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Abstract—Resistive random access memory (RRAM)-based
neuromorphic hardware accelerators are attractive platforms
for neural network acceleration due to their high energy effi-
ciency. However, the inherent variations of RRAM, arising from
diffusion or recombination of oxygen vacancies, can cause signif-
icant conductance deviation from the target value, resulting in
noticeable performance degradation. In practical ex situ train-
ing, write-verify methods are widely adopted to avoid this issue
when transferring a trained network model. However, the intense
reading and reprogramming operations make the conventional
write-verify methods require extensive programming time and
energy. In this brief, for the first time, we propose a novel
write-verify scheme that can transfer each weight with a dif-
ferent acceptable error margin to achieve a high-speed and
high-efficiency write-verify scheme while maintaining network
performance. Our experimental results show that the speed and
energy efficiency of the write-verify process can be improved
significantly, by up to ×3.4∼×9.0 and ×4.1∼×14.1, respectively.

Index Terms—Resistive random access memory (RRAM),
neuromorphic accelerator, write-verify, Bayesian method.

I. INTRODUCTION

RESISTIVE random access memory (RRAM) has been
extensively studied as a promising candidate for

neuromorphic computing [1], [2]. Highly parallel RRAM-
based crossbars are attractive platforms for neural network
acceleration [3], [4], [5], [6], [7], [8], [9], [10]. In neuromor-
phic computing, the conductance values of the RRAM cell
in crossbars represent the synaptic weights in the network
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and should be programmed before computation. However,
due to the diffusion or recombination of oxygen vacancies in
multiple weakly conductive filament regions, the RRAM con-
ductance might fluctuate when programmed [2]. Deviation of
programmed weights from the trained target weights caused
by variations is inevitable, degrading the network performance
significantly.

Two mainstream solutions, in situ [3], [4], [5], [6] and ex situ
training, are proposed to mitigate the impact of conductance
fluctuation on network performance. In situ training, which
directly training on a crossbar array, are effective but require
extra complex hardware for backpropagation and weight
updating. In contrast, some widely used practical ex situ train-
ing methods can be easily implemented [7], [8], [9], [10]. The
networks are trained using existing software platforms and
then transferred to a neuromorphic computing accelerator.
To transfer an external trained network model to a crossbar,
RRAM cells are programmed to the target conductance states
within an accepted error margin by using write-verify opera-
tion methods. The write-verify methods can reduce the weight
deviation remarkably while maintaining network performance.

However, using an identical error margin for each weight
in the write-verify process is extremely energy- and time-
consuming since it demands a large amount of reading and
programming operations for individual weight. In addition,
identical error margins that are too large or small may degrade
network performance or reduce transfer efficiency by apply-
ing imprecise weights or adding write-verify cycles. It is
unacceptable to reprogram large-scale RRAM-based neuro-
morphic hardware accelerators for different tasks. These issues
hinder its application to areas, such as mobile edge comput-
ing scenario, which demand high-speed and high-efficiency
write-verify schemes for weight transfer. However, an efficient
solution for weight transfer is lacking.

A straightforward way to tackle these issues is to relax the
limit of the error margin for each weight differently, result-
ing in fewer reading and programming operations. However,
due to the difficulty and complexity of evaluating each weight
deviation’s influence on network performance, it is still a great
challenge to determine every acceptable error margin for
weights. In this brief, we present a unified and efficient
write-verify scheme using diverse error margins. The major
contributions of this brief are summarized below:

• The proposed ex situ training method converts the weights
in the traditional network into probabilistic distributions
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without changing the network structure. The proposed
method only uses some simple prior parameters of
RRAM in a simple training process. Finally, it can obtain
optimized trainable parameters, which are related to error
margins, in a traditional network.

• A diverse error margin determination method is proposed
and can significantly relax the programming accuracy of
most RRAM weights differently.

• A diverse error margin write-verify method is proposed;
it transfers each weight with a different acceptable error
range and can greatly reduce the cost of weight transfer.

• We evaluate the proposed diverse error margin scheme by
two typical deep neural networks in a classification task.

