
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021 2535

A Two-Stage Operand Trimming Approximate
Logarithmic Multiplier

Ratko Pilipović , Member, IEEE, Patricio Bulić , Member, IEEE, and Uroš Lotrič

Abstract— We present an approximate logarithmic multiplier
with two-stage operand trimming, which prioritises area and
energy consumption while retains acceptable accuracy. The multi-
plier trims the least significant parts of input operands in the first
stage and the mantissas of the obtained operands’ approximations
in the second stage. We evaluated the multiplier’s efficiency
in terms of error, energy, and area utilisation using NanGate
45nm. The experimental results show that the proposed multiplier
exhibits smaller area utilisation and energy consumption than
the state-of-the-art designs and that it behaves well in image
processing and image classification with convolutional neural
networks.

Index Terms— Logarithmic multiplier, approximate
computing, arithmetic circuit design, Mitchell’s multiplier,
energy-efficient processing.

I. INTRODUCTION

POWER consumption has become a considerable challenge
and a serious obstacle when increasing computing perfor-

mance. It is possible to obtain a significant performance gain
through the shrinking of the CMOS transistor channel length.
As the channel length is reduced, the power per switching
event decreases, which allows for faster switching. At the
same time, the number of transistors per chip increases, which
in turn increases the total chip power. A possible way to
overcome this obstacle is to design devices and algorithms
that require fewer transistors, even at the price of accuracy.

Many applications, e.g., image processing, can produce
an inaccurate output relying on the limited human percep-
tion. Some other applications, including adaptive filtering and
machine learning, can refine their results iteratively, exhibiting
inherent tolerance for a small computation error. Moreover,
many signal processing and machine learning applications
deal with input data distorted by the noise caused by sensors
and quantization processes, setting a limit in the precision
or accuracy. Pursuing meaningless precision in any of the
above cases leads to excessive energy consumption. Therefore,

Manuscript received December 22, 2020; revised February 16, 2021 and
March 9, 2021; accepted March 24, 2021. Date of publication April 1, 2021;
date of current version May 27, 2021. This work was supported in part by
the Slovenian Research Agency (National Research Program Pervasive Com-
puting) under Grant P2-0359 and (Synergy of the Technological Systems and
Processes) under Grant P2-0241 and in part by the Slovenian Research Agency
and Ministry of Civil Affairs, Bosnia and Herzegovina (Bilateral Collaboration
Project) under Grant BI-BA/19-20-047. This article was recommended by
Associate Editor W. Liu. (Corresponding author: Ratko Pilipović.)

The authors are with the Faculty of Computer and Information
Science, University of Ljubljana, 1000 Ljubljana, Slovenia (e-mail:
ratko.pilipovic@fri.uni-lj.si; pa3cio@fri.uni-lj.si; uros.lotric@fri.uni-lj.si).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3069168.

Digital Object Identifier 10.1109/TCSI.2021.3069168

we may introduce a small error in computation that would not
impose noticeable degradation of the output results.

Hence, approximate computing has emerged as a new and
promising paradigm for high-performance and energy-efficient
systems. In approximate computing, a small and acceptable
error may be induced in computing at all layers to achieve
more energy efficient processing. For example, various approx-
imate arithmetic circuits have been designed to save chip area
and energy by generating inaccurate but acceptable results
[1]–[6].

This paper focuses on approximate multipliers, as multi-
plication represents a ubiquitous arithmetic operation found
in various applications. For example, approximate unsigned
multipliers have appeared in some image processing applica-
tions, like sharpening and smoothing, and video compression
[7]–[10], while approximate signed multipliers have performed
well in deep-learning accelerators [11]–[16].

We propose an energy-efficient approximate logarithmic
multiplier with two-stage operand trimming that exhibits
smaller energy consumption and area utilisation than the state-
of-the-art designs. We show that we can deploy the pro-
posed approximate multiplier in image processing and image
classification applications without noticeable degradation in
performance.

In the remainder of this paper, we first review the related
work in the field of approximate multipliers. In section III,
we describe the architecture of the proposed multiplier, which
we further analyse in terms of the error characteristics and
the synthesis results in section IV and section V, respec-
tively. Section VI shows the applicability of the proposed
design in image smoothing and convolutional neural networks
applications. Lastly, we conclude the paper with the main
findings.

II. RELATED WORK

Multipliers are complex circuits. To approximate multipli-
cation, we usually convert it into some simpler operations.
By using algorithmic simplifications, we can significantly
improve multipliers’ energy performance. Approximate multi-
pliers aim to achieve the best possible trade-off between accu-
racy and design efficiency [1], [2], [17]–[19]. The work [2]
provides a comprehensive evaluation of recently proposed
approximate arithmetic circuits, which are compared under
different design constraints and applied to image process-
ing and deep learning applications. Most of these multipli-
ers follow one of the two major approaches: approximate
logarithmic and approximate non-logarithmic multiplication.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4346-5487
https://orcid.org/0000-0002-0536-3316
https://orcid.org/0000-0002-6977-0834

2536 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

As the name suggests, approximate logarithmic multipliers
use the logarithmic product approximation, which replaces the
multiplication with the addition of operands’ logarithms [12],
[13], [15], [20]–[26]. Approximate non-logarithmic multipliers
focus on simplifications of partial product addition [27]–[29],
and partial product generation [7], [9], [30]–[33]. Approximate
logarithmic multipliers deliver a more straightforward design
but exhibit significantly higher computational error. At the
same time, approximate non-logarithmic multipliers have a
lower computational error with a price of higher design
complexity [13].

In this chapter, we briefly review the approximate
logarithmic and the approximate non-logarithmic multipliers.

