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Abstract— The presence of Pole-Zero (P-Z) pairs in the
open-loop frequency response of CMOS OTAs has always been
considered detrimental to the closed-loop operation of OTAs.
In this work, a new proposed theory is presented showing how
to reduce the impact of such P-Z pairs on the settling time
of CMOS OTAs - using low-frequency zeros and cascaded-
gain stages - consequently revealing un-tapped opportunities
for many-stage CMOS OTA design. The proposed theory will
be validated and verified through a design example that also
demonstrates how the generalized theory unveils opportunities
for many-stage OTA design. The presented example is a 2- to
8-stage CMOS OTA based on the TSMC 65 nm CMOS process,
verified through simulations (schematic and post-layout) as well
as some measurement results.

Index Terms— OTA, cascading, multi-stage, closed-loop,
DC gain, frequency compensation, low-frequency zero, pole-zero
doublet, pole-zero pair, settling time, unity-gain frequency.

I. INTRODUCTION

OPERATIONAL Transconductance Amplifiers (OTAs) are
at the core of analog and mixed-signal circuits. Since

the 1960’s, enormous works in literature have been devoted
to discussing their applications, requirements, limitations and
design techniques. However, despite all these efforts, OTAs
are still facing challenges when it comes to meeting the design
requirements of modern analog applications, such as achieving
high DC gain. These challenges are directly related to the
reduction in supply voltages (VDD) and transistor dimensions
in advanced nano-meter scale CMOS technology nodes.

Accordingly, recent design efforts have been focused on
proposing different techniques and topologies to overcome
the limitations of scaled-down CMOS technologies on OTA
design. These proposed designs in literature can be categorized
as belonging to one of the two deep-rooted fundamental
approaches [1]: (1) cascoding or stacking of transistors on the
top of each other [2]–[4], and (2) cascading multiple stages
of OTAs in series [5]–[10]. The cascoding approach is limited

Manuscript received June 5, 2021; revised August 20, 2021; accepted
August 31, 2021. Date of publication November 2, 2021; date of current
version November 29, 2021. This work was supported in part by NSERC
Discovery Grant and in part by James McGill Research Chair Grant. This
article was recommended by Associate Editor R. Rieger. (Corresponding
author: Mahmood A. Mohammed.)

The authors are with the Integrated Microsystems Laboratory, Depart-
ment of Electrical and Computer Engineering, McGill University, Montreal,
QC H3A 0E9, Canada (e-mail: mahmood.mohammed@mail.mcgill.ca;
gordon.roberts@mcgill.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3110106.

Digital Object Identifier 10.1109/TCSI.2021.3110106

by headroom issues related to the maximum allowable supply
voltage in the modern scaled-down technologies, while the
cascading approach has greatly been limited by stability issues
that arise when implementing multi-stage OTAs in closed-loop
feedback configurations. Therefore, apart from a single excep-
tion of a 5-stage OTA in [5], the maximum number of cascaded
OTA stages found in the literature has been limited to 4-stages,
as in [6]–[10]. Nonetheless, the design in [5] consumes high
power (∼10 mW) and introduces unusual levels of overshoot
in the transient response of the system, while the designs
in [6]–[10] are only customized for large capacitive loads
(i.e., nF-range), making their Frequency Compensation Tech-
niques (FCTs) unsuitable to be systematically expanded to
higher stages or for driving small loads. All other conventional
FCTs in the literature are only suitable for 2- and 3-stage OTAs
as in [11]–[13] and are all based on limiting the frequency
range of operation to ensure stability when configurated in
closed loop.

More recently however, a scalable design technique was
proposed for cascading 2-, 3-, 4-, 5-, and 6-stage CMOS
OTAs [14], in which the stability was ensured by positioning
all open-loop Pole-Zero (P-Z) pairs for the whole system
below the unity-gain frequency (ωt ) and above the 3-dB
frequency (ω3−d B), without the need for full P-Z cancellation.

Interestingly, having open-loop P-Z pairs below ωt creates
P-Z doublets in closed-loop, as first observed in 1963 [15].
A detailed analysis then followed in [16] investigating the
effects of having a P-Z doublet on the settling time of a closed-
loop amplifier. It was shown that the closed-loop P-Z doublet
deteriorates the OTA’s settling time. The same conclusion
was also stated in [17]–[19]. Surprisingly, this impact of
P-Z doublets was not apparent in [14] and the settling time
degradation was barely noticeable. Also, the same can be
observed in [20], where the existence of P-Z doublets had
a minor impact on closed-loop operation.

A closer look at [16]–[19] reveals the following: (1) the
analyses of the relationship between frequency response and
settling time were restricted to the case of having a single
open-loop P-Z pair only, making them most relevant for
2-stage OTAs, (2) the analyses were based on CMOS tech-
nologies that range from line widths greater than 1 micron [16]
down to only 0.35 μm [19], without considering more
advanced nano-meter scale technology nodes, (3) cascading
gain-stages was not a design goal in these works, especially
that such older technology nodes allowed supply voltages
greater than 3 V, relaxing the need for a multi-stage design.

Based on the above, this work is proposing a new gener-
alized relationship between frequency response and settling
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time to extend the discussion while having many P-Z pairs
(or doublets), hence establishing relevance to many-stage
design. This will be done by revisiting and building upon ear-
lier efforts. Also, the proposed work is extending the analysis –
and its implementation - to more advanced nano-meter scale
technology nodes. In order to achieve this, the analysis will
begin by identifying the independent parameters that control
the relationship, eventually leading up to its generalization
based on these parameters. Such a generalization will reveal
how to reduce the impact of P-Z doublets on settling time -
through positioning the OTA zeros at Low Frequencies (LF)
and increasing their gain - consequently revealing untapped
opportunities for many-stage CMOS OTA design.

To verify and validate the proposed theory a design example
with 2 to 8 cascaded-gain stages will be presented throughout
this work. The presented design example, which is an expan-
sion of the work in [14], is based on a standard TSMC 65 nm
CMOS process and is validated through schematic and post-
layout simulations as well as some measurement results.

For clarity purposes, from this point and onwards, we shall
distinguish between two terms: ‘P-Z pair’ and ‘P-Z doublet’,
where ‘pair’ will be used for open-loop configurations and
‘doublet’ will be used for closed-loop configurations.

This paper starts by revisiting the previously reported
analysis on the relationship between frequency response and
settling time having one P-Z pair in Section II. Then this
relationship, having one P-Z pair, will be studied to overcome
the limitations of the previously reported works in Section III,
paving the way towards Section IV, in which the relationship
will be generalized for N-stage OTAs, having (N-1) P-Z pairs.
In Section V, the design example of the 2- to 8-stage CMOS
OTA will be introduced. Implementation and validation of the
proposed relationships while having one P-Z pair and (N-1)
P-Z pairs are presented in Sections VI and VII, respectively.
Finally, Section VIII concludes the paper.

II. REVISITING THE PREVIOUSLY REPORTED ANALYSIS

ON THE RELATIONSHIP BETWEEN FREQUENCY

RESPONSE AND SETTLING TIME

HAVING POLE-ZERO PAIRS

Analyzing the relationship between OTA’s frequency
response and settling time depends on the relationship between
open-loop and closed-loop configurations. Therefore, having
an open-loop Transfer Function (TF), which can represent the
use of a cascading scheme to build multi-stage OTAs is the
starting point.

