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Hardware Self-Organizing Map Based on Digital
Frequency-Locked Loop and Triangular

Neighborhood Function
Hiroomi Hikawa , Member, IEEE

Abstract— This paper proposes a unique hardware
architecture for a self-organizing map (SOM) that mimics
the biological brain by using pulse mode operation. In the
proposed SOM, vector elements are given as in the form of
frequency modulated signals, and digital frequency-locked
loops (DFLLs) in neurons handle the computations of the
vector elements. The SOM is trained by unsupervised learning,
where the winner neuron that has the nearest weight vector
is found first. In the proposed SOM, the winner neuron is
found by counting cycle slips between the signals that carry
input and weight vectors. After the winner neuron is found,
weight vectors selected by a neighborhood function are updated
toward the input vector. Triangular neighborhood function that
is implemented by using an attenuating enable signal for the
DFLLs, is employed. To evaluate the proposed SOM and its
building components, VHDL simulations and experiments using
an FPGA were conducted. Compared to the previous work,
the operation speed and learning capability were significantly
improved. Novelty of the proposed architecture is it uniquely
uses a pulse-based operation that mimics the biological brain,
and it was verified that unsupervised learning can be realized
with neurons communicating with each other using frequency
modulated pulse signals.

Index Terms— Self-organizing map, digital frequency-locked
loop, frequency modulated pulse signal, triangular neighborhood
function, FPGA.

I. INTRODUCTION

THE self-organizing map (SOM) that was proposed by
Kohonen [1] is a special type of artificial neural network

(ANN). The SOM, which is trained by an unsupervised
learning algorithm, performs a nonlinear mapping from a given
high-dimensional input vector space to a lower-dimensional
map of neurons, and it has been used to visualize, interpret,
and classify large high-dimensional data.

In general, substantial parallelism is found in the algo-
rithms of ANNs including the SOM. Therefore, a parallel
hardware architecture is a suitable platform for implementing
the ANNs and SOM. Many researchers have been developing
VLSI implementations of the neural networks using various
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techniques, ranging from digital to analog and even optical.
Dedicated digital or analog VLSI implementation is crucial
for building fast ANNs. The primary disadvantage of ana-
log implementation is low design flexibility even though it
can possibly provide higher speed with low hardware cost.
On the other hand, digital ANN implementation can take
advantage of the benefits of the state-of-the-art VLSI and
ULSI techniques [2]–[5]. As for the SOM, various hard-
ware SOMs aiming to speed up the computation have been
proposed [6]–[29].

One of the effective platforms to implement the SOM
is an array processor system consisting of processing ele-
ments (PEs) working in parallel; thus, it can take advan-
tage of the parallelism embedded in the SOM algorithm.
Ienne et al. [6] implemented the SOM on a massively parallel
computing system based on systolic array architecture. Some
researchers used single instruction multiple data (SIMD) array
processors. One example is the SOM that was proposed by
Porrmann et al. [7]. The SOM was implemented on a rapid
prototyping system with PEs working in a SIMD manner.
Hendry et al. [8] also exploited the SIMD array accelerator
consisting of 256 PEs. Porrmann et al. [9] implemented the
SOM on a massively parallel computer that included SIMD
processors.

A field programmable gate array (FPGA) is a suitable
platform for implementing a digital system due to its reconfig-
urability, and the FPGA has been the most popular platform
to implement the SOM. Tamukoh et al. [10] proposed a
new fast learning algorithm for hardware SOMs, and its
massively parallel architecture design was implemented on
an FPGA to demonstrate its on-chip learning performance.
Peña et al. [11] proposed a hardware-friendly SOM archi-
tecture. One-dimensional and two-dimensional SOMs were
designed based on the proposed architecture, and they were
implemented on the FPGA. Manolakos et al. [12] proposed an
SOM IP core for the FPGA implementation, which was based
on systolic array architecture. Ramirez-Agundis et al. [13]
proposed a modular architecture to implement the SOM. In the
proposed architecture, 16 processing units were distributed in
a module, and a maximum of 16 modules could be included.
By using the proposed architecture, a vector quantizer for
real-time video coding was implemented on an FPGA and
standard-cell devices.

