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A Family of �� Modulators With High Spur
Immunity and Low Folded Nonlinearity Noise

When Used in Fractional-N Frequency Synthesizers
Valerio Mazzaro , Member, IEEE, and Michael Peter Kennedy , Fellow, IEEE

Abstract— Phase locked loops for fractional frequency synthe-
sis typically use Digital �� Modulators (DDSMs) as their divider
controllers. Different types and configurations of DDSMs have
been presented in the past which have distinctive characteristics
in terms of spectral shaping of their quantization errors, spur
immunity and implementation costs. This paper presents a family
of DDSMs that have provably high spur immunity and low
folded noise when used in fractional-N frequency synthesizers
with polynomial nonlinearities.

Index Terms— Frequency synthesizer, enhanced
nonlinearity-induced noise performance (ENOP) digital
delta-sigma modulator (DDSM), spurious tones, noise folding,
nonlinearity.

I. INTRODUCTION

PHASE locked loops (PLL) usually employ digital ��
modulators (DDSM) in order to implement fractional

frequency synthesis. The DDSM approximates the fractional
part of the frequency multiplication factor by means of a time-
varying integer-valued signal. The latter is used to control the
instantaneous divide ratio of a multi-modulus divider (MMD)
in the feedback path of the synthesizer. The integer approxima-
tion that is implemented by the DDSM inevitably introduces a
quantization error. The accumulation of this quantization error
leads to a time-varying phase error in the system.

The modulator should be designed so that the power spectral
density (PSD) of the DDSM-related phase error in fractional-
N mode does not degrade the phase noise performance of the
synthesizer significantly relative to its integer-N counterpart.
Relevant aspects of a modulator are the randomization and
the spectral shaping of the quantization error [1]–[4]. In fact,
it is desirable that the PSD of the DDSM-related phase error
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is devoid of idle tones and is high-pass shaped. This latter
property is obtained via the design of the noise transfer
function of the modulator; it is beneficial because the phase
noise introduced by the modulator is subsequently low-pass
filtered by the system’s closed-loop transfer function. On the
other hand, randomization of the quantization error is achieved
using techniques that aim to increase the cycle length of the
modulator and make it noiselike [5], [6].

Unfortunately, these techniques alone do not prevent the
generation of DDSM-related spurious tones and low-frequency
noise floor in a nonlinear synthesizer. In fact, the
DDSM-related phase error interacts with nonlinearities that
are present in the loop and both spurs and folded noise arise
[7]–[11]. Many techniques have been developed to linearize
the system [12]–[15]. While these attenuate the spurs and the
folded noise, they do not eliminate them completely because
a residual nonlinearity is inevitably present.

A different approach to improving the fractional spur-
performance of charge-pump (CP) PLLs has been pursued by
using the Successive Requantizer (SR) [16] and the Probability
Modulator Redistributor (PMR) [17], [18]; these modify the
statistical properties of the DDSM signal so that the distorted
phase error signal does not produce spurs. In the case of the
SR, it has been proven that this architecture has an output
that is provably spur free when it is distorted by a specific
polynomial nonlinearity. In a recent paper, it has been proven
that MASH modulators also provide spur immunity for certain
polynomial nonlinearities because of the statistical properties
of the accumulated quantization error [19]. In particular, the
higher the order of the MASH modulator, the higher is the
order of the polynomial nonlinearity up to which the modulator
is immune from spurs. However, just like the SR, as the order
of the MASH DDSM increases, so does the level of folded
noise that it introduces [20].

In this paper, we introduce a family of DDSMs, called
Enhanced Nonlinearity-induced nOise Performance digital
�� modulators (ENOP-DDSMs) which, like the SR, can
achieve immunity to spurs for memoryless polynomial non-
linearities of up to a certain order. The flexibility of the
architecture, underpinned by an analytical evaluation of the
spurious behavior [21] and folded noise generation [20],
allows one to design an ENOP-DDSM that achieves the same
level of spur immunity that can be achieved by the best SRs
and PMRs, but with a lower folded noise floor.
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Fig. 1. (a) Block diagram of an error feedback modulator (EFM) and (b) its
linearized model.

The paper is organized as follows. In Section II we give
some background on the modulation noise introduced by
the DDSM, and a method to evaluate the spur immunity.
The structure of an ENOP-DDSM is described in detail in
Section III, where a number of representative ENOP-DDSM
configurations, which combine spur immunity with low folded
noise, are presented. In Section IV, the spur immunity of these
ENOP-DDSMs is analyzed. These results are confirmed by
simulations in Section V. Finally, we draw our conclusions in
Section VI.

II. BACKGROUND

By definition, DDSMs coarsely quantize an over-sampled
digital input signal. In the case of fractional frequency syn-
thesizers, the ratio of the output frequency to the reference
frequency, denoted Ndiv , can be expressed as Nint +α, where
Nint is the integer part of Ndiv and α is the fractional part.
The latter, in turn, can be implemented as a ratio X/M , where
X and M are, respectively, the integer-valued input word
and the modulus of the modulator. The modulator introduces
a quantization error, namely eq [n], while approximating the
fractional value α with its quantized output y[n], such that:

y[n] = α + eq [n]. (1)

The statistical and spectral properties of the quantization
error depend on the type and order of the modulator. Let us
consider, for example, the error feedback modulator (EFM)
shown in Fig. 1.

