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Abstract— Nonlinearity of a digital-to-time converter (DTC)
is pivotal to spur performance in DTC-based all-digital phase-
locked-loops (ADPLL). In this paper, we characterize and ana-
lyze the mismatch of cascaded-delay-unit DTCs. Through an
improved built-in-self-test (BIST) time-to-digital converter (TDC)
assisted with phase-to-frequency detector (PFD), a measurement
system of sub-half-ps accuracy is constructed to conduct the
characterization. Fabricated in 28-nm CMOS, the DTC transfer
functions are measured, and mismatches are compared against
Monte-Carlo simulation results. The integral nonlinearity (INL)
results are compared against each other and converted to
the in-band fractional spur level when the DTC would be
deployed in the ADPLL. The BIST-TDC system thus character-
izes the on-chip delays without expensive equipment or complex
setup. The effectiveness of adding a PFD into the �� loop is
validated. The entire BIST system consumes 0.6 mW with a
system self-calibration algorithm to tackle the analog blocks’
nonlinearities.

Index Terms— All-digital PLL (ADPLL), build-in self-test
(BIST), digital-to-time converter (DTC), fractional spur, jitter,
mismatch, noise shaping, phase/frequency detector (PFD), self
calibration, time-to-digital converter (TDC).
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I. INTRODUCTION

ALL-DIGITAL phase-locked loops (ADPLL) offer exten-
sive re-configurability and require a small area for

their (digital) loop filter in scaled CMOS [1]–[6]. A digital-
to-time converter (DTC) is a critical block in fractional-N
ADPLLs. In contrast to the voltage/current-domain opera-
tion of the conventional phase-detection circuitry, made up
of a phase/frequency detector (PFD) and a charge pump,
and suffering from the degraded dynamic range due to the
reduced voltage headroom and stronger channel-length modu-
lation in current mirrors, the time-domain quantization benefits
from the steeper transition edges in the advanced technology
nodes [2]. Consequently, the time-domain converters promise
faster phase detection speeds and lower power consumption at
lower supply voltages [6]–[9].

As shown in Fig. 1(a), the DTC, whose mismatch is the
main investigation target of this work, is placed in the ref-
erence signal path in front of the time-to-digital converter
(TDC) [5]. The DTC’s nonlinearity is directly reflected in
the ADPLL output spectrum, producing in-band fractional
spurs which, by definition, cannot be suppressed by the loop
filter. Thus, DTC architectures with better linearity, such as
using a constant-slope technique [8], [10], are being explored.
Since the DTC works periodically and is controlled by the
accumulated fractional control word, FCWfrac, its nonlinearity
and the in-band spur level have a mathematical relationship.
We confine the study of this relationship to the ADPLL
architecture shown in Fig. 1(a). We assume the nonlinearity
forms a pure sinusoidal shape covering the whole period of the
digitally controlled oscillator (DCO), TDCO, with an amplitude
of Anonl, where Anonl is normalized to one oscillator period.
Then, the spur level can be expressed as [11]:

L = 20 · log10(π Anonl). (1)

That relationship is plotted in Fig. 1(b). It can be observed
that if a −40 dBc in-band fractional spur is desired, the non-
linearity amplitude should satisfy Anonl < 0.32%. Note that
in this specific example, INL (normalized to LSB) and the
nonlinearity amplitude are related by

Anonl = INL · �DTC

TDCO
, (2)

where �DTC is the DTC resolution. Delay-cascading DTCs are
attractive due to their simple implementation and acceptable
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Fig. 1. (a) DTC-assisted ADPLL with DTC located in the reference path.
(b) Influence of DTC nonlinearity (normalized to the DCO period) on the
ADPLL’s in-band fractional spurs.

unit stage delay [3], [6], [12]. Their nonlinearity is dominated
by device mismatches, which can be optimized through proper
device sizing and symmetrical layout. In practice, they can
support the ≤0.3% peak INL harmonic amplitude to guarantee
the <−40 dBc in-band fractional spurs [3], [5], [12]. A phase
rotation technique can be further applied to reduce the DTC’s
nonlinearity influence by restricting the effective DTC range
to a smaller portion of TDCO [7]. Two delay-cascading DTC
architectures adopted in the previous ADPLLs [6], [12] are
analyzed in this work. Although fabricated with different
transistor sizes and even in different technologies, the mea-
surement results are normalized and compared.

