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Abstract— Spatially coupled serially concatenated codes
(SC-SCCs) are constructed by coupling several classical
turbo-like component codes. The resulting spatially coupled codes
provide a close-to-capacity performance and low error floor,
which have attracted a lot of interest in the past few years. The
aim of this paper is to perform a comprehensive design space
exploration to reveal different aspects of SC-SCCs, which is miss-
ing in the literature. More specifically, we investigate the effect
of block length, coupling memory, decoding window size, and
number of iterations on the decoding performance, complexity,
latency, and throughput of SC-SCCs. To this end, we propose two
decoding algorithms for the SC-SCCs: block-wise and window-
wise decoders. For these, we present VLSI architectural templates
and explore them based on building blocks implemented in
12 nm FinFET technology. Linking architectural templates with
the new algorithms, we demonstrate various tradeoffs between
throughput, silicon area, latency, and decoding performance.

Index Terms— Spatial coupling, turbo-like codes, window
decoder, coupling memory, VLSI implementation, digital
baseband, channel coding, decoding latency.

I. INTRODUCTION

ULTRA reliable communication (URC) is one of the
main types of applications in 5G and beyond 5G (B5G)

systems, in which a very low bit-error-rate (BER) is needed.
Example use cases are self driving cars, factory automation,
and remote surgery [1]. The classical turbo codes, parallel
concatenated codes (PCCs), suffer from an error floor, where
in a moderate to high signal-to-noise ratio (SNR) the decoding
performance is only slightly enhanced by increasing SNR. This
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prevents turbo codes from being used in such applications.
Moreover, the demand of ultra reliability is more pronounced
for short-length messages where the corresponding code is
short and, in consequence, the overall system will work far
away from the Shannon limit, which is stated for very long
codes.

Recently, spatial coupling gives a new perspective of code
design and improves the decoding threshold of turbo-like
codes [2]. The main idea is to construct powerful long codes
using small component codes. As a result, the threshold of
an iterative belief propagation (BP) decoder is improved to
that of the optimal maximum-a-posteriori (MAP) decoder. This
phenomenon is referred to as threshold saturation [2], which
makes it possible to achieve Shannon limit by coupling the
classical turbo-like codes, while without spatial coupling a
significant gap exists between BP and MAP thresholds [2].

Moreover, [2] shows that with spatial coupling, serially
concatenated codes (SCCs) can achieve better performance
than PCCs in both waterfall and error floor regions [2].
For this reason, spatially coupled serially concatenated codes
(SC-SCCs) are selected as the focus of this paper. We will
show that SC-SCCs can address the demand of very low BER,
even for small block lengths, without additional latency and
complexity compared to the classical turbo codes. Having
considered the mentioned advantages, the spatial coupled
codes can be considered as a strong candidate to be used in
B5G systems.

Contributions: The main contributions of this paper are as
follows.

• In this paper, for the first time, we propose two decoding
algorithms for SC-SCCs, called block-wise and window-
wise decoding. Several VLSI architecture templates are
presented for an efficient implementation of these algo-
rithms in a 12 nm FinFET technology.

• Due to the spatial coupling the design space of SC-SCC
schemes becomes huge compared to the uncoupled
ensembles. We have performed an extensive design space
exploration for by means of area estimations based on
fully placed and routed building blocks, Monte Carlo
simulations, and complexity analysis. We investigate the
effect of block size, coupling memory, decoding window
size, and the number of iterations on the performance,
complexity, throughput, decoding latency, and silicon area
of the proposed schemes in a 12 nm FinFET technology.
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Fig. 1. (a) SCC encoder; black bar represents concatenation, (b) RSC encoder.

• Based on this exploration, we provide several tradeoffs
between performance, latency, throughput, and silicon
area of the proposed SC-SCC schemes.

• We demonstrate how to perform a fair comparison
between different SC-SCC scenarios and also between
the coupled and uncoupled turbo codes. As a result, our
scheme achieves better performance than the uncoupled
ensembles with the same latency and complexity.

II. BACKGROUND

This section starts by describing the encoder and decoder
of uncoupled codes, i.e., SCCs. Then, we demonstrate how to
build the SC-SCCs and present the corresponding encoder.

A. SCC Encoder

The SCC component encoder consists of two recursive
systematic convolutional (RSC) encoders, named as the outer
and inner encoders, which are concatenated in a serial manner
using an interleaver as depicted in Fig. 1(a). In this work, the
RSC encoder with the generator polynomial of (1, 5/7) and the
code rate of R = 1/2, shown in Fig. 1(b), is considered as a
case study. The encoding procedure of the SCC is as follows.

The information sequence is divided into blocks of length
K bits, which enter the outer encoder, as shown in Fig. 1(a).
The outer encoder produces the K -bit outer parity sequence,
pO

t , for the information block at time t , i.e., ut . Then,
the two sequences, ut and pO

t , will be permuted using the
interleaver to generate the 2K -bit sequence, qO

t = �(ut , pO
t ).

The inner encoder receives qO
t and produces a 2K -bit inner

parity sequence pI
t . Finally, the SCC encoder output is vt =

(ut , pO
t , pI

t ), which is called code block and transmitted over
the channel. Since, the outer and inner trellis lengths are K and
2K , respectively, the overall code rate of the SCC is R = 1/4.

B. SCC Decoder

The SCCs can be decoded using inner and outer decoders,
which employ the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm to calculate maximum a posteriori (MAP) estimates
of the information bits. In this paper, the SCC decoding is
referred to as Algorithm 1 and an example of its processing
flow is shown in Fig. 2. Since the SCC is a kind of block code,
each block is decoded independently of the previous and next
blocks. Thus, at time t , the decoder receives the log likelihood
ratio (LLR) of information, outer, and inner parity sequences
(Lch(ut ), Lch( pO

t ), Lch( pI
t )) to perform decoding as follows.

In each iteration, the inner decoder receives three input
streams. The first one contains the LLRs of the inner parity
sequence, In1I

D(t)6 = Lch( pI
t ) and the second one, In2I

D(t),
is generated by permuting the LLRs of information and outer
parity sequences using the Interleaver. The third input contains

Fig. 2. SCC decoding flow to decode the block at time t after eight iterations.

a-priori LLRs, La(qO
t ), and is obtained by permuting the

extrinsic LLRs, which are generated by the outer decoder, i.e.,
In3I

D(t) = �(Le(ut ), Le( pO
t )). The inner decoder output con-

tains the extrinsic LLRs, Le(qI
t ), which will be deinterleaved

and used as a-priori information, La(qI
t ), for the outer decoder.

The other outer decoder inputs are the channel LLR values of
information and outer parity sequences, Lch(ut ) and Lch( pO

t ).
Finally, the outer decoder produces the extrinsic LLRs, Le(ut )
and Le( pO

t ), and sends them back to the inner decoder.
The above process is repeated for I iterations for the same

block (ut ), striped rectangle in Fig. 2, to eventually make the
hard decision for ut . After that, a similar process will be done
to decode the next block, ut+1 (see last row in Fig. 2).