II. PRELIMINARIES

A. RRAM-Based Neuromorphic Hardware Accelerator

The basic operation of a deep neural network can be
expressed as vector-matrix multiplications (VMMs). A differ-
ential conductance pair of RRAM cells finds synaptic weight
values in neural networks, so both positive and negative
weights can be fully represented by RRAM. The voltages
applied on the word line are the input vector of the network
layers. The computing result vectors are the accumulated out-
put currents flowing on the bit line. In an RRAM-based VMM
operation, we assume that the dimension of the input vec-
tor of the network layers and the result vector are n and m,
respectively. The entry of the output current vector Ij is:

Ij =
n∑

i=1

Vi ·
(

G+
i,j − G−

i,j

)
, j ∈ (1, 2, . . . , m)

where Wi,j = G+
i,j − G−

i,j is the differential conductance of
a pair of RRAM cells, representing one synaptic weight in the
network, and Vi is the entry of the input voltages vector.

B. Ex Situ Training

The neural network models are trained to obtain target
weights first, utilizing ex situ training approaches before
hardware computation. In typical ex situ training [7], [10],
a network training process is performed on a conventional soft-
ware platform. The weights in the network are optimized until
the network achieves the expected reasonable performance.
Next, the quantified target conductance values of RRAM cor-
responding to the weights are obtained. Finally, the target
conductance values are transferred into the hardware accelera-
tor. The ex situ training method can easily make use of existing
high-performing computation platforms. For multiple trans-
fers, the network training process does not need to be repeated
since the existing learned weights can be directly transferred
into multiple hardware accelerators. Therefore, the ex situ
training method can be applied on a large scale, especially
for edge devices used for inference.

C. Weight Transfer With Verification

The RRAM-based accelerator suffers from various sources
of variations and noises [12]. It is difficult to precisely transfer
learned weights into the hardware accelerator due to these
variations. This kind of transfer error can have a significant

impact on a neural network’s performance. To address the
issue of the transfer error, Alibart et al. [13] proposed a sim-
ple, widely used closed-loop feedback scheme to modulate the
RRAM conductance. RRAM was programmed first to an ini-
tial random conductance state. Then, the conductance value
was measured by a read pulse operation to verify whether its
conductance is precise. Next, whether its value falls within an
identical error margin from the target value was determined.
If it failed, RRAM was programmed again with an additional
program pulse to ensure that its value falls within the error
margin. The conductance value continuously approaches the
target value through a series of repeated programs and read
operations until it is acceptable.

D. Bayesian Neural Network

Unlike traditional neural networks, where weights are fixed
values, Bayesian neural network (BNN) weights are depicted
by random variables [14], [15]. A BNN is a parametric
model that incorporates the flexibility of neural networks
into a Bayesian framework. The learning process of a BNN
involves probability distributions. This crucial component
incorporates probabilistic weights into the network training
process [16]. Thus, the trained weight parameters and calcu-
lations must be resilient under tolerable weight deviations.
Therefore, a BNN can be used to determine appropriate
weights and acceptable diverse error margins. As for the
advantages of BNN, it combines the objective function of
network tasks with the learning of weight distribution in
network training process. What’s more, BNN can take the
intrinsic non-ideal factors of RRAM, read variation, as the
network parameter. The disadvantage of BNN is that it will
increase the time consumption of training neural network.
However, it can be mitigated by pre-training.

III. PROPOSED DIVERSE SCHEME

In the traditional process of the RRAM-based accelera-
tor, the network training process aims to optimize weights
and then transfer the target weights into crossbar arrays with
write-verify methods. However, using an identical error margin
for each weight in the write-verify process demands notable
reading and programming operations, leading to large energy
and time consumption. Hence, we propose a high-speed and
high-efficiency diverse error margin write-verify (DIVERSE)
scheme. The proposed DIVERSE scheme consists of an ex
situ training method and a write-verify method. The pro-
pose training method uses trainable parameters for obtaining
acceptable weight deviations. A diverse error margin determin-
ation method is proposed to relax the requirement for exact
matches between each RRAM weight and target weight. The
proposed write-verify method uses different error margins for
each weight to reduce the cost of weight transfer significantly.

A. Overview of the DIVERSE Scheme

The DIVERSE scheme involves three major phases, as
illustrated in Fig. 1. First, a traditional neural network is
transformed into a BNN with the same network structure. The
BNN is trained to obtain the appropriate probabilistic weights.
The weights are then allocated distinct error margins based on
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Fig. 1. Basic process of the proposed DIVERSE scheme.

the optimized parameters in the BNN, and the network is even-
tually transferred onto an RRAM-based accelerator using the
proposed diverse error margin write-verify method.