Lachmair et al. [14] used a SIMD array processor system
called gNBXe to implement the SOM. The gNBXe consisted
of several FPGAs including the PEs. The local controller in
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each PE translated macro commands from the global controller
so that the PE performed the calculations of the SOM’s
neurons. In Hikawa et al.’s study [15], a massively parallel
SOM architecture with a novel neighborhood function was
proposed. The improvement of the learning performance was
verified by the hardware SOM that was implemented on an
FPGA. Huang et al. [16] proposed a vector quantizer based
on the hardware SOM. The proposed vector quantizer was
implemented on an FPGA and was used for high-speed image
compression.

Sousa et al. [17] investigated different conceptions of FPGA
circuits for implementing SOMs. Three models of FPGA
implementation (centralized, distributed, and hybrid architec-
tures) were compared to support the system design choices.
The centralized model outperformed the other models in terms
of chip area occupation and maximum operating frequency.
A distributed architecture to implement SOM learning and
recall algorithms were proposed by Sousa et al. [18]. Since the
distributed model does not employ any type of central control
unit, redesign process during the configuration of the neural
system was simplified.

Appiah et al. [19] introduced a tri-state logic SOM called
bSOM. The bSOM took binary inputs and maintained tri-state
weights. The bSOM was well suited to FPGA implementation,
and was applied to character recognition and appearance-based
object identification. In [20] a real-time hand sign recognition
system based on hardware SOM was proposed. Training of
the SOM was carried out off-chip, and recall operation of the
SOM was implemented on FPGA. Kim et al. [21] investigated
an energy-efficient hardware architecture of SOM for electro-
cardiogram (ECG), and they presented its implementation
in 65nm CMOS. Quadrature Amplitude Modulation (QAM)
has been applied in many communication systems, and
Sousa et al. [22] proposed a new FPGA-based SOM to detect
64-QAM symbols. The use of SOM in the Quadrature/In-
phase pair detection allowed the continuous adjustment to
the QAM constellation with no supervision, and bandwidth
could be saved and training data retransmission was no longer
necessary.

To implement various network topology, Sun et al. [23]
proposed a new hardware SOM accelerator. The proposed
accelerator circuit supported training of SOM with 3D cube
and binary tree type network structures in addition to the tradi-
tional 1D- or 2D-array SOM. The proposed design was applied
to three applications, and FPGA validation was conducted.
The speedup factor ranged from 7.7 to 32.2 compared with
software.

A new modular architecture for a SOM called systolic-SOM
(SSOM) which is based on the use of a generic model inspired
by a systolic movement was proposed by Khalifa et al. [24].
The model was formed by two levels of nested parallelism
of neurons and connections that provided a distributed set of
independent computations between the processing units.

Caradarilli et al. proposed a modified SOM algorithm called
all winner-SOM (AW-SOM) [25]. In the AW-SOM, weight
update of a neuron was performed without the neighborhood
function, which uses the positional relationship between the
neuron and winner neuron. Thus comparator tree for the

winner search was not required, and its processing speed
was almost independent of the number of neurons. How-
ever, the topology-preserving nature of the SOM was omited
because the topological relations between neurons were not
considered during the weight update.

Sousa et al. [26] proposed a high performance FPGA-based
SOM architecture called SOMprocessor. The processor
explored two different computational strategies for increasing
the performance. The first improvement was achieved by
including multiplexers, which supported alternating processing
of neuron sets by the arithmetic circuits. This strategy resulted
in a more flexible use of the chip, in which larger net-
works could be processed in low-density FPGAs. The second
improvement was the inclusion of pipeline architecture for the
training algorithm so that different parts of the circuit could
process data at the same time. The computational acceleration
due to this improvement achieved acceleration of 3 to 4 orders
of magnitude as compared to CPU executions.