C. SC-SCC Encoder

The encoder of SC-SCCs is constructed by coupling m +
1 component encoders, where m is the coupling memory.
As shown in Fig. 3, each component encoder consists of an
outer encoder, an inner encoder, two interleavers, and a demul-
tiplexer, which are connected together as follows. At time
instant t the outer encoder receives a block of information
bits as its input stream, InO

E (t) = ut , and generates the
corresponding outer parity sequence pO

t . Then, Interleaver 1,
permutes the pair of (ut , pO

t ) and generates a 2K -bit sequence,

qO
t = �1(ut , pO

t ). (1)

This sequence is divided into m+1 portions of equal size, i.e.,
qO

t,0, qO
t,1, . . . , qO

t,m . The first subsequence, i.e., qO
t,0, is used as

a part of the input of the inner encoder at time t and the other
ones, qO

t,1, . . . , qO
t,m , are used in the next inner encoders at

times t+1, . . . , t+m, respectively. Thus, at time t the sequence
(qO

t,0, qO
t−1,1, . . . , qO

t−m,m) is generated by the current and
previous m component encoders, which is permuted using
Interleaver 2 to create the inner encoder input,

InI
E(t) = �2(qO

t,0, qO
t−1,1, . . . , qO

t−m,m). (2)

Finally, the SC-SCC encoder output is vt = (ut , pO
t , pI

t ),
where pI

t is the inner parity sequence. In this paper, a code rate
of R = 1/3 is considered. Thus, the output of the inner encoder
is punctured such that only K bits of pI

t are transmitted.

III. PROPOSED DECODING SCHEMES FOR SC-SCCs

Spatially coupled codes can be decoded using window
decoding [3], [4]. In this section, we present two decod-
ing algorithms in the context of SC-SCCs: block-wise and
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Fig. 3. SC-SCC encoder architecture with coupling memory of m, which is built by spatial coupling of m + 1 samples of SCC component encoders together.

Algorithm 2 Block-Wise SC-SCC Decoder

ũt =SCSCCDecoder(Lch( pO
t � ), Lch( pI

t �), Lch(ut �), K , m, W, Iw)
for I = 1 : Iw do

for t � = t : t + W − 1 do
In1I

D(t �) = Lch( pI
t �)

Lch(qO
t � ) = �1(Lch(ut �), Lch( pO

t � ))
for i = 0 : m do

Lch(qO
t �,i ) = Lch(qO

t � )(
2K i
m+1 : 2K (i+1)

m+1 − 1)

end
In2I

D(t �) = �2(Lch(qO
t �,0), . . . , Lch(qO

t �−m,m))

Le(qO
t � ) = �1(Le(ut �), Le( pO

t � ))
for j = 0 : m do

Le(qO
t �, j ) = Le(qO

t � )(
2K j
m+1 : 2K ( j+1)

m+1 − 1)

end
La(qO

t � ) = �2(Le(qO
t �,0), . . . , Le(qO

t �−m,m ))

In3I
D(t �) = La(qO

t � )
[Le(qI

t �)] =BCJR (In1I
D(t �), In2I

D(t �), In3I
D(t �))

In1O
D(t �) = Lch( pO

t � )
In2O

D(t �) = Lch(ut �)
Le(q̃I

t �) = �−1
2 (Le(qI

t �))
for l = 0 : m do

Le(q̃I
t �,l) = Le(q̃I

t �)(
2K l
m+1 : 2K (l+1)

m+1 − 1)

end
La(q̃I

t �) = �−1
1 (Le(q̃I

t �,0), . . . , Le(q̃I
t �+m,m ))

In3O
D(t �) = La(q̃I

t �)
[Le( pO

t � ), Le(ut �)]=BCJR(In1O
D(t �), In2O

D(t �), In3O
D(t �))

end
end
ũt = Sign(Lch(ut ) + Le(ut ) + La(q̃I

t )(0 : K − 1))

window-wise decoding. The corresponding complexity analy-
sis, decoding performance, VLSI architectures, and implemen-
tation results are discussed in Section IV, V, VI, and VII,
respectively.

A. Block-Wise SC-SCC Decoder

We have defined the window size, W , as the number of
code blocks to be processed in a decoding window and Iw as
the number of iterations per window position. The proposed
block-wise SC-SCC decoder is formulated in Algorithm 2 and
its processing flow is illustrated in Fig. 4 for {W = 4, Iw = 2},
where the window is shown by dashed rectangles, moving
from left to right. Let us consider a decoding window of size
W , which starts at time instant t and ends at t + W − 1. The
leftmost block inside a window, which is the first block to be
decoded, is referred to as target block. The decoding of blocks

Fig. 4. Block-wise decoding of SC-SCC for W = 4 and Iw = 2. The dashed
rectangles specify the ongoing decoding window, moving from left to right.

with time indices t � = t, t + 1, . . . , t + W − 1, is performed
as follows. The decoding is started by the inner decoder,
which receives three inputs. The first one contains the channel
LLR values of inner parity sequence, In1I

D(t �) = Lch( pI
t �).

To generate the second input, channel LLRs of information
and outer parity bits are permuted using Interleaver 1 as

Lch(qO
t � ) = �1(Lch(ut �), Lch( pO

t � )). (3)

Then, the sequence Lch(qO
t � ) is divided into m+1 parts of equal

size, named as Lch(qO
t �,0), Lch(qO

t �,1), . . . , Lch(qO
t �,m). The first

subsequence, i.e., Lch(qO
t �,0), is used in the inner decoder at

time instant t � and the other ones, Lch(qO
t �,1), . . . , Lch(qO

t �,m),
are used in the next inner decoders at time t � + 1, . . . , t � +
m, respectively. At time instant t �, the corresponding m +
1 subsequences are concatenated together and permuted using
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Algorithm 3 Window-Wise SC-SCC Decoder

ũt =SCSCCDecoder(Lch( pO
t � ), Lch( pI

t �), Lch(ut �), K , m, W, Iw)
for I = 1 : Iw do

for t � = t : t + W − 1 do
Lch(qO

t � ) = �1(Lch(ut �), Lch( pO
t � ))

for i = 0 : m do
Lch(qO

t �,i ) = Lch(qO
t � )(

2K i
m+1 : 2K (i+1)

m+1 − 1)

end
tempI

t � = �2(Lch(qO
t �,0), . . . , Lch(qO

t �−m,m ))