To perform an on-chip delay characterization, namely mea-
suring the DTC transfer function, TDCs are widely used
[13]–[22]. In general, the “measurement system” should push
its precision one order of magnitude finer than the DTC
resolution under test. In our case, the TDC resolution should
be at the level of 1 ps, or even finer. This basic requirement
excludes the flash TDCs whose resolution is at the gate
delay level [13]. The vernier TDCs [14], [15] can achieve
the sub-gate resolution but they suffer from large mismatchs
between the fast and slow paths, and that requires a non-trivial
calibration for each delay stage. The ADC-based TDCs
can provide the desired resolution with reasonable linearity
[16], [17]. However, the covered delay range is limited.
Increasing the range while keeping the same resolution will

inevitably sacrifice the linearity, which still needs to be
calibrated. The �� or noise shaping TDCs [18]–[28] can
relax the range-linearity trade-off. Unfortunately, their gain
changes over PVT variations, which is normally calibrated
by an on-chip PLL. In conclusion, the conventional TDC
architectures, when employed to measure the DTC transfer
function, require complex and expensive lab equipment or
extra on-chip circuitry to calibrate the gain and mismatch of
the TDC itself.

To overcome the aforementioned drawbacks, we have pre-
viously proposed to wrap-around the DTC in a loop of low
hardware complexity, creating a 1st-order �� TDC [1], [29].
A system self-calibration algorithm was utilized for non-ideal
analog effects. To verify the DTC mismatch analysis with a
highly accurate measurement, this work improves the precision
of the BIST ��-TDC by reducing the charge pump noise by
means of an additional PFD. The system noise contributions
are analyzed to verify the proposed technique.

In addition to the targeted ADPLL application, the proposed
BIST-TDC can also be used for characterizing the gain of other
TDCs or to replace the digital delay-locked loop in outphasing
transmitters [30].

This paper is organized as follows. Mismatches of three
popular DTC architectures are analyzed in Section II.
Section III describes the improved BIST ��-TDC. Measure-
ment results are presented and discussed in Section IV.

II. ANALYSIS OF DTC MISMATCHES

In addition to the two separate DTC architectures suitable
for an ADPLL, a third DTC architecture with around 100 fs
resolution is also implemented. It explores the vernier concept
applied to the DTC design by means of MOS capacitance
matching. Every DTC is made up of cascading 32 delay units
in a chain targeting 5-bit performance. Mismatches between
delay units will be investigated in this section.

A. DTC #1: Selector-Based DTC

Shown in Fig. 2, the first DTC was originally proposed
in [6] and deployed in the first-ever sub-1 mW ultra-low-power
ADPLL. The ADPLL architecture is similar to that in Fig. 1(a),
yielding the same in-band fractional spur sensitivity to the
DTC nonlinearity. The top part of Fig. 2 shows the DTC block
diagram. Extra delay units are placed at each side of the delay
chain. Acting as dummies, they are intended to retain the first
and last cells’ loading similar to that in other delay units. Every
delay unit needs two delay control codes: EK for selecting
the clock feeder (M5–M9) and EN for enabling the delay
element (M10–M17). The input signal first goes through only
one clock feeder controlled by EK. Then, it propagates through
the remaining delay stages towards the output port. Therefore,
the delay elements after the selected clock feeder are enabled
through EN = 0, while the delay elements placed in front of
the selected clock feeder are disabled through EN = 1. The
disabled delay elements provide a high output impedance to
the acting transition edges. Consequently, they do not affect
the transition timing of the input’s critical edge.
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Fig. 2. DTC #1 (based on [6]): schematic.

Extracted from the measurement results [1], [6], this DTC’s
transfer function of delay versus digital control word (DCW)
manifests non-monotonicity. Considering its delay-cascading
structure, it is unexpected to observe that choosing the shorter
path may yield a longer delay. For example, the signal going
through the clock feeder selected by EK�30� can reach the
OUT node earlier than the signal going through the path
selected by EK�31�. This phenomenon has not been clearly
explained in the previous publications but will be addressed
in this section with the help of dedicated Monte-Carlo
simulations.