Researchers have been focusing on the improvement of
scalability of the hardware SOM. A scalable and adaptable
hardware SOM architecture was proposed by Abadi et al.
[27], [28]. The scalability of the SOM was achieved by using
the network-on-a-chip (NoC) communication approach, and
the winner search operation was carried out in a systolic
manner distributed all over the network. The proposed SOM
architecture was designed for the FPGA implementation and
was validated through simulation where the SOM was applied
to image compression. Another hardware SOM architecture
aiming for scalability has been proposed [29]. By using a
nested structure for the SOM architecture, it became easier
to scale up the SOM.

Operation of the SOM is divided into two phases: learning
and recall. In the learning process of SOM, a winner neuron
that has the nearest weight vector to input vector is searched
for. This is called a winner-take-all (WTA) computation, which
performs classification in the recall phase. The weight vectors
of the winner neuron and its neighborhood neurons are updated
so that their weight vectors are closer to the input vector. The
neighborhood neurons are selected by a neighborhood function
that determines the amount of the vector update.

Various hardware WTA computation circuits have been
realized. One of the WTA circuits is MAXNET [30]. In
MAXNET, neurons in the network mutually inhibited each
other while activating themselves, resulting in only one neu-
ron being chosen as the winner. Lazzaro et al. proposed a
CMOS WTA circuit, where signals were represented as analog
current [31]. Oster et al. examined analytically the ability of
a spike-based WTA network [32]. Other examples of spiking
WTANNs with temporal coding have been reported [33]- [36].
Regarding digitally implemented WTA, a bit-serial parallel
minimum search circuit was being reported in [1]. WTA
implementation in hardware based on a binary-tree search
algorithm is popular [37], in which a global WTA circuit
collects vector distance data from all neurons, and the winner
was selected by tournament selections.

A very important feature of the SOM is its
topology-preserving nature, where two adjacent vectors
in the input vector space are mapped onto adjacent neurons
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on the map. This topology-preserving nature is realized
by the weight update with the neighborhood function.
Thus, the neighborhood function affects the performance
of the SOM in the recall phase. In the original algorithm,
a Gaussian neighborhood function was used, but the Gaussian
neighborhood function is not suitable for the hardware
implementation because of its high hardware cost. Thus,
most of the hardware SOMs used simplified neighborhood
functions, like a square step function [8]. To reduce the
hardware cost of the function, Hikawa et al. [15] used an
internal bus to broadcast Precalculated neighborhood function
values to all neurons. A widely used simplification applied
to the neighborhood function is to restrict the values of the
function to negative powers of two so that the multiplication
is replaced by shift operation. This simplification was used in
many hardware SOMs [8], [9], [11]–[13], [29].

Dlugosz et al. [38], [39] proposed new neighborhood
mechanisms that were based on a triangular neighborhood
function. The effect of their triangular neighborhood function
was studied by Hspice simulation [40]. It was revealed that
the triangular function can be used instead of the Gaussian
neighborhood function, and the sound performance of the
SOM was confirmed even though the signal resolution of
the neighborhood function was low. However, the triangular
neighborhood function required multipliers that are expensive
in terms of hardware cost.

ANNs are computer systems based on or inspired by the
biological brain; conversely, neural networks can be used
as brain models. One of the important objectives in brain
modeling is to explain how the organizational order emerges
by itself in the various brain maps. Kohonen [41] demonstrated
that the SOM has similar self-ordering to that found in the
biological brain. In biological neural systems, information
is conveyed by electric pulses. Pulse-mode neural netowrk
hardware architectures have been proposed [42]- [46]. These
hardware models used pulse density, pulse width, firing rate,
or frequency to represent the signal level and used stochastic
computations. The advantage of the pulse-mode architecture
is that the computing elements can be realized by a stochastic
arithmetic circuit that is smaller than the conventional arith-
metic circuit.

In recent years, experimental evidence indicates that many
biological neural systems use the timing of single spikes
to encode and process information. This method, known as
temporal coding, is considered to be the coding mechanism
in biological neural systems. These spiking neuron models
have become increasingly popular as they mimic the spiking
nature of real neurons. The Hodgkin-Huxley model [47] is one
of the first detailed spiking neuron models. A simple model
is the leaky-integrate-and-fire (LIF) model [48], which is
computationally cheaper. In hardware spiking neural networks
with temporal coding, coincidence or synchrony detection
plays an important role in their neural information processing.