Le(qO
t � ) = �1(Le(ut �), Le( pO

t � ))
for j = 0 : m do

Le(qO
t �, j ) = Le(qO

t � )(
2K j
m+1 : 2K ( j+1)

m+1 − 1)

end
La(qO

t � ) = �2(Le(qO
t �,0), . . . , Le(qO

t �−m,m ))

end
In1I

D = [Lch( pI
t ), Lch( pI

t+1 ), . . . , Lch( pI
t+W−1)]

In2I
D = [tempI

t , tempI
t +1, . . . , tempI

t +W−1]
In3I

D = [La(qO
t ), La(qO

t +1), . . . , La(qO
t +W−1)]

[Le(qI)] = BCJR (In1I
D, In2I

D, In3I
D)

for t � = t : t + W − 1 do
Le(qI

t �) = Le(qI)(2K (t � − t) : 2K (t � − t + 1) − 1)

Le(q̃I
t �) = �−1

2 (Le(qI
t �))

for l = 0 : m do
Le(q̃I

t �,l) = Le(q̃I
t �)(

2K l
m+1 : 2K (l+1)

m+1 − 1)

end
La(q̃I

t �) = �−1
1 (Le(q̃I

t �,0), . . . , Le(q̃I
t �+m,m ))

end
In1O

D = [Lch( pO
t ), Lch( pO

t +1), . . . , Lch( pO
t +W−1)]

In2O
D = [Lch(ut ), Lch(ut +1), . . . , Lch(ut +W−1)]

In3O
D = [La(q̃I

t ), La(q̃I
t +1), . . . , La(q̃I

t +W−1)]
[Le( pO), Le(u)] =BCJR (In1O

D, In2O
D, In3O

D)
for t � = t : t + W − 1 do

Le( pO
t � ) = Le( pO)(K (t � − t) : K (t � − t + 1) − 1)

Le(ut �) = Le(u)(K (t � − t) : K (t � − t + 1) − 1)
end

end
ũt = Sign(Lch(ut ) + Le(ut ) + La(q̃I

t )(0 : K − 1))

Interleaver 2 to produce the second input of the inner decoder,

In2I
D(t �) = �2(Lch(qO

t �,0), . . . , Lch(qO
t �−m,m)). (4)

The third input contains the a-priori LLRs, La(qO
t � ), which is

obtained using the extrinsic LLRs as stated in Algorithm 2.
Eventually, the inner decoder produces the extrinsic LLRs,
Le(qI

t �), and sends them back to the connected outer decoders.
Similarly, the outer decoder at time t � receives three inputs,

where the first and second ones are the channel LLRs of
outer parity and information sequences, (In1O

D(t �) = Lch( pO
t � ),

In2O
D(t �) = Lch(ut �)), and the third one is the a-priori LLRs,

La(q̃I
t �). The outer decoder uses them to generate the extrinsic

LLRs for information and outer parity bits (Le(ut �), Le( pO
t � ))

and sends them to the connected inner decoders.
So far the first block, ut , in the current window is processed,

which corresponds to the first row of Fig. 4(a). To finish the
first iteration, the above process will be applied for the remain-
ing blocks inside the current window, ut+1, . . . , ut+W−1,

Fig. 5. Window-wise decoding of SC-SCC for W = 4 and Iw = 2. The
dashed rectangles specify the ongoing decoding window, moving from left to
right.

which correspond to the second, third and fourth rows in
Fig. 4(a) (in this example W = 4). Then, the same procedure is
repeated for the current window in the next iteration, as shown
in Fig. 4(b). After Iw iterations1 (in this example Iw = 2), the
hard decision is made to decode the target block, as

ũt = Sign(Lch(ut ) + Le(ut ) + La(q̃I
t )(0 : K − 1)).2 (5)

After that, the window is moved by one block, which starts at
time t +1 and ends at t + W , as shown in Fig. 4(c). The same
process will be repeated to decode the new target block, ut+1,
(see Fig. 4(c)-(d)). Similarly, ut+2 and ut+3 will be decoded
as shown in Fig. 4(e)-(f) and Fig. 4(g)-(h), respectively. Thus,
all the blocks inside the initial window, in Fig. 4(a), will be
decoded after W · Iw iterations (8 iterations in this example).

B. Window-Wise SC-SCC Decoder

The second proposed decoding scheme is window-wise
decoding, where the main idea is to perform the BCJR through
the whole window at once instead of a block-wise manner.
This scheme is detailed in Algorithm 3 and an example of
its processing flow is shown in Fig. 5 for {W = 4, Iw = 2}.
To explain this scheme, we consider the same window as the
one in Fig. 4, which starts at time t and ends at t +W −1. The
decoding is started by the inner decoder, which receives three
inputs. The first one is the channel LLRs of the inner parity
sequences corresponding to all the blocks inside the window,

In1I
D = [Lch( pI

t ), Lch( pI
t+1), . . . , Lch( pI

t+W−1)]. (6)

To generate the second input, the same operations as (3)
and (4) will be done for the channel LLRs of information
and outer parity sequences at each time instant t � = t, . . . ,
t+W −1. Then, the generated sequences for the corresponding
time instants, i.e., tempI

t � , will be concatenated together and
used as In2I

D. The third input contains the a-priori information,

In3I
D = [La(qO

t ), La(qO
t +1), . . . , La(qO

t +W−1)], (7)

which is constructed in the same way as the second input (see
Algorithm 3). The inner decoder generates the extrinsic LLRs,
Le(qI), which will be sent to the connected outer decoders.

1We consider the number of iterations as the stopping criterion of decoder.
2The notation a(i : j) represents the i-th entry to the j-th entry of a.
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At the outer decoder side, the first and second inputs are
generated by concatenating the LLRs of the outer parity
and information sequences, respectively (see Algorithm 3).
To generate the third input, the a-priori LLR sequences of
all blocks inside the current window are separately calculated.
Then, they are used to create the third input of outer decoder,

In3O
D = [La(q̃I

t ), La(q̃I
t +1), . . . , La(q̃I

t +W−1)]. (8)

The outer decoder employs these inputs and produces extrinsic
LLRs for the information and outer parity bits, Le(ut �) and
Le( pO

t � ), and sends them to the connected inner decoders.
At this point, the current window has been processed once,

which corresponds to Fig. 5(a). The above process is repeated
in the next iteration for the same window as depicted in
Fig. 5(b). After Iw iterations (in this example Iw = 2), the
hard decision is made using (5) to decode the K leftmost bits
in the window, i.e., ut . Then, the window is moved by K
bits, which starts at time t + 1 and ends at t + W , as shown
in Fig. 5(c). The same decoding process will be performed
to decode the K leftmost bits of the new window, i.e., ut+1
(see Fig. 5(c)-(d)). This procedure is continued to decode ut+2
and ut+3 following Fig. 5(e)-(f) and Fig. 5(g)-(h), respectively.
Similar to the Algorithm 2, the whole window in Fig. 5(a)
will be decoded after W · Iw iterations (8 iterations in this
example).

