim is the estimation of principal components
(PCs), namely the vector directions that maximize the dataset
variance [1]. The i-th PC is defined as the i-th eigenvector of
the dataset covariance matrix C, namely:

C = m−1DTD, (7)

where D ∈ Rm×n is the standardized dataset matrix and m
is the number of observations, corresponding to rows of D.
Dimensionality reduction is attained by retaining only those
PCs for which λ > 1 [11]. The obtained PC subset is used
to form a new reference basis P, obtaining the projected
dataset Y = DP, thus allowing extraction of relevant features,
clustering and classification [1].

i = Cv C = DTD

C

v1 v2 v3

i3

(a) (b)

i = −k-1DTDv i2 i3i1
v1 v2 v3

D

k

D

Fig. 5. (a) Covariance matrix C can be computed offline and mapped into
a single memory array, which then corresponds to the computation target
matrix X in the circuit in Fig. 1. (b) Alternatively, the covariance matrix
can be computed online using two memory arrays mapping the standardized
dataset D and a set of TIAs with feedback conductance k. The resulting
voltage-to-current transfer between voltages v applied to the left array and
currents i probed at the right array matches Eq. (7) analogously to (a).

Commonly used PCA algorithms generally rely on iterative
methods [2], [12] rather than on straightforward eigendecom-
position of C, owing to the high computational and memory
overhead incurred by the explicit calculation of the covariance
matrix. In our IMC topology, the equivalent transfer function
of memory array C in Fig. 5a can be achieved by the circuit
of Fig. 5b, where two memory arrays are used to store the
standardized dataset D, while a set of TIAs with feedback
conductance k allows the in-situ matrix-matrix multiplication
DTD. The transfer function between the input voltages v
applied to the columns of the left array, and the output currents
i probed at the grounded columns of the right array reads:

iout = −k−1DTDvin = −mk−1Cvin, (8)

which provides the covariance matrix in Eq. (7). By replacing
arrays X in Fig. 1 with the equivalent block in Fig. 5b,
eigendecomposition of C can be performed following the
sweep-based procedure of Sec. II without explicitly computing
and storing the covariance matrix C.

To assess the PCA acceleration capability of our circuit, we
considered the Wine dataset, a collection of 6497 observations
of 11 chemical constituents for red and white variants of
the Portuguese Vinho Verde wine [13]. As one of the main
limitations of IMC is the reduced precision of memory ele-
ments with respect to FP64 digital computers, we evaluated the
impact of memory precision on the PC computation accuracy
by measuring the mean absolute cosine similarity between the
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Fig. 6. (a) PC computation accuracy for the Wine dataset as a function
of the memory cell precision. The dashed line shows the mean absolute
cosine similarity of the computed PCs. Conversely, shading extends between
minimum and maximum accuracy for each precision value. (b) Wine dataset
projections on the PC1-PC2 subspace, for FP64 PCA (red, blue) and 4-bit
IMC PCA (brown, teal), allowing identification of red and white wine clusters.
Dashed lines highlight projections of the classification hyperplane.

IMC-computed and FP64-computed PCs, namely:

|cosim(x,y)| = |xTy|/(||x||2||y||2). (9)

Fig. 6a shows the resulting mean PC computation accuracy as
a function of the memory precision highlighting a requirement
of at least 4-bit memory cells to provide acceptable similarity
above 99%. Fig. 6b shows the corresponding dataset projection
onto the PC1-PC2 subspace for an FP64 computer and the
IMC circuit with 4-bit memory cells. Logistic regression was
used to evaluate the classification accuracy using a 500-sample
training subset, yielding comparable 98.32% and 98.08%
accuracies for FP64 and IMC respectively.

IV. BENCHMARK SIMULATIONS

For benchmark purposes, we considered the IMC circuit
to be implemented in its block-form shown in Fig. 7 [9],
requiring a single (2n+2m)×(2n+2m) memory array. Since
the block-form mapping is equivalent to recasting the original
problem as a single-matrix inversion, blockwise inversion [19]
and matrix partitioning algorithms [4], [14] can be used to
alleviate size-dependent effects associated with large memory
arrays, such as IR drop [20], by dividing the computation in
smaller-size closed-loop cores. To evaluate the circuit perfor-
mance, we performed SPICE simulations considering a 14 nm
technological node. For the front-end section, we considered
500MHz, 80 dB gain OAs with 0.8V supply voltage and
12 µW leakage power [14]. OAs corresponding to the eigen-
vector output vout in Fig. 7 were considered to be limited
between 0.3V and 0.5V. For output readout, we considered
10-bit ADCs with 0.9V supply voltage and 5.5 pJ conversion
energy [15]. Two different memory cell implementations were
benchmarked by exploiting the memory-agnosticism of the
proposed circuit, i.e. correct operation can be achieved with
any memory exhibiting ohmic behavior between a terminal
pair. We considered memory arrays in either a 1R-RRAM
technology (Fig. 8a, 10 kΩ LRS, 4F 2 cell area, 5 ns write
time, 0.5 pJ programming energy [16], 10% programming
variability [17]) or a 4T4R-CMOS technology (Fig. 8b, 5 kΩ
LRS, 10 µm2 cell area, 33 ps write time, 4 fJ programming
energy [18], negligible variability).