A. Approximate Logarithmic Multipliers

Mitchell was the first to introduce unsigned loga-
rithmic product approximation [20]. Mitchell’s algorithm
employs the approximation of a binary number logarithm.
It replaces multiplication with addition in the logarithm
domain and serves as the basis of all logarithmic multipli-
ers. Mitchell’s multiplier always underestimates the actual
product, so its main drawback is a high computational error.
Mahalingam et al. [21] improved Mitchell’s multiplier accu-
racy through operand decomposition. The iterative logarithmic
multiplier (ILM), developed by Babić et al. [22], achieves
arbitrary accuracy through an iterative procedure but still
underestimates the actual product.

Liu et al. [23] proposed the unsigned ALM-SOA multiplier,
which uses a truncated binary-logarithm converter and a set-
one-adder (SOA) for the addition of logarithms. The set-
one-adder with k approximation bits (SOAk) sets the k least
significant bits to ‘1’. Hence, the actual sum of the logarithms
is overestimated. As Mitchell’s multiplier always underesti-
mates the actual product, SOA is employed to compensate the
negative errors.

Kim et al. [12], [25] truncated the logarithm representation
of operands to deliver more efficient logic and proposed an
iterative error correction procedure. The authors used the one’s
complement as an approximation of the two’s complement to
handle negative numbers, as was previously proposed in [11].
Their signed Mitchell–trunck-C1 multiplier keeps only k upper
bits of mantissa in the logarithmic representation of input
operands. Due to mantissa truncation, Kim et al. achieved
efficient logarithm and antilogarithm conversions, but at the
same time, mantissa truncation causes a large error. Their
two-stage design uses two truncated logarithmic multipliers
for error correction.

Ansari et al. [15], [24] proposed two improved unsigned
logarithmic multipliers (ILM), with the exact (ILM-EA) and
approximate adder (ILM-AA) in the antilogarithm step. They
introduced two novelties. Firstly, they use a near-one-detector
(NOD) to round both operands to their nearest powers of
two. As the output of the NOD uses a one-hot representation
and some entries in the truth table of a conventional adder
cannot occur, the authors proposed a compact adder for the
reduced truth table. Secondly, they used the modified SOAk
adder. In the modified SOAk, instead of setting all of the k
least significant bits to ‘1’, these bits are set alternately to

‘1’ and ‘0’, which leads to a double-sided error distribution
– one of its major benefits. The proposed ILM-AA is more
accurate and has the smallest error values compared to other
unsigned logarithmic designs in the literature.

Yin et al. [26] proposed unsigned and signed designs
of a dynamic range approximate logarithmic multiplier
(DR-ALM). Mitchell’s multiplier product is always smaller
than its exact counterpart, the DR-ALM dynamically trun-
cates input operands and sets the least significant bit of the
truncated operand to ‘1’ to compensate for negative errors.
DR-ALM uses smaller bit-width logarithmic converters, adder,
and antilogarithmic converter to generate the product due to
the previous truncation of operands.

Pilipović et al. [13] proposed the LOBO approximate mul-
tiplier that uses the radix-4 Booth encoding to compute the
higher part of the product and the logarithmic approximation
to generate the least significant part of the product.

B. Approximate Non-Logarithmic Multipliers
The Booth algorithm is commonly used to design approxi-

mate multipliers where various approaches have been proposed
to simplify the partial product generation stage.

Jiang et al. [30] proposed an approximate radix-8 Booth
encoding multiplier (ABM) using the approximate recoding
adder with and without the truncation of several less significant
bits in the partial product. The approximate recoding adder
is used to calculate the triples of multiplicands in a Wallace
tree. It adds seven upper bits exactly, whereas the nine lower
bits are obtained approximately with 3-input XOR gates.
Among all ABM multipliers, the one with 15-bit truncation
achieves the best overall performance in terms of hardware and
accuracy.

Liu et al. [7] designed approximate Booth multipliers based
on approximate radix-4 modified Booth encoding (R4ABM-k)
algorithms and a regular partial product array that employs an
approximate Wallace tree. The main idea is to generate lower
bits of partial products with approximate radix-4 encoding,
while the upper bits are generated exactly. Radix-4 Booth
approximation is performed through a modified Karnaugh
logic table for exact radix-4 Booth encoding. Two approximate
radix-4 Booth encoders are proposed to speed-up the partial
product generation to generate k least significant partial prod-
uct bits. By changing the value of k, the R4ABM-k multiplier
can achieve different tradeoffs between accuracy and hardware
efficiency.

Approximate hybrid high radix encoding multipliers
(RAD2k) are presented in [9]. The proposed approach aims to
overcome the limitations of high radix Booth encoding through
the omission of hard multiplies. The multiplier employs a
hybrid encoding technique, where the n-bit input operand is
divided into two groups: the upper part of n − k bits and
the lower part of k bits. The configuration parameter, k ≥ 4,
is an even number. The upper part is exactly encoded using
the radix-4 encoding, while the lower part is approximately
encoded with the radix-2k encoding. The approximations are
performed by rounding the radix-2k values to their near-
est power of two. Although this design is highly accurate,
it exhibits a large error for small numbers. The authors showed

PILIPOVIĆ et al.: TWO-STAGE OPERAND TRIMMING APPROXIMATE LOGARITHMIC MULTIPLIER 2537

that RAD1024 delivers the best compromise between energy
reduction and accuracy.

A hybrid low radix encoding-based approximate Booth
multiplier (HLR-BM), proposed in [31], addresses the issue
of generating odd multiples (i.e., multiples of the ±3 multipli-
cand) in the radix-8 Booth encoding. HLR-BM approximates
the ±3 multiplicands to their nearest power of two, such
that the errors complement each other. Similar to RAD2k [9],
the authors employed hybrid encoding in which the least sig-
nificant bits of multiplicand are encoded with the approximate
radix-8 encoding. Due to smaller radix approximate encoding,
HLR-BM achieves higher accuracy than RAD2k , but offers
smaller energy and area gains.