C. Latency and Constraint Length

In this paper, we have defined two types of latency: struc-
tural latency, LS, and decoding latency, LD. The structural
latency is a code-related parameter and obtained as

LS
SC = W · KSC, (bit) (9)

for spatially coupled codes while for the uncoupled ones is

LS
UC = KUC, (bit), (10)

where KSC and KUC are the information block lengths of
spatially coupled and uncoupled codes, respectively.

The second type of latency, LD, is determined by decoding
algorithm and corresponding VLSI architecture, which will be
analyzed for various decoders in Section VI and VII.

Another code-related parameter is constraint length, which
specifies the strength of the codes and is defined as

C = KSC · (m + 1), m < W, 2KSC. (11)

In the following, K is used without subscript and the context
determines if K is related to the uncoupled or coupled codes.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the complexity of the SC-SCC decoder based
on Algorithm 2. To this end, the number of required operations
to decode a code block with K information bits is enumerated.
Similar results will be obtained for the complexity of Algo-
rithm 3, since both algorithms perform the same operations.

TABLE I

COMPUTATIONAL COMPLEXITY PER DECODED BIT IN LOG-MAP BCJR
ALGORITHM FOR ONE ITERATION AND ONE TRELLIS STEP

A. Computational Complexity of BCJR

In this analysis, the log-MAP BCJR is considered, which
has the same decoding performance as the MAP BCJR but less
complexity. Let us consider a trellis with 2Em states, where Em
is the encoder memory size, e.g., Em = 2 in Fig. 1(b). The
probability of transition from the state at time t − 1, i.e., Sr ,
to the one at time t , i.e., Ss , called branch metric, is given by

�t (Sr , Ss) = 1

2
ut · La(ut ) + 1

2
Lc

·
(

ut · Lch(ut ) + pt · Lch(pt )
)
. (12)

Here, La(ut ) and Lch(ut ) are the a-priori and channel LLRs
of the information bit ut , Lch(pt ) is the channel LLR of the
inner/outer parity bit pt , and Lc denotes the channel reliability
measure. Having considered a single trellis step, forward and
backward recursion metrics, α and β, can be calculated as

At (Ss) = log αt (Ss) = max∗(At−1(Si ) + �t (Si , Ss)),

(13)

Bt−1(Sr ) = log βt−1(Sr ) = max∗(Bt (Si ) + �t (Sr , Si )).

(14)

In these equations, i = 1, . . . , 2Em and the max∗ operator is

max∗(a, b)
�= max(a, b) + log(1 + e−|a−b|). (15)

where “max” performs a comparison and the correcting term,
log(1 + e−|a−b|), is usually obtained from a look-up table
(LUT).2 Then, the state transition metrics are calculated as

Mt (Sr , Ss) = At−1(Sr ) + �t (Sr , Ss) + Bt (Ss) (16)

Finally, the LLR of a posteriori probability (APP) for each
information bit, ut , is given by

in which S− and S+ are the sets of state transitions such
that (Sr , Ss) ∈ S− and (Sr , Ss) ∈ S+ are caused by ut =
0 and ut = 1, respectively. In the context of turbo decoders,
the extrinsic information, Le(ut ), is obtained by subtracting
the channel LLR and a priori of ut from the APP in (17). The
extrinsic information of inner/outer decoder will be permuted
and used as the a priori information of outer/inner decoder.

The number of required operations to calculate A, B, �, M,
Le, and APP values for each trellis step are listed in Table I.

2In practice, eight values of |a − b| between 0 and 5 are stored in the LUT.



MAHDAVI et al.: SPATIALLY COUPLED SERIALLY CONCATENATED CODES 1967

Fig. 6. Window decoding approach for two fixed-latency scenarios with
block length and window size of (a) K1 = K , W1 = 4 and (b) K2 = K/2,
W2 = 8. The dashed rectangles specify the ongoing decoding window and the
blocks, which are located in the left side of the window are already decoded.

In this table, the complexity due to the normalization of A and
B are included in OA and OB, which is 2Em − 1 comparisons
and 2Em additions for each. Thus, the complexity of BCJR to
decode an information block of K bits in one iteration is

OD = K · (O� + OA + OB + OM + OAPP + OLe). (18)

B. Fixed-Complexity SC-SCC Decoder

Taking the overlaps between decoding windows in Fig. 4
into account, each block is processed W · Iw times, regardless
of its length. Thus, the computational complexity of proposed
SC-SCC decoder to decode a window of size W is

OSCSCC = W 2 · (3OD) · Iw, (19)

where the factor 3 is because the inner trellis length is 2K .
Therefore, the computational complexity per decoded bit is

Obit = W · (3OD) · Iw

K
, (20)

which will be proportional to W and Iw since the decoder
complexity (OD) is proportional to K , as defined in (18).

Following Algorithm 2, the window is moved by one block
after Iw iterations, meaning that the amount of overlap between
two successive windows depends on block length. To clarify
this concept, Fig. 6(a) and (b) show the decoding flow for two
scenarios, {K1 = K , W1 = 4} and {K2 = K/2, W1 = 8},
which have the same structural latency of L = 4K . Since the
window in Fig. 6(a) includes larger blocks, it moves by larger
steps and thus has less overlaps. Therefore, if the same Iw is
used for both cases in Fig. 6, which is a common assumption
in the literature, the scenario in Fig. 6(b) would have higher
complexity than the one in Fig. 6(a) since it has larger W .

In order to have a fair comparison between the performance
of different SC-SCC schemes, the same complexity must be
considered regardless of their block length and window size.
To this end, we have defined the effective number of iterations,

Ieff = W · Iw, (21)

which specifies how often the BCJR algorithm is executed to
decode a certain code block. The goal is to adjust the Iw such
that the same Ieff is achieved for all scenarios, which according
to (20) and (21) results in the same computational complexity.

TABLE II

DIFFERENT SCENARIOS OF SC-SCCS WITH THE SAME LATENCY (LS),
CONSTRAINT LENGTH (C), AND COMPUTATIONAL COMPLEXITY

For example, to have the same computational complexity in
both scenarios in Fig. 6, the number of iterations per window
position in the second scenario should be set to

Iw2 = (W1/W2) · Iw1, (22)

where W1 and Iw1 correspond to the scenario in Fig. 6(a).

V. PERFORMANCE EVALUATION

To evaluate the performance of SC-SCCs, we have defined
five scenarios in Table II. In each of them latency, constraint
length, and complexity are fixed while different combinations
of K , W , and m are considered. In all cases, Ieff = 48 is used
to have the same complexity while Iw ≥ 1. The number of
iterations per window, Iw, is adjusted following (22). As shown
in Table II, less number of iterations per window position is
used for smaller K , which is due to the larger overlaps between
successive windows as explained in Section IV.