The signal e[n] represents the error introduced by the quan-
tizer. In particular, the accumulator-based digital quantizer
implements a truncation and provides only integer values at
its output. Therefore, the signal e[n] only assumes values in
the range (−1, 0]. The expression for the output of a generic
single-quantizer DDSM in the Z-domain is given by [22]:

Y (z) = ST F(z) · X (z) + NT F(z) · E(z), (2)

where X(z) is the Z-transform of the generic input x[n],
E(z) is the Z-transform of e[n] and the functions ST F(z)
and NT F(z) are, respectively, the signal and noise transfer
functions. In the case of the modulator presented in Fig. 1,
x[n] is equal to α and ST F(z) is equal to unity. On the other
hand, the NT F(z) is given by:

NT F(z) = 1 − H (z). (3)

As mentioned before, the error e[n] is high-pass shaped
so that the quantization noise is moved out of band to be
low pass filtered by the loop. Therefore, H (z) is commonly
designed such that the NT F(z) is equal to

(
1 − z−1

)l
, where

l represents the order of the modulator [4]. Doing so, the
Z-transform of eq [n] may be expressed as:

Eq(z) =
(

1 − z−1
)l

E(z). (4)

Eq. (1) illustrates that eq [n] is the error between the desired
frequency ratio and the one implemented instantaneously
in the system. Therefore, it represents the frequency error
introduced by the modulator. Consequently, the accumulation
of eq [n], denoted as eacc[n], contains information related to
the phase error introduced into the loop by the DDSM [23].
From (4), the Z-transform of the accumulated quantization
error is given by:

Eacc(z) =
(

1 − z−1
)−1

Eq(z)

=
(

1 − z−1
)l−1

E(z). (5)

Its expression in the time domain is given by:

eacc[n] =
l−1∑
i=0

(−1)i
(

l − 1

i

)
e[n − i]. (6)

Knowing the statistical and spectral characteristics of
eacc[n] is fundamental to understanding the effect of the
DDSM on the fractional-N frequency synthesizer. If the quan-
tization error is sufficiently well randomized [5], [6], the PSD
of eacc is spur-free.

Fig. 2 shows a phase-domain model of the synthesizer under
consideration. A real PLL inevitably experiences nonlinearities
in the loop. For instance, in the case of CP-PLLs, the PFD/CP
block typically exhibits a memoryless nonlinearity.1

The nonlinear PFD/CP has been modelled in Fig. 2 as a
cascade of a dimensionless block that takes into account the
nonlinearity and offset, followed by a linear PFD/CP. If the
system is locked and there are no other sources of noise in
the loop, the phase error experienced at the input of the phase
frequency detector (PFD) can be expressed as:

�φin [n] = 2π

Ndiv
(eacc[n − 1] + τos) , (7)

where 2π
Ndiv

τos is a phase offset that is introduced by the system
and it is present in addition to the term in eacc. Such a non-zero

1In general, a PFD/CP block exhibits both static and dynamic mis-
matches [10], [24]. However, previous work has shown that some typical
dynamic mismatches can be approximated by a memoryless nonlinear function
(see, for example [8], [11]).
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Fig. 2. Phase-domain model of a PLL [23], whose nonlinear PFD/CP block
has been partitioned into a memoryless nonlinearity followed by a linear
PFD/CP block.

value of τos can be caused by the presence of nonlinearities
in the system or by offsets that are voluntarily introduced into
the loop, such as CP bleed current [25].

From the results in (5) and (7), one may deduce that, when
l > 1, the DDSM-related phase noise �φin , which is derived
from eacc, is high-pass shaped and, therefore, its low frequency
component is suppressed. However, interaction of this phase
error with the nonlinearity leads to the generation of extra
noise that is manifest as spurious tones and an elevated noise
floor [3].

In Fig. 2, we denote by �φN L
in [n] the input phase error after

distortion by the nonlinearity. Then, the noise generated by the
nonlinearity can by studied by analyzing the PSD of �φN L

in ,
denoted by S�φN L

in
. Let us introduce the nonlinear function

N (·), and express �φN L
in [n] as a function of eacc[n], namely:

�φN L
in [n] = 2π

Ndiv
N (eacc[n − 1] + τos) , (8)

where we define:
eN L

acc [n] = N (eacc[n] + τos) . (9)

It is worth reiterating that, in a type-II PLL, the value of τos

is such that E
[
eN L

acc [n]] = 0.
In recent work [21], Donnelly and Kennedy have presented

a semi-analytical method to predict the spurious behavior of
a fractional-N frequency synthesizer once the nonlinearity
is specified. This is obtained by calculating the periodic
component of the noise generated by the nonlinearity, the
so-called Periodic Nonlinearity Noise (PNN). It is pointed out
in [21] that, for any n ∈ N, eacc[n] lies on a set of continuous
sawtooth tracks, denoted by τm(t), which are defined as:

τm(t) = m − (αt mod 1) (10)

where t ∈ R and m ∈ Z. Moreover, the samples of the
accumulated quantization error are not uniformly distributed
over these tracks. Instead, the probability distribution, denoted
by P(·), depends on the modulator. Then, the distorted accu-
mulated quantization error, eN L

acc [n], lies on a set of distorted
tracks which are defined as:

τ̂m
N L (t) = N (τm(t) + τos). (11)

Therefore, the locations and the amplitudes of the
nonlinearity-induced spurs can be predicted by calculating

TABLE I

SIMULATION MODEL PARAMETERS

the Fourier transform of the PNN, which is defined as [21]:

P N N[n] =
∑

m

τ̂m
N L (n)P (τm(n)), (12)

where τ̂ N L
m (n) = τ̂ N L

m (t)|t=n and τm(n) = τm(t)|t=n .
The synthesizer does not experience fractional spurs due

to N (·) if the PNN is constant and equal to zero. Recently,
it has been proven, by means of the PNN, that MASH-based
synthesizers exhibit spur immunity for certain polynomial
nonlinearities [19]. In the following sections, we will use the
PNN and the method developed in [19] to analyze the level of
spur immunity of the ENOP-DDSM family for a given order
of polynomial nonlinearity N (·).

III. ENOP-DDSMS

A. Examples

ENOP-DDSMs are characterized by being able to achieve
high spur immunity while simultaneously minimizing the
folded noise resulting from nonlinear distortion. An example is
given in Fig. 3, where the simulated phase noise performance
of both a linear and a nonlinear fractional frequency synthe-
sizer are compared for four different divider controller archi-
tectures, namely a MASH 1-1-1, a MASH 1-1-1-1, a second
order Successive Requantizer (SR2) and an ENOP-DDSM,
in the presence of a cubic nonlinearity.2

These results have been obtained via closed-loop phase-
domain simulations of the CP-PLL model shown in Fig. 2.
The transfer function of the loop filter is

L(s) = 1.65 · 1011 · (1 + 2.65 · 10−5s)

1 + 5.26 · 10−7s + 1.38 · 10−13s2 [�] (13)

The model parameters are summarized in Table I. The refer-
ence noise and physical divider, VCO, PFD and CP noise are
assumed zero. The closed loop bandwidth is approximately
300 kHz.

In the case of a linear synthesizer, shown in Fig. 3(a), the
output phase noise is given by the DDSM noise filtered by
the closed loop transfer function of the PLL. This condition
exposes big differences between the different architectures of
modulators. The SR and the ENOP P1 have the larger noise
contributions that are quite similar.

2In order to improve the randomization of the quantization error we consider
only odd values for X . Moreover, for each modulator but the SR2, we have
added a first order shaped LSB dither to randomize further the quantization
error generated by the modulators.
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Fig. 3. Comparison of the simulated phase noise of (a) a linear fractional-
N PLL characterized in Table I for different DDSMs: MASH 1-1-1-1, 3rd -
order spur immune (s.i.) SR2 [26], MASH 1-1-1 and an ENOP-DDSM (P1
of Table IV) and (b) in the case of a third-order nonlinearity N (x) = x +
0.02x2 + 0.01x3. The P1 ENOP (in purple) is both spur-free and exhibits the
lowest folded noise floor.

The situation changes substantially when the system is
nonlinear. Note that the MASH 1-1-1 (shown in brick red in
Fig. 3) has a folded noise floor at −100 dBc/Hz and exhibits
a strong fractional spur at ≈ 14.9 kHz (= X

M fre f ). Many
commercial fractional-N synthesizers use MASH 1-1-1 divider
controllers and, therefore, exhibit spurs of this type.

The MASH 1-1-1-1 (in blue) is provably spur free for this
nonlinearity and therefore does not exhibit a spur [19]. How-
ever, its folded noise floor is at approximately −90 dBc/Hz.
The SR23 (in yellow) is provably spur free but it too has an
elevated noise floor [26]. The ENOP-DDSM (in purple) is
also provably spur free, as we will show, and its folded noise
contribution at −104 dBc/Hz is the best of the four examples.
The performance results are summarized in Table II.

3With SR2, we mean a second order Successive Requantizer. In particular,
the SR2 of this example is the one described in [26, Fig. 6 and eq. (31)].

TABLE II

SIMULATED PERFORMANCE FOR THE THIRD-ORDER POLYNOMIAL
IN FIG.3(B)

TABLE III

SIMULATED PERFORMANCE FOR THE SEVENTH-ORDER NONLINEARITY

IN FIG.4(B)

In this example, we have shown that the ENOP P1 has
the best noise and spur performance of the architectures
considered when the system is nonlinear.

Another example is considered in Fig. 4, where the MASH
1-1-1, MASH 1-1-1-1 and SR2 are compared with another
ENOP DDSM variant, denoted by ENOP P5, in the case of a
seventh-order nonlinearity. As before, the noise performances
are compared first without and then with the nonlinearity. Note
that the ENOP P5 has a DDSM noise profile that closely
follows that of the MASH 1-1-1 up to 1 MHz in the linear
case, as shown in Fig. 4(a). Furthermore, in the presence of
the nonlinearity, shown in Fig. 4(b), the ENOP P5 is the only
DDSM that does not produce any spur. In fact, as we will show
later, the ENOP P5 allows one to achieve spur-free operation
in the case of polynomial nonllinearities up to order seven.