A. Cascading Multi-Stage CMOS OTAs

Figure 1 shows the block diagram and a circuit level
realization of an N-stage CMOS OTA, which will be used
as the analysis and design vehicle throughout this work.
As seen in the block diagram of Fig. 1(a), building multi-
stage CMOS OTAs requires cascaded-gain stages (to achieve
the required gain) and a compensator (to ensure stability and
achieve frequency requirements). The cascaded-gain stages
can achieve a DC gain (ADC,N ) of

ADC,N =
N∏

i=1

(Ai ), (1)

where Ai is the gain provided by the i th gain stage and N is
the number of stages. On the other hand, and since this is

Fig. 1. Cascading N -stage CMOS OTA: (a) block diagram having cascaded
gain stages and compensator, and (b) circuit level realization of a differential-
ended N -stage CMOS OTA.

a CMOS-based OTA, poles and zeros will be part of the OTA’s
realization. To appropriately control these poles and zeros, a
compensator, similar to the one seen in Fig. 1(a), will be used.
Usually, in such OTAs, in addition to the 3-dB frequency, each
gain stage will produce a P-Z Pair. Therefore, the open-loop
TF takes a bilinear-cascade form; and it can be written as

A (s) = ADC,N(
1 + s

ωP_3d B

) ×
N−1∏
i=1

(
1 + s

ωZi

)
(

1 + s
ωPi

) , (2)

where ωP_3d B is the 3-dB frequency, ωPi and ωZi are the
P-Z pairs which are produced by the compensation circuit of
each stage. In conventional FCTs, these P-Z pairs are either
pushed to frequencies much higher than ωt or positioned
at the exact same frequency (below ωt ) to get full P-Z
cancellation [21]. thus, ωP_3d B will be the only pole below ωt ,
and the relationship between frequency response and settling
time will follow a single-time constant behavior. However,
in this work, a generalized discussion will be introduced,
therefore, these P-Z pairs will be part of the analysis without
being excluded or cancelled.

Before proceeding to the analysis, the block diagram of
Fig. 1(a) and its bilinear-cascade TF of Eqn. (2) can be realized
by using the differential-ended circuit level implementation of
Fig. 1(b). The gm-blocks will be responsible for achieving
the required DC gain, while the R-C compensation networks
(which are connected across each stage) will properly place
the P-Z pairs at the required frequencies.

B. Previously Reported Analysis on the P-Z Pair
Impact on Settling Time

The presence of an open-loop P-Z pair below ωt creates a
P-Z doublet in closed-loop, and such a phenomenon is well-
known in the literature and was first discussed in 1963 [15].
However, the presence of closed-loop P-Z doublets at that time
was discussed as an effect that arises due to an inevitable
mismatch between the pole and the zero when trying to achieve
P-Z cancellation. The leading and the detailed analysis on
the effects of having a P-Z pair on the settling time of a
closed-loop amplifier was first discussed in [16] and [17].
Then, the same discussion and conclusion was also stated
in [18], [19]. All these previously reported analyses have
discussed this issue while having one P-Z pair only.

To realize an open-loop TF with a one P-Z pair (i.e., ωP1
and ωZ1) and a finite pole (i.e., ωP_3d B), a two-stage OTA
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can be used (i.e., N = 2). Thus, the TF of Eqn. (2) can be
written as

A (s) = ADC,2(
1 + s

ωP_3d B

) ×
(

1 + s
ωZ1

)
(

1 + s
ωP1

) . (3)

The analyses in [16]–[19] depend mainly on the open-loop
P-Z pair separation distance (δO L), which can be expressed as

δO L = ωP1 − ωZ1 (4)

or as a ratio given by

δR = ωP1

ωZ1
. (5)

Based on Eqn. (3) one can show that the TF for the unity-
gain closed-loop configuration has the following general form

G (s) = A (s)

1 + A (s)
= ADC,2(

1 + s
ωCL,a

) ×
(

1 + s
ωZ1

)
(

1 + s
ωCL,b

) (6)

where ωC L ,a is the frequency of the first pole and ωC L ,b
is the frequency of the second pole in the closed-loop
response.

The closed-loop poles of Eqn. (6) have been shown [16] to
be expressible in terms of the open-loop OTA parameters as:

ωC L ,a ≈ ωt,RE F (7)

and

ωC L ,b = ωZ1

⎡
⎣1 −

(
1 − ωP1

ωZ1

)
(

ωt,RE F
ωZ1

− 1
)
⎤
⎦ ≈ ωZ1 (8)

where they have assumed that the unity-gain frequency is equal
to Gain-Bandwidth Product (i.e., ωt,RE F = ADC,2 x ωP_3d B).

Correspondingly, the closed-loop step response to an input
step of magnitude Vin can be written as follows [16]

VOU T (t) = Vin
[
1 − k1e−tωt,RE F + k2e−tωZ1

]
(9)

where

k1 = 1 + δO L

ωt,RE F
, (10)

and

k2 = 1 − k1 = − δO L

ωt,RE F
. (11)

From Eqn. (9) we see that the step response consists of two
time-dependent parts: one involving ωt,RE F and the other ωZ1.
Each term is weighted by separate coefficients k1 and k2 that
are also dependent on δO L .

Although the TF of Eqn. (3) has two finite poles, the settling
time will be affected by the distance between ωP1 and ωZ1
only, while the distance between ωP_3d B and ωZ1 has no
impact. The reason is that once the OTA is constructed in
unity-gain closed-loop configuration, ωP1 will move towards
ωZ1, and ωP_3d B will move towards ωt . Consequently,
the OTA step response will not be affected by the ratio
ωZ1/ωP_3d B .

As seen in Eqn. (9) and (11), the slow settling component
residual (i.e., Vink2) depends on the critical ratio [(VinδO L)
/ωt,REF]. This ratio can be made small if the numerator is

Fig. 2. The difference between the previously reported analysis and the
proposed exact analysis for step response coefficients:(a) k1, and (b) k2.

small or the denominator is large, or both simultaneously.
Under such conditions, k1 is very close to unity and k2 is very
close to zero. In the past, [16] suggested that a small frequency
difference between the P-Z pair is necessary to achieve a small
value for k2 as it relates to the slow settling component. As this
requires tight control over the P-Z pair position, it is generally
considered impractical. Also, it was concluded that positioning
the P-Z pair at low frequencies will produce a slower time
response with smaller amplitude compared to positioning the
P-Z pair at high frequencies. Thus, the closed-loop P-Z doublet
deteriorates the OTA’s settling time [16]–[19].

However, the previous open-loop P-Z pair-based analysis
is associated with some limitations. First, while deriving the
closed-loop poles (i.e., ωC L ,a and ωC L ,b), it has been assumed
that ωt,RE F = (ADC,2 x ωP_3d B). This is not accurate, where
the open-loop P-Z pair is below the unity-gain frequency,
thus, the exact unity-gain frequency (�t,RE F ) should be
expressed as

�t,RE F = ADC,2 × ωP_3dB × ωP1

ωZ1
= ωt,RE F × δR (12)

Considering the unity-gain frequency to be ωt,RE F in [16]
has hidden the fact that increasing δR , by increasing δO L , will
increase the unity-gain frequency, which in turn will reduce
the slow settling component residual of Eqn. (11). This can
be clearly seen if k2 in Eqn. (11) is re-written with its exact
form (after replacing ωt,RE F by �t,RE F ) as

k2 = − δO L

�t,RE F
= − δO L

ωt,RE F × δR
(13) (13)

While the exact k1 of Eqn. (10) can be rewritten as

k1 = 1 + δO L

�t,RE F
= 1 + δO L

ωt,RE F×δR
. (14)

By simulating Eqs. (10), (11), (13) and (14),
Fig. 2(a) and (b) show the hidden behavior of k2 and k1,
respectively. As depicted form Fig. 2(a) and (b), the results of
k1 and k2, which have been reported in [16], are accurate only
around ωP1/ωZ1 = 1 (i.e., δR = 1). Once δR goes beyond 2,
the slow settling component residuals saturates, as seen in the
exact analysis of Fig. 2(b), and no more degradation can be
introduced even if δO L is increased.