A. Effect of Coupling Memory on the Performance

To improve the decoding performance of SC-SCC, the
code strength and thus the constraint length, C, should be
increased. To this end, according to (11), either block length
or coupling memory should be increased. The first alternative,
increasing K , will increase the latency as stated in (9), which
is not appealing in many applications. However, the second
alternative, increasing m, will not change the latency and
complexity (see (9) and (19)). Therefore, it is important to
find the optimal coupling memory, which leads to the best
performance for a given window size and block length.

We have investigated this concept for Algorithm 3 with
{L = 1024, K = 32, W = 32} and {L = 8192, K = 512,
W = 16}, as an example, where the results are depicted in the
results are shown in Fig. 7(a) and (b), respectively. As a result,
by increasing the coupling memory up to m = W/2 − 1 the
waterfall performance will be improved considerably and the
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Fig. 7. The effect of coupling memory on decoding performance of SC-SCC
schemes. Algorithm 3 with structural latency (a) LS = 1024 and (b) LS =
8192 is used. The same complexity, Ieff = 80, is assumed in both cases.

error floor goes down to the lower BERs [5]. More specifically,
Fig. 7(a) shows that at the SNR of 1.2 dB the BER can be
improved from 3 × 10−2 to 3 × 10−6 if the coupling memory
is increased from m = 1 to m = 15.

However, if m > W/2 − 1 the performance will be
degraded, as shown with dashed curves in Fig. 7. In such
a case the performance of the decoder cannot fully exploit
the code. Thus, for a given {K , W} the coupling memory
of m = W/2 − 1 leads to the best performance without
compromising latency and complexity. Similar improvement is
achieved for Algorithm 2 by using higher m. As described in
Section II-C the sequence in (1), which has 2K bits, is divided
into m + 1 portions. Thus, the coupling memory should be
chosen such that m + 1 ≤ W and divides 2K .

B. Performance Comparison With Uncoupled Codes

The BER performance of the proposed SC-SCC schemes
and the uncoupled ensembles, SCC, are compared in Fig. 8
for different structural latencies and block lengths, where
Algorithm 3 is used, as an example. To have a fair comparison,
the same complexity, i.e., equal Ieff, is considered for all cases.

It can be seen that spatial coupling significantly improves
the performance of the SCC and brings it much closer to
the capacity. In Fig. 8, the asymptotic decoding thresholds of
the SCC and SC-SCC ensembles for the AWGN channel are
illustrated using vertical lines. Having considered a fixed block
length, the SC-SCC achieves around 1 dB better performance
than the corresponding SCC scheme. Moreover, in case of
equal latency i.e., KUC = LS

SC, the SC-SCC still has around
0.5 dB better performance than the SCC at the BER of 10−4.

It is worth mentioning that, even with a lower latency,
the performance of SC-SCC is better than the SCC. For
example, the SC-SCC with LS = 8192 has remarkably better
performance than the SCC with LS = 32768, 16384 in Fig. 8.
This means that by just increasing the block length and latency,
the SCC cannot achieve better performance than the SC-SCC.

C. Performance Comparison of Different SC-SCC Decoders

The proposed SC-SCC decoding schemes, i.e., Algorithm 2
and Algorithm 3, benefit form the spatial coupling such that

Fig. 8. Performance comparison between proposed SC-SCCs and uncoupled
SCCs for different block lengths and structural latencies. Here, Algorithm 3 is
used, as an example. The same complexity is assumed for all cases (Ieff = 80).

the SC-SCCs achieve better performance than the uncoupled
SCCs, as shown in Fig. 8. This performance improvement
is achieved by employing larger m, without increasing the
latency and complexity, as depicted in Fig. 7.

To select the efficient decoder, the decoding performance
as well as the hardware-related metrics, which are discussed
in Section VI-VII, should be considered jointly. Therefore,
it is important to compare the decoding performance of
Algorithm 2 and Algorithm 3, since depending on K , W , and
m they may have different performance. We have performed
this comparison in Fig. 9 for all the cases in Table II. It can
be seen that in case of small block lengths, the gap between
the BER of Algorithm 2 and Algorithm 3 is noticeable and
Algorithm 3 improves the performance considerably. This is
due to the fact that executing the BCJR for a very short
trellis, which is the case in Algorithm 2, results in a poor
performance at the boundaries between blocks. This is because
of the unreliable states at the start and end of each trellis,
therefore, the bits which are close to the boundaries will have
a weak protection. This problem can be resolved by employing
Algorithm 3 in which the trellis length becomes large and the
boundary states are more reliable. Note that a small or large K
is relative to the latency. For example, K = 128 is considered
as a large K in case of LS = 1024, while it is small for
LS = 8192.

In these evaluations the BER curves are used, however,
it has been shown in [6] that similar results will be obtained if
block error rate (BLER) is used as the measure of performance
comparison. As an example, we have included one BLER
curve for each latency scenario in Fig. 9, which follows the
corresponding BER curve in a different SNR range.

D. Performance Comparison With LDPC and Polar Codes

Performing a fair comparison between different code types
is challenging since the design parameters are defined differ-
ently in each of them. However, to give an intuition, we have
selected different code types from the literature, which have
similar design parameters as the proposed SC-SCCs.

To this end, we have taken LDPC codes from 5G with
(K , R) = {(256, 1/4), (128, 1/4), (64, 1/4)}. According to
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Fig. 9. BER/BLER performance of the scenarios in Table II, with the fixed latency and constraint of (a) L = 1024, C = 512, (b) L = 2048, C = 1024,
(c) L = 4096,C = 2048, (d) L = 8192, C = 4096, and (e) L = 16384, C = 8192. The same complexity is considered for all scenarios by choosing Ieff = 64.

the simulation results in [7], these codes achieve BER =
{10−3, 9×10−3, 3×10−2} at SNR of 1 dB after 200 iterations.
However, the BER of SC-SCCs with the same K and R =
1/3 falls in the range of 10−5 − 10−4 (see Fig. 9) while they
have higher code rate and lower number of iterations, i.e.,
Ieff = 64. Thus, the SC-SCCs will achieve even lower BERs
for R = 1/4 and higher Ieff compared to the mentioned LDPC
codes.

Moreover, we have considered 5G polar codes with
(K , R) = {(256, 1/4), (128, 1/4), (64, 1/4)}, which achieve
BER = {0.07, 0.08, 0.1} at the SNR of 1 dB [7]. Also, for
the polar codes with (K , R) = {(200, 1/3), (2048, 1/3)} the
BLER = {0.09, 0.05} is achieved as demonstrated in [8]
and [9]. However, the corresponding BER and BLER of
SC-SCC with similar K , R, and SNR fall in the range of
10−5−10−4 and 10−4−10−3, respectively, as shown in Fig. 9.