An interesting approach to implement a hardware neural
network uses pulse signal synchronization. Hoppensteadt [49]
proposed a novel associative memory architecture using a
phase-locked loop (PLL), which could memorize and repro-
duce complex oscillatory patterns. The hardware SOM that

was proposed in [50] used a phase-modulated signal to convey
neuron signals, and a digital phase-locked loop (DPLL) was
used to handle the neuron’s computation. This DPLL-SOM’s
scalability was improved by introducing a new WTA circuit
in [51]. This SOM took advantage of the similarity between
the operations of the DPLL and the computations of the SOM’s
neurons. The WTA operation was implemented by using phase
comparators distributed among all neurons, which made it
easier to increase the number of neurons compared to the
global WTA approach with the binary-tree search.

The problem in using DPLL is that the computing precision
was proportional to the clock frequency because the phases
of the carrier signals were modulated by clock signal. For
example, the frequency of the clock must be 216 times higher
than that of the carrier signal if 16-bit precision was required
to represent vector element values.

In Hikawa’s study in [52], digital frequency-locked loop
(DFLL)-based WTANN with a frequency-modulated signal,
was proposed to cope with the problem of the DPLL-based
SOM. The DFLL controls the output signal so that its fre-
quency matches that of the input signal. In the system, vector
values were transmitted and processed by using carrier signals.
The frequency of the carrier signals represented the vector
elements, and the DFLL processed the vectors by adjusting the
frequencies of the carrier signals. The DFLL used a direct digi-
tal frequency synthesizer (DDS) as its local oscillator. A strong
point of DDS is that its frequency precision is governed by
the bit-length of its internal register. Therefore, the use of the
DFLL and frequency modulated signal could provide higher
precision computation with lower clock frequency.

The DFLL-based WTANN circuit proposed in [52] was
improved in [53] in terms of its circuit size, and it was
applied to develop the DFLL-based hardware SOM [54].
Winner search was carried out by all neurons competitively
by using frequency comparators distributed among neurons.
This distributed winner search architecture made it easier to
increase the number of neurons.

The problems of this SOM were its neighborhood function
and operation speed. In this SOM, amount of the weight update
carried out by the DFLL was proportional to frequency of
a weight update pulse fed to the DFLL. The winner neuron
generated the update pulse, which was propagated between the
neurons with decreasing frequency. As a result, the function
that was similar to the original neighborhood function was
realized. However, the update pulse signal propagation circuit
used in the SOM was rather complicated, which made it
difficult to raise its clock frequency. Since the performance
of the hardware SOM is proportional to the clock frequency,
simple update pulse propagation circuit that can work with the
higher clock frequency, is desired.

This paper proposes a new DFLL-based hardware SOM
architecture that mimics the biological brain by using pulse
mode operation. Like the previous work, the proposed
SOM uses the DFLLs to process vector elements, and the
frequency-modulated pulses convey the vector elements.

To improve the learning performance and speed of the
SOM, the triangular neighborhood function is employed. As
mentioned in the previous page, Dlugosz et al. well studied and
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proved that the triangular neighborhood function can provide
quite good learning performance [38], [39]. In the straightfor-
ward implementation of the triangular function, it requires,
in terms of hardware cost, very expensive multipliers and
subtraction circuits. Like the pulse operation carried out for
the main computation of the SOM, the neighborhood function
is implemented by pulse signal. A counter is the only major
component of the proposed circuit for the triangular neigh-
borhood function, and no multiplier or subtraction circuit is
needed.

In the proposed SOM, vector distance computation is carried
out by frequency detectors because all vector elements are
represented as frequencies of pulse signals. Each DFLL then
updates the weight vector element according to the frequency
difference, and changes the frequency of its internal signal.
While the enable signal is applied, the DFLL updates its
vector element to bring the frequency of the internal signal
closer to that of the input signal. Therefore, the amount of
frequency change can be controlled by the period during
which the enable signal is active. Using this characteristic of
DFLL, the triangular neighborhood function is implemented
by attenuating the duration of the enable signal.

