
3084 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 8, AUGUST 2023

Memory-Based FFT Architecture With Optimized
Number of Multiplexers and Memory Usage

Zeynep Kaya , Mario Garrido , Senior Member, IEEE, and Jarmo Takala , Senior Member, IEEE

Abstract—This brief presents a new P-parallel radix-2
memory-based fast Fourier transform (FFT) architecture. The
aim of this brief is to reduce the number of multiplexers
and achieve an efficient memory usage. One advantage of the
proposed architecture is that it only needs permutation circuits
after the memories, which reduces the multiplexer usage to only
one multiplexer per parallel branch. Another advantage is that
the architecture calculates the same permutation based on the
perfect shuffle at each iteration. Thus, the shuffling circuits do
not need to be configured for different iterations. In fact, all
the memories require the same read and write addresses, which
simplifies the control even further and allows to merge the mem-
ories. Along with the hardware efficiency, conflict-free memory
access is fulfilled by a circular counter. The FFT has been
implemented on a field programmable gate array. Compared
to previous approaches, the proposed architecture has the least
number of multiplexers and achieves very low area usage.

Index Terms—Memory-based FFT, perfect shuffle, radix-2.

I. INTRODUCTION

THE FAST Fourier transform (FFT) is one of the most
prominent algorithms in signal processing applications.

In some digital systems, the FFT has to be calculated at very
high speed. In this case, pipelined FFT architectures [1] are
preferred, as they offer continuous flow processing of one or
several parallel data. In other systems, instead of speed, the
goal is to reduce the area and hardware resources occupied
by the architecture. In this case, memory-based FFTs [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] are
good candidates, as they provide a more compact design.

Memory-based FFTs consist of a group of memories and
one or several processing elements (PEs) that calculate the
butterflies and rotations of the FFT algorithm. The memories

Manuscript received 20 January 2023; accepted 11 February 2023. Date
of publication 16 February 2023; date of current version 31 July 2023.
This work was supported in part by MCIN/AEI/10.13039/501100011033
and “ERDF A Way of Making Europe” under Project PID2021-126991NA-
I00; in part by MCIN/AEI/10.13039/501100011033 and “ESF Investing in
Your Future” under Grant RYC2018-025384-I; and in part by the Scientific
and Technological Research Council of Turkey through the International
Postdoctoral Fellowship Program under Grant 1059B192200354. This brief
was recommended by Associate Editor X. Zeng. (Corresponding author:
Zeynep Kaya.)

Zeynep Kaya is with the Department of Electricity and Energy, Osmaneli
Vocational School, Bilecik Seyh Edebali University, 11500 Bilecik, Turkey
(e-mail: zeynep.kaya@bilecik.edu.tr).

Mario Garrido is with the Department of Electronic Engineering, ETSI de
Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: mario.garrido@upm.es).

Jarmo Takala is with the Faculty of Information Technology and
Communication Science, Tampere University, 33014 Tampere, Finland
(e-mail: jarmo.takala@tuni.fi).

Digital Object Identifier 10.1109/TCSII.2023.3245823

Fig. 1. General structure of a memory-based FFT.

and PEs are interconnected by multiplexers, and the FFT algo-
rithm is calculated by loading data from the memories into the
PEs and storing the result again in the memories. This process
is iterated until the complete FFT is computed. The reuse of
the PEs for different stages reduces the number of butterflies
and, therefore, the area of the circuit.

Researchers are trying to improve memory-based FFT
architectures by suggesting new memory addressing schemes
and decreasing resource requirements such as memory, chip
area, etc. [6], [7], [8], [9], [10]. For an N-point FFT, some
approaches use memories of size 2N or larger in order to avoid
memory conflicts [12], [13], [14], [15]. However, it is possi-
ble to reduce memory requirements even further. This results
in approaches with the theoretical minimum memory size of
N [5], [6], [16].