In [32], the authors proposed hybrid partial product-based
building blocks by considering the probability distribution
of the input operands. While [31] concentrated on sim-
plification of Booth encoding, here, the authors focused
on decomposing an 8-bit multiplier into 4-bit approximate
multipliers. An efficient hardware implementation of approx-
imate 4-bit multipliers uses the high-performance approx-
imate NOR-based half adder and full adder cells. The
authors used the proposed recursive partitioning to implement
8-bit multipliers (Ax8). Among the three different strategies
(Ax8-1/2/3), Ax8-3 exhibits the smallest error and energy.

III. THE PROPOSED MULTIPLIER

In fixed-point computation, we must carefully select the
numbers’ bit-width, as it directly determines the range of
values we can represent. We can obtain a very rough estimate
of a number’s value from its leading-one bit. The more bits
we consider after the leading-one bit, the more accurate is
the estimated number’s value and the more complex becomes
the arithmetic circuitry. Many applications may deliver an
acceptable result even if we use only the leading-one bit and
a few bits that follow.

The two-stage operand trimming logarithmic multiplier (TL)
exploits this fact and splits the operands into two parts. The
multiplier then uses only one part of an operand in the
following way: if the upper part contains at least one non-zero
bit, then the upper part enters the multiplier; otherwise,
the lower part enters the multiplier. Thus, after splitting the
operands, the multiplier operates on the reduced number of
bits, leading to a smaller design. However, this approach
requires additional logic at the multiplier’s input to select the
operands’ important parts and at the multiplier’s output to form
the product correctly.

A. Background
The decimal value of a signed z-bit number Z in two’s

complement is

Z = −bZ ,z−12z−1 +
z−2�
i=0

bZ ,i2i , (1)

where bZ ,i represents the i -th bit of Z . To convert the binary
number into its logarithm, we separate the sign sZ = sign(Z)
and the absolute value

|Z | = 2kZ +
kZ −1�
i=0

b|Z |,i 2i = 2kZ (1 + m Z), (2)

Fig. 1. The circuitry for obtaining the sign and the approximation X of the
operand X0.

where the exponent kZ = �log2 |Z |� denotes the position of
the leading one bit and

m Z = 2−kZ

kZ −1�
i=0

b|Z |,i2i , (3)

represents the mantissa. According to [20], we approximate
the logarithm of |Z | as

log2 |Z | = kZ + log2(1 + m Z) ≈ kZ + m Z . (4)

B. Logarithm Conversion of Operands

To get the final approximation �P0 of the exact product P0 =
X0 · Y0, we start by computing the approximate logarithms
of the n-bit signed operands X0 and Y0. Conversion of both
operands follows the same steps, so we limit the detailed
description to operand X0 only. Fig. 1 illustrates the circuitry
used to obtain operand’s sign from the most significant bit and
approximate its absolute value |X0| by one’s complement. In
the schemes, a thick line with designated bit-width represents
a bus, while a thin line represents a single wire. To get
|X0|, we first take the most significant bit, i.e., the sign bit
sX0 = bX0,n−1, from the bus X0. Then we drive n instances
of the sign bit along with X0 into XOR. In the first operand
trimming stage, we split the absolute value |X0| into two parts:
the v-bit upper part and the (n − v)-bit lower part, where
v ≥ n/2. We use the OR-reduction

u X0 = �n−1
i=n−v b|X0|,i =

�
1, |X0| ≥ 2n−v

0, otherwise
(5)

to detect if there is any non-zero bit in the upper part. If at least
one non-zero bit exists, we approximate the absolute value
with its v-bit upper part, otherwise, we approximate it with
its (n − v)-bit lower part. In the latter case, all upper-part bits
are zero, so we can drive the v lower bits to the multiplexer.
As the most significant bit of the absolute value is always
‘0’ due to the previous XOR with the same bit, we use wire
routing to shift left the upper part by one place and set its
least significant bit, thus getting the mean value approximation
of the neglected bits. We illustrate this operation by the fork
and the join patterns: from the v upper bits, we take out the
most significant bit b|X0|,v−1 at the fork, and drive v − 1
remaining bits to the join, where we attach ‘1’ at the least

2538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

Fig. 2. The circuitry used to calculate the exponent and the mantissa.

significant position. The multiplexer in Fig. 1 outputs the
v-bit approximation

X = u X0(2�|X0|/2n−v� + 1) + (1 − u X0)|X0|. (6)

We can interpret the expression 2�|X0|/2n−v� + 1 as shifting
the absolute value of an operand n − v − 1 places right and
setting the least significant bit.

Fig. 2 illustrates the binary-to-logarithm circuitry. We use
the v-bit leading-one detector to extract the leading-one bit in
X . The leading-one bit then enters the v-bit priority encoder
to obtain the �log2 v�-bit exponent kX . The right side of the
circuitry extracts the mantissa mt

X .
In the second operand trimming stage, we propose a new

mantissa extractor. To further reduce the overall complexity
of the binary-to-logarithm conversion circuitry, we propose to
keep only w < v leftmost bits in the mantissa. In the following
text, we refer to the obtained mantissa as trimmed mantissa
mt

X . As w is a constant value, we can replace the costly
barrel shifter with a simple AND-OR net. Fig. 3 illustrates
the extraction of the i -th bit. In the first step, we shift the
leading-one bit w − i places right. For the i -th bit, the value
w − i is constant; therefore, we can implement the shift
as a simple wire routing. In the second step, we perform
bit-wise AND between the shifted leading-one bit and X ,
X∗ = (2kX 	 (w − i)) ∧ X . In the third step, we perform
bit-by-next-bit OR-reduction on the result to obtain the i -th bit
of the trimmed mantissa mt

X,i = �n−1
i=0 bX∗,i . We set the least

significant bit of the trimmed mantissa mt
X,0, thus enabling the

mean value approximation of the trimmed bits. Fig. 4 shows
the circuitry for extraction of the i -th trimmed mantissa bit.
Note that bits from X and 2k , which we drive to the AND,
are mutually shifted by w − i .