The proposed components are described with VHDL,
and their performances are examined by simulations. Then,
the proposed SOM is implemented on an FPGA, and its
on-chip learning performance is examined by experiments. As
discussed before, information is conveyed by electric pulses in
biological neural systems. The novelty of the proposed SOM
is that it mimics the biological brain in that all information
is conveyed by pulse signals and the SOM algorithm is
implemented by pulse-based computation. The use of DFLL
allows the neurons in the SOM to learn and perform the
nonlinear mapping by communicating with each other via
frequency-modulated pulse signals without a conventional
numerical computation circuit.

The remainder of this paper is organized as follows.
Section II describes the SOM algorithm, and the details of
the proposed SOM architecture are discussed in Section III.
The results of the simulation and experiments are presented
in Section IV, followed by the conclusions in Section V.

II. SELF-ORGANIZING MAP

The SOM consists of neurons that are usually placed
in a two dimensional grid. Every neuron-i includes a
D-dimensional vector �mi that is called the weight vector.

�mi = {μi,0, μi,1, . . . μi, j , . . . μi,D−1} ∈ �D (1)

In the initial learning phase, the map is trained with a set of
training vectors. The learning phase starts with an appropriate
initialization of the weight vectors. Subsequently, the training
vectors, �x ∈ �D , are fed to the SOM in multiple iterations.

�x = {ξ0, ξ1, . . . ξ j , . . . ξD−1} ∈ �D (2)

For each input vector, all neurons calculate the distances of
their weight vectors to the input vector. Then, the winner
neuron-C that has the closest weight vector to the input vector

is determined from the vector distances of all neurons.

C = arg min
i

{||�x − �mi ||} (3)

In Kohonen’s study [1], the Euclidean metric was used as the
vector distance.

||�x − �mi || =
√

(ξ0 − μi,0)2 + · · · + (ξD−1 − μi,D−1)2 (4)

However, most hardware SOMs have used Manhattan metric
di instead of the Euclidean distance to reduce the hardware
cost.

di =
D−1∑
j=0

|ξ j − μi j | (5)

Since no squaring or square root circuit is required, the silicon
area saving using the Manhattan metric is significant. After
the winner neuron is determined, the weight vectors of the
neurons in the winner’s neighborhood are updated toward the
input vector.

�mi (t + 1) = �mi (t) + hci {�x(t) − �mi (t) } (6)

The original neighborhood function hci is defined as fol-
lows [1]:

hci = α(t) exp

(
−|| �rC − �ri ||

2σ 2(t)

)
(7)

where, �rC ∈ �2 and �ri ∈ �2 are position vectors of the
winner neuron-C and neuron-i . α(t), σ(t) are learning rate and
neighborhood radius, respectively. Because its hardware cost
is very high, the neighborhood function in (7) is not suitable
for the hardware implementation, and the hardware SOMs in
the literature used simplified neighborhood functions, such as
a negative power of two function [9], [11]–[13], square step
function [8], and triangular neighborhood function [38], [39].

After the learning phase, the weights of the map are retained
and are used in the recall mode, where only the winner search
is carried out.

III. HARDWARE SELF-ORGANIZING MAP BASED ON

FREQUENCY-MODULATED SIGNALS

A. Neuron

The proposed SOM consists of neurons, that are placed in
lattice. Block diagram of the neuron used in the proposed
SOM is shown in Figure 1. The neurons are placed in a
two-dimensional grid. The input to the neuron consists of
D signals (X0 − X D−1) that are frequency-modulated signals
carrying the vector elements ξ0 − ξD−1 given in (2). Thus the
frequencies of the signals X0, X1, and X2 represent ξ0, ξ1, and
ξ2, respectively. Each neuron contains an update controller,
DFLLs, and a winner search circuit that provides the WTA
function. Each DFLL processes one of the vector elements.
As is discussed in Section III-B, DFLLs include internal
signals M’s, which are the frequency modulated carrier signals
carrying the weight vector elements μi,0 − μi,D−1 in (1).