fI

D

D

δI Vout

DT

kI

kI
A3

A4

A1
DTλI

λI

A2

Fig. 7. Block-mapping of the eigendecomposition circuit in Fig. 1 when the
covariance block of Fig. 5b is used in place of matrix X. The block-circuit
is fully equivalent to the original circuit from an electrical standpoint, while
at the same time reducing implementation complexity.
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Fig. 8. (a) 1R-RRAM cell. (b) 4T4R-CMOS cell. Selection bits Di are stored
in dedicated SRAM latches. (c) Latency, energy, and area breakdowns for 1R-
RRAM and 4T4R-CMOS implementations of IMC PCA.

Fig. 8 shows the two proposed implementations’ corre-
sponding energy and area breakdown. For 1R-RRAM, periph-
eral circuitries such as ADCs and OAs dominate the area oc-
cupation, with the array representing a negligible contribution
owing to the high density of integration of resistive switching
devices. Conversely for the 4T4R-CMOS implementation, the
array shows a dominating 50× area occupation with respect
to 1R-RRAM owing to the larger memory cell size. From
the energy standpoint, the dominant contribution for both
implementations is given by the OAs. Particularly, the RRAM
solution further shows an increased programming energy con-
tribution, counterbalanced by the increased feedback array
dissipation in the CMOS implementation owing to the higher
conductance of 4T4R-CMOS cells.

As a comparison, we benchmarked the performance of
a commercial GPU [21] in 8 nm technology. Notably, our
analog circuit operates by exploiting electrical equivalents of
algebraic relations, i.e. results are computed in a continuous
domain rather than bit-by-bit. In a digital processor, the same
operation is performed in a series of floating-point operations
(FLOPs), which can be estimated as 9.5 MOPs under a
complexity of O(mn2 + n3) [2]. We considered both the
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Fig. 9. 1R-RRAM IMC, 4T4R-CMOS IMC, and FP64 GPU comparisons
for (a) classification accuracy, (b) throughput, (c) energy efficiency, and
(d) area efficiency. IMC implementations show 2 to 4 orders of magnitude
improvements from energy and area standpoint while ensuring the same
accuracy and throughput of a digital system.

computational throughput at 64-bit precision (129 GFLOPS)
and the memory bandwidth (192 GB/s), assuming data to be
transferred to consist of matrix D, the eigenvalues λ, and the
computed PCs P. For energy and area estimation, we refer
to the GPU’s thermal design power (450W) and die size
(200mm2) respectively.

Fig. 8 shows the resulting estimates for accuracy (a),
throughput (b), energy efficiency (c), and area efficiency
(d) for the IMC 1R-RRAM, IMC-4T4R CMOS, and GPU-
based PCAs on the Wine dataset. Both IMC implementations
achieve a GPU-comparable throughput and accuracy, with
4T4R-CMOS slightly outperforming 1R-RRAM thanks to the
reduced programming time of 4T4R-CMOS cells. On the
other hand, 1R-RRAM achieves a superior area efficiency with
respect to 4T4R-CMOS thanks to the vastly reduced feedback
array size, resulting in an ×10γ , with γ between 2 and 4,
improvement with respect to GPU. Finally, both IMC solutions
achieve similar energy efficiencies in the tens of TOPS/W, with
a significant ×104 increase with respect to GPU.

V. CONCLUSIONS

We present a novel IMC-based circuit capable of performing
matrix eigendecomposition by closed-loop analog feedback
and study its accuracy and speed, identifying the main trade-
offs and providing calibration rules for available parameters.
We demonstrate PCA acceleration by sweep-based circuit op-
eration operating the circuit under a sweep-based procedure on
the Wine dataset, achieving floating-point equivalent accuracy
with 4-bit memory precision. Benchmark simulations show the
same throughput as a commercial GPU, with improvements
in energy and area efficiency by 2 to 4 orders of magnitude.
These results strengthen the position of IMC as the leading
next-generation candidate architecture for compact, energy-
efficient ML accelerators.
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