Employment of mantissa extractor reduces delay in the loga-
rithm conversion circuitry. The critical path (i.e. the path with
the maximal delay) passes either through mantissa extractor
or priority encoder, while in previous designs (e.g. [12], [23])
the critical path includes the priority encoder and the barrel
shifter.

C. Summation and Antilogarithm Conversion

The approximate product’s logarithm is the sum of approx-
imate logarithms of both input operands

kP + m P = kX + mt
X + kY + mt

Y , (7)

Fig. 3. The extraction of the i-th bit of the mantissa when v = 8, w = 4,
kX = 5, and i = 1.

Fig. 4. The circuitry for the extraction of the i-th bit of the trimmed mantissa.

where the �1 + log2 v� most significant bits represent the
integer exponent kP , and the w least significant bits form the
fractional mantissa m P .

To obtain the approximate intermediate product�P = (1 + m P) · 2kP , (8)

we use the circuitry depicted in Fig. 5. Due to the trim-
ming, the adder and the barrel shifter have reduced bit-
width manifesting in small size and delay. We first form
operands’ approximate logarithms by concatenating ‘0’ with
its exponent and mantissa. The approximate logarithms enter
the �1 + log2 v + w�-bit adder to get the approximate
logarithm of the intermediate product with the �1+log2 v�-bit
exponent kP and the w-bit mantissa m P . A number, formed
by concatenating ‘1’ and the mantissa m P , enters the barrel
shifter that shifts it left by kP bits. The output of the barrel
shifter is a (2v + w)-bit number. As the approximations X an
Y are v-bit numbers, the output’s upper 2v bits represent the
approximate intermediate product �P .

Finally, we form the final approximation�P0 = sX0 sY0 2(n−v−1)(u X0+uY0) · �P, (9)

where we shift left the approximate intermediate product �P
to compensate for the shift of an operand n − v − 1 places
right in the first trimming phase (6). Recall that u X0 and
uY0 (5) are bits that identify whether the upper part of input
operands is used in further processing. The circuitry in Fig. 6
uses a multiplexer to select the appropriately shifted �P based
on the bits u X0 and uY0 . If we take both lower parts of the
input operands, then �P is already the absolute value of the

PILIPOVIĆ et al.: TWO-STAGE OPERAND TRIMMING APPROXIMATE LOGARITHMIC MULTIPLIER 2539

Fig. 5. The antilogarithm conversion circuitry.

Fig. 6. The output circuitry.

final product approximation (mutiplexer input 00). If we take
one lower part and one upper part of the input operands, we
shift the approximate intermediate product (n − v − 1) bits
to the left (mutiplexer input 01). And finally, if we take both
upper parts of the input operands, we shift the approximate
intermediate product 2(n − v − 1) bits to the left (mutiplexer
input 10). Note that these shifts are just simple wire routings.
As the final approximate product is 2n-bit wide, we also
append the required number of leading zeros. We calculate the
sign of the final product approximation as an XOR operation
between the operands’ sign bits. Again, we approximate the
sign conversion using one’s complement. In the rest of the
paper, we denote the two-stage operand trimming logarithmic
multiplier as TLn-v/w.

With minor modifications of the proposed design, we could
also implement an unsigned multiplier. To do so, we have to
remove the sign conversion circuitry and drive the upper v-bits
of |X0| directly to the multiplexer in the input stage (Fig. 1),
and also remove the sign conversion circuitry from the output
stage (Fig. 6).

IV. ERROR ANALYSIS

The error analysis of the TLn − v/w multiplier includes
an error study and an empirical assessment of the error
characteristics.

Fig. 7. Operand trimming in the TL16-8/4 multiplier.

A. Error Study

The TLn − v/w multiplier introduces errors in the log-
arithm and antilogarithm conversion steps. Fig. 7 shows
that the highest error in the logarithm conversion emerges
when the input operand is 2n−v , from where it exponentially
decreases. Mantissa trimming introduces small errors from 2w

onwards.
Firstly, we limit our analysis to the approximate products of

unsigned operands X0 = 2kX and Y0 = 2kY , where kX , kY ∈
[0, n − 1). These values are multiples of 2n−v , hence having
the largest relative approximation errors (Fig. 7). The operand
approximation of X0 = 2kX ,�X0 = 2kX (1 + rkX + 2−w), (10)

with

rkX =
�

2−kX +(n−v)−1, n−v ≤ kX < n−v+w−1

0, otherwise,
(11)

comes with two exponential terms, originating from the mean
value approximation of the trimmed bits. The antilogarithm
conversion approximates the product P0(X0, Y0) = 2kX +kY as

�P0(X0, Y0)=
�

2kX +kY (2 + 22−w), kX =kY =n−v

2kX +kY (1+rkX +rkY +21−w), otherwise.

(12)

The error distance ED(X0, Y0) = |P0(X0,Y0) − �P0(X0,Y0)|
increases with kX and kY . Fig. 8 shows that the relative error
distance RED(X0, Y0) = ED(X0, Y0)/|P0(X0, Y0)| is large for
operands with non-zero rkX or rkY .

Assuming that operands with non-zero rkX or rkY lead
to products with a large relative error, we can estimate the
pessimistic theoretical lower bound of the portion of the
products with the relative error distance below 21−w,

PRED<21−w > 1 − Nr (2n − Nr)

2n−1 · 2n−1 Nr = (2w−1− 1)2n−v ,

(13)

2540 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

Fig. 8. The relative error distance of products of operands 2kX and 2kY in
the TL16-8/4 multiplier.

TABLE I

ERROR METRICS FOR THE TL MULTIPLIER

where the nominator represents products with non-zero rkX or
rkY , and the denominator represents the number of all possible
products.

B. An Empirical Assessment of Error Characteristic

To empirically assess the error, we examine the influence
of parameters v and w for all pairs of operands’ values in the
interval [−2n−1, 2n−1 − 1] in terms of

• NMED, the mean error distance, normalised to the max-
imal product [7], [23],

• MRED, the mean relative error distance,
• PRED<11%, the portion of products with relative error dis-

tance smaller than 11%, as it represents the maximal error
of the Mitchell logarithm product approximation [20].