Apart from memory, butterflies and rotators, memory-based
FFTs include permutation circuits with multiplexers [2], [3],
[4], [5], [6], [7], [12], [14], [16]. These circuits are used
for shuffling data between the memory and the PEs. In gen-
eral, two sets of multiplexers are used as permutation circuits,
one before and the other one after the memories [6], [7].
Fig. 1 shows the general structure of these approaches for a
P-parallel memory-based FFT, where memories are labeled as
Mi. For parallel memory-based FFTs, the number of multi-
plexers increases significantly with the parallelization, which
requires a large amount of hardware resources.

This brief presents a memory-based FFT that uses per-
mutation circuits only after memories, which reduces the
multiplexer usage significantly. In the proposed architecture,
conflict-free memory access is achieved by taking advantage
of the perfect shuffle permutation [17]. Using the perfect shuf-
fle has the advantage that the architecture calculates the same
permutation at all the iterations of the memory-based FFT.
This results in simpler hardware, because the architecture does
not need to be reconfigured at each iteration. Furthermore,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9831-6246
https://orcid.org/0000-0001-5739-3544
https://orcid.org/0000-0003-0097-1010

KAYA et al.: MEMORY-BASED FFT ARCHITECTURE WITH OPTIMIZED NUMBER 3085

the control of the architecture is simple, as a simple circular
counter is used to generate the memory addresses and control
the multiplexers.

Another advantage of the proposed architecture is the fact
that the read and write addresses are the same for all the
memories in the architecture. This not only simplifies the con-
trol, but also allows for merging the memories. Furthermore,
the proposed architecture uses the radix-2 decimation-in-
frequency (DIF) FFT algorithm, and the proposed approach
is generalized to any number of parallel branches, P, and any
power-of-two FFT size, N = 2n.

We have structured the rest of this brief as follows: In
Section II, we introduce the permutations in FFT archi-
tectures, including the perfect shuffle. In Section III, we
present the proposed memory-based FFT architecture. In
Section IV, we compare the proposed FFT to the previous
state-of-the-art memory-based FFTs. In Section V, we pro-
vide implementation details and experimental results. Finally,
in Section VI, we summarize the main conclusion of
this brief.

II. BACKGROUND: BIT-DIMENSION PERMUTATIONS

There is need to reorder data at each FFT stage and
bit-dimension permutations are well suited for this [18]. Bit-
dimension permutations define a reorder of N = 2n data based
on a permutation of n bits. The position of each datum is
calculated as

P =
n−1∑

i=0

xi2
i, (1)

where xn−1, xn−2, . . . , x0 are dimensions, xn−1 being the most
significant one and x0 the least significant one. These dimen-
sions define the data flow. For a data flow of P-parallel data,
there exist p = log2 P parallel dimensions, which define the
parallel branches, and n − p serial dimensions that define data
arriving in consecutive clock cycles.

The position in (1) can also be expressed as

P ≡ xn−1, xn−2, . . . , x0, (2)

where (≡) is used to relate the decimal and the binary rep-
resentations of a number. Note the difference between the
number of parallel data, P, and the position, P .

In this context, a bit-dimension permutation σ of u =
un−1, un−2, . . . , u0 can be defined as

σ(u) = σ(un−1, un−2, . . . , u0) = u′
n−1, u′

n−2, . . . , u′
0 = u′,

(3)

where u′ is the permuted form of u according to σ . For exam-
ple, σ(u2, u1, u0) = u1, u2, u0 is a bit-dimension permutation
of the bits in dimensions x2 and x1.

A. Perfect Shuffle, Composition and Inverse

The perfect shuffle [17] is a permutation that calculates a
circular rotation of the bits according to

σ(un−1un−2 . . . u0) = un−2 . . . u0un−1. (4)

When several bit-dimension permutations are calculated in
sequence, the resulting permutation is the composition of the

Fig. 2. Proposed basic memory-based FFT architecture for P = 4.

permutations. For instance, if σa(u2, u1, u0) = u1, u2, u0 and
σb(u2, u1, u0) = u0, u2, u1, then calculating σb after σa results
in σ = σb(σa) = σb ◦ σa, being

σ(u2u1u0) = σb ◦ σa(u2, u1, u0) = u0, u1, u2. (5)

If σ(u) = u, then σ is the identity function, i.e., σ = Id.
Finally, the inverse permutation σ−1 of a permutation σ is

the permutation that fulfills

(σ−1 ◦ σ)(u) = (σ ◦ σ−1)(u) = u. (6)

Therefore, if σ(u) = u′, then σ−1(u′) = u, and σ ◦ σ−1 = Id.