Signals P NI , P EI , P EO , PSO , PWI , and PWO give
priority among neurons in the winner search. Detail of these
signals is explained in Section III-C. Signals U NI , U NO ,
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Fig. 1. Neuron used in the proposed SOM.

Fig. 2. Digital frequency-locked loop.

U EI , U EO , U SI , U SO , U WI , and U WO carry update signals
that control amount of the weight update, and they realize
the triangular neighborhood function. The detail is discussed
in Section III-D. Since SOM applications use winner neuron
information and its weight vector, winner signals wX , wY and
a weight vector bus called μBU S are provided for this purpose.
Detail of these signals is explained in Section III-C.

B. Digital Frequency-Locked Loop

Fig. 2 shows the DFLL consisting of a frequency detector
(FD) and a digitally controlled oscillator (DCO). The FD
detects the frequency difference between two signals X and
M . The DFLL controls its DCO so that the output frequency
of M matches that of the input signal X . This operation is
very similar to the learning process of the SOM that is given
by (6). The DFLL used in the previous study [54] included
a phase control circuit so that the signal of the DFLL was
synchronized in both phase and frequency, but the DFLL in
this work is simplified to have no phase control.

A block diagram of the FD is shown in Fig. 3 (A), which
is a modified version of the FD used in [54]. Since phase
synchronization is not performed, only the frequency error is
detected. FU P and FDN are frequency control signals fed to

Fig. 3. Frequency detector (FD), (A) block diagram and (B) signal example.

Fig. 4. Digital controlled oscillator.

the DCO. The former is a signal that raises the frequency of
the output signal and the latter lowers the frequency.

An example of the FD signals is shown in Fig. 3 (B). In
this example, the frequency of the internal signal M is higher
than that of input signal X D The number of cycles of X
is 9 while M has 12 cycles; thus, 3 cycle slips occur, which
yields 3 cycle slip (CS) pulses. The C S pulse is used as an
FU P or FDN signal, and 3 pulses are outputted as an FDN

signal in this example. This C S pulse is used in the winner
search circuit.

As shown in Fig. 4, the DCO is made of an up-down
counter and a direct digital synthesizer (DDS) that generates
the internal signal M . The DDS is made of an adder, a register,
a flip-flop and an AND gate.

The P-bit up-down counter holds the weight vector ele-
ment μ j . By concatenating 0 with μ j , P-bit μ j is extended
to L-bit, apparently, L = P +1. The extended μ j is fed to the
adder, and the μ j value is used as a frequency control word
for the DDS. The frequency of the DDS output signal M is
given by the following equation:

fM = μ j

2L
· fck (8)

As this equation shows, the frequency of the signal M is
modulated by μ j , and the signal M works as a carrier signal
for μ j value. Note that the frequency resolution of the DDS
is defined by L, which is the bit-length of the register.
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Fig. 5. Winner search circuit.

The contents of the up-down counter μ j is adjusted by FU P

and FDN signals.

μ j =
{

μ j + 1 if FU P = 1

μ j − 1 if FDN = 1
(9)

The change of μ j is reflected in the frequency change of
output signal M . Note that this frequency control is carried
out while the enable signal E is activated, and this signal is
used to implement the triangular neighborhood function.

C. Winner Search Circuit

A common approach used in hardware SOM is global win-
ner search which collects vector distance data from all neurons
to find the smallest one. To do so, the global winner search
circuit needs to communicate with all neurons, which requires
communication links with a wide bandwidth. When increasing
the number of neurons, the global search module must be
redesigned or reconfigured, which reduces the scalability of
the hardware SOM.