While the folded noise generated by the ENOP P5 is larger
than that of the MASH 1-1-1, it is considerably lower than the
other two solutions. These performance results are summarized
in Table III.

We will show in the following sections that an
ENOP-DDSM can be designed to prioritize spur-immunity,
to minimize folded noise or to provide a compromise between
the two. This is possible because the DDSM-related noise
generated by the nonlinearity can be predicted in advance once
information about eacc[n] is known.

B. Architecture

The ENOP-DDSM can be implemented with an EFM
structure, as shown in Fig. 1. The governing equation is (2)
where the ST F(z) is equal to unity. The NT F(z) of an lth

order ENOP-DDSM has the form:

NT F(z) =
(

1 − z−1
)(

1 +
l−1∑
i=1

ci z
−i

)
, (14)

where l represents the order of the ENOP-DDSM. According
to (3), the desired NT F(z) in (14) can be obtained by
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Fig. 4. Comparison of the simulated phase noise of (a) a linear fractional-
N PLL characterized in Table I for different DDSMs: MASH 1-1-1-1, 3rd -
order spur immune (s.i.) SR2 [26], MASH 1-1-1 and an ENOP-DDSM (P5
of Table IV) and (b) in the case of a seventh-order nonlinearity N (x) =
x − 0.02x2 + 0.01x3 + 0.003x4 − 0.01x5 − 0.0003x6 + 0.0006x7. Different
values of X have been used for the four DDSMs in order to offset their spur
positions. Although the MASH 1-1-1 has a lower noise floor, only the P5
ENOP (in green) is spur-free.

choosing:
H (z) = 1 − NT F(z)

= z−1 −
(

1 − z−1
) l−1∑

i=1

ci z
−i . (15)

With this transfer function, the modulator will produce an
accumulated quantization error whose Z-transform is equal to:

Eacc(z) = E(z)

(
1 +

l−1∑
i=1

ci z
−i

)
, (16)

where E(z) is the Z-transform of the error e[n] generated by
the quantizer. One can express eacc[n] as:

eacc[n] = e[n] +
l−1∑
i=1

ci e[n − i ]. (17)

For the remainder of this work we will assume that every
coefficient ci in (14) is integer valued. This is not necessary
but it simplifies the implementation.

Fig. 5. Example of PSD and pdf of eacc showing the respective parameters:
k, r and σ 2

eacc , where E[eacc] = 0.

At this point, we list the key parameters that determine the
performance of an ENOP-DDSM. These are as follows:

• l: the order of the modulator.
• k: the order of low-frequency high-pass shaping of the

accumulated quantization error.
• r : the half width of the range of the accumulated quan-

tization error.
• p: the order of polynomial nonlinearities up to which the

accumulated quantization error is immune from spurs.
• σ 2

eacc
: the variance of the accumulated quantization error.

Some of these parameters (k, r , σ 2
eacc

) are illustrated schemat-
ically in Fig. 5.

The order of the modulator, l, sets the number of coeffi-
cients ci which, in turn, determine the signal eacc generated
by the modulator. Therefore, the value of l determines the
number of degrees of freedom available when designing the
ENOP-DDSM which is, in principle, (l − 1). The larger is
l the greater is the number of delay elements (registers)
that are needed for implementing the block H (z) in (15).
Consequently, a larger l comes with a higher hardware cost.

As pointed out previously, it is important to high-pass shape
the PSD of eacc so that the low-frequency component of the
modulation-related phase noise is suppressed. The order of
high-pass shaping at low frequencies, k, is determined by
the number of solutions of Eacc(z) = 0 at z = 1. As a
consequence, the value of k sets constraints on the values
that can be assumed by ci . In other words, the number of
degrees of freedom for designing the modulator decreases to
(l − 1 − k). This means that, for a given l, the greater is k
the less room will be left for designing the modulator so that
other performance characteristics are met.

In the frequency synthesizer application, the value of k has
to be greater than or equal to one. When more aggressive
high-pass shaping is demanded, for example when a wide
synthesizer bandwidth is required and/or a low reference
frequency is employed, the choice of k = 2 is suitable.
Higher values for k would require a more aggressive roll-off
of the loop filter in the synthesizer to suppress the resulting
high-frequency noise component.

C. Spur Immunity

One of the most important parameters of the ENOP-DDSM
is p; this determines the level of spur immunity of the
modulator. Since the modulator has to be designed such that
k ≥ 1, the coefficients ci are chosen so that:

1 +
l−1∑
i=1

ci = 0 (18)
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Therefore, the signal eacc has a range that is symmetric about
zero. In particular, we introduce the parameter r , which is the
smallest integer such that:

−r < eacc < r (19)

Moreover, since e[n] ∈ (−1, 0], from (17), (18) and the
definition of r , one can show that:

r = 1 + ∑l−1
i=1 |ci |
2

(20)

Familier and Galton have proven that the maximum attainable
order p of spurious tone immunity for polynomial nonlin-
earities is (2r − 1) and that there exist quantizers which are
immune to spurs up to order (2r −1) [27], [28].4 This implies
that the optimal property with respect to spur immunity in the
presence of a polynomial nonlinearity is given by:

popt = 2r − 1 (21)

It is interesting to note that the optimal condition for spur
immunity can be obtained only for odd values of p.