Table I shows error metrics for different instances of TL
multipliers. In the 16-bit multipliers, the parameter v has a
significant influence on MRED and PRED<11% but does not
affect NMED, which is mainly affected by the products of
large operands. The instances with wider mantissa provide
more accurate product approximations. A large drop in NMED
from w = 3 to w = 4 indicates that we should prefer
only multipliers with w ≥ 4. The smaller 8-bit multipliers
have significantly larger errors NMED and MRED and lower
PRED<11%.

Fig. 9 shows the distribution of relative error distance for
the TL16-8/4 multiplier and the TL8-4/4 multiplier. The value

Fig. 9. The portion of products with the relative error distance smaller than
p for the TL16-8/4 and TL8-4/4 multipliers.

Fig. 10. Error measures NMED and MRED as a function of the mantissa
width w with n = 32, v = 16 (left) and as a function of the bit-width n with
v = n/2, w = 4 (right).

PRED<12.5% = 95% for the TL16-8/4 multiplier is above
the calculated theoretical lower-bound of 89% (13), which
confirms that a large number of operand values with non-zero
rkX or rkY still leads to a good product approximation. A much
lower value of PRED<12.5% = 63% for the TL8-4/4 multiplier
indicates its susceptibility to higher approximation errors.

Fig. 10 presents NMED and MRED of the TL multiplier
when varying the mantissa’s width w and multiplier’s bit-width
n. With increasing w, both measures rapidly decrease at
the beginning and finally stabilise for w ≥ 8, as wider
mantissas cannot compensate for the error introduced by the
operand trimming (parameter v). The TL multiplier’s bit-width
n influences the error measures in a similar way – after the
initial rapid drop both measures stabilise for n ≥ 20.

V. SYNTHESIS RESULTS

We analyse the hardware performance of the proposed
TL multipliers [34] in terms of power, area, delay, and

PILIPOVIĆ et al.: TWO-STAGE OPERAND TRIMMING APPROXIMATE LOGARITHMIC MULTIPLIER 2541

TABLE II

THE SYNTHESIS RESULTS AND NMED FOR 16-BIT MULTIPLIERS

power-delay-product (PDP) and compare them with several
state-of-the-art approximate multipliers. In addition to hard-
ware metrics, we compare NMED for all evaluated multi-
pliers. The selected multipliers were implemented in Verilog
and synthesised to 45nm Nangate Open Cell Library. The
timing constraints, used for all evaluated designs, specify
clock-related parameters, which affect synthesis and timing
analysis. We set a clock signal with a period of 5ns, hence
not violating a critical path. To evaluate the power, we used
timing with a 10MHz virtual clock, a 5% signal toggle rate
and output load capacitance equal to 10fF.

A. 16-Bit Multipliers

Table II shows the synthesis results for 16-bit multipliers.
The multipliers in [15], [20], [23] are all unsigned multipliers,
while the proposed multiplier, and the multipliers in [7], [9],
[12], [13], [26], [31] are signed. To compare all multipliers
fairly, we have extended the unsigned multipliers to signed in
the same way as in the proposed design by adding the logic for
operand absolute value computation and the logic for assigning
a sign to the approximate product.

The parameters v and w affect the size of the TL multiplier
circuitry. The smaller v and w lead to a simpler logarithm
and antilogarithm conversion, resulting in smaller delay, area
utilisation, and PDP, but increased NMED. The proposed mul-
tipliers utilise 40% to 50% of the area and consume only 25%
to 40% of the energy required in the exact radix-4 multiplier.
The TL16-8/3 and TL16-8/4 multipliers outperform the state-
of-the-art multipliers in every hardware metrics.

Fig. 11 reveals a correlation between PDP and NMED for all
16-bit multipliers with PDP lower than 65fJ. On the one hand,
the RAD1024 [9] and LOBO12-12/8 [13] multipliers have the

Fig. 11. PDP vs NMED for the 16-bit multipliers.

smallest NMED but have a large energy consumption. On the
other hand, the TL multipliers belong to the approximate
logarithmic multipliers, prioritising efficient design over more
accurate product approximation.

Comparing the multipliers TL16-8/4, and TL16-9/4 in
Table II indicates that the best choice for operand trimming
is v = n/2. From Table I and Fig. 10 we can see that 16-bit
multipliers with w ≥ 4 have NMED and MRED fairly close
to minimal achievable error values. From Table II we can
see that the 16-bit multiplier with w = 5 has more than
25% larger PDP than the multiplier with w = 4, whereas
NMED is 15% smaller. As our goal is energy efficiency, the
TL16-8/4 multiplier becomes the design of our choice.

B. Multipliers of Other Bit-Widths

Table III shows the synthesis results for 8-bit multipliers.
Again, we have extended the unsigned multipliers [12], [20],
[23] to support signed operands. Although the TL multipliers
TL8-4/2 and TL8-4/3 are the best in terms of hardware
measures, all other multipliers fairly outperform them in
terms of the error measure NMED. Considering the error and
hardware measures, we selected the TL8-4/3 multiplier for the
application studies.

Fig. 12 shows the dependency of the power-delay product
and the circuit size on the mantissa’s width w and the
multipliers bit-width n. Rather steep dependency, for example,
the 32-bit multiplier has about double PDP and size compared
to the 16-bit version, suggests to keep w and especially n low.