III. PROPOSED APPROACH

A. Basic Architecture

The basic architecture of the proposed memory-based FFT
is shown in Fig. 2 for P = 4 data in parallel. It consists of a
memory bank with memories Mi that store data and calculate
the permutation σ1, a permutation circuit that calculates σ2, a
permutation circuit that calculates σ3 and consists of registers
and multiplexers, and PEs. Each PE consists of a butterfly
(R2), which includes one adder and one subtractor, followed
by a complex rotator (⊗).

The memory bank consists of P memories in parallel. This
allows for simultaneous read and write operations from all the
memories in parallel at each clock cycle. Each memory has
N/P addresses, which leads to a total of N memory addresses.
These memories not only serve to store the FFT data, but
also to permute them according to the permutation σ1. The
calculation of the permutations σ1, σ2 and σ3 leads to σ =
σ3 ◦ σ2 ◦ σ1, which is a perfect shuffle permutation that is
calculated at each iteration of the FFT. The permutations σ ,
σ1, σ2 and σ3 are discussed later in Section III-B.

After the permutation σ , data are processed in the PEs and,
then, the results are placed again in the memories. These val-
ues are stored in the memory locations that were emptied in
the previous reading, which guarantees a conflict-free access.

Once all the iterations of the memory-based FFT are carried
out, the results of the last PE calculation are provided as the
output of the architecture.

3086 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 8, AUGUST 2023

B. Conflict-Free Access

Initially, samples are stored in natural order, i.e., each
memory Mq, q = 0, . . . , P − 1, stores data with indices
q, P+q, 2 ·P+q, . . . , (N/P−1) ·P+q. As a result, the initial
position in memories of each index I ≡ bn−1, bn−2, . . . , b0 is

P0 ≡ bn−1, bn−2, . . . , bp︸ ︷︷ ︸
serial (address)

| bp−1, . . . , b0︸ ︷︷ ︸
parallel (memory)

, (7)

where p = log2 P, bits bn−1, bn−2, . . . , bp correspond to
addresses, and bits bp−1, . . . , b0 determine the memories
where data are stored.

Butterflies in an FFT architecture operate on pairs of data
whose indexes differ in the bit bn−s [1]. Therefore, at each
stage of the FFT, the data position must change. This is
achieved with the perfect shuffle permutation

σ(un−1, . . . , up|up−1, . . . , u0)

= un−2, . . . , up−1|up−2, . . . , u0, un−1. (8)

Thus, the initial position P0 is transformed into

P1 ≡ bn−2, bn−3, . . . , bp−1︸ ︷︷ ︸
serial

| bp−2, . . . , b0, bn−1︸ ︷︷ ︸
parallel

, (9)

which is the data order at the input of the butterflies at the
first stage of the FFT. Note that bn−1 is placed in the lowest
parallel dimension, which corresponds to the pairs of data that
are input to the PEs.

The permutation σ is applied at each iteration of the FFT to
provide the correct data into the PE. It is carried out in three
steps according to

σ = σ3 ◦ σ2 ◦ σ1. (10)

The first permutation is

σ1(un−1, . . . , up|up−1, . . . , u0)

= un−2, . . . , up, un−1|up−1, . . . , u0. (11)

This permutation rotates the serial dimensions according to a
perfect shuffle permutation. Note that parallel dimensions do
not change, so σ1 only affects the content of the memories.
Thus, we can remove the parallel part from (11) to obtain
the following permutation, which is related to the memory
addresses:

σmem(un−p−1, un−p−2, . . . , u0)

= un−p−2, . . . , u0, un−p−1. (12)

As this permutation is the same for all the memories, the read
and write addresses are also the same for all the memories.