B. Ex Situ Training Using Probabilistic Weights

To acquire acceptable weight deviations without any
network performance degradation, a BNN with the same
network structure is created from a conventional neural
network model. We use Bayes by backprop (BBB) for learn-
ing a probability distribution on the parameters in the created
BNN, which is an approximate variational method introduced
by Blundell et al. [15]. The probabilistic weight in the BNN
follows normal distribution N(μi,j, σi,j

2). And mean μ is iden-
tical to the fixed weights in conventional neural network. When
using pretrained conventional network models, we can easily
set the mean μ to pretrained weight values. The standard devi-
ation σ is additional parameter to capture the uncertainty of
weight, which can be optimized easily by stochastic gradient
descent [17]. The optimized mean and variance can represent
the appropriate deviation of different weights without affecting
the network performance, so that different weights can use dif-
ferent write error ranges. In RRAM case, mean μi,j is the target
weight Ŵi,j that is needed to transfer on the crossbar. The
deviation of weight Ŵi,j is indicated by standard deviation σi,j.
Training a BNN is main cost of ex situ training step. If we use
pretrained network models, the training process is to finetune
weights, and the cost can be less than training of a traditional
network. If we train the BNN from the beginning without pre-
trained models, the training cost of a BNN is usually twice
of a traditional network with similar architecture, due to the
double learnable parameters in a BNN, i.e., mean and vari-
ance for every single point estimate weight in the traditional
network. However, this training process uses existing software
platforms and is one-time cost for the same application. So,
in mass hardware accelerators production, it is reasonable to
consider the programming cost for multiple transfers.

After training, the optimal probabilistic weights are resilient
and ensure network performance. Moreover, there are cer-
tain general requirements in the learning process to guarantee
that the network is more consistent with the RRAM-based
accelerator, such as truncating the weights within an iden-
tical symmetric range so that the trained weights can be
implemented with differential RRAM cells, and limiting the
identical minimum value of standard deviations to ensure the
standard deviation is always larger than read variations and
the network has better read variation resistance.

Hence, the proposed ex situ training employs probabilis-
tic weights in the training process to generate robust target
weights and tolerable weight deviations. This ensures that the
network’s inference output is resistant to change even when
the RRAM weights are transferred with various error margins.

Given: target weight Ŵi,j 
and error margin EMi,j
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Fig. 2. (a) Process of the diverse error margin write-verify method.
(b) Prototype verify circuit in the DIVERSE scheme.

C. Diverse Error Margin Determination

After learning using the proposed ex situ training method,
the target weight values in the network are represented by
mean μ of the normal distribution. The acceptable deviation of
each weight corresponds to standard deviation σ of the normal
distribution. The performance of the network is not sensitive
to a certain level of deviation (related to σ ) of the RRAM
weight, which is ensured by the proposed training method.
In other words, it is not necessary to transfer weight using
a small identical error margin. The larger standard deviation
σ is, the larger the acceptable deviation of the weight. Hence,
we assign different error margins for the weights, which are
proportional to standard deviation σ . We can formulate the
error margin as:

EMi,j = k · σi,j

where EMi,j and σi,j are the error margin and learned standard
deviation of weight Ŵi,j in the network, respectively. k is the
proportionality factor, which is the same for every weight and
is determined by the network and learning task. Then, the
upper and lower tolerance boundaries of weight Ŵi,j are:

⎧
⎨

⎩
BUi,j =

[
Ŵi,j − EMi,j

]

Q

BLi,j =
[
Ŵi,j + EMi,j

]

Q

,

where [ · ]Q is the quantization operation. Therefore, we can
use different error margins to transfer the weights with a write-
verify scheme to relax the requirement for the circuit.

D. Transfer With Diverse Error Margin Write-Verification

To transfer the weight in a network into RRAM conduc-
tance, a diverse error margin write-verify method is proposed,
as illustrated in Fig. 2a. The target weight Ŵi,j and the
corresponding acceptable error margin EMi,j can be deter-
mined after completing the previous two phases. The proposed
method measures the present RRAM weights of the differen-
tial pair Wi,j = G+