C. Discussion

Approximating the logarithm from the trimmed operand
instead of the whole operand simplifies the logarithmic conver-
sion circuitry in Fig. 2. When extracting the most significant
bit’s position, the proposed multiplier uses a smaller v-bit
leading-one detector and priority encoder circuits instead of

2542 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

TABLE III

THE SYNTHESIS RESULTS AND NMED FOR 8-BIT MULTIPLIERS

Fig. 12. Hardware measures, PDP and area, as a function of the mantissa
width w with n = 16, v = 8 (left) and as a function of the bit-width n with
v = n/2, w = 4 (right).

larger n-bit circuits. Similarly, it extracts the mantissa from
a v-bit trimmed operand, resulting in a simpler mantissa
extractor. Considerable hardware savings are also in logarithm
summation and antilogarithm conversion in Fig. 5. The pro-
posed multiplier employs a simpler adder and a simpler barrel
shifter due to a shorter mantissa. All these improvements
considerably reduce the overall area and delay. However,
to benefit from them, we need the operand trimming stage
in Fig. 1 and the output stage in Fig. 6 that increase the
multiplier’s overall complexity. As these stages mainly consist
of simple multiplexers and wire routing, we can still profit
from the design by adequately selecting the design parameters
v and w.

The superiority of the proposed multiplier’s hardware met-
rics emerges from its input stage. The operand’s logarithm
approximation is determined based on two fixed ranges of the
operand’s value, contrary to the dynamic range approach used
in the DR-ALM multiplier [26]. Hence, the proposed method

is more straightforward, but, with coarse-grain approximation,
introduces larger errors.

VI. APPLICATION CASE STUDIES

We show the applicability of the TL16-8/4 multiplier and
the TL8-4/3 multiplier in the image smoothing and the image
classification with convolutional neural networks. In both
applications, we compare the TL16-8/4 multiplier with the
state-of-the-art approximate multipliers Mitchell–trunc6-C1,
Mitchell–trunc8-C1, Mitchell–trunc6-C1UB, Mitchell–
trunc8-C1UB [12], ILM-AA [15], ALM–SOA11 [23],
DR–ALM4 [8], and RAD1024 [9] and the TL8-4/3 multiplier
with the Mitchell–trunc5-C1, Mitchell–trunc5-C1UB [12],
ALM–SOA4, ALM–SOA6 [23], DR–ALM3, DR–ALM4 [8]
and Ax8_3 [32] multipliers.

A. Image Smoothing

Image smoothing reduces noise and details in the image [35]
and is implemented by convolving the image with a smoothing
kernel

1

256

⎡⎣21 31 21
31 48 31
21 31 21

⎤⎦ . (14)

To evaluate the influence of product approximation, we use the
mean structural similarity index (MSSIM) [36] and the peak-
signal-to-noise ratio (PSNR) between the image smoothed
with the exact multiplier and the image smoothed with an
approximate multiplier. We perform the tests on five 16-bit
grayscale images from TESTIMAGES database [37]: building,
cards, flowers, snail, and wood game. The pixels in an input
image are uniformly shifted from [0, 216) to [−215, 215) to
adapt for signed 16-bit multipliers. For signed 8-bit multipliers
analysis, we additionally scale the images to 8-bit range.

Table IV shows the results for image smoothing. The
TL16-8/4 multiplier delivers MSSIM and PSNR similar to
the Mitchell–trunc8-C1 [12] multiplier, and better than the
Mitchell–trunc6-C1 [12] multiplier and the DR–ALM4 [26]
multiplier. However, multipliers ALM–SOA11 [23] and
RAD1024 [9] with very low NMED outperform the pro-
posed TL16-8/4 design. Similarly, the TL8-4/3 multi-
plier outperforms the DR–ALM4 [26] multiplier and the
Ax8_3 [32] multiplier in terms of PSNR, but lags behind the
Mitchell–trunc5-C1 [12] multiplier and the ALM–SOA11 [23]
multiplier. Nevertheless, high MSSIM and acceptable PSNR
indicate that the TL multipliers can replace the exact multiplier
without a significant image quality decrease.

Fig. 13 visualizes Wood game image smoothing with 16-bit
multipliers. The most obvious difference is in a continuous
gradation of grey tone in the image background – more
pronounced posterization (banding) can be observed in the
images with lower MSSIM and PSNR.

B. Image Classification With Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep
neural networks, mainly used in image classification and
analysis [38]. The neural network processing involves a vast
number of multiplications. We anticipate that the adaptable

PILIPOVIĆ et al.: TWO-STAGE OPERAND TRIMMING APPROXIMATE LOGARITHMIC MULTIPLIER 2543

TABLE IV

THE MSSIM AND PSNR MEASURE IN THE IMAGE SMOOTHING APPLICATION

Fig. 13. Wood game image smoothing with 16-bit multipliers.

nature of CNNs makes them resilient to errors introduced by
approximate multiplication.

To assess the influence of approximate multiplication on
the inference phase, we deploy approximate multipliers in a
CNN for image classification. For experiments, we utilise the
Caffe framework [39] and replace the exact multiplication
with the approximate one in the inference phase. Notably,
we replace the calls to the cuBLAS multiplication routines
with our C/C++ routines that implement various approximate
multiplier designs.

As a test case, we select the ResNet-20 [40] network and
the CIFAR10 dataset [41]. We repeat the training ten times
using fixed-point arithmetic, random weight initialisation, and
the predetermined split to training and test set [41]. To boost

TABLE V

INFLUENCE OF APPROXIMATE MULTIPLICATION ON TOP-1 AND

TOP-3 SCORES FOR THE RESNET-20 NETWORK

the training, we preprocess the images by subtracting their
mean value.

We initially train the network in floating-point arithmetic
for 64, 000 iterations using stochastic gradient descent with
the learning rate decay. To adapt the network to approximate
multiplication, we perform additional 15, 000 iterations of
training, employing the approximate fixed-point multiplication
in the inference phase and the exact floating-point multipli-
cation in the learning phase. We quantify the floating-point
weights and inputs to the signed fixed-point representation
with q fractional bits as �Z ·2q�/2q , where Z is a floating-point
value. We set q = 12 for the 16-bit multipliers and q = 6
for the 8-bit multipliers, which gives the smallest accuracy
degradation for the exact radix-4 multiplier.