As discussed in [1], when the input signal’s (FREF) rising
edge is the critical edge to be delayed, the clock feeder reverses
it to the falling edge to propagate it through the delay elements.
Therefore, the size for M9 should be large enough in order to
suppress the transistor noise. However, its gate capacitance
is driven by the input signal, posing more pressure on the
input buffer’s driving capability. The devices/wires marked in
red color are to be driven by FREF, causing the need for
huge input buffers and symmetrical clock tree distribution
for the FREF node. The rising time of FREF is still quite
long. It was inferred in [1] that after the rising edge reaches
the gate of M16, M17 may not be fully enabled due to its
huge size, which was intentionally designed to reduce the
discharging on-resistance. This was an initial guess on the non-
monotonicity. Monte-Carlo simulations based on the whole
DTC chain are very time-consuming and do not make it easy to
spot the main mismatch source. To remedy that, Monte-Carlo
simulations are carried out in this work to focus on the
selected delay unit. Figure 3 provides quantitative mismatch
information with ‘local-only’ variations, and discovers the root
cause which has not been identified before. Note that the delay
is also affected by the input signal’s transition characteristics
and output loading. The same driver and loading are placed in
the testbench of the characterized individually selected delay
unit.

Fig. 3. DTC #1: Monte-Carlo simulation results with 200 run times.

Fig. 4. DTC #2: schematic with EK driven by DCW inverters.

Figure 3 demonstrates the delay variations for the selected
clock feeder, its corresponding delay element, and the whole
delay unit. The active clock feeder contributes to the majority
of the mismatches. The standard deviation of the clock feeder’s
delay is up to 0.52 LSB. As a comparison, the delay element
merely contributes σ = 0.12 LSB. Furthermore, the delay
element always presents a positive delay. Its mismatch does not
intrinsically cause any non-monotonicity issues. In contrast,
two neighboring clock feeders with a delay difference larger
than one LSB end up with non-monotonicity, which is very
likely to happen based on Fig. 3(a). It should be pointed out
that the propagation time of the clock feeder is about 9×
of the DTC resolution, i.e. one order of magnitude higher.
This DTC architecture demands the clock feeder to have a
better mismatch performance than the delay element. However,
the small sizes of M5,6,7 are favored to reduce the input
driver’s loading. Enlarging their sizes will further increase the
input signal’s rising time. This design trade-off is hard to be
balanced. Replacing the transmission gate with an AND gate
can relax this trade-off by reducing the parasitic loading for
the input driver.

B. DTC #2: Variable-Resistance Delay Line

Variable delay of the second DTC, shown in Fig. 4, is con-
trolled by selecting an on-resistance in one discharging path.
To align with the digital control interface, M6 can be either
enabled or disabled. M5 is always on by fixing its gate voltage
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Fig. 5. DTC #2: Monte-Carlo simulation results with 200 run times.

Fig. 6. DTC #3: schematic with EK driven by DCW inverters.

to VDD. Together with M6, the two are connected in parallel
in the first inverter’s discharging path. The impedance seen
from the M2 source to ground is determined by the control
signal EK. M5’s on-resistance dominates when M6 is disabled.
When EK = 1, the parallel on-resistance of M5 and M6 is
significantly lower than when EK = 0. Extra delay units are
inserted at the input and output ports of the DTC to reshape
the transition edges and mimic the loading environment for
the first (EK�0�) and last (EK�31�) core delay units.

The discharging time from the node of the first inverter’s
output, namely the second inverter’s input, is different at
various digital control codes. It can affect the second inverter’s
output transition time and shape, which will disturb the
following delay unit. Thus, even though specific numbers of
delay stages can be enabled randomly within this delay chain,
the implemented selection always starts from the front ones.
With the same input transition edges for the active cells,
the delay mismatch is limited to the devices. Considering one
delay unit, the capacitances, including the parasitics from the
gate of M3,4 and the drain of M1,2,5,6, the source of M2 and
the interconnecting wires, should be discharged until reaching
the threshold voltage of the second inverter. The transistors’
capacitance and the parasitic capacitance can be optimized
through a symmetrical layout. The on-resistance from M2,5,6
is another source of mismatch, which also relies on the layout
optimization. Large transistors’ sizes burning more power can
be traded for the better mismatch performance under the same
resolution requirement. The Monte-Carlo simulation results
shown in Fig. 5 demonstrate a much better standard deviation
compared to DTC #1. One standard deviation is only 0.09 LSB
from the schematic-level simulations.