D. Folded Noise

The result in (21) suggests that eacc must have a larger range
in order to achieve spur immunity to higher order polynomial
nonlinearities. However, a wider range for the accumulated
quantization error would lead to stronger interaction with the
nonlinearity and, qualitatively, a higher level of folded noise.
The level of the noise floor can be predicted using methods
such as those presented in [11], [20] and [29]. For the sake of
simplicity, in this paper we will estimate the severity of the
generated folded noise with σ 2

eacc
, the variance of the accu-

mulated quantization error. In fact, it has been reported that
the level of the in-band folded noise floor scales qualitatively
with σ 2

eacc
[11].5 Therefore, the value of σ 2

eacc
provides a rough

estimate of the folded noise performance of a modulator.
If we assume that e[n] is a uniform independent and

identically distributed (i.i.d.) stochastic process then, consid-
ering (17) and (18), the variance of eacc becomes:

σ 2
eacc

= 1

12

(
1 +

l−1∑
i=1

c2
i

)
. (22)

This assumption about e[n] is only an approximation; however,
it allows one to obtain an accurate estimate of the statistical
properties of eacc [20]. We will use this assumption later in
the paper for evaluating the probability distribution of eacc.

Eq. (22) shows that, in order to minimize the variance
of eacc, each non-zero integer coefficient ci has to have an
absolute value equal to one. This, according to the expres-
sions (20) and (22), gives:

σ 2
eacc,min = r

6
(23)

4It is worth remarking that we use a different nomenclature compared
to [27], [28]. The accumulated quantization error eacc , its single-sided range r
and the order of spur immunity p are denoted in those works by, respectively,
t[n], Nt and ht . Therefore, for a given Nt , the maximum value of ht is
expressed as (2Nt − 1).

5It is important to remark that the folded noise level is not a bijective
function of σ 2

eacc . The former depends also on the spectrum of eacc .

Fig. 6. Predicted and simulated probability distribution of eacc in the case
of P1 ENOP-DDSM; r = 2.

In summary, for a given value of r , the maximum achievable
order of spur immunity is equal to (2r −1). Moreover, once r
is fixed, the minimum value of σ 2

eacc
with integer coefficients

is equal to r/6 and this is obtained when all the non-zero
coefficients ci have magnitudes equal to one.

Table IV shows simulation results for seven sample
ENOP-DDSMs with r = 2, 3, 4 and 5. The corresponding
values of σ 2

eacc
are 1/3, 1/2, 2/3 and 5/6, respectively. We will

next show that these architectures are also optimal in the sense
that they achieve p = popt .

IV. ANALYSIS OF SPUR IMMUNITY VIA SYMBOLIC

CALCULATION OF PNN

In this section we analyze the spur immunity for the
ENOP-DDSMs proposed in Table IV by using the PNN.
Then, we confirm the properties of spur immunity through
behavioral simulations of the nonlinear frequency synthesizer.
As previously presented, the PNN represents a valuable tool
to determine the immunity from spurs of a given modulator.
In fact, if the PNN is constant and equal to zero, the system
does not experience spurs [19]. From the work presented
in [21], the PNN (defined by (12)) can be evaluated for a given
modulator and nonlinearity once the probability distribution
function of eacc, denoted by P(·), is known. The latter can be
predicted if we make the assumption that e[n] is a uniform and
i.i.d. stochastic process [30], [31]; further details are provided
in Appendix A.

We know that the hypothesis made about e[n] is not strictly
true; nevertheless, under typical conditions it leads to accurate
predictions for P(·). For example, let us consider the case
of a P1 ENOP-DDSM. Following the procedure presented
in Appendix A, one can evaluate the probability distribution
function of eacc from (31), obtaining:

P(x) =

⎧⎪⎨
⎪⎩

1
6

(
4 − 6x2 + 3|x |3) if 0 ≤ |x | ≤ 1

1
6 (2 − |x |)3 if 1 ≤ |x | ≤ 2

0 elsewhere

(24)

The predicted probability distribution is compared to simula-
tion results in Fig. 6.
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TABLE IV

EXAMPLES OF RELEVANT CONFIGURATIONS OF ENOP �� MODULATORS

Notice that the simulated distribution P(eacc) closely
matches the analytical prediction. This confirms the validity
of the approximation made about eacc. The predictions of
P(eacc) for the other architectures of ENOP-DDSMs presented
in Table IV are provided in Appendix A.