In addition to the above-mentioned issue of conducting
the analysis while having the open-loop dependent parameter
ωt,RE F , the analysis in [16] has only considered the case
where ωZ1 ≥ ωP1, while the case of having ωZ1 at low
frequencies (below ωP1) has not been investigated.

In the light of these issues, there remains to be a timely need
for a generalized analysis using all open-loop independent
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parameters to examine the actual impact of having a P-Z pair
below the unity-gain frequency.

III. DEMYSTIFYING THE RELATIONSHIP BETWEEN

FREQUENCY RESPONSE AND SETTLING TIME

HAVING ONE POLE-ZERO PAIR

The proposed analysis in this section will include all open-
loop independent parameters of Eqn. (3). However, OTAs are
usually required to operate over a large range of frequency
conditions. Rather than design a new TF for each case, a better
approach is to normalize the TF to reduce the degree of
complexity as discussed in Appendix A.

Based on the results found in Appendix A, the open loop
TF of Eqn. (3) can be written using the normalized approach
(where the “s” Laplace variable will be replaced with the
normalized “p” Laplace variable) as

A (p) = AZ

p
∗ (1 + p)(

1 + p
ωP

) (15)

where AZ is the gain at the new position of ωZ1 after
normalization (i.e., after setting the compensation zero ωZ1
at 1 rad/s), and ωP is the new position of the compensation
pole ωP1 after this normalization, and it is unitless. Also,
the frequency-normalized unity-gain frequency (�t ) can be
written in terms of the open-loop parameters for all values of
ωP as

�t = AZ .ωP (16)

Ultimately, the OTA will be used in a closed-loop configu-
ration where the impact of the open-loop frequency-response
parameters will be revealed. Once applying an input step
while having the OTA in closed-loop unity configuration,
the OTA’s settling time can be examined. Therefore, in the
next subsections, the close-loop response will be discussed to
precisely identify how to control the closed-loop parameters
based on the open-loop response. Then, the generalized rela-
tionship between frequency response and settling time will
be derived after investigating the 2-stage OTA’s unity step
response having the P-Z pair below �t .

A. Analyzing the Closed-Loop Frequency-Response
in the Presence of P-Z Doublets

If the open-loop TF includes a P-Z pair as described
by Eqn. (15), then the unity-gain closed-loop TF, T (p),
(i.e., having unity-feedback factor) would appear as

T (p) = (1 + p)(
1 + p

ωCL,1

) (
1 + p

ωCL,2

) (17)

where ωC L ,1 and ωC L ,2 are the poles of the closed-loop
configuration after normalization. As AZ � ωP , ωC L ,1 and
ωC L ,2 will be widely spaced apart. Further, using the quadratic
formula for a 2nd-order polynomial, one can find that:

ωC L ,1 = AZωP ≈ �t (18)

and

ωC L ,2 ≈ AZ

1 + AZ
+ 1

AZωP
. (19)

Here one of the poles of the closed-loop system will be
located at AZωP (i.e., �t ) and the other one is located
very close to 1 rad/s (i.e., the normalized frequency location
of ωZ1). The residual LF closed-loop pole (ωC L ,2) depends
on AZ , when AZ is large, and on 1/(AZωP ), when ωP is very
small (i.e., ωP < 1).

Going forward, the frequency difference between the P-Z
doublet (i.e., the LF closed-loop pole (ωC L ,2) and the zero
at 1 rad/s) will be denoted with the term δC L . Assuming the
compensation pole can take on values either larger than unity
or less than unity, the closed-loop pole-zero doublet separation
distance (δC L) can be written as

δC L = ωC L ,2 − 1. (20)

By substituting the expression of ωC L ,2, seen in Eqn. (19),
into Eqn. (20), δC L can be re-written as

δC L ≈ 1

AZωP
− 1

AZ
= 1 − ωP

AZωP
. (21)

For many situations, the compensation pole ωP is either
much greater than unity or much less than unity. As such, the
closed loop P-Z doublet separation distance can be approxi-
mated as

δC L =

⎧⎪⎪⎨
⎪⎪⎩

1

AZ ωP
, ωP � 1

− 1

AZ
, ωP � 1.

(22)

Fig. 3(a) plots the behavior of δC L (according to Eqn. (21)
and (22)) for a sweep of ωP between 0.01 and 100 rad/s,
for different values of AZ . As depicted form Fig. 3(a),
controlling δC L can be done through two independent para-
meters: AZ and ωP . To reduce δC L one can target higher
AZ regardless of the value of ωP . However, the minimum
possible value of δC L , when controlling its value through ωP ,
can be achieved when ωP = 1 rad/s, which is the position
of ωZ1 after normalization. Nevertheless, the optimum value
of δC L will be determined by the design requirements as will
be discussed in Section V. This shows that the open-loop P-Z
pair separation ratio (i.e., ωP1/ωZ1 before normalization and
ωP /1 after normalization) is a parameter that affects δC L as
previously reported in other works [16]–[19]. But what has
not been reported previously (due to technology limitations)
is that increasing ωP (i.e., ωP1/ωZ1) beyond certain values
(i.e., ωP ≥ 10), will have no effect on δC L , as seen in Fig. 3(a).
Also, the zero gain (AZ ) plays a critical role in controlling the
value of δC L . In the next subsection, these relationships will
show how to reduce the effects of having the P-Z doublets
on the settling time of two-stage OTAs (i.e., when having
one P-Z pair).

B. The Relationship Between Settling Time and Open-Loop
Frequency-Response Parameters

Based on the results found in Eqn. (18), (19) and (22),
and as derived in Appendix B, the unit step response can be
simplified as

y (t) = 1−
(

1+ 1−ωP

AZωP

)
e−AZ ωP t +

(
1 − ωP

AZωP

)
e
−

(
1+ 1−ωP

AZ ωP

)
t

(23)
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Fig. 3. The proposed theory results having one P-Z pair: (a) the closed-loop P-Z separation distance (δCL ) as a function of ωP for different values of AZ .,
(b) settling time as a function of AZ for different ωP when the steps settles @ 0.01% of the final value, based on the step-response result of Eqn. (24), and
(c) settling time as a function of ωP for different AZ when the steps settles @ 0.01% of the final value, based on the step-response result of Eqn. (23).

This expression will hold over a wide range of ωP and AZ ,
regardless of their values. However, Eqn. (23) can be written
for different cases of ωP as follows:

y (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(

1 − 1

AZ

)
e−AZ ωP t

−
(

1

AZ

)
e
−

(
1− 1

AZ

)
t
, ωP � 1

1 − e−AZ t , ωP = 1

1 −
(

1 + 1

AZωP

)
e−AZ ωP t

+
(

1

AZωP

)
e
−

(
1+ 1

AZ ωP

)
t
, ωP � 1

(24)

Showing such wide range impact of ωP and AZ has not
been discussed in the previously reported analyses, hence,
Eqn. (24) represents the generalized relationship between
frequency response and time response having one P-Z doublet.
It also shows all independent parameters through which one
can reduce the impact of the P-Z doublet on the step response.

Based on Eqn. (24), Fig. 3(b) shows the settling time as a
function of AZ for different values of ωP . This figure reports
the settling time at 0.01% of the final value, as it is usually
the minimum required settling time different applications [16].
As seen in Fig. 3(b), the settling time, when ωP � 1
(i.e., red line), is lower than the settling time when ωP � 1
(i.e., black line). Also, as AZ reaches 80 dB, the settling time,
when ωP � 1, will have almost similar values of having
ωP at 1 (i.e., full P-Z cancellation). This impact of high AZ
(i.e., having a LF zero) on enhancing the OTA’s settling time
has not been reported in previous works.