C. DTC #3: “Vernier” DTC

Variable delay of the third DTC is realized through adjust-
ing its capacitive loading difference. Its schematic is shown
in Fig. 6. The MOS capacitors (M5 and M6) are put at the

Fig. 7. DTC #3: (a) gate capacitance of the M5,6 MOS capacitors versus their
gate voltage under different control conditions of EK, and (b) Monte-Carlo
simulation results with 200 run times.

first and second inverters’ output nodes. Two extra inverters
are cascaded to isolate the variable capacitance loading from
other delay units. Generally, the MOS capacitance experiences
a large variation during the transition from the strong inversion
region to the depletion region. M5 is NMOS and M6 is PMOS.
The resolution is determined by the difference of these two
capacitances, in a similar principle as in a vernier TDC, but
using only a single path. This architecture is certainly not
practical due to the sub-ps resolution heavily depending on
the matching. That capacitance difference is even smaller
than the parasitic capacitance. However, it is interesting to
discover the extent of variations the measurement results can
produce.

The MOS capacitance of M5/M6 against the gate voltage
is plotted in Fig. 7(a) for different source/drain voltages. It is
apparent that both NMOS and PMOS capacitors exhibit the
largest and smallest gate capacitances when they are in the
strong inversion and depletion regions, respectively. Since the
gate voltage is bounded within 0 to 1 V, the accumulation
region does not arise.

Taking the rising edge as the critical one, while initially only
considering M5, the discharging process experienced by M5
corresponds to two different gate capacitance trajectories as
Fig. 7(a) shows. The integrated influence when the gate voltage
changes from 1 V to Vth,M3 yields two different discharging
times, under the scenarios of VSD = 0 V and VSD = 1 V.
Vth,M3 denotes the threshold voltage of PMOS M3 which
is around half VDD in this case. The averaged capacitance
of M5 when VSD = 0 V is much larger than that when
VSD = 1 V. In other words, EK = 0 can increase the unit
delay. The critical edge turns into the rising edge for M6.
The integrated influence when its gate voltage increases from
0 V to Vth,M8 affects the unit stage delay. Vth,M8 represents
the threshold voltage of M8. As a comparison, the averaged
capacitance of M6 when VSD = 0 V is relatively flat and
much smaller than the case when VSD = 1 V. Therefore,
EK = 0 will speed up the unit delay if only M6 is considered.
These two MOS capacitors present an opposite influence
on the unit delay, manifesting a finer resolution if they are
combined. However, as Fig. 7(b) shows, one sigma of the
delay variation is as large as 4.11 LSB. This architecture is
therefore not very practical. On the other hand, the mismatches
are amplified, which makes it easier for characterization and
comparison.
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Fig. 8. Architecture of the improved first-order �� TDC: (a) top level block
diagram, and (b) timing diagram.

III. IMPROVED FIRST-ORDER �� TDC

Following up on our previous work in [1], a PFD is
inserted in front of the charge pump, as presented in the
top level architecture in Fig. 8(a). The red labeled blocks
highlight this work’s implementation contributions: a PFD for
the system-level improvement and DTCs for the block-level
analysis.

The BIST-TDC is made up of the DTCs under test, a charge
pump (CP), a clocked comparator, and the digital control logic.
The timing diagram is illustrated in Fig. 8(b). The system needs
one external input clock Sin with period Ti to normalize the
DTC delay. Synthesized and auto-placed-and-routed dividers
generate three low-frequency clocks, S1, S0, and CK. All
frequencies of the generated clocks are one-quarter of the
external input clock. S1 has a 50% duty cycle while S0
has a 25% duty cycle. Their falling edges are aligned. The
comparator is driven by CK whose rising edge leads S1 by
one Ti . The loop works in such a way that the top plate voltage
of the integration capacitor Cint, namely Vcap, toggles around
the reference voltage Vref which is connected to the negative
input of the comparator. The possibility of ‘1’ appearing in
the comparator’s ‘0/1’ bit-stream maps the delay under test.

A. Operational Principle

Originally, S0 directly controls the charge switch and Sd
controls the discharge switch. S0’s duty cycle is constantly
25%, while Sd’s pulsewidth ranges from 0% to 50%. When
the loop parameters are properly selected, Vcap can stably

Fig. 9. System calibration scheme.

toggle around Vref which is set here to 0.5 V. A more detailed
mathematical explanation for the BIST-TDC working scheme
can be found in [1].