The inverse permutation σ−1
mem is the perfect unshuffle

σ−1
mem(un−p−1, un−p−2, . . . , u0)

= u0, un−p−1, un−p−2, . . . , u1. (13)

It can be proved that σmem ◦ σ−1
mem = Id.

To calculate the permutation σmem with memories, it must
be fulfilled that [19]

σmem = σ−1
R ◦ σW , (14)

where σR and σW are permutations on the control counter to
obtain the read and write addresses, respectively. For the i-th
iteration of the FFT, these permutations are obtained as

σRi = σWi ◦ σ−1
mem, (15)

σWi = σRi ◦ σmem = σRi−1 . (16)

It is worth noting that σWi = σRi−1 . This implies that at any
iteration data are written in the addresses that are emptied in
the previous iteration, which guarantees a conflict-free access
to the memory. As input data are written in natural order, then
the initial writing address is σW1 = Id, and (14) results in

σR1 = σ−1
mem. (17)

The reading and writing addresses are calculated by a
permutation of the bits of the circular counter [19], i.e.,

RA = σRA(cn−p−1, . . . , c0), (18)

WA = σWA(cn−p−1, . . . , c0). (19)

As σW1 = Id, the initial write address, WA1 , is chosen to
be equal to the circular counter, i.e., WA1 = cn−p−1, . . . , c0.
Likewise, the initial write address is calculated from (17) as
RA1 = c0, cn−p−1, . . . , c1. Then, WA2 is obtained from (16).
As a result, the sequential read and write addresses for n data
and P parallel memory are given as

WA1 = RAn−p = cn−p−1, cn−p−2, . . . , c0,

WA2 = RA1 = c0, cn−p−1, cn−p−2, . . . , c1,

WA3 = RA2 = c1, c0, cn−p−1, . . . , c2,

...

WAn−p = RAn−p−1 = cn−p−2, . . . , c0, cn−p−1. (20)

The second permutation, σ2, is calculated after the memories
according to

σ2(un−1, . . . , up|up−1, up−2, . . . , u0)

= un−1, . . . , up|up−2, . . . , u0, up−1. (21)

This permutation rotates the parallel dimensions and is a
permutation of the type parallel-parallel (pp) [18]. Thus, it
only changes the parallel branches where data flow. For
a P-parallel architecture with p = log2 P parallel dimen-
sions, data from branch up−1, up−2, . . . , u0 is moved to branch
up−2, . . . , u0, up−1. As this permutation only shuffles the
parallel branches, it does not require any hardware.

The third permutation, σ3, is calculated before the butterflies
and corresponds to

σ3(un−1, . . . , up|up−1, . . . , u0)

= un−1, . . . , up+1, u0|up−1, . . . , u1, up, (22)

which is a permutation of the type serial-parallel (sp) [18] and
rotates both serial and parallel dimensions. This permutation
is accomplished with a hardware circuit that consists of P
register and P multiplexer.

The calculation of the permutations σ1, σ2 and σ3 creates
the perfect shuffle permutation represented by σ .

Fig. 3 presents the data management for an FFT with N =
16 points and P = 4 parallel data. The data orders at various
stages of the design are shown in the upper part of the figure.
Also, the figure shows the contents of the memories M0–M3.

KAYA et al.: MEMORY-BASED FFT ARCHITECTURE WITH OPTIMIZED NUMBER 3087

Fig. 3. Data management example for a 16-point memory-based FFT using the proposed approach.

TABLE I
COMPARISON OF MEMORY-BASED FFT ARCHITECTURES

Initially, the data are loaded into the memories as natural
order in accordance with the writing address WA1 as given
in (20). To fulfill the first iteration, these data are read from
the memories according to RA1 , which is equal to a circular
bit rotation of WA1 . Note that the read and write operations
on the memories calculate σ1 permutation. σ2 exchanges the
two intermediate branches. Finally, σ3, the sp permutation,
provides the necessary order at the input of the butterfly for
the second iteration.