Table V presents the classification accuracy on a test set
in terms of top-1 and top-3 scores. The top-t score rep-
resents the rate that the target label belongs to the t top

2544 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 6, JUNE 2021

predicted classes. For the top-1 score, the TL16-8/4 mul-
tiplier achieves lower classification accuracy than mul-
tipliers Mitchell–trunc6-C1 [12], ALM–SOA11 [23], and
RAD1024 [9] but comparable accuracy to the DR–ALM4 mul-
tiplier [26]. In terms of a more relaxed top-3 score, the pro-
posed TL16-8/4 multiplier is in line with the more accurate
multipliers and outperforms the DR–ALM4 multiplier [26].

In general, the 8-bit multipliers perform worse than the
16-bit multipliers. The 8-bit multipliers are less accurate than
the 16-bit multipliers regarding the top-1 score, while the
difference drops in terms of the top-3 score. Performance
of the TL8-4/3 multiplier follows the error analysis results
– higher values of error measures correlate with lower clas-
sification accuracy. Hence, among the tested 8-bit multipliers,
the DR-ALM4 multiplier is probably a better choice than the
TL8-4/3 multiplier, as it achieves better accuracy with slightly
worse hardware measures.

VII. CONCLUSION

This paper presents an energy-efficient approximate loga-
rithmic multiplier with two-stage operand trimming, which
aims to deliver improvements in the area and energy
consumption of approximate logarithmic multipliers.

The multiplier splits the input operands into the upper and
lower parts and uses only the parts that give better approxi-
mations to the exact operands’ values. This way, the bit width
is reduced, which results in simpler circuitry at the expense
of a large error for some products. Additionally, the proposed
multiplier trims the mantissas of the shortened operands. For
this operation, we propose a new mantissa extractor based
solely on a simple AND-OR net to lower delay and energy
consumption. Moreover, a shorter operand and mantissa lead
to a smaller adder and barrel shifter in the antilogarithm
conversion circuitry.

Using the error analysis, we derive a lower bound of a
portion of acceptable errors and empirically show that the
TL16-8/4 multiplier computes more than 90% of products with
a relative error smaller than 12.5%. The TL16-8/4 multiplier
exhibits smaller energy consumption and area utilisation than
the state-of-the-art designs.

Although the proposed multiplier offers significant improve-
ments in energy consumption and area utilisation, the relatively
large normalised mean error distance may be a significant
drawback for its deployment. Nevertheless, the proposed mul-
tiplier behaves well in image processing and image classi-
fication with convolutional neural networks. From the error
analyses, we can see that the 8-bit design has a significantly
larger error than the 16-bit design. While the 16-bit design
behaves well in both application case studies, the 8-bit design
is more appropriate for less demanding applications, like
image smoothing in our case. The final choice of the appropri-
ate multiplier merely depends on the application requirements
prioritising energy over the accuracy or vice versa. The exper-
imental results suggest that the proposed multiplier can be
useful in error-resilient applications, in intensive computing,
or mobile devices, as it delivers more computational power per
chip area and per power-delay product than the state-of-the-art
logarithmic multipliers.

We have successfully deployed the proposed multiplier in
the inference phase on CNNs. The remaining challenge is the
training of the neural networks. In our previous work [11],
we showed that it is possible to train the fully connected layers
with approximate multipliers efficiently. In future research into
the topic, we should investigate the approximate multipliers
influence in the training phase of much larger convolutional
neural networks. We anticipate that with an improved training
strategy, we can lower the multipliers’ accuracy requirements
and provide even more area and energy-efficient designs.

REFERENCES

[1] W. Liu, F. Lombardi, and M. Schulte, “Approximate computing: From
circuits to applications [Scanning the issue],” Proc. IEEE, vol. 108,
no. 12, pp. 2103–2107, Dec. 2020.

[2] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, Dec. 2020.

[3] A. Agrawal et al., “Approximate computing: Challenges and opportuni-
ties,” in Proc. IEEE Int. Conf. Rebooting Comput. (ICRC), San Diego,
CA, USA, Oct. 2016, pp. 1–8.

[4] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, p. 62, Mar. 2016.

[5] N. E. Jerger and J. S. Miguel, “Approximate computing,” IEEE Micro,
vol. 38, no. 4, pp. 8–10, Jul. 2018.

[6] L. Eeckhout, “Approximate computing, intelligent computing,” IEEE
Micro, vol. 38, no. 4, pp. 6–7, Jul. 2018.

[7] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design
of approximate radix-4 booth multipliers for error-tolerant computing,”
IEEE Trans. Comput., vol. 66, no. 8, pp. 1435–1441, Aug. 2017.

[8] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and
M. Pedram, “RoBA multiplier: A rounding-based approximate multi-
plier for high-speed yet energy-efficient digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401,
Feb. 2017.

[9] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi, “Approximate
hybrid high radix encoding for energy-efficient inexact multipliers,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 3,
pp. 421–430, Mar. 2018.

[10] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approximate
unsigned multipliers with configurable error recovery,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 189–202, Jan. 2019.

[11] U. Lotrič and P. Bulić, “Applicability of approximate multipliers
in hardware neural networks,” Neurocomputing, vol. 96, pp. 57–65,
Nov. 2012. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231212003311

[12] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers for
convolutional neural networks,” IEEE Trans. Comput., vol. 68, no. 5,
pp. 660–675, May 2019.

[13] R. Pilipović and P. Bulić, “On the design of logarithmic multiplier
using radix-4 booth encoding,” IEEE Access, vol. 8, pp. 64578–64590,
Apr. 2020.

[14] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 28, no. 2, pp. 317–328, Feb. 2020.

[15] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved logarithmic
multiplier for energy-efficient neural computing,” IEEE Trans. Comput.,
vol. 70, no. 4, pp. 614–625, Apr. 2020.