Similarly, and unlike the previously reported works,
Fig. 3(c) shows the settling time but this time as a function
of ωP for different values of AZ . When AZ = 100 dB,
the settling time is no longer affected by the open-loop P-Z
pair separation (i.e., ωP /1), which suggests that at high AZ ,

the response settles to its final value before the impact of
P-Z doublets starts. Interestingly, for AZ = 100 dB, when
increasing ωP , the response will exhibit faster settling times.

Clearly, some values of AZ might be hard to achieve
practically when cascading 2 or 3 gain-stages. Therefore, one
can position ωP at values near 1 to reduce δC L , which in
return, will reduce the impact of the closed-loop P-Z doublet.
However, when using many gain-stages (N ≥ 4), ADC will
be larger, and these values for AZ are easy to achieve if the
zero is positioned at LF, where ADC is proportional to AZ .

To conclude this section and clarify the new proposed
observations, it is readily apparent from Eqs. (22) and (24) that
a higher AZ forces two things to occur: (1) The coefficient in

front of the LF term of the unit-step response will reduce in
magnitude, and (2) the separation distance between the closed-
loop P-Z doublet will also reduce in magnitude. These two
things will help reducing the delay caused by the presence of
the P-Z doublets.

IV. GENERALIZED RELATIONSHIP BETWEEN FREQUENCY

RESPONSE AND SETTLING TIME HAVING

N-1 POLE-ZERO PAIRS

For N-Stage CMOS OTAs the analysis’s degree of com-
plexity will increase, where each stage will add a P-Z pair.
For example, when N = 3, the OTA will have two P-Z
pairs (i.e., ωP1, ωZ1, ωP2, and ωZ2). There are 24 different
cases to position and arrange the two P-Z pairs. Therefore,
to simplify the analysis, one can start with the bilinear TF
of the normalized N th-order integrator-based OTAs with zero-
only compensator. This TF is derived in a manner similar to
that used with Eqn. (15) in Appendix A, and can be written as

A (p) = AZ

pN
× (1 + p)N−1 . (25)

Thus, in the following subsections, the closed-loop analysis
and the step response will be discussed based on Eqn. (25).
Then, the results will be expanded while having pole-zeros
compensator instead of having zeros-only compensator. To the
best of the author’s knowledge, these proposed analyses with
N > 2 have not been discussed in literature before.

A. Closed-Loop Analysis Having a Zeros-Only Compensator
Based on Eqn. (25), the unity-gain closed-loop TF can be

written as

T (p) = AZ (1 + p)N−1

pN + AZ (1 + p)N−1 . (26)

Owing to the nature of the LHP zeros located at frequencies
of 1 rad/s, all but one of the N closed-loop poles will move
towards these zeros with individual separation distances of
δC L ,i for i = 1 to N-1. The N th pole will be positioned
essentially at �t .

To illustrate this, consider the closed-loop poles distribu-
tions in Table I for the particular case of AZ = 80 dB across
orders ranging from 3 to 4. The pole-zero separation distance
(δC L ,i) is computed by taking the exact differences between
the zero (i.e., zeros frequencies = −1 rad/s) and the pole
positions in the p-plane.

Owing to the presence of the N-1 coincident zeros in the
open-loop response, the N-1 poles of the closed-loop system
will move very close to the same frequency locations as these
zeros but will not overlap. In a manner similar to the previous
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TABLE I

CLOSED-LOOP POLES DISTRIBUTION AND THE POLE-ZERO SEPARATION DISTANCE (δCL ,i ) VERSUS NUMBER OF

STAGES (N) FOR ZEROS-ONLY COMPENSATOR WITH AZ = 80 dB (I.E., �t = 104 rad/s)

two-stage case (i.e., having one P-Z pair), we shall denote the
small separation distance between the i th-pole and the i th-zero
of the closed-loop system by δC L ,i . The remaining closed-
loop pole will appear at frequency �t (where �t = AZ ).
Consequently, the closed-loop TF can be approximated as

T (p) = (1 + p)N−1

(
1 + p

AZ

) N−1∏
i=1

[
1 + p

(1+δCL,i )

] . (27)

B. Unit Step-Response Having a Zeros-Only Compensator

With the denominator polynomial of the TF of Eqn. (27)
described in factor form, the step-response can easily be found
by converting the TF to partial fraction form, then taking the
inverse Laplace transform, resulting in

y (t) ≈ 1 −
N−1∏

i

(
1 + δC L ,i

)
e−AZ t +

N−1∑
i

ki e
−(1+δCL,i )t , (28)

where the ki -coefficients are the LF frequency exponential
term coefficients, and can be approximated as follows:

ki ≈ δN−1
C L ,i ×

N−1∏
m=1,m �=i

(
1 + δC L ,m

)
N−1∏

m=1,m �=i

(
δC L ,i − δC L ,m

) . (29)

In all cases, the need for values for δC L ,i is readily apparent.
While no simple expression of the individual pole-zero sepa-
ration distances δC L ,i have yet been found, empirical evidence
suggests the following general relationship:

δC L ,i ≈ 1
N−1

√
AZ

, i = 1 . . . N − 1. (30)

While it was shown previously that a single closed-loop
P-Z separation distance was inversely proportional to AZ ,
the above statement suggests that this gain must be spread
equally across all P-Z combinations. To illustrate this state-
ment, for AZ = 80 dB, δC L ,1 = 0.010 at N = 3, δC L ,1 =
0.0464 at N = 4. Scanning the δC L ,1 of Table I that lists δC L ,i
as a function of TF order, one can see that the above results
correlate quite well with the theory captured by Eqn. (30).

Using the above principle of δC L ,i suggested by Eqn. (30),
the unit-step response of the N th-order closed-loop TF can be
approximated with the following expression:

y (t) ≈ 1−
(
1+ 1

N−1
√

AZ

)
e−AZ t +

N−1∑
i=1

1
N−1

√
AZ

e
−

(
N−1√AZ +1

N−1√AZ

)
t
.

(31)

Fig. 4(a) provides a plot of the exponential terms in the
unit step response for the case when the order N = 5. As is

evident from this plot, all coefficients decrease in magnitude
with increasing AZ . Depending on the order of the TF,
the contribution of each LF exponential term will vary. The
lower the order, the smaller its overall contribution.

Fig. 4(b) and (c) shows the impact of increasing AZ on set-
tling time for different number of P-Z pairs (i.e., N = 2 to 8)
based on Eqn. (31). As seen in Fig. 4(b) and (c), settling time is
decreasing as AZ increases for different percentages of settling
time. Again, this implies that the impact of closed-loop P-Z
separation distances can be highly reduced with higher gain,
regardless of how many P-Z pairs the OTA might have or what
is the exact separation distance between them.

Also, the improvement can be seen by comparing the set-
tling time at 0.01% to the settling time at 1%. This will be fully
discussed while comparing the results of Fig. 4(b) and (c) to
the circuit realization results in Section VII.

In conclusion, through the appropriate selection of the AZ
parameter in the OTA open-loop response as described by
Eqn. (25), the zeros of the compensator can be placed at low
frequency to enhance the performance attributes of the closed-
loop system provided that the open-loop gain at a normalized
frequency of 1 rad/s is high enough for the given application.

C. Analysis Having Pole-Zeros’ Compensator
The analysis steps of the previous subsections will be

followed here again, but with the assumption that an OTA’s
N-stage open-loop TF is described as follows:

A (p) = AZ

pN−1 × (1 + p)N−1(
1 + p

ωP

) , (32)

where there are N-1 poles at DC and one at a frequency of ωP .
By following the exact steps to derive Eqn. (31), the unit

step response takes on the exact same form as the N th-order
integrator with zeros-only compensator of Eqn. (31), except
that the high-frequency time constant is a product of AZ
and ωP instead of AZ . Thus, the unit-step response of the
N th-order closed-loop TF (Pole-Zeros’ compensation) can be
approximated with the following expression:

y (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(

1 − 1
N−1

√
AZ

)
e−AZ ωP t

−
N−1∑
i=1

1
N−1

√
AZ

e
−

(
N−1√AZ +1

N−1√AZ

)
t
, ωP � 1

1 −
(

1 + 1
N−1

√
AZ

)
e−AZ ωP t

+
N−1∑
i=1

1
N−1

√
AZ

e
−

(
N−1√AZ +1

N−1√AZ

)
t
, ωP � 1

(33)

The same conclusion can be stated here; even if the poles
are not at DC, once the zeros are positioned at LFs with higher
DC gains, the impact of δC L ,i will become insignificant and
the step response will follow the same behavior of Eqn. (33).