Equation (24) allows one to evaluate the PNN for the P1
architecture once the nonlinearity is specified. In particular,
let us consider the case of P1 interacting with a generic
third order polynomial nonlinearity, expressed as N (x) =∑3

i=0 ai x i . From the definitions in (10)–(12), and considering
the expression of the predicted P(·) (24), one can show that:

P N N[n] = a0 + a1τos + a2

(
1

3
+ τ 2

os

)
+ a3

(
τos + τ 3

os

)
,

(25)

which is independent of n and is therefore constant. Moreover,
because of the locking condition of a type-II PLL, τos is valued
so that E [P N N [n]] = 0. Therefore, the PNN expressed
in (25) is equal to zero, which means that the system does
not experience fractional spurs in the case of polynomial
nonlinearities up to the third order6 when a P1 ENOP-
DDSM is used. This confirms that the level of spur immunity
p for the P1 ENOP-DDSM equals the optimal value popt

shown in Table IV. Repeating a similar PNN analysis for
the other proposed architectures yields the characteristics of
spur immunity listed in Table IV, as shown in Appendix B.
In each case, the P1–P7 ENOP-DDSMs achieve a level of
spur immunity equal to popt and are optimal in the sense of
Familier and Galton [28].

Concluding, the architectures listed in Table IV match the
condition of best spur immunity and the lowest folded noise.
In fact, they are both p-optimal and exhibit minimal σ 2

eacc
.

V. VALIDATION BY BEHAVIORAL SIMULATION OF PLL

In this section we validate the performance of represen-
tative ENOP-DDSMs in the frequency synthesizer applica-
tion through behavioral simulations of a nonlinear charge
pump (CP) PLL where the divider controller is implemented
with the NTFs listed in Table IV. The simulations were per-
formed using a phase domain closed-loop model implemented
in MATLAB [23]. The parameters of the simulated system are
listed in Table I. The physical noise of the VCO, PFD and CP,
as well as the reference noise are assumed zero.

6Eq. (25) shows that the P1 is immune from spurs in the case of a third
order nonlinearity. However, it is easy to notice that in the case of polynomial
nonlinearities with order lower than three, one or more coefficients ai in (25)
would be equal to zero, leading to a PNN which is still independent of n.
Therefore, we can say that the immunity holds up to and including third order.

Fig. 7. Simulated phase noise in the case of cubic nonlinearity (N (x) =
x + 0.02x2 + 0.01x3) for the different ENOP-DDSMs.

In the simulations we assume zero reference noise and
physical divider, VCO, PFD and CP noise. This does not
represent what happens in a real circuit; however, it allows
one to visualize better in isolation the effects of the interaction
between the quantization noise and the nonlinearity, the so-
called “mathematical noise”, for the different cases of ENOP-
DDSMs. Furthermore, first-order shaped LSB dither is applied
to the modulator to ensure that the quantization error is
sufficiently randomized [5], while an odd value for the input
X is chosen to mitigate against possible horn spurs [32].7

A. Third-Order Polynomial

We first consider the case where the synthesizer exhibits a
third-order polynomial nonlinearity. The results of the simu-
lations are shown in Fig. 7. Different values of X have been
used for the DDSMs so that their spurs (if any) do not overlap
in the figures.

With a MASH 1-1-1 DDSM, a fixed integer boundary spur
would be expected at X

M fre f ≈ 14.9 kHz. From Table IV,
all of the listed ENOP-DDSMs are expected to provide spur
immunity in the presence of third-order nonlinearities. This is
confirmed by the simulations. Note that no spurs are present
in any of the ENOP-DDSMs.

It is worth noticing also that the level of folded noise varies
between the different modulators. This is to be expected, since
σ 2

eacc
varies as well. In fact, as discussed in Section III, the

folded noise floor scales with σ 2
eacc

. Therefore, we expect
that two different modulators that share the same value of

7Together, the odd input and shaped LSB dither are sufficient to make e[n]
approximately uniform and i.i.d.
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Fig. 8. Simulated phase noise in the case of fifth-order nonlinearity (N (x) =
x + 0.04x2 + 0.03x3 − 0.01x4 − 0.005x5) for the different ENOP-DDSMs.

Fig. 9. Simulated phase noise in the case of seventh-order nonlinearity
(N (x) = x − 0.02x2 + 0.01x3 + 0.003x4 − 0.01x5 − 0.0003x6 + 0.0006x7)
for the different ENOP-DDSMs. Synthesizers with P1, P2 and P3 all exhibit
spurs; P4–P7 do not.

σ 2
eacc

should generate similar levels of folded noise. Moreover,
the latter increases as σ 2

eacc
gets bigger. This is confirmed in

Fig. 7, where P1, which has σ 2
eacc

= 1/3, contributes the lowest
excess noise, while P6 and P7, which have σ 2

eacc
= 5/6, have

the highest.

B. Fifth-Order Polynomial

Next, we consider the case where the nonlinearity is a fifth-
order polynomial. From the analysis in Section III, we predict
spurious tones for the P1 ENOP-DDSM and spur immunity
in the other cases. This is confirmed by the simulation results
in Fig. 8. In particular, note the integer boundary spur at
≈ 14.9 kHz in Fig. 8.

Similar considerations to the previous case can be made
for the folded noise: P1 is the best while P6 and P7 are
the worst.

C. Seventh-Order Polynomial

Lastly, we consider the case of a seventh-order polynomial
nonlinearity. This example confirms that P4, P5, P6 and P7
ENOP-DDSMs are spur immune up to seventh-order polyno-
mial nonlinearities. This is shown in Fig. 9. Notice that the

cases of P1, P2 and P3 exhibit spurs since their p is less than
7. Note also that the level of the folded noise grows as the
variance of eacc increases.