It can be noticed that when S0 and Sd are connected to
the charge pump directly, there is a time window lasting Ti

every cycle when charging and discharging paths are enabled
at the same time. From the system point of view, those currents
are wasted because the charging and discharging overlap time
is fixed, containing no DTC delay information. Moreover,
the current noise contributions from current sources Ic and
Id are added into Vcap during this unproductive time. With
the help of PFD, the charging and discharging signals end
up as Sup and Sdn. Therefore, shrunk pulses are applied
on the charge pump without affecting the delay information
under test. On the other hand, the added PFD will introduce
extra jitter. However, this can be neglected compared to the
optimized charge-pump noise.

B. System Self-Calibration

The system calibration scheme is shown in Fig. 9. The
motivation is to remove influence of the non-ideal effects on
the DTC transfer function. Major sources are the charging/
discharging current mismatch of the charge pump and the
comparator offset. In the system calibration mode, the DTC
under test is bypassed from the measurement path. A digital
calibration block is inserted between S0 and the MUX to help
generate an equivalent delay by omitting some pulses from
S0 in response to the N and M inputs. For example, when
N = 1 and M = 25, one pulse is omitted every 25 S0
pulses. In such a way, the equivalent delay equals to 0.0385Ti ,
or N/(M + N)Ti expressed in a general way. The calibration
block provides the equivalent delay with high precision due
to all the edges of S0 and S1 being triggered by the rising
edges of Sin. Note that the accuracy of the BIST-TDC in
this work is assumed by the top-level mathematical con-
structs and has not been independently verified through direct
(although extremely complicated laborious) measurements,
such as [10], [31].

C. Noise Sources

In the calibration mode, the noise derives from the external
high-speed clock, PFD, charge pump and comparator’s thermal
and flicker noises. In this improved version, the comparator is
identical to that in [1]. Thus, only the noise of PFD and CP
is investigated. Fig. 10 compares the noise with and without
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Fig. 10. Noise profiles w/ and w/o PFD.

Fig. 11. Charge pump: (a) schematic, and (b) PSD of the output current
noise with 2.5μA bias current.

the PFD. Ignoring the external clock jitter, the transition edges
of S0 and S1 are clean. The PFD applies timing variations to
Sup and Sdn. In reality, Sdn still has a very short pulse with
its pulsewidth determined by the PFD reset path delay. There-
fore, the discharging path also suffers from the PFD jitter.
Regarding the noise contributed by the charge pump, PFD
significantly reduces the noise window, making the charge
pump noise contribution less than half of the value in the case
without PFD.

To quantify the charge pump’s noise influence [32], [33], its
output current noise simulation results are shown in Fig. 11(b),
next to the current-steering charge pump schematic. Though
the charge pump’s power consumption cannot take advantage
of adding a PFD, the same architecture is adopted for the noise
comparison with the previous work [1]. Sup is connected to the
UPP node and Sdn is connected to the DWP node. UPN and
DWN are the inverted signals of UPP and DWP, respectively.
The simulation results reveal that the charging current noise is
larger than the discharging current because the current source
M5 encounters the double current mirroring from the external
bias current source ICP. The flicker noise corner is close to
1 MHz. Being clocked at 50 MHz, the integrated current noise
amplitude from 1 Hz to 25 MHz is 84 nA for the discharging
path and 122 nA for the charging path. We assume that the two
noise sources are uncorrelated and take 8 pF for the integration
capacitor. Without the PFD and the delay under test being zero
(� = 0 in Fig. 10), the maximal disturbance on Vref can be
calculated as:

�Vcap = 122 nA × 5 ns + 84 nA × 5 ns

8 pF
= 129 μV. (3)

5 ns is the period of the external clock Sin. The calculated
voltage variation at the charge pump output can be 129μV
due to the charge pump noise.

The PFD schematic is shown in Fig. 12(a). A system
reset signal is inserted into the PFD reset path with the
OR gate. Extra delays are added in the reset path to avoid

Fig. 12. PFD: (a) schematic, (b) rms jitter spectrum, and (c) corresponding
phase noise.

well known issues with the dead zone. The simulated rms
jitter spectrum and corresponding phase noise are presented
in Fig. 12(b) and (c) respectively. The flicker noise corner is
around 100 kHz. The falling edge suffers from larger jitter
due to the reset path. Circuits inside the PFD are selected
from the standard cell library without optimizing for the
jitter performance. Nevertheless, the added jitter is marginal
[34], [35]. Integrating from 1 Hz to 25 MHz, the falling edge
jitter is 311 fs and the rising edge jitter is 205 fs. Assuming
for simplicity that the jitter of rising and falling edges is
uncorrelated, their influences on Vref can be calculated as:

�Vcap = 25 μA × 311 fs + 25 μA × 205 fs

8 pF
= 1.6 μV (4)

Compared to (3), the PFD induced jitter is deeply buried
by the charge pump noise. Thus, it is worthwhile to introduce
such a block into the BIST-TDC to improve the measurement
precision.