MOHAMMED AND ROBERTS: GENERALIZED RELATIONSHIP BETWEEN FREQUENCY RESPONSE AND SETTLING TIME 4999

Fig. 4. The proposed theory results having (N -1) P-Z pair: (a) coefficient weights (ki) of LF exponential terms of unit-step response of closed-loop system
involving an OTA with Zeros-Only Compensator for 5-stage, (b) the relationship between settling time and AZ for different numbers of P-Z pairs when
settling at 1% of final value, and (c) the relationship between settling time and AZ for different numbers of P-Z pairs when settling at 0.01% of final value.

Fig. 5. Transistor level implementation of the 2-stage, 3-stage, 4-stage, 5-stage, 6-stage, 7-stage, and 8-stage CMOS OTAs. All gain stages are identical in
transistor aspect ratios. The circuit uses a differential-ended configuration, the stages from 4-to-7 have been omitted for simplicity.

V. THE DESIGN EXAMPLE: A SCALABLE

2- TO 8-STAGE CMOS OTAS

The proposed theory suggests that once increasing AZ
(by increasing ADC and/or positioning the zeros at low fre-
quencies) the open-loop P-Z pairs’ impact on settling time
will be reduced, regardless of open-loop P-Z pairs’ numbers
or their separation distances (i.e., ωP1/ωZ1). Thus, to verify
the proposed theory, one should design an OTA which can
provide a wide range of DC gains. At the same time, this
OTA should have the capability to create a specific number of
P-Z pairs and offers the capability to control their positions.

Figure 5 shows the transistor-level implementation of a
differential-ended N-stage CMOS OTA, shown earlier in
Fig.1, but here N = 2 to 8. This circuit will be used to verify
the proposed theory, where it can provide a scalable and a wide
range of DC gains (i.e., 50 dB to 200 dB). Also, it can create
a P-Z pair whenever a gain stage and its R-C compensation
circuit are added. Consequently, this will demonstrate how
the generalized theory unveils opportunities for many-stage
OTA design. Therefore, before verifying the proposed theory
having (N-1) P-Z pairs, the 2- to 8-stage CMOS OTAs design
principle will be first introduced, showing how to obtain a
scalable ADC and create (N-1) P-Z pairs while maintaining
the OTA’s stability.

A. Design of the Scalable 2- to 8-Stage CMOS OTAs

The proposed design of the scalable 2- to 8-stage OTA,
shown in Fig. 5, consists of a differential stage (i.e. M1 – M5),
which serves as the 1st stage, followed by seven identical
Common Source (CS) gain-stages (the second stage consists
of M6 and M7 while subsequent stages consist of transistors
identical to them). Therefore, the overall ADC,N is the gain of

TABLE II

DEVICES’ SIZES OF 2- TO 8-STAGE CMOS OTA OF FIG. 5 AND FIG. 6(a)

the differential stage multiplied by the gain of each CS stage
as expressed earlier in Eqn. (1).

The purpose of the proposed architecture is to provide a
scalable DC gain in the range of 50 dB to 200 dB to obtain
the same range that has been used in the theory as seen in
the X-axis of Fig. 4(b) and (c). Therefore, each stage has
been designed to achieve an ADC of 25 dB (including the
differential input-stage). This pins-down the required sizes
of all transistors to meet power consumption and overdrive
voltage requirements. Also, this defines the values of the small-
signal parameters (i.e., gm and rO ) of all transistors. The
transistor sizes used in this design can be seen in Table II.

Consequently, to obtain an ADC of 50 dB, a designer would
select N = 2, or in other words, use the 2-stage OTA topology.
Likewise, the 3-, 4-, 5-, 6-, 7-, and 8-stage OTA configurations
would achieve gains of 75 dB, 100 dB, 125 dB, 150 dB,
175 dB, and 200 dB, respectively. Such high ADCs have many
applications; like the high resolution 32-bit Analog-to-Digital
Converters [22].

To ensure robustness of biasing voltages, the Common
Mode Feedback Circuit of Fig. 6(a), which is based on
standard techniques as in [23], has been used.
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Fig. 6. (a) The Common Mode Feedback circuit of Fig. 5 and (b) single-
ended two-stage CMOS OTA’s small signal model.

B. Stability and the Open-Loop P-Z Pair Positioning

To ensure the stability of such high gain OTAs, an R-C
compensation circuit is connected across each gain stage as
shown in Fig. 5. Each R-C compensation circuit will create a
P-Z pair whenever a new gain stage is added. Thus, the open-
loop input-output TF takes a bilinear form; and can be written
as the TF of Eqn. (2). This bilinear TF is also similar to the
one seen in Eqn. (32), except that Eqn. (32) is a normalized
form with N-1 poles at DC, one pole at a finite frequency and
all zeros at 1 rad/s.

Therefore, these compensated poles and zeros will be
positioned below ωt in a certain pattern that ensures the
OTAs’ stability; by keeping ωt below the parasitic poles while
obtaining a sufficient Phase Margin (PM), which is given by:

P M = 180 −
N−1∑
i=1

θP,i +
N−1∑
i=1

θZ ,i (34)

where θP,i is the phase of the i th-pole and θZ ,i is the phase
of the i th-zero. By doing so, the unity-gain frequency is no
longer equal to the GBP, but it is now given by

ωt = ADC,N × ωP3d B ×
N−1∏
i=1

(
ωPi

ωZi

)
. (35)

The ideal positioning of these P-Z pairs should follow
the TF of Eqn. (32). However, apart from the 2-stage OTA,
controlling the exact positions of poles and zeros (using the
R-C compensation circuit of Fig. 5) is limited due to the
coupling between stages and the correlation between the poles
and zeros’ positions. Therefore, the exact positioning of the
P-Z pairs cannot be achieved according to Eqn. (32).

Fortunately, the proposed theory suggests that increasing AZ
will reduce the impact of the P-Z pairs regardless of their exact
numbers or the positions/distances between them. Thus, if one
can position the poles and zeros below ωt , with no specific
order, the improvement of having higher gain (i.e., higher
number of stages) on settling time can still be seen. This makes
the circuit of Fig. 5 suitable to examine this improvement in
settling time as will be seen in Section VII.

Consequently, a scalable FCT is proposed here to avoid
the complexity of using the exact poles and zeros’ equations
of 3-, 4-, 5-, 6-, 7-, and 8-stage OTAs. This scalable FCT
positions the P-Z pairs at frequencies below ωt , without P-Z
cancellation, such that

ωP_3d B < ωz1 < ωP1 < . . . < ωzi < ωPi < ωt , (36)

where this arrangement reduces the coupling between stages
and allows positioning the P-Z pairs apart from each other.

Accordingly, the proposed FCT avoids such levels of com-
plexity by designing the compensation circuit of the 2-stage

OTA first (i.e., RC1,(2−stage.) and CC1,(2−stage.)) and then scal-
ing these values for higher stages. These steps are clarified in
the following two subsections.