i,j − G−
i,j. The verification process checks

whether the deviation is within the allowable error margin by
comparing the present weight value Wi,j with tolerance bound-
aries BUi,j and BLi,j. If the verification result is “pass”, the
write verification procedure is completed. Otherwise, the con-
ductance of RRAM is programmed to minimize the deviation
value until the verify result is “pass”. Fig. 2b shows a proto-
type verification circuit, and the verify logic is the same as
Fig.4a for tightening conductance distributions. Each verified
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VSA is connected to a reference voltage that represents a con-
ductance threshold. The reference voltages are generated by
a resistor voltage divider network. The circuit aims to tighten
RRAM conductance within the window formed by the high
threshold and low threshold (BUi,j and BLi,j). As the con-
ventional write-verify method, all RRAM devices in the same
column share a common verification circuit, however, do not
share common thresholds. In fact, when verifying each RRAM
device, reconfiguring the BUi,j and BLi,j is required for the
conventional method as well as our method.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Two common deep neural networks, a multilayer percep-
tron (MLP) and a CNN called LeNet, are utilized to validate
our proposed scheme on MNIST dataset. First, the networks
are transformed into BNNs with the same network structure,
and the BNNs are trained on the MNIST training set using the
proposed ex situ training method. We employ the widely-used
Adam algorithm for training. The conductance window ratio of
RRAM is 10.0, and the minimum conductance is 2.0 μS. Then,
the tolerance boundaries are quantified to n conductance levels.

Next, we transfer weights to the RRAM-based accelerator
through the DIVERSE scheme. We obtain the statistics of con-
ductance variation from [18] to establish the simulated RRAM
program variation model in the evaluated experiments. The
analog switching data are measured using identical pulses dur-
ing the program process. The program variation model is: G′ =
G + Log_Normal(� Gideal, S), where the ideal conductance
change (� Gideal) and the update variations factor (S), which
depend on the current conductance state (G) and operation
direction (SET or RESET), are obtained from [21]. The read
variation model is: Gread

′ = G′ + Normal(0, σ 2
read), which is

used in evaluating the final classification drop under different
read variations σread, is a simple additive normal noise model.
We get the minimum value of the standard deviation through
presented data measured on a physical RRAM-based accel-
erator in [19], which is small conductance fluctuation mainly
originating from RTN and σread = 0.2 μS. For the application
of computing in memory, the endurance of our RRAM device
can reach 1e6 [20] and retention time is 1e4 s @ 85◦C [21].
It is found that there is almost no influence for endurance and
retention due to the robust tolerance of neuromorphic comput-
ing system. So, the endurance and retention are not considered
in our experiments. However, we should point out that the
proposed method can save writing-verify iterations and pro-
gramming time, which further improve the device endurance
and retention.

Finally, using the MNIST test set, the accuracy drop of
the network is evaluated by dividing the number of incorrect
predictions made by the total number of predictions made.

The network’s accuracy drop is stochastic due to random
weight variations. We perform weight transfer 20 times to
carefully analyze the resulting average accuracy drop in each
scenario. We study the impact of the DIVERSE scheme by
testing various scenarios of the conductance level n and the
proportionality factor k. A combination of one program and
one read operation is regarded as a single write-verify cycle.
The time spent on weight transfer is proportional to the
write-verify cycle number. Therefore, we average write-verify

a b

Fig. 3. Required write-verify cycle number varies with the network accuracy
drop (a) MLP and (b) LeNet.

a b

Fig. 4. (a) Accuracy drop and normalized write-verify cycle for MLP with
different conductance levels n and proportionality factors k of error margins.
(b) Energy cost in the identical error margin case and different error margin
weight transfer cases.

cycle number for 20 weight transfers to measure the time
consumed. The energy cost is evaluated by accumulating the
energy consumption required for each program or read pulse
operation. For program operation, the set and reset voltages are
1.3 V and 2.0 V, respectively. The read voltage is 0.2 V. The
voltage pulse width is 50 ns for both the program and read
operations.

B. Experiments on MLP

A two-layer MLP with 100 neurons in the hidden layer
is used to validate the effectiveness of the DIVERSE scheme,
which has 0.15M weights and is represented by 0.30M RRAM
cells. The conventional weight transfer method employs iden-
tical error margins (IEM) to transfer whole weights. The
accuracy drops more and the write-verify cycle is required less
as the IEM value increases, as shown in Fig. 3a. When IEM is
0.56 µS, it keeps a small accuracy drop of around 2.83%, and
it requires 4.61×105 write-verify cycles, which is less than
other smaller identical error margin cases. Fig. 3a shows that
the DIVERSE scheme requires fewer write-verify cycles than
the conventional method with the same accuracy drop.