VI. PROPOSED VLSI ARCHITECTURES FOR

SCC AND SC-SCC DECODERS

In this section, we investigate the hardware realization of
the SCC and SC-SCC decoding algorithms. First, we explain
architectural choices for the inner and outer decoders as well as
the respective area and latency considerations in Section VI-A.
Then, in Section VI-B, we employ these kernels to realize the
proposed decoding schemes. Finally, a design comparison at
the architecture level is performed in Section VI-C.

A. Hardware Architectures for the Inner and Outer Decoder

The state-of-the-art hardware architectures for BCJR algo-
rithm are based on its sub-optimal variant, max-Log-MAP
(in the following: MAP), where the log-MAP is further
simplified [10], [11]. These architectures can achieve a high
throughput by employing either spatial or functional paral-
lelism techniques. Spatial parallelism is predominant in the
parallel MAP (PMAP) [12]–[15] and fully parallel MAP
(FPMAP) [16] architectures while the functional parallelism,
is dominant in the pipelined MAP (XMAP) [17], [18]
architecture.3

3Even though the references mentioned in this section were presented in
the context of PCCs, they are applicable to the decoding of SCCs [19].

Fig. 10. PMAP decoder architecture schematic.

1) PMAP: In PMAP architectures, the code block with
length K bits, is split into P smaller sub-blocks of length
K/P bits (i.e., K/P = 1 for FPMAP). Then, the sub-blocks,
i.e., sub-trellises, are decoded either by parallel sub-decoder
cores (PMAP) or by parallel processing elements (FPMAP).
Since the FPMAP is based on a reformulation of the MAP
algorithm [16] and is explicitly tailored for PCCs, we do not
consider it here and will focus on PMAP. Fig. 10 shows the
PMAP architecture, which features P parallel sub-decoders.
Each sub-decoder core is made up of two add-compare-select
units (ACSUs) to realize forward and backward recursions
based on (13) and (14), a branch metric unit (BMU) to
calculate branch metrics using (12), a soft-output unit (SOU)
to generate extrinsic information using (17), and first-in-first-
out (FIFO) buffers to store the backward and branch metrics.
For very large sub-blocks, a second BMU can be used to
perform a recomputation of branch metrics to avoid storing
them in the FIFO and the same can be done for forward
metrics [12]. In case of P = 1, the architecture is called serial
MAP (SMAP), where the blocks are processed serially.

In the PMAP architecture, P sub-decoders work in parallel
to decode a block of K bits. In each sub-decoder, the sliding
window (SW) decoding is employed and the sub-block is fur-
ther split into smaller portions of size LSW bits.4 This approach
enables a parallel processing of the forward and backward
recursions inside each sub-decoder. However, splitting into
sub-blocks degrades the decoding performance due to metrics
information loss at the initial step of sub-trellises. Thus, the
state metrics at the sub-block and sliding window borders need
to be estimated. To this end, Acquisition (ACQ) technique

4In this paper, W refers to the decoding window size in SC-SCC decoders
while LSW refers to the sliding window size inside the inner/outer decoders.
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Fig. 11. XMAP decoder pipeline schematic.

[14], [18] can be employed, which carries out a warm-up phase
for the state metric computations by doing additional recursion
computations of length LACQ. However, with small sub-block
and sliding window sizes, the length of the necessary ACQ
calculation is increased, which in turn limits the throughput
gain through parallelization [20].

Now, let us move on to evaluate the silicon area and
decoding latency of the PMAP architecture. The silicon area
occupied by the computational units is

APMAP =
⎧⎨
⎩
P ·

(
2 · AA + A� + A�

)
LACQ < LSW

P ·
(

3 · AA + A� + A�
)

LACQ > LSW
(23)

where AA, A� , and A� represent the area of ACSU, BMU,
and SOU, respectively. The decoding latency of PMAP
decoder, which is made up of P sub-decoder cores is given
by

LD
PMAP = K

P · l
+ LSISO, (24)

which corresponds to the number of clock cycles needed to
decode a code block with information length of K bits. The
overall decoding latency is mainly determined by the latency
of individual sub-decoder cores to process the sub-blocks of
size K/P , which can be expressed as

LSISO = (LSW + LACQ)/ l + LP , (25)

where l is the number of trellis steps processed per clock cycle
and LP is the additional latency due to the pipelined extrinsic
computation. The decoding latency, LD

PMAP, can be improved
by employing a higher radix r = 2l in processing [21].

2) XMAP: The main idea is to split the code trellis into
sliding windows and process multiple of them in parallel in a
pipeline. To this end, the operations of the MAP algorithm
are “unrolled” onto a XMAP decoder pipeline, which is
depicted in Fig. 11. In this structure, each row corresponds
to the processing of l trellis steps. Delay FIFOs are added
to synchronize the pipelines for forward and backward state
metric recursion whose characteristic X-shaped overlap gives
the architecture its name. Similar to PMAP, the same border
initialization method, ACQ, is used for XMAP decoders [17].

Fig. 12. VLSI architecture of the SCC decoder, corresponding to
Algorithm 1.

Fig. 13. VLSI architecture to realize the block-wise SC-SCC decoder,
following Algorithm 2. Here, t � refers to the blocks at time t � = t : t +W −1,
which are used to decode the target block, ut , as described in Algorithm 2.

The XMAP decoder is comprised of an acquisition pipeline
of length LACQ/ l followed by a decoding pipeline of length
LSW/ l to realize state metric recursions and extrinsic com-
putation. The acquisition pipeline includes 2LACQ instances
of ACSUs and LSW instances of BMUs, while the decod-
ing pipeline includes 2LSW instances of ACSUs and LSW
instances of SOUs. The decoder pipeline is completed by
FIFO registers for forwarding the state and branch metrics
to the SOUs. Note, that the acquisition pipeline is not shown
in Fig. 11.

The total area of the computational units (i.e., BMU, ACSU,
SOU) in the XMAP architecture is obtained as

AXMAP = LACQ · 2 · AA

l
+ (2 · AA + A� + A�) · LSW

l
.

(26)

The coefficient l in denominators in (26) is because each
computational unit processes l trellis steps per clock cycle.

The decoding latency of XMAP decoder, which employs a
radix-order r = 2l to decode a block of K bits is given by

LD
XMAP = K

LSW
+ LPipe , (27)

where the latency of XMAP pipeline decoder, LPipe, is

LPipe = (LSW + LACQ)/ l + LP. (28)

B. High-Level Decoder Architectures

In this section, we discuss three high-level VLSI architec-
tures to realize the SCC and SC-SCC decoding algorithms.
In these designs, only one MAP hardware instance serves
as both the inner and outer decoder alternatingly. It can
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Fig. 14. The VLSI architecture to realize the window-wise decoding approach for the SC-SCC schemes, which is detailed in Algorithm 3.

be realized either by a PMAP, or a XMAP architecture.
However, for more clarity with respect to the interleaving
and deinterleaving, the inner and outer decoders are drawn
separately in Fig. 12–14. Note furthermore, that the individual
memories for extrinsic and channel LLRs are not included in
Fig. 12–14, since their organization not only depends on the
chosen SCC/SC-SCC decoding algorithm, but also depends
on the choice of MAP architecture and the chosen parallelism
degree.