C. The Reference FCT for the 2-Stage OTA

The single-ended two-stage OTA’s small-signal model is
shown in Fig. 6(b) [24]. From circuit theory, one can identify
that the circuit has three poles and one zero. Typically, only
two-poles of this circuit are of concern, as the third is assumed
to be at a frequency much higher than ωt . As a result, the fre-
quency locations of the two-poles and the zero are approxi-
mated based on some assumptions as follows [23]–[25]:

ωP_3d B = 1

gm6 RO1 RO2CC1
(37)

ωP1 = gm6CC1

CPar CL + CC1 (CPar + CL)
≈ gm6

CL
(38)

ωZ1 = −
(

gm6

CC1

)
1

(1 − gm6 RC1)
(39)

and the small-signal low-frequency gain is

ADC = gm2gm6 RO1 RO2 (40)

The third pole ωP_parasit ic - typically ignored in the analy-
sis - has an important design value in the proposed theory and
needs to be considered here. It can be approximated by [23]:

ωP_parasit ic = 1

CPar RC1
(41)

where Cpar represents the total shunt capacitance to ground on
the output node of the first stage of the OTA and it consists
of numerous parasitic elements.

The key step in designing the 2-stage OTA is to define
the upper limit of ωt ; which is ωP_ parasit ic of Eqn. (41) as
there is no design control over this parasitic pole. This upper
value will determine the mechanism of scalability for higher
stages, as will be discussed shortly. According to Eqn. (35),
one can increase ωt by increasing ADC,N (i.e., for N = 2),
ωP_3d B, ωP1 and reducing ωZ1. However, since ADC,2 has
already been selected based on the designed-for gain of the
system, and ωP1 is fixed for a certain CL (here assumed to
be 1 pF), one can increase ωt by increasing ωP_3d B and
decreasing ωZ1. To achieve this at the circuit level, and
according to Eqs. (37) and (39), one can start with a minimum
value of CC1,(2−stage) that is at least 5 times the maximum
parasitic capacitance given by a certain CMOS technology.
Then, RC1,(2−stage) (∼ k�) is increased in value so that
(ωt ≤ ωP_parasit ic), or until the value of RC1 becomes
impractical in the given technology. Also, increasing ωt should
be done such that the PM is greater than some desired value.
Thus, those design conditions define the limitation on the
values of CC1 and RC1. Also, this will define the required
design value of δC L , seen in Eqn. (22). At this point the design
of the 2-stage OTA is complete and values of CC1,(2−Stage) and
RC1,(2−Stage) are shown in Table III. With such small values
of CC1, most of the current at the output branch will be used
to charge CL, hence, the step response will settle faster.

D. Scalable FCT for 3-, 4-, 5-, 6-, 7- and 8-Stage OTAs

To design the 3-stage OTA, a new gain-stage is added
to the 2-stage OTA as depicted in Fig. 5. Also, to design
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TABLE III

COMPONENT VALUES USED IN THE COMPENSATION CIRCUITS FOR THE REALIZATION OF DIFFERENT OTA STAGES

a 4-stage OTA, two gain-stages are added to the 2-stage
OTA, and so on. Each new gain-stage comes with its own
compensation circuit. Consequently, a new P-Z pair will be
added to the TF with each new stage as described in Eqn. (2).
Also, according to Eqn. (35), ωt will significantly increase,
as ADC,N will also increase. However, this new value of ωt
will most likely exceed the previously defined upper limit
of ωt . Therefore, it would be necessary to re-adjust the value
of ωt by re-positioning the poles and the zeros, according to
Eqn. (36), whenever a new stage is added. This can be done
by re-sizing the compensation circuit with the addition of each
new stage.

Instead of deriving new equations for the poles and zeros
for each stage separately, and by knowing that the P-Z pairs
have an inverse relationship with RC and CC, the values
which were found for the 2-stage OTA can be scaled to size
the compensation circuits of higher OTA stages. Interestingly,
since the poles and zeros are positioned according to Eqn. (36)
and since the maximum ωt is defined, the sizes of the R-C
compensation circuit components follow a certain pattern in
order to position the P-Z pairs when a new gain-stage is added.
This scalable pattern can be seen in Table III and can be
described as follows: whenever a new stage is added, the com-
pensation capacitors of the previous stages are increased in
size to decrease the frequency of the poles of the new OTA
stage, and hence help in reducing ωt to its defined upper limit
(i.e., lower than the parasitic pole). Since no exact positioning
of the P-Z pairs is required, the amount of increment in
CCs of the previous stage is being decided by observing the
poles’ positions – to make sure that they are at frequen-
cies less than ωt . Therefore, quantitative patterns are found
(by simulations) to increase CCs for different stages uniformly.
These uniform quantitative patterns of increasing CCs can be
described by:

CCi,(N−stage) > CCi,[(N−1)−stage], 1 ≤ i ≤ N − 1 (42)

and

CC(i−1),(N−stage) = CC(i−2),[(N−1)−stage], 3 ≤ i ≤ N (43)

Thus, the new compensation capacitor (CC(N−1),(N−stage)) is
sized to the minimum capacitance value, which was found for
the 2-stage OTA (i.e., CC(N−1),(N−stage) = CC1,(2−stage)).

Sizing CCs according to these patterns will change the poles
and zeros positioning (i.e., reducing them) simultaneously,
hence, according to Eqn. (35), ωt might not be reduced to
frequencies less than ωP_parasit ic. Also, sizing CCs only,
might not satisfy the P-Z arrangement of Eqn. (36). Therefore,
to make sure that ωt ≤ ωP_parasit ic, and to satisfy the
arrangement of the poles and zeros according to Eqn. (36),

the compensation resistors will be sized according to an
opposite pattern of sizing CCs; that is: whenever a new stage
is added, the compensation resistors of the previous stage are
reduced to increase the frequency of the zero of the new
OTA stage, and hence reduce ωt to its defined upper limit
(i.e., lower than the parasitic pole). The amount of change in
RCs of the previous stage is being decided by observing the
OTA stability via simulations. In a similar fashion of sizing
CCs, quantitative patterns are being used to initially size the
RCs. Therefore, once adding a new stage, the reduction in RCs
can be described as (i.e., vertical pattern):

RCi,(N−stage) ≤ RCi,[(N−1)−stage], 1 ≤ i ≤ N − 1 (44)

while the new compensation resistor (i.e., RC(N−1),(N−stage))
is initially sized according to the following condition
(i.e., diagonal pattern)

RC(N−1),(N−stage) ≤ RC(N−2),(N−stage) (45)

Table III shows the RCs’ sizes for the different OTA
stages and clarifies these patterns. Apart from RC4,(5−stage)
and RC6,(7−stage), which are increased for better PM, all sizes
follow from Eqn. (44). Also, apart from RC3,(8−stage) and
RC4,(8−stage), which are increased for better PM, all sizes
follow from Eqn. (45).

One of the design limitations in the proposed technique is
the maximum number of stages one can reach. Once going
to N = 9, it becomes very challenging to set ωt below
ωP_parasit ic with the proposed FCT, hence the OTA may lose
its stability in closed loop.

E. Simulation Results and Robustness Tests

To verify the proposed 2- to 8-stage OTA design, exten-
sive simulations were conducted (using Cadence) based on
the standard 65 nm TSMC CMOS process operating on
a VD D = 1 V, addressing all possible operation modes of
the OTA.

Fig. 7(a) shows the open-loop AC response of the 2- to
8-stage CMOS OTAs. Since the proposed OTA is meant for
closed-loop operations, a test of its stability under large and
small input-signals is shown in Fig. 7(b). These simulations
have been conducted for all stages as reported in [14], but, for
simplicity, part of these transient responses is being shown
here. Apart from the overshoot that can be seen in the step
response, the closed-loop operation is stable. Also, a test for
design robustness using ADC Monte-Carlo (MC) simulations
for the 8-stage CMOS OTA is provided in Fig. 7(c), where
the relative percent error of less than 1.5% were obtained.
A summary of these results is shown in Table IV.
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Fig. 7. Simulation results, stability and robustness tests of the proposed OTA design of Fig. 5: (a) the open-loop AC response of the 2- to 8-stage OTAs,
(b) stability tests, using the closed-loop unity-gain step response of the proposed 4-, 6-, and 8-stage OTAs subject to a large signal of 800 mV (upper part)
with a zoom-in at the 8-stage rising edge behavior (to its right side) where it exhibits a Slew-Rate of 80 μV/s, and stability test for 3-, 5-, and 7-stage OTAs
subject to a small signal of 2 mV (lower part), and (c) ADC MC simulations for the 8-stage OTAs.