D. Noise Improvement

To verify the above analysis, a behavioral model has been
prepared. Simulations reveal that the �� loop can effectively
suppress the white noise. For example, even though the exter-
nal clock noise is modeled as 5 ps, the measurement precision
can still be as fine as sub-100 fs if the noise is white. With
the PFD, the charge pump’s noise contribution is reduced,
as shown in Fig. 13. However, the first-order �� loop suffers
more from the flicker noise. Besides for the DTC under test,
the flicker noise of charge pump and comparator dominates the
flicker noise contributions of the analog blocks. To optimize
the system noise performance, a longer channel length for the
charge pump devices, especially for the current mirror, should
be selected.

IV. MEASUREMENT RESULTS

Fabricated in 28 nm LP CMOS, the chip micrograph is
shown in Fig. 14, together with the layout view. It occupies
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Fig. 13. FFT spectrum of the comparator’s output bitstream
w/ and w/o PFD.

Fig. 14. Chip micrograph and layout.

Fig. 15. Measurement setup.

810μm × 640μm of silicon area. The length of the bonding
wire is around 1–1.5 mm. Thanks to the delay information
being calculated on-chip and stored in the flip-flops, as well as
to the input clock’s thermal noise being filtered out by the ��
loop, the package has limited influence on the measurement
precision.

A. Experimental Setup

The measurement setup is illustrated in Fig. 15. A 200 MHz
sine wave or square wave clock signal feeds into the chip.
After a division by four, a 50 MHz clock is generated
driving the BIST-TDC loop. The measured delay informa-
tion is exported off-chip through a 1 MHz SPI interface for
reporting purposes. All tests are completed automatically
within several hours after setting up the measurement. The
whole system power consumption is around 600μW, sim-
ilar to the one without the PFD [1]. It is limited by the

Fig. 16. DTC #1: (a) measured transfer function, (b) DNL, (c) INL, and
(d) its harmonic components. Measured step-size (resolution) is 17 ps.

charge pump’s current-steering structure, even though a shorter
charging/discharging time is realized.

B. DTC Transfer Function and Mismatch

After processing the measured raw data, the DTC transfer
function can be calculated. The DNLs are derived from the
transfer function. Three DTCs are measured in order.

The transfer function of the first DTC is shown in Fig. 16(a).
The system calibration adjusts the final delay information
from the black curve to the blue curve. The delay range is
528 ps and LSB equals 17 ps. It is not surprising to observe
the DNL jumping out of 1-LSB boundary, which is indicated
by the dashed black line. Worst-case DNL is measured as large
as 2.0 LSB. Standard deviation (σ ) of a single-unit stage delay,
0.56 LSB, as shown in Fig. 3, is adopted to model the potential
DNL performance. The DNL calculation is repeated 1000×
and obeys the Gaussian distribution. The simulated results are
shown in grey color in Fig. 16(b). It can be observed that the
measured data matches quite well with the simulations. The
simulated results indicate that the largest possible DNL can
be even larger than 3 LSB. The calculated INL based on the
best fit straight line is shown in Fig. 16(c).

To investigate how large in-band fractional spurs this DTC
can induce, FFT is deployed to get the harmonic components’
amplitude before applying formula (1) and (2). One more
assumption is made here: the whole DTC range exactly covers
one DCO period. The INL amplitudes for each harmonic are
shown in Fig. 16(d). The 13th harmonic’s amplitude is the
highest one with a value of 0.61 LSB, corresponding to an
in-band spur level of −24.5 dBc. This value is close to the
one reported in [6]. In the BLE applications, the fractional spur
located outside of the bandwidth can be suppressed through
the loop. For high-performance ADPLLs, this DTC mismatch
can be calibrated. As mentioned in Section II, the mismatch
performance can be improved by replacing M5, M6, M7
in Fig. 2 with an AND gate, as well as enlarging the channel
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TABLE I

NONLINEARITY COMPARISON OF THE THREE DELAY-CASCADING DTCS

Fig. 17. DTC #2: (a) measured transfer function, (b) DNL, (c) INL, and
(d) its harmonic components. Measured step-size is 12 ps.

width of M9. This architecture enjoys the potential small fixed
offset delay but suffers mismatches from two sub-blocks: the
delay element and clock feeder.