As shown in Fig. 4a, we study the impact of different error
margin proportionality factors k on the number of write-verify
cycles and the accuracy drop of the RRAM network. The solid
lines with markers indicate the accuracy drop under differ-
ent conductance levels n. In addition, the color of the marker
is used to indicate the normalized write-verify cycle number
related to the conventional method. When n is equal to 256,
the complexity of the verify circuit and the performance of the
network are balanced, as shown in Fig. 4a. In this scenario, the
required cycle number for the DIVERSE scheme is reduced
to 3.35×105 when k = 1.00. The relative accuracy loss � is
zero (� = 0.00%) even when the error margin is k = 1.20,
which is almost less than 1.88×105 write-verify cycles, and the
energy efficiency is improved by ×1.7 compared with the con-
ventional weight transfer method (Fig. 4b). When k = 2.10,
the cycle is further reduced to 29.59% (×3.4), and the energy
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a b

Fig. 5. (a) Accuracy drop and normalized write-verify cycle for LeNet with
different conductance levels n and different error margin factors k. (b) Energy
cost in the identical error margin case and different error margin weight
transfer cases.

efficiency is improved by ×4.1 even though the accuracy loss
� is 1.00%. These results indicate that reasonable diverse
error margin settings can significantly reduce the number
of write cycles to save time and energy while maintaining
accuracy.

C. Experiments on LeNet

The proposed DIVERSE scheme is tested using LeNet,
a typical network with convolution layers. The network is
made up of 2 convolution layers, 2 max pooling layers, and
3 fully connected layers, which has 0.12M weights and is
represented by 0.24M RRAM cells. In comparison to the
previous MLP model, it is a fairly deep neural network. After
being trained and transferred with the traditional weight trans-
fer method, the final accuracy drop of LeNet is 0.29%, and
3.45×105 write cycles are needed, as shown in Fig. 3b. The
figure also shows that the DIVERSE scheme requires fewer
write-verify cycles than the conventional method with the same
accuracy drop. The same experiments as those for the MLP
model are carried out, and the results are presented in Fig. 5.

When the conductance level n equals 256, a better trade-
off between verification circuit complexity and network
performance is obtained, as shown in Fig. 5a. In such sce-
nario (n=256 and k = 1.00), the weight transfer cycle is
reduced to 0.89×105, and energy efficiency is improved by
×4.9 with a slight accuracy loss (� = 0.05%). Moreover,
the accuracy remains almost unchanged (� = 1.00%) when
k = 1.60. It improves the energy efficiency almost 14.1 times
compared to the traditional method, as shown in Fig. 5b. These
experiments show that the DIVERSE scheme only requires
3.83×104 write cycles (×9.0), leading to high-speed and high-
efficiency weight transfer. Also, Fig. 4a and Fig. 5a show
that LeNet is more sensitive to error margins. Its accuracy
drops faster than MLP’s accuracy as proportionality factor k
increases. This might be caused by the large difference in the
weights of convolution layers, which will impact the capability
to extract features.

V. CONCLUSION

This brief proposed a DIVERSE scheme to achieve high-
speed and high-efficiency weight transfer for RRAM-based
accelerators. The scheme acquires a different tolerable error
margin, which can greatly relax the constraint for weight devi-
ation from the target value. The experimental results reveal

that the DIVERSE scheme can significantly improve effi-
ciency by ×3.4∼×9.0 and ×4.1∼×14.1 in speed and energy,
respectively.

REFERENCES

[1] M. Lanza et al., “Memristive technologies for data storage, computa-
tion, encryption, and radio-frequency communication,” Science, vol. 376,
no. 6597, p. eabj9979, 2022, doi: 10.1126/science.abj9979.

[2] C. Kaspar, B. J. Ravoo, W. G. van der Wiel, S. V. Wegner, and
W. H. P. Pernice, “The rise of intelligent matter,” Nature, vol. 594,
no. 7863, pp. 345–355, 2021, doi: 10.1038/s41586-021-03453-y.

[3] P.-Y. Chen, L. Gao, and S. Yu, “Design of resistive synaptic
array for implementing on-chip sparse learning,” IEEE Trans. Multi-
Scale Comput. Syst., vol. 2, no. 4, pp. 257–264, Oct.–Dec. 2016,
doi: 10.1109/TMSCS.2016.2598742.

[4] C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks,” Nat. Commun., vol. 9, no. 1, p. 2385, 2018,
doi: 10.1038/s41467-018-04484-2.

[5] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification
by memristive crossbar circuits using ex situ and in situ training,” Nat.
Commun., vol. 4, pp. 1–7, Jun. 2013, doi: 10.1038/ncomms3072.

[6] P. Yao et al., “Fully hardware-implemented memristor convolutional
neural network,” Nature, vol. 577, pp. 641–646, Jan. 2020.