As mentioned before, the proposed winner search circuit
uses the cycle slip signal (C S) from the FD. Fig. 5 outlines
the winner search circuit. The circuit measures the frequency
difference between X and M by counting the C S pulses. The
number of C S pulses (NC S) simultaneously given from the
DFLLs is counted by a ones-counter. Since the frequency
of the cycle slip is proportional to the frequency difference
between Xi and Mi , the frequency of the CS signal represents
the vector distance. From (8), the average NC S per clock cycle
is given by:

NC S =
D−1∑
i=0

| ξ j

2L
− μ j

2L
| (10)

Then, NX − NC S is accumulated in the Q-bit register, where
NX is a constant value. When the MSB of a neuron’s register
rises, the neuron activates the Stop signal by making it to 0,
which is broadcast to all other neurons to end the winner
search. The value of NX is chosen so that the accumulation
of the register does not stop. Therefore NX ≥ D.

The fewer cycle slips yield the quicker accumulation in the
register. As mentioned above, frequency of the cycle slip is
proportional to the frequency difference between X and M .
Thus, neuron that activates the Stop signal is the one that has
the smallest frequency difference than other neurons, i.e., the

Fig. 6. Priority signal (A) generation and path in the neuron, and (B) example
of signal propagation.

neuron with the closest weight vector to input vector. Resulting
that the neuron that activates the Stop signal, is the winner
neuron. In this way, the winner neuron is determined by the
speed competition among the neurons that can activate the
Stop signal.

The normalized response time Nwin that is the number of
clocks for the winner search circuit to activate the Stop signal
is calculated as follows:

Nwin = 2Q−1

NX − NC S

= 2L · 2Q−1

2L · NX − ∑D−1
j=0 |ξ j − μ j |

(11)

However, multiple neurons can activate the Stop signal
simultaneously, and they all try to become the winner. To
prevent the situation where multiple neurons become winners,
priority ranking is assigned to the neurons by propagating the
priority signal through P E, PW, P N , and PS. Winner neuron
candidates that activate their Stop signals send the priority
signal to neurons in their East and South. Neurons receiving
the priority signal are not allowed to become the winner, and
they forward the signal as shown in Fig. 6 (A). These priority
signals give the neuron placed in the Northwest corner the
highest priority. In the end, the candidate neuron that does not
receive the priority signal becomes the winner. In the example
shown in Fig. 6 (B), neuron 11 is the winner, and all neurons
placed East and South of the winner (marked with ×) cannot
become the winner because they receive the priority signals.
In this example, Neuron 22 also activates the Stop signal, but
it cannot be the winner because it receives the priority signal.
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Fig. 7. wX , wY , and μBU S signals.

Fig. 8. Update controller.

When a neuron placed at (X, Y ) wins, its winner search
circuit makes wX = wY = 0 to notify the winner neuron’s
position. In the SOM, these signals are connected as shown
in Fig. 7. Neurons in the same row share the same wY signal,
and neurons in the same column share the same wX signal.
Thus, the winner neuron can be identified by scanning the wX

and wY lines. In the example in Fig. 7, it is indicated that
neuron-11 is the winner because wX1 = 0 and wY 1 = 0.

Meanwhile, the winner neuron outputs its weight vector
to the μBU S . In Fig. 7, weight vector of the neuron-11 is
outputted through μBU S . Signals wX and wY are bidirectional
and also function as an input signals that force a specific
neuron to be winner. By setting wX = wY = 0 from outside
the SOM, the weight vector of the neuron placed at (X, Y )
can be read through the μBU S.

D. Triangular Neighborhood Function

After the winner search, the weight vectors of the winner
and its neighborhood neurons are adjusted so that they are
closer to the input vector. As shown in (6) and (7), the amount
of change for the winner neuron is the largest, and it decreases
as the distance to the winner neuron increases. This weight

Fig. 9. Enable signals and dC .

update method provides topology-preserving mapping that is
one of the most important features of SOM.

The amount of frequency change carried out by the DFLL is
controlled by the duration of the enable signal (E = 1) applied
to the up-down counter in the DCO. The longer the counter is
enabled, the closer the frequency of the DCO signal is made
to that of the input signal. Therefore, the weight update that is
similar to (6) can be realized by changing the duration of the
enable signal. This enable signal control and its distribution
are handled by the update controller shown in Fig. 8.