The measured performance of the second DTC is shown
in Fig. 17. The delay range is 391 ps with 12 ps resolution.
Its linearity is much better than the first one. The measured
worst-case DNL is only 0.25 LSB, which matches with the
1000× repetitive simulations presented by the grey curves. Its
INL is shown in Fig. 17(c). Possibly owing to the gradient
of mismatch or doping, this INL curve is not ‘friendly’
to the fractional spurs. As Fig. 17(d) shows, the first har-
monic component dominates. The highest harmonic amplitude
of 0.28 LSB corresponds to −31.22 dBc of in-band fractional
spur. This value can be optimized to <−40 dBc through larger
device sizes, thus burning more power [12]. The gradient
effects on the fractional spurs can be suppressed by enabling
the delay units in a sequence of e.g. 1, N, 2, N − 1, · · · ,
rather than 1, 2, · · · N , where N is the number of delay units.
Although this DTC has the best mismatch performance, its
architecture is still sensitive to the supply noise and substrate
noise, as well as suffering from PVT variations. To retain a sta-
ble performance, an LDO, deep N-well and proper guard-rings
should be adopted.

Fig. 18 reports the measurement results of the third DTC.
This clearly impractical DTC structure gives an overly
nonlinear transfer function. It can only be observed that the
delay tends to decline as the DCW increases. After least
square fitting, one LSB is 89 fs. Although a ‘fine’ resolution is
achieved, this architecture results in DNL of 47.9 LSB. Addi-
tionally, the measured DNL is much larger than the simulated

Fig. 18. DTC #3: (a) measured transfer function and (b) DNL. Measured
step-size is 89 fs.

Fig. 19. (a) Histogram of measured DTCs. (b) Histogram of system
self-calibration.

data, which is based on 4.1 LSB as 1σ for the unit delay.
It indicates that for two different types of MOS capacitors’
matching, the standard deviation can be much larger than the
simulation results. That is also reasonable considering that
hundreds of aF or one fF capacitance difference can be easily
disturbed by the neighboring routing and dummy metal filling.
Removing either M5 or M6 in Fig. 6, or controlling M6 with
the inverted version of EK could turn this DTC into a more
practical architecture.

The nonlinearity performance of the three DTCs is sum-
marized in Table I. Table II compares the proposed DTC mea-
surement system with state-of-the-art found in the literature.
The off-chip DTC measurement methods in [10], [31] offer a
‘golden reference’ for measuring the delay difference, although
they cannot measure the absolute delay of DTC. Therefore,
it appears that only the on-chip TDC arrangements are capable
of characterizing a DTC under test with a fixed offset.

C. Measurement Precision

As discussed previously, the PFD can help with reduc-
ing the influence of the charge pump noise. The system is
expected to provide better precision under the same conditions.
Fig. 19 shows the histogram of the measured DTCs, together
with the system self-calibration. The system self-calibration
yields σ = 0.47 ps, a bit better than the previously reported
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TABLE II

PERFORMANCE COMPARISON OF STATE-OF-THE-ART DTC DELAY MEASUREMENT SYSTEMS

value 0.65 ps [1]. This is likely due to the input clock now
being fed into the synthesized digital block directly. The
divided clocks at 50 MHz are heavily affected by other digital
cells, especially some digital standard cells adopting the mini-
mum allowed size, introducing significant flicker noise into the
digital power supply. The comparator’s flicker noise is another
major low-frequency noise source, which is to be optimized
by enlarging the input pairs’ size.

V. CONCLUSION

This work characterizes and analyzes the mismatches of
three delay-cascading DTCs, which have recently become very
popular in digital PLLs. Through an improved built-in self-test
(BIST)-TDC arrangement with an added PFD, the mea-
surement results demonstrate a sub-half-ps precision in the
system self-calibration mode. Fabricated in 28-nm CMOS,
the DTC transfer functions are measured, and mismatches
are compared against Monte-Carlo simulation results. The
integral-nonlinearity (INL) information is translated to the
in-band fractional spur level of digital PLLs. Noise contribu-
tions within the first-order �� loop are analyzed, proving the
effectiveness of adding a PFD into the �� loop. The whole
BIST system consumes 0.6 mW with a system self-calibration
algorithm to tackle the nonlinearities of analog blocks.
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