TABLE IV

SUMMARY OF RESULTS AND PERFORMANCE COMPARISON WITH MOST RECENT PUBLISHED WORKS

In order to appreciate the advantages of the presented many-
stage OTA design, it is important to compare the results
presented here with other recent works that report different
designs of multi-stage OTAs. In order to facilitate this com-
parison, a small signal figure-of-merit (FOMS) and a large
signal figure-of-merit (SIFOML) are defined as [5]:

FOMS = GBP · CL

Power
, SIFOML = GBP · CL

TS · Power
(46)

It is evident from Table IV that the proposed design com-
pares well to recent 2- and 3-stage designs, while outperform-
ing those with 4- and 5-stage. Notably, 6-, 7-, and 8-stage
OTAs have not been reported in literature before. Clearly,
the 6-, 7-, and 8-stage OTA significantly outperforms all other
stages.

VI. VERIFICATION AND VALIDATION OF THE PROPOSED

THEORY HAVING ONE POLE-ZERO PAIR

Figure 3 of Section III summarizes the results from the pro-
posed theory with only one P-Z pair. Therefore, the following
subsections are verifying and validating the results of Fig. 3 by
designing the 2-stage OTA (i.e., N = 2) of Fig. 5.

TABLE V

DEVICES’ SIZES OF THE TWO-STAGE OTA OF FIG. 7 FOR THE

PURPOSE OF VERIFYING δCL WITH VBIAS = 0.39 V

A. The P-Z Doublet Separation Distance (δC L) vs. the
P-Z Pair Separation Ratio (ωP1 / ωZ1)

Since the theoretical analysis suggested that changing ωP1
and AZ is the way to control δC L , the conventional two-stage
CMOS OTA of Fig. 5 has been designed to verify and validate
this. The initial design has been done without optimization to
keep the values flexible as a wide range of values for ωP1
is required. Therefore, the initial design has been done by
fixing ωP_3d B and ωZ1 at 5 KHz and 460 KHz, respectively,
(by fixing the values of CC1, RC1 and gM6,2 (i.e., aspect ratio
of M6,2) as seen in Table V). Consequently, the performance
will be controlled by sweeping ωP1. For ADC of 56.4 dB
at VD D = 1 V, ωP1 has been swept to sweep the ratio
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Fig. 8. The closed-loop pole-zero separation distance (δCL ) as a function
of (ωP1/ωZ1) to verify part of the theory which is reported in Eqn. (21) and
Fig. 3(a).

TABLE VI

DEVICES’ SIZES AND RESULTS SUMMARY OF FABRICATED
TWO-STAGE CMOS OTA OF FIG. 5 AND FIG. 6(a)

of (ωP1/ωZ1) between 0.2 to 28, by sweeping the value of
CL between (20 pF and 10 nF).

Fig. 8 shows δC L as a function of (ωP1/ωZ1). The results
in Fig. 8 clearly satisfy the claim in Eqn. (21) along with the
results seen in Fig. 3(a). Although some values of δC L are off
when (ωP1/ωZ1) < 1, due to the coupling between ωP_3d B
and ωP1, the overall behavior verifies the proposed analysis
in Section III regarding δC L .

B. Settling Time vs. LF Zero Gain (AZ )

Figure 3(b) and (c) of Section III show the settling time
as function of AZ and ωP (i.e., ωP1/ωZ1), respectively.
To validate these relationships, the two-stage OTA of Fig. 5 has
been fabricated using standard TSMC 65 nm CMOS process.
Fig. 9(a) shows the microphotograph of the fabricated chip.
The design parameters of the fabricated chip are shown
in Table VI.

Here a wide range of values for AZ and (ωP1/ωZ1) are
required. But, once the circuit is being fabricated, changing
circuit parameters becomes challenging. Therefore, controlling
the values of AZ and (ωP1/ωZ1) are limited. Nevertheless,
in this experiment setup, we were able to sweep AZ by
sweeping the values of ωZ1. This has been achieved by having
an off-chip RC1, as seen in the PCB of Fig. 9 (b), to control
the position of ωZ1.

Simulation results of Fig. 10 shows that by sweeping RC1
from 20 K� to 125 K�, AZ is swept from 0.6 dB to 23 dB,
where ωZ1 is decreasing form 167 MHz to 25.8 MHz. Once
RC1 is increased beyond 125 K�, the parasitic poles will start
to appear next to ωt .

Since increasing RC1 will increase AZ , then if one increases
RC1 and observe the settling time, the relationship between AZ
and settling time when having one P-Z pair can be revealed.
Fig. 11 shows the closed-loop unity-gain step response for
schematic and post-layout simulations in Fig. 11(a), and the
measurement results in Fig. 11(b) (based on the fabricated
chip of Fig. 9) for the minimum and the maximum values

Fig. 9. The fabricated differential-ended two-stage CMOS OTA of Fig. 7:
(a) the chip’s microphotograph, and (b) the PCB showing off-chip RC1 for
controlling purposes.

Fig. 10. The low-frequency zero gain (AZ ) as a function of RC1.

of RC1. It is clear from Fig. 11(b) that the step response settles
faster when RC1 = 128 K�. Also, Fig. 11(c) shows the design
robustness against PVT variations for open-loop (upper part)
and closed-loop (lower-part) responses. Based on these PVT
simulations, the maximum ωt was obtained at the Fast-Slow
(FS) corner with a value of 191 MHz and a PM of 62◦, while
the minimum ωt was obtained at Slow-Slow (SS) corner with
a value of 140 MHz and a PM of 52.4◦.

Fig. 12 summarizes the relationship between RC1
(i.e., the increase in AZ according to Fig. 10) and the settling
time. This figure clearly validates the theory in Fig. 3(b), and it
is true for schematic, post layout, and measured results. Also,
it is true when the response settles to 1% and 0.01% of the
final value.

VII. VERIFICATION OF THE PROPOSED THEORY

HAVING N-1 POLE-ZERO PAIRS

Clearly, the circuit of Fig. 5 increases the gain and adds
P-Z pairs whenever a new stage is added. Thus, sweeping the
gain for a specific number of P-Z pairs to verify the theory
in Fig. 4(b) and (c) is practically challenging. Nevertheless,
one can still measure the improvement in settling time by
comparing the settling time at 0.01% of the final value to the
settling time at 1% for each stage, where this was the main
issue of having P-Z doublets as stated in [16]. But, in [16],
the impact of the P-Z doublets has been discussed having
only one P-Z pair. However, by adding more P-Z pairs (when
increasing the number of stages) it is important to consider
the impact of these extra P-Z pairs compared to having one
P-Z pair. Consequently, the Improvement Metric (IM) can be
given by

I M = Settlingtime@0.01%

Settlingtime@1%
× 1

N − 1
. (47)

where (N-1) represents the number of P-Z pairs/doublets the
OTA will have in its frequency range of operation.
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Fig. 11. The closed-loop unity-gain step response results: (a) schematic and post-layout simulations for RC1 = 20 K� (upper part) and RC1 = 128 K�
(lower part), (b) measured step response when applying a step input of 200 mV for RC1 = 20 K� and RC1 = 128 K�, and (c) The open-loop (upper
part) and the closed-loop (lower part) responses under different process corners to show the design robustness against PVT variations for both schematic and
post-layout simulations and for RC1 = 20 K�.