In this high-level view, the three designs differ in their
processing schedule (conforming to either Algorithm 1, 2 or 3)
and the trellis lengths treated by the inner and outer decoders.

1) Design 1: SCC Decoder Architecture: Fig. 12 shows
the high-level VLSI architecture of Design 1, which realizes
the uncoupled SCC decoder (i.e., Algorithm 1). This design
receives a code block with KUC information bits, which is
processed using the inner and outer decoders with the trellis
length of 2KUC and KUC, respectively.

2) Design 2: Block-Wise SC-SCC Decoder Architecture:
This design employs the block-wise decoding, described in
Algorithm 2, to decode the SC-SCCs. The corresponding
decoding flow is depicted in Fig. 4. In this scheme, a single
component decoder, shown in Fig. 13, is used to decode the
whole window in a serial manner.

3) Design 3: Window-Wise SC-SCC Decoder Architecture:
The high-level VLSI architecture, shown in Fig. 14, realizes
the window-wise SC-SCC decoding which is detailed in
Algorithm 3 and its decoding flow is illustrated in Fig. 5.
In Design 3, the BCJR algorithm runs over the whole window
once per iteration, which results in the trellis length of 2K ·W
and K · W for the inner and outer decoders, respectively.

C. Design Comparison

The architectural features of Design 1–3 are listed in
Table III. To have a fair comparison, we consider the
same structural latency and computational complexity for all

designs. To this end, the block length of Design 1 is set to
KUC = W · K , where W and K are the window size and
block length of SC-SCCs. Also, to employ the same Ieff, the
number of iterations in Design 1 is set to I = Ieff while in
Design 2 and Design 3 the number of iterations per window
position is Iw = Ieff/W .

As a key benefit of SC-SCCs, the decoding performance
of Design 2 and Design 3 is not limited to the block length.
Despite the uncoupled SCC, these designs can achieve the
same or even better performance for short block lengths
compared to the larger ones, as demonstrated in [5].

In all designs in Table III, it is possible to trade between
the decoding performance and throughput by employing the
PMAP architecture for the inner and outer decoders. For a
given design, the larger inner/outer trellis length results in a
better decoding performance at the cost of lower throughput.
As specified in Table III, the best decoding performance is
achieved using Design 3 if the trellis length of 2W ·K and W ·K
are employed for the inner and outer decoders, respectively.
However, the inner and outer decoders of Design 3 can employ
the PMAP with shorter trellis length, named sub-trellis length
in Table III. It is worth to point out that the sub-trellis length
can be an arbitrary value and it is not necessarily equal to
the block length. In such case, depending on the degree of
parallelism, P , the performance of Design 3, the one in the
last column of Table III, can be better than that of Design 2.

VII. IMPLEMENTATION ESTIMATES

AND DESIGN TRADEOFFS

A. Model Assumptions

The VLSI architectures for SC-SCC decoders extend the
design space for decoders of the uncoupled case. Conse-
quently, the effect of design choices like inner/outer decoder
architecture, parallelism degree, sub-trellis length, and sliding
window length on the figures of merit like core area, latency,
and throughput needs to be investigated. Therefore, this paper
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TABLE III

DESIGN COMPARISON OF VLSI ARCHITECTURES FOR UNCOUPLED AND COUPLED SCC DECODERS

TABLE IV

COMPONENT DECODER PARAMETERS FOR AREA
AND LATENCY ESTIMATION

aims at providing guidelines for a down selection of design
parameters. We exemplify this with a comparison of three
reference designs, i.e., Design 1–3 in Table III, for three cases
of SC-SCC parameters as follows:

• Case 1: K = 1024, W = 4, Iw = 16, m = 1, 3
• Case 2: K = 512, W = 8, Iw = 8, m = 1, 3, 7
• Case 3: K = 128, W = 32, Iw = 2, m = 1, 3, 7, 15, 31

where in each case the coupling memory, m, which according
to Section V leads to the best decoding performance is speci-
fied in bold. To have a fair comparison, the design parameters
are chosen such that Case 1–3 have the same structural latency
and computational complexity.

The component decoder parameters used in this analysis are
listed in Table IV, where the I/O latency (LI/O) corresponds
to the extrinsic-memories delays. It is worth mentioning that,
such parameters highly depend on the detailed hardware
architecture and their exact values can be specified at the
final implementation stage. Since the parallelism in the XMAP
architecture comes from the pipelining of the SW decoding,
the parallelism degree, P , is fixed to 1 in Table IV while it
varies for the PMAP between 1 (i.e., SMAP) and 128.

In case of small K , the parallelism degree of PMAP is
reduced to keep the size of sub-blocks (K/P), processed
by each sub-decoder, larger than the smallest sliding win-
dow size, i.e., K/P > 16. Sub-blocks smaller than 16 bits
would lead to a significantly degraded performance due to the
lack of accurate state metrics at the sub-block borders [18].
To mitigate this effect in the XMAP architectures, LACQ =
8 and 16 are considered for small sliding-window/sub-block
sizes.

The computational units have been fully synthesized, and
then placed and routed in a 12 nm Fin-FET technology for a
target clock frequency of 1000 MHz, as detailed in Table V.

TABLE V

PLACE AND ROUTE RESULTS FOR THE COMPUTATIONAL UNITS

The quantization for these units is based on a decoder input
quantization of 7 bits. The radix-order is fixed to r = 4 (i.e.,
l = 2) since it gives the best latency/area tradeoff for max-
Log-MAP based decoders [22]. For higher radix-orders, the
Local-SOVA algorithm can be considered [23]. Since the MAP
algorithm is compute dominated, we can give estimations on
the silicon area of the decoder architectures on the basis of
the total area occupied by the computational units [24]. These
estimations do not include the area of the memories, since
they are highly dependent on the available memory cuts which
would result in a distortion of the comparison. Moreover, it is
assumed, that conflict-free interleavers [25] can be found for
the SC-SCCs to avoid the memory access conflicts for the high
parallelism degrees of component decoders.

Below, in Section VII-B–VII-D, we will evaluate the silicon
area, decoding latency, and throughput of Design 1–3 for the
given Case 1-3 and the component decoder parametrizations
in Table IV. These evaluations are based on the area and
latency considerations from Section VI-A and on the place
and route results in Table V. The goal is to highlight tradeoffs
and interplay between code design choices for the proposed
SC-SCC schemes and their decoding down to the component
decoder level. The corresponding decoding performance on
the code level were evaluated in Section V.