It should be clear at this point that the ENOP-DDSMs can
provide different trade-offs between the order of spur rejection
and the in-band noise floor, depending on the choice of NTF.
Empirically, the higher is the spur immunity, the larger will be
the folded noise. It follows that, depending on the performance
one wishes to prioritize, one NTF might suit better than the
others.

VI. CONCLUSION

In this paper, we have presented a family of �� modulators
which can be designed to be optimal in the sense of Familier
and Galton in terms of spurious tone immunity for polynomial
nonlinearities. An analytical method has been presented to
predict both the level of spur immunity and the folded noise
floor. The predictions have been confirmed by simulation. The
results show the potential of ENOP-DDSMs to match the state
of the art performance in terms of spur immunity. Moreover,
with the same level of spur immunity, ENOP-DDSMs have a
lower hardware complexity and can outperform the prior art
in terms of folded noise.

APPENDIX A
PREDICTION OF eacc PROBABILITY DISTRIBUTION

In previous publications [19], [21], it has been shown that
the spurious behavior resulting from the interaction between
the quantization error and system nonlinearities can be pre-
dicted by the PNN. Evaluation of the PNN requires knowledge
of the probability distribution function of the accumulated
quantization error, denoted by P(·). In a recent paper, this
function has been derived empirically for some MASH mod-
ulators [19]. In this appendix, we provide a method to predict
P(·) for a generic ENOP-DDSM, under the hypothesis that
e[n] is an independent and identically uniformly distributed
U(−1, 0) stochastic process.

In [30], the author evaluates the probability distribution
of a multivariate random function by applying the variable
transformation theorem [31]. In particular, consider a random
variable Y which is a function of k independent random
variables with arbitrary probability distributions:

Y = g (X1, X2, . . . , Xk) , (26)

considering that such a function can be expressed explicitly in
terms of any of the independent variables (i.e. X1), so that:

X1 = g−1
1 (Y, X2, . . . , Xk) , (27)

with n1 possible solutions. Then, the probability density func-
tion of Y is [30]:

fY (y) =
∫ xk=∞

xk=−∞
. . .

∫ x3=∞

x3=−∞

∫ x2=∞

x2=−∞

k∏
j=2

(
fX j

(
x j

)
dx j

)

×
n1∑

i=1

fX1

(
g−1

1,i (y, x2, x3, . . . , xk)
)

×
∣∣∣∣∣∂g−1

1,i (y, x2, x3, . . . , xk)

∂y

∣∣∣∣∣ (28)
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Fig. 10. Predicted and simulated probability distribution of eacc in the cases
of P2 and P3 ENOP-DDSM; r = 3.

Assuming that e[n] is a uniform and i.i.d. stochastic process,
each pair of signals e[n − i ], e[n − j ] is independent for
every i �= j . According to this assumption and the expression
in (16), one can notice that the eacc of an ENOP-DDSM
is a function of l independent random variables, where l is
the order of the modulator. For the sake of simplicity, let us
denote each random variable e[n − j ] by e j . Doing so, we can
represent eacc as:

eacc = e0 + c1e1 + c2e2 + . . . + cl−1el−1, (29)

It is clear that the function in (29) can be expressed explicitly
in terms of any e j with only one solution. Let us consider for
instance e0:

e0 = eacc − c1e1 − c2e2 + . . . − cl−1el−1. (30)

Furthermore, let us remember that each e j is valued only
in the range (−1, 0]. Then, similarly to (28), we can evaluate
the probability density function of eacc as:

feacc (y) =
∫ xl−1=0

xl−1=−1
. . .

∫ x2=0

x2=−1

∫ x1=

x1=−1

l−1∏
j=1

(
fe j

(
x j

)
dx j

)
× fe0 (y − c1x1 − c2x2 + . . . − cl−1xl−1) (31)

This function is also denoted in the paper by P(·).8
The evaluation of the probability distribution of eacc for the

architecture P1 is already discussed in Section IV. Following
the same procedure for architectures P2 and P3, one would
obtain that the predicted P(·) is given by:

P(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
60

(
33 − 30x2 + 15x4 − 5|x |5) if 0 ≤ |x | ≤ 1

51+75|x |−210x2+150|x |3−45x4+5|x |5
120 if 1 ≤ |x | ≤ 2

1
120 (3 − |x |)5 if 2 ≤ |x | ≤ 3

0 elsewhere

(32)

Similarly, the pairs of architectures P4 and P5 also share a
common P(·) which is expressed in (33), as shown at the top
of the next page. Finally, the probability distribution of eacc,

8For each configuration we describe, eq. (31) has been evaluated using
Mathematica to determine P(·).

Fig. 11. Predicted and simulated probability distribution of eacc in the cases
of P4 and P5 ENOP-DDSM; r = 4.

Fig. 12. Predicted and simulated probability distribution of eacc in the cases
of P6 and P7 ENOP-DDSM; r = 5.

for cases P6 and P7 is given in (34), as shown at the top of
the next page. The predicted probability distributions shown
in (32)–(34) are compared to simulation results in Figs. 10, 11
and 12, respectively. Notice that all the simulated distributions
P(eacc) closely match the predictions, confirming the validity
of the approximation made about eacc.