[16] M. S. Kim, A. A. Del Barrio Garcia, H. Kim, and N. Bagherzadeh,
“The effects of approximate multiplication on convolutional neural net-
works,” IEEE Trans. Emerg. Topics Comput., early access, Jan. 12, 2021,
doi: 10.1109/TETC.2021.3050989.

[17] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Walking
through the energy-error Pareto frontier of approximate multipliers,”
IEEE Micro, vol. 38, no. 4, pp. 40–49, Jul. 2018.

[18] Z. Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh, and N. S. Kim,
“SiMul: An algorithm-driven approximate multiplier design for machine
learning,” IEEE Micro, vol. 38, no. 4, pp. 50–59, Jul. 2018.

[19] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospective
view of approximate computing [Point of view],” Proc. IEEE, vol. 108,
no. 3, pp. 394–399, Mar. 2020.

http://dx.doi.org/10.1109/TETC.2021.3050989

PILIPOVIĆ et al.: TWO-STAGE OPERAND TRIMMING APPROXIMATE LOGARITHMIC MULTIPLIER 2545

[20] J. N. Mitchell, “Computer multiplication and division using binary loga-
rithms,” IEEE Trans. Electron. Comput., vol. EC-11, no. 4, pp. 512–517,
Aug. 1962.

[21] V. Mahalingam and N. Ranganathan, “Improving accuracy in Mitchell’s
logarithmic multiplication using operand decomposition,” IEEE Trans.
Comput., vol. 55, no. 12, pp. 1523–1535, Dec. 2006.

[22] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic multi-
plier,” Microprocessors Microsyst., vol. 35, no. 1, pp. 23–33, Feb. 2011.

[23] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[24] M. S. Ansari, B. F. Cockburn, and J. Han, “A hardware-efficient
logarithmic multiplier with improved accuracy,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 928–931.

[25] H. Kim, M. S. Kim, A. A. Del Barrio, and N. Bagherzadeh, “A cost-
efficient iterative truncated logarithmic multiplication for convolutional
neural networks,” in Proc. IEEE 26th Symp. Comput. Arithmetic
(ARITH), Kyoto, Japan, Jun. 2019, pp. 108–111.

[26] P. Yin, C. Wang, H. Waris, W. Liu, Y. Han, and F. Lombardi, “Design
and analysis of energy-efficient dynamic range approximate logarithmic
multipliers for machine learning,” IEEE Trans. Sustain. Comput., early
access, Jun. 25, 2020, doi: 10.1109/TSUSC.2020.3004980.

[27] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and
error recovery modules,” IEEE Embedded Syst. Lett., vol. 10, no. 1,
pp. 6–9, Mar. 2018.

[28] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
“Approximate multipliers based on new approximate compressors,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4169–4182,
Dec. 2018.

[29] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate
multiplier design using novel dual-stage 4:2 compressors,” IEEE Access,
vol. 8, pp. 48337–48351, Mar. 2020.

[30] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 booth
multipliers for low-power and high-performance operation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638–2644, Aug. 2016.

[31] H. Waris, C. Wang, and W. Liu, “Hybrid low radix encoding-based
approximate booth multipliers,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 67, no. 12, pp. 3367–3371, Dec. 2020.

[32] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, “Hybrid par-
tial product-based high-performance approximate recursive multipliers,”
IEEE Trans. Emerg. Topics Comput., early access, Aug. 4, 2020,
doi: 10.1109/TETC.2020.3013977.

[33] G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of approxi-
mate circuits with runtime reconfigurable accuracy,” IEEE Access, vol. 8,
pp. 53522–53538, Jul. 2020.

[34] R. Pilipović, “TL multiplier–supplemental materials,” IEEE Dataport,
2021, doi: 10.21227/CBMZ-zz42.

[35] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Saddle River, NJ, USA: Prentice-Hall, 2006.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[37] N. Asuni and A. Giachetti, “TESTIMAGES: A large data archive
for display and algorithm testing,” J. Graph. Tools, vol. 17, no. 4,
pp. 113–125, Feb. 2013, doi: 10.1080/2165347X.2015.1024298.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Lake Tahoe, NV, USA: Curran Associates,
Dec. 2012, pp. 1097–1105.

[39] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia. New York,
NY, USA: Association for Computing Machinery, 2014, pp. 675–678,
doi: 10.1145/2647868.2654889.

[40] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1398–1406.

[41] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., Apr. 2009.
[Online]. Available: https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf

Ratko Pilipović (Member, IEEE) received the B.Sc.
and M.Sc. degrees in electrical engineering from
the Faculty of Electrical Engineering, University in
Banja Luka, Bosnia and Herzegovina, in 2015 and
2017, respectively. He is currently pursuing the
Ph.D. degree with the Faculty of Computer and
Information Science, University of Ljubljana, Slove-
nia. His research interests include approximate com-
puting, arithmetic circuit design, FPGA design,
embedded processing, and machine vision.

Patricio Bulić (Member, IEEE) received the B.Sc.
degree in electrical engineering, and the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Ljubljana, Slovenia, in 1998, 2001, and
2004, respectively. He is currently an Associate
Professor with the Faculty of Computer and Infor-
mation Science, University of Ljubljana. His main
research interests include computer architecture,
digital design, approximate computing, computer
arithmetic, and parallel processing.

Uroš Lotrič received the B.Sc. degree in physics,
and the M.Sc. and Ph.D. degrees in computer science
from the University of Ljubljana, Slovenia, in 1994,
1997, and 2000, respectively. He is currently an
Associate Professor with the Faculty of Computer
and Information Science, University of Ljubljana.
His main research interests include information the-
ory, neural networks, approximate computing, and
high performance computing.

http://dx.doi.org/10.1109/TSUSC.2020.3004980
http://dx.doi.org/10.1109/TETC.2020.3013977
http://dx.doi.org/10.21227/CBMZ-zz42
http://dx.doi.org/10.1080/2165347X.2015.1024298
http://dx.doi.org/10.1145/2647868.2654889

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