TABLE VII

COMPARING THE IMPACT OF GAIN AND NUMBER OF P-Z PAIRS ON SETTLING TIME BETWEEN THEORY AND CIRCUIT SIMULATIONS

Fig. 12. Settling time behavior when sweeping RC1 from 20 K� to 125 K�
(i.e., sweeping AZ form 0.6 dB to 23 dB) for the case of having one
P-Z pair.

Table VII compares the settling time results which are
obtained based on the circuit level simulations with the results
which are obtained by the theory in Section V (i.e., Eqn. (31)
and Fig. 4). The results are obtained here for the same
conditions in both cases: theory and circuit level realization.
This means that the gain (i.e., the number of stages N) is
almost equal for both cases. Also, the same P-Z pairs’ numbers
are ensured while obtaining the settling time for these two
cases.

Fig. 13 shows how IM is decreasing when increasing the
gain. This is true for both theory and circuit realization; thus,
it verifies the proposed theory in Section IV.

Fig. 13. The Improvement Metric (IM) in settling time when increasing the
gain for both theory and circuit level realization.

However, the decrease in IM for the circuit level realization
is not uniform compared to the theoretical behavior. The
reason is that the distance between all open-loop P-Z pairs in
theory is 1 rad/s, whereas the distance between the open-loop
P-Z pairs in the circuit realization of Fig. 5 is not uniform.

Also, it is expected to have the lowest IM when N = 8,
but IM for N = 7 is slightly lower in the circuit level
realization. The reason is the P-Z cancellation of the 1st and
2nd P-Z pairs in the 7-stage OTA, where ωP1,7 and ωZ1,7 are
allocated at -2.288 x104, while ωP2,7 and ωZ2,7 are allocated
at −1.236 × 106. Thus, two P-Z pairs are with almost no
impact in the closed-loop operation of the 7-stage OTA.

Finally, increasing the circuit gain while having LF zeros
is not only important in reducing the impact of P-Z pairs on
settling time, but it also paves the way to design Many-Stage
CMOS OTAs while having many P-Z pairs.
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Fig. 14. Integrator-based OTA magnitude response: (a) response with no P-Z compensator, (b) response with P-Z compensator (ωZ1 < ωP1), (c) frequency
normalized response of (b), (d) response with P-Z compensator (ωP1 < ωZ1), and (e) frequency normalized response of (d).

VIII. CONCLUSION

A new generalized relationship between frequency response
and settling time was presented in this work addressing the
impact of P-Z pairs/doublets on CMOS OTAs. The proposed
theory showed that using low frequency zeros and cascaded-
gain stages reduces the impact of P-Z pairs on the settling time
of CMOS OTAs. Interestingly, it was shown that increasing the
number of gain-stages reduces the impact of P-Z pairs, while
having such P-Z pairs helps stabilize the OTA. Consequently,
the proposed theory has revealed un-tapped opportunities for
the design of Many-stage CMOS OTAs. A design example of a
2- to 8-stage CMOS OTA was presented, in order to validate
and verify the proposed theory, where the standard 65 nm
TSMC CMOS process was used for the design of the OTA.

APPENDIX A
REDUCING THE TRANSFER FUNCTION COMPLEXITY OF

THE 2-STAGE CMOS OTA

Frequency scaling is a mathematical technique of shifting
the poles and zeros of a TF to a new location in the complex
s-plane, while maintaining the same functional behavior albeit
over a different frequency range, i.e.,

A (p) = A (s)|s=p/a (48)

In this work, frequency normalization is used to reduce the
number of coefficients in the TF of Eqn. (3), as this serves
to simplify the presentation. However, before performing the
normalization on Eqn. (3), and since integrators are ideally at
the core of all OTA implementations, lets us consider having a
DC pole and a finite pole instead of 2 finite poles. Therefore,
the TF of Eqn. (3) is now described as an integrator function
in the Laplace domain with a DC gain, ADC = A1 A2, and a
P-Z pair as follows

A (s) ≈ ADC

s
×

(
1 + s

ωZ1

)
(

1 + s
ωP1

) (49)

This assumption will have some practical implications at
frequencies < ωP_3d B . However, the proposed theory deals
with the P-Z pair which are allocated at frequencies > ωP_3d B ,
thus, these practical implications will be of no significance.

The magnitude response of an undamped integrator is shown
in Fig. 14(a) and can be written with a scale factor ADC
as:

[
A (s) = ADC

/
s
]
. Here ADC represents the magnitude of

the TF at 1 rad/s. However, as an alternative perspective,

ADC can also be viewed as the frequency at which the
magnitude of the TF is unity (which will be referred to as
ωt,RE F ) as depicted by Fig. 14(a). Thus, the frequency and
magnitude axes intercept points form an isosceles right-angled
triangle. By introducing the P-Z pair, the TF will be written
as Eqn. (49).

For the case, 1 rad/s ≤ ωZ1 < ωP1, the magnitude of the
TF will appear as that shown in Fig. 14(b). The net effect
of this P-Z arrangement is that ωt,RE F of the compensated
OTA increases to �t. Inspecting the plot in Fig. 14(b), one
can deduce that

�t = ωP1

ωZ1
· ωt,RE F = ωP1

ωZ1
· ADC (50)

Clearly, the greater the frequency distance between the P-Z
pair, the higher the unity-gain frequency achievable.

For the case when 1 rad/s ≤ ωP1 < ωZ1, then a different
magnitude response appears as shown in Fig. 14(d). In this
case �t is less than ωt,REF. Even though ωP1 < ωZ1 the
expression for �t is the same as that listed in Eqn. (50).

OTAs are required to operate over a large range of frequency
conditions. Rather than design a new TF for each case, a better
approach is to normalize the TF with respect to 1 rad/s and
then translate the TF such that the zeros are shifted to a new
location. On doing so, the poles of the TF are shifted as well.
In this work, the frequency normalization was performed by
setting ωZ1 to 1 rad/s, such as that shown in Fig. 14(c) and (e).
Also superimposed on this figure is the frequency-normalized
unity-gain frequency �t in terms of the open-loop parameters,
where it can be written as in Eqn. (16).

To rewrite the open loop TF of Eqn. (49) using the nor-
malized approach, the “s” Laplace variable will be replaced
with the normalized “p” Laplace variable (i.e., p = s/ωZ1).
On doing so, Eqn. (49) would be written as in Eqn. (15), where
ωZ1 is always assumed to be at 1 rad/s and the value AZ is
always the gain of the integrator at ωZ1 = 1 rad/s, regardless
of the relation between ωP1 and ωZ1. The same concept can
be generalized for N-stages to derive Eqn. (25) and (32).

APPENDIX B
DERIVATION OF THE UNITY STEP RESPONSE

Based on the results found in Eqs. (18), (19) and (22), the
closed loop TF of Eqn. (17) can be approximated as

T (p) = (p + 1)(
1 + p

AZ ωP

) (
1 + p

(1+δCL )

) (51)
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Then the unit step response y(t) can be written as

y (t) = 1 −
(

AZωP

AZωP − 1 − δC L

)
(1 + δC L) e−AZ ωP t

+
(

AZωP

AZωP − 1 − δC L

)
δC Le−(1+δCL )t (52)

Based to Eqn. (16), and as AZωP � 1, y(t) can be
reduced to

y (t) ≈ 1 − (1 + δC L) e−AZ ωP t + δC Le−(1+δCL )t (53)

where δC L is given by Eqn. (21). It is interesting to note that
exponential term with a LF time constant has a multiplicative
term that depends directly on δC L . From Eqn. (21), δC L
depends on two parameters from the open loop response, AZ
and ωP .

The unit step response can be simplified by substituting
Eqn. (21) into (53) and then written as in Eqn. (23).
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