[7] M. Hu et al., “Memristor-based analog computation and neural network
classification with a dot product engine,” Adv. Mater., vol. 30, no. 9,
2018, Art. no. 1705914, doi: 10.1002/adma.201705914.

[8] Y. Lin et al., “Bayesian neural network realization by exploit-
ing inherent stochastic characteristics of analog RRAM,” in Proc.
IEEE Int. Electron Devices Meeting (IEDM), 2019, pp. 1–4,
doi: 10.1109/IEDM19573.2019.8993616.

[9] M. Hu, J. P. Strachan, Z. Li, and R. S. Williams, “Dot-product engine
as computing memory to accelerate machine learning algorithms,” in
Proc. 17th Int. Symp. Qual. Electron. Des. (ISQED), 2016, pp. 374–379,
doi: 10.1109/ISQED.2016.7479230.

[10] P. Lin et al., “Three-dimensional memristor circuits as complex neu-
ral networks,” Nat. Electron., vol. 3, no. 4, pp. 225–232, 2020,
doi: 10.1038/s41928-020-0397-9.

[11] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nat. Electron., vol. 1, no. 6, pp. 333–343, 2018,
doi: 10.1038/s41928-018-0092-2.

[12] V. Yon, A. Amirsoleimani, F. Alibart, R. G. Melko, D. Drouin, and
Y. Beilliard, “Exploiting non-idealities of resistive switching memo-
ries for efficient machine learning,” Front. Electron., vol. 3, pp. 1–11,
Mar. 2022, doi: 10.3389/felec.2022.825077.

[13] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, 2012, Art. no. 75201,
doi: 10.1088/0957-4484/23/7/075201.

[14] H. Wang and D.-Y. Yeung, “A survey on Bayesian deep learning,” 2016,
arXiv:1604.01662.

[15] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proc. 32nd Int. Conf. Mach. Learn.
(ICML), vol. 2, 2015, pp. 1613–1622.

[16] A. Foong, D. Burt, Y. Li, and R. Turner, “On the expressiveness of
approximate inference in Bayesian neural networks,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 15897–15908.

[17] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr, and
K.-R. Müller, Eds. Berlin, Germany: Springer, 2012, pp. 421–436,
doi: 10.1007/978-3-642-35289-8_25.

[18] Y. Lin et al., “Demonstration of generative adversarial network
by intrinsic random noises of analog RRAM devices,’‘in Proc.
IEEE Int. Electron Devices Meeting (IEDM), 2018, pp. 67–70,
doi: 10.1109/IEDM.2018.8614483.

[19] Q. Hu et al., “Identifying relaxation and random telegraph noises in
filamentary analog RRAM for neuromorphic computing,” in Proc. 5th
IEEE Electron Devices Technol. Manuf. Conf. (EDTM), 2021, pp. 6–8,
doi: 10.1109/EDTM50988.2021.9420888.

[20] M. Zhao et al., “Characterizing endurance degradation of incremen-
tal switching in analog RRAM for neuromorphic systems,” in Proc.
IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA,
Dec. 2018, pp. 1–4, doi: 10.1109/IEDM.2018.8614664.

[21] M. Zhao et al., “Crossbar-level retention characterization in ana-
log RRAM array-based computation-in-memory system,” IEEE Trans.
Electron Devices, vol. 68, no. 8, pp. 3813–3818, Aug. 2021,
doi: 10.1109/TED.2021.3089561.

http://dx.doi.org/10.1126/science.abj9979
http://dx.doi.org/10.1038/s41586-021-03453-y
http://dx.doi.org/10.1109/TMSCS.2016.2598742
http://dx.doi.org/10.1038/s41467-018-04484-2
http://dx.doi.org/10.1038/ncomms3072
http://dx.doi.org/10.1002/adma.201705914
http://dx.doi.org/10.1109/IEDM19573.2019.8993616
http://dx.doi.org/10.1109/ISQED.2016.7479230
http://dx.doi.org/10.1038/s41928-020-0397-9
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.3389/felec.2022.825077
http://dx.doi.org/10.1088/0957-4484/23/7/075201
http://dx.doi.org/10.1007/978-3-642-35289-8_25
http://dx.doi.org/10.1109/IEDM.2018.8614483
http://dx.doi.org/10.1109/EDTM50988.2021.9420888
http://dx.doi.org/10.1109/IEDM.2018.8614664
http://dx.doi.org/10.1109/TED.2021.3089561


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