IV. COMPARISON

In Table I, we compare the proposed architecture to
previous ones as a function of N and P. Radix-4 architec-
tures are placed at the top of the table and radix-2 ones at the
bottom.

The table shows that some approaches require a memory
with a size in the range of 2N addresses [11], [12], [13], [14],
whereas other approaches, including the proposed one, only
require memory with size in the range of N addresses. The
advantage of the proposed approach is that the read and write
addresses are the same for all the memory banks. This allows
to merge the banks and, as a consequence, have a very simple
control.

The reported numbers of multiplexers are calculated as the
equivalent 2-input multiplexers in the permutation circuits.

The proposed approach reduces drastically this number with
respect to previous approaches, by 75% or more. Likewise,
the number of complex multipliers is reduced with respect to
previous radix-4 approaches, and is equivalent to that in [5],
[13], considering that these works process real-valued inputs.

Finally, for the same N and P, the processing time in
radix-4 architectures is approximately half the processing time
in radix-2 ones. Even when P is doubled in the proposed
architecture to achieve the same processing time as in radix-4
ones, our approach will still have the advantage of a efficient
memory usage and a smaller number of multiplexers.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed architecture has been implemented on a
Virtex-7 XC7VX330T -1 FFG1157 FPGA. The memories M0
to M3 are implemented using block RAMs (BRAMs). Each
memory has 1024 addresses of 16+16 bits for the real and
imaginary parts, leading to 32Kb per memory. Thus, each
memory fits in a 36 Kb BRAM [20] and 4 BRAMs are enough
for storing the data. The read and write address of the data
memories are generated with a circular counter as in [19].

The sp permutation includes 4 delay registers and 4 multi-
plexers controlled by the LSB of a simple counter.

After the sp permutation, the PEs calculate the radix-2 but-
terfly and the rotations. The rotations of the FFT are carried

3088 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 8, AUGUST 2023

TABLE II
EXPERIMENTAL RESULTS OF 4096-POINT 4-PARALLEL MEMORY-BASED

FFTS ON A VIRTEX-7 FPGA (V7)

out by two complex multipliers, one for each PE. Each com-
plex multiplier is implemented by using 4 DSP slices, leading
to a total of 8 DSP slices in the architecture.

The sine and cosine rotation coefficients are stored in a
64-bit 512-address ROM. In the first stage, each rotator reads
different sine and cosine values. Thus, the 64-bit words include
two sine and two cosine coefficients, each of 16-bit. For the
rest of stages, the coefficients are the same for both rotators.

Table II provides the experimental results of the proposed
approach in terms of performance, area, and power consump-
tion, and compares them to previous approaches. The proposed
architecture works at 342 MHz, its latency is 39 μs, and the
power consumption is 208 mW. It uses a total of 8 DSP slices,
4 for each complex multipliers, and 6 BRAMs, four of them
for data and two of them for rotation coefficients.

Compared to [5], the proposed approach uses significantly
less hardware resources at the cost of lower clock frequency
and higher latency. To compare to [6], the lower part of the
table includes area results normalized to 16 bits and energy per
FFT normalized to 16 bits. The proposed approach requires
more slices, but less DSPs slices and BRAMs, being the area
of both of them similar. However, the proposed approach
achieves higher clock frequency, higher throughput, and the
energy consumption per FFT is less than half.

VI. CONCLUSION

In this brief, we have proposed a radix-2 parallel memory-
based FFT architecture based on the perfect shuffle permuta-
tion and a novel conflict-free access scheme, which is valid for
any FFT size and parallelization. This approach reduces the

number of multiplexers and allows for merging the memory
banks, which leads to a compact design. Experimental results
show that the proposed architecture is hardware-efficient, as
it achieves high clock frequency, low latency, small area, and
low energy per FFT.

ACKNOWLEDGMENT

The authors thank Pedro Paz for providing the implemen-
tation of the complex multipliers of the design using DSP
slices.