APPENDIX B
EVALUATION OF p FOR REPRESENTATIVE ENOP-DDSM

ARCHITECTURES

In Section IV, we discussed the possibility of predicting the
spur immunity of a DDSM for a given nonlinearity, through
the evaluation of the PNN. Moreover, we have analyzed and
proven the level of spur immunity p listed in Table IV for
the case of P1. In this Appendix, we extend the analysis
to the other architectures of ENOP-DDSMs presented in
Table IV.

Let us consider first the P2 and P3 ENOP-DDSM architec-
tures. The PNN can be evaluated from the definitions in (10)–
(12) and the expression for the predicted P(·) given in (24).
If we assume a generic fifth-order nonlinearity expressed as
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P(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2416−1680x2+560x4−140x6+35|x |7
5040 if 0 ≤ |x | ≤ 1

2472−392|x |−504x2−1960|x |3+2520x4−1176|x |5+252x6−21|x |7
5040 if 1 ≤ |x | ≤ 2

−1112+12152|x |−19320x2+13720|x |3−5320x4+1176|x |5−140x6+7|x |7
5040 if 2 ≤ |x | ≤ 3

1
5040(4 − |x |)7 if 3 ≤ |x | ≤ 4

0 elsewhere

(33)

P(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

78095−44100x2+11970x4−2100x6+315x8−63|x |9
181440 if 0 ≤ |x | ≤ 1

77990+945|x |−47880x2+8820|x |3−1260x4+13230|x |5−10920x6+3780|x |7−630x8+42|x |9
181440 if 1 ≤ |x | ≤ 2

108710−137295|x |+228600x2−313740|x |3+240660x4−107730|x |5+29400x6−4860|x |7+450x8−18|x |9
181440 if 2 ≤ |x | ≤ 3

−668315+2382615|x |−3085740x2+2128140|x |3−896490x4+243810|x |5−43260x6+4860|x |7−315x8+9|x |9
362880 if 3 ≤ |x | ≤ 4

1
362880(5 − |x |)9 if 4 ≤ |x | ≤ 5

0 elsewhere

(34)

N (x) = ∑5
i=0 ai x i , we obtain:

P N N[n] = a0 + a1τos + a2

(
1

2
+ τ 2

os

)
+ a3

(
3

2
τos + τ 3

os

)

+a4

(
7

10
+ 3τ 2

os + τ 4
os

)

+a5

(
7

2
τos + 5τ 3

os + τ 5
os

)
(35)

The resulting PNN is independent of n. As discussed in
Section IV, this means that the system does not experience
fractional spurs and, therefore, the P2 and P3 ENOP-DDSMs
provide a level of spur immunity p equal to 5, as anticipated
in Table IV.

Then, we analyze the cases of P4 and P5 architectures. They
share the same probability distribution function for eacc, which
is given in (33). Following the same procedure for evaluating
the PNN and considering a seventh-order nonlinearity, N (x) =∑7

i=0 ai x i , one finds that:
P N N[n]

= a0 + a1τos + a2

(
2

3
+ τ 2

os

)
+ a3(2τos + τ 3

os)

+a4

(
19

15
+ 4τ 2

os + τ 4
os

)
+ a5

(
19

5
τos + 20

3
τ 3

os + τ 5
os

)

+a6

(
80

21
+ 19τ 2

os + 10τ 4
os + τ 6

os

)
+ a7

(
80

3
τos

+133

3
τ 3

os + 14τ 5
os + τ 7

os

)
, (36)

which is again independent of n. This result confirms that P4
and P5 architectures achieve p = 7.

Lastly, we consider the cases of P6 and P7 ENOP-DDSMs.
In Table IV, we stated that these architectures achieve spur
immunity to polynomials up to ninth order. To prove this, let us

consider a nonlinearity N (x) = ∑9
i=0 ai x i . Then, we evaluate

the PNN using the expression of P(·) given in (34). Doing so,
one obtains:
P N N[n]
= a0 + a1τos + a2

(
5

6
+ τ 2

os

)
+ a3

(
5

2
τos + τ 3

os

)

+a4

(
2 + 5τ 2

os + τ 4
os

)
+ a5

(
10τos + 25

3
τ 3

os + τ 5
os

)

+a6

(
215

28
+ 30τ 2

os + 25

2
τ 4

os + τ 6
os

)
+ a7

(
215

4
τos

+70τ 3
os + 35

2
τ 5

os + τ 7
os

)
+ a8

(
713

18
+ 215τ 2

os + 140τ 4
os

+70

3
τ 6

os + τ 8
os

)
+ a9

(
713

2
τos + 645τ 3

os + 252τ 5
os

+30τ 7
os + τ 9

os

)
(37)

This shows that the PNN is constant and confirms that archi-
tectures P6 and P7 are immune from spurious tones in the case
of polynomial nonlinearities with order up to nine. It should be
clear that the method can be extended to higher orders albeit
with more terms in the expressions for P(x) and P N N[n].
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