B. Area and Decoding Latency

We estimate the silicon area and decoding latency for a
total of 66 different component decoder configurations (28×
XMAP + 38× PMAP) following Designs 1–3 and consid-
ering the code design Cases 1–3. The corresponding results
for PMAP- and XMAP-based architectures are illustrated in
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Fig. 15. Area and latency of decoders with SMAP/PMAP component
decoder.

Fig. 15 and Fig. 16, respectively. The decoding latency can be
obtained as

LD = (Number of Iterations)(LD
Inner + LD

Outer) + LEx,

(29)

where LD
Inner and LD

Outer are the decoding latency of the inner
and outer decoders to process the inner and outer trellises.
Depending on the inner and outer decoder architectures, LD

Inner
and LD

Outer will be modeled using (24) and (27). In these equa-
tions, K is set to the inner/outer trellis length of Designs 1–3,
which are listed in Table III. Also, the “Number of Iterations”
in (29) is equal to Ieff for Design 1 and Design 2 while it is Iw
in case of Design 3. Moreover, to include the extra latencies,
e.g., I/O latency, we consider LEx in (29), which is equal to
W · LI/O for Design 2 and LI/O for Design 1 and Design 3.

Since a fixed structural latency (LS) is assumed for the
SC-SCC designs, i.e., Design 2 and Design 3, an increase
in window size results in a smaller block length (see (9)).
Consequently, the designs adapted to the code design Case 3
exhibit the lowest decoding latency in Fig. 15, since after
each pass through the window, K bits will be fully decoded.
Another general conclusion from Fig. 15 is that Design 3
outperforms Design 2 in terms of decoding latency. The reason
for this is two-fold. First, the processing of a large trellis,
W ·K , allows for a higher level of parallelism, P . For example,
for Design 2 and Case 3, a parallelization of P = 8 already
results in a reduced sub-block size of K/P = 128/8 = 16, for
which an acquisition needs to be employed. Second, Design 3
allows a parallelization of up to P = 128 without reducing
the sub-block size below W · K/P = 4096/64 = 64. Note,
however, that the parallel decoding of the W sub-trellises
within a window, will degrade the performance in comparison
to the serial decoding of the individual blocks of size K as
is done in Design 2. Having considered a certain design in
Fig. 15, the decoding latency can be reduced by increasing
the level of parallelism for all the code design cases (i.e.,
Cases 1–3) at the expense of larger silicon area.

For the decoders, which employ XMAP as the inner/outer
decoder architecture, we obtain similar results, as illustrated
in Fig. 16. Here, the decoding latency is smaller for Design 3
when comparing it to Design 1 and Design 2. In contrast

Fig. 16. Area and latency of decoders with a XMAP component decoder.

to the PMAP case, increasing the parallelism on component
decoder level results in a considerable latency-penalty for
Design 2, since for large LSW, the number of sliding windows
becomes smaller in comparison with the XMAP pipeline
length. Therefore, the decoder pipeline cannot be fully utilized
and the pipeline latency can no longer be largely hidden.

It is worth to mentioning that in Fig. 15 and Fig. 16, the
reference Design 1, shown by a dashed black line, has a larger
decoding latency than Design 2 and Design 3 for all the code
design Cases 1–3. This is because Design 1 will output the
decoded bits after W · Iw iterations (i.e., 64 iterations in this
example), whereas a decoder following either Design 2 or
Design 3 will output the decoded bits after Iw iterations.

C. Area and Throughput

The decoder throughput in terms of decoded bits per second
for the presented designs can be obtained from the decoding
latencies in clock cycles for a given clock frequency f as

T = K

LD · f, (30)

where the value of K is determined in a similar way as
explained for (29). We consider a clock frequency f =
1000 MHz as it was used for the synthesis of the computational
units. The resulting throughput estimates are plotted against
the area consumption of the Designs 1–3, in Fig. 17 and
Fig. 18.

In case of Design 2, the serial processing of the blocks in a
window leads to a reduced throughput compared to Design 1
and Design 3, which process the decoding window in parallel.
Notably, in Fig. 17, the throughput difference between the
PMAP-based decoders with Design 2 is only a few Mb/s for
various code design cases when comparing at similar levels of
parallelism. The throughput estimations for the XMAP-based
decoders are illustrated in Fig. 18. The above-mentioned
latency penalty is translated into a reduced throughput for
Design 2 with large LSW, which is more pronounced for the
code design Case 3. Moreover, increasing W from Case 1 to
Case 3, yields a throughput penalty for Design 2 decoders in
the order of up to 50 − 60 Mb/s.

It is worthwhile to mention that a higher throughput can
be achieved by employing an unrolled XMAP (UXMAP)
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Fig. 17. Area and throughput of decoders with a PMAP component decoder.

architecture. In [26], we have proposed a modified window
decoding algorithm along with a UXMAP architecture for
SC-SCCs, which achieves a throughput in the range of
100s Gbps.

D. Design Tradeoffs

From the silicon area, decoding latency, and throughput
models, several design tradeoffs can be identified.

First, in case of a XMAP component decoder architecture,
the window size, W , must be jointly chosen with the sliding
window size, LSW, within the component decoder. Also, the
number of sliding windows, NSW = K/LSW, should be larger
than the pipeline length of the XMAP to avoid a low pipeline
utilization and latency/throughput degradation. To mitigate
this, the combination of spatial and functional parallelism, i.e.,
multiple parallel XMAP cores, can be used as in [10].

Second, for the PMAP component decoders and Design 2,
increasing the window size, W , does not significantly impact
the throughput. Therefore, the tradeoff can be based on
error correcting performance considerations. Seen in connec-
tion with the lower latency for the code design cases with
higher W , this result emphasizes the viability of SC-SCCs
for streaming applications with moderate throughput require-
ments but high demands on decoding performance (see also
Section V).

Overall, the choice between Design 2 and Design 3 becomes
a tradeoff between decoding performance and throughput,
since the latency for a fixed code design case and component
decoder architecture is similar.

Finally, it should also be mentioned that the throughput for
decoders with Design 1 illustrated in Fig. 17 and 18 does
not account for early stopping. Since we chosen to fix the
complexity to have a fair comparison, the number of decoding
iterations could be reduced for all decoders with Design 1 by
a factor of up to W , thereby increasing the throughput by the
same factor. However, as Section V explained, the decoding
performance of the SC-SCC schemes cannot be matched by
the uncoupled schemes with the same complexity.

VIII. CONCLUSION

We proposed two decoding algorithms for the SC-SCCs
along with corresponding VLSI architectures. Also, we

Fig. 18. Area and throughput of decoders with a XMAP component decoder.

investigated the effect of block length, coupling memory,
window size, and number of iterations on the complexity,
performance, throughput, decoding latency, and silicon area of
the proposed decoding schemes in a 12 nm FinFET technology.
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