REFERENCES

[1] M. Garrido, “A survey on pipelined FFT hardware architectures,” J.
Signal Process. Syst., vol. 94, pp. 1345–1364, Jul. 2021.

[2] Y. Ma and L. Wanhammar, “A hardware efficient control of memory
addressing for high-performance FFT processors,” IEEE Trans. Signal
Process., vol. 48, no. 3, pp. 917–921, Mar. 2000.

[3] C.-F. Hsiao, Y. Chen, and C.-Y. Lee, “A generalized mixed-radix algo-
rithm for memory-based FFT processors,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 57, no. 1, pp. 26–30, Jan. 2010.

[4] S.-J. Huang and S.-G. Chen, “A high-throughput radix-16 FFT proces-
sor with parallel and normal input/output ordering for IEEE 802.15.3c
systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8,
pp. 1752–1765, Aug. 2012.

[5] Z.-G. Ma, X.-B. Yin, and F. Yu, “A novel memory-based FFT architec-
ture for real-valued signals based on a radix-2 decimation-in-frequency
algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 9,
pp. 876–880, Sep. 2015.

[6] M. Garrido, M. Á. Sánchez, M. López-Vallejo, and J. Grajal, “A 4096-
point radix-4 memory-based FFT using DSP slices,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 1, pp. 375–379, Jan. 2017.

[7] X. Xiao, E. Oruklu, and J. Saniie, “Fast memory addressing scheme
for radix-4 FFT implementation,” in Proc. IEEE Int. Conf. Electro/Inf.
Technol., Jun. 2009, pp. 437–440.

[8] Q.-J. Xing, Z.-G. Ma, and Y.-K. Xu, “A novel conflict-free parallel
memory access scheme for FFT processors,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 64, no. 11, pp. 1347–1351, Nov. 2017.

[9] H.-F. Luo, Y.-J. Liu, and M.-D. Shieh, “Efficient memory-addressing
algorithms for FFT processor design,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 10, pp. 2162–2172, Oct. 2015.

[10] Z. Kaya and E. Seke, “A novel addressing algorithm of radix-2 FFT
using single-bank dual-port memory,” Circuit World, vol. 48, no. 1,
pp. 64–70, Jan. 2022.

[11] Y. Tian, Y. Hei, Z. Liu, Q. Shen, Z. Di, and T. Chen, “A modified
signal flow graph and corresponding conflict-free strategy for memory-
based FFT processor design,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 66, no. 1, pp. 106–110, Jan. 2019.

[12] P.-Y. Tsai and C.-Y. Lin, “A generalized conflict-free memory address-
ing scheme for continuous-flow parallel-processing FFT processors with
rescheduling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 12, pp. 2290–2302, Dec. 2011.

[13] X.-B. Mao, Z.-G. Ma, F. Yu, and Q.-J. Xing, “A continuous-flow
memory-based architecture for real-valued FFT,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 64, no. 11, pp. 1352–1356, Nov. 2017.

[14] B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed-radix
(CFMR) FFT processor using novel in-place strategy,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 911–919, May 2005.

[15] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, “Hardware efficient mixed
radix-25/16/9 FFT for LTE systems,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 23, no. 2, pp. 221–229, Feb. 2015.

[16] J. H. Takala, T. S. Järvinen, and H. T. Sorokin, “Conflict-free parallel
memory access scheme for FFT processors,” in Proc. IEEE Int. Symp.
Circuits Syst., vol. 4, May 2003, pp. 524–527.

[17] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. C-20, no. 2, pp. 153–161, Feb. 1971.

[18] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit-
dimension permutations,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 5, pp. 1148–1160, May 2019.

[19] M. Garrido and P. Pirsch, “Continuous-flow matrix transposition using
memories,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 9,
pp. 3035–3046, Sep. 2020.

[20] “7 series FPGAs datasheet: Overview,” Data Sheet DS180 (v2.6.1),
Xilinx, San Jose, CA, USA, Sep. 2020. [Online]. Available: https://docs.
xilinx.com/v/u/en-US/ds180_7Series_Overview

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