An example of the E signal is shown in Fig. 9. When
the Stop signal is activated (Stop = 0), the winner search
terminates, and resulting winner information (wX , wY , and
μBU S) is updated. Then operation mode switches to Update
mode. The winner neuron uses a base enable signal E0 as its
enable signal E , and the duration of E0 is represented by A.
Meanwhile, by using a down counter, the update controller
generates the Ê signal. The initial value for the down counter
is S, and it is counted down. Once the counter reaches 0,
it stops the count and Ê is set to 1, resulting in the duration of
Ê = 1 being shortened by S from A. The Ê is fed to adjacent
neurons through output ports (U NO , U SO , U WO , and U EO ).
Non-winner neurons receive the signal from one of its adjacent
neurons via input ports (U NI , U NI , U WI , and U EI ) and
use the signal as their enable signal E . These neurons further
shorten the duration of E = 1 by S and forward the signal to
the neighboring neurons.

The update signal paths in the neuron are summarized
in Fig. 10 (A). An example of the update signal propagation is
shown in Fig. 10 (B), in which neuron 11 is the winner. The
duration of E = Enable = 1 is made shorter as the distance
dC to the winner neuron increases, as shown in Fig. 9. Since
the duration of E = 1 is never less than 0, the duration is
expressed as max( A − S · dC , 0 ). As Fig. 10 (B) shows, dC

is the Manhattan distance between the winner neuron placed
at (m, n) and a neuron at (p, q).

dC = |p − m| + |q − n| (12)

Since the amount of update carried out by the DFLL is
proportional to the duration of E = 1, the change of μi, j

per single clock cycle is given by the following equation:
δμi, j = ξ j − μi, j

2L
· max( A − S · dC , 0 ) (13)

This equation shows that the proposed neighborhood function
has the same characteristic as the original function, i.e., the
amount of weight vector updating performed in the winner
neuron is the largest and is reduced as the distance to the
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Fig. 10. Update signal (A) generation and path in neurons, and (B) example
of signal propagation.

winner increases. A major difference of the proposed neigh-
borhood function from the original one is that the amount of
the update linearly decreases as dC increases, and the proposed
function is triangular shaped.

Note that A corresponds to the learning rate α in (7).
From (13), if dC is bigger than A/S, no weight update is
carried out. Thus, the radius of the neighborhood of the
proposed neighborhood function is A/S. In the original SOM
algorithm, magnitude α and radius σ of (7) are decreased as
the learning progresses. Similarly A is made smaller while S
is enlarged to reduce the radius as the learning progresses.

IV. EXPERIMENTS

The building components discussed in the previous section
and a hardware SOM containing 16 × 16 neurons were
described by VHDL. Then, the operations of the components
were tested by simulation, and the SOM was implemented
on an FPGA to investigate its on-chip learning as well as its
circuit properties.

A. VHDL Simulation

The operations of the proposed winner search and neighbor-
hood function circuits were examined by VHDL simulations.

1) Winner Search Circuit: Fig. 11 shows the relation
between the register transition of the winner search circuit
versus vector distance di . This simulation was carried out with
D = 3, L = 17, NX = 3, and Q = 13, 16. The figure shows
that the slopes of the transitions are proportional to the vector
distance di , and the shorter the di , the quicker the register
reaches 4096 (212) or 32768 (215). Therefore, the neuron

Fig. 11. Transitions of registers in the winner search circuit during the winner
search, (A) Q = 13, (B) Q = 16.

with the shortest di activates the Stop signal and becomes
the winner.

The relation between the response time Nwin and the vector
distance di is shown in Fig. 12. The theoretical Nwin defined
in (11) is also plotted in the figure, and the simulation results
agree well with the theoretical values. Since Nwin reflects
the vector distance correctly, it was verified that the proposed
circuit worked as expected.

2) Neighborhood Function: The neighborhood function was
examined by using 16 neurons connected in a row. All weight
vector elements of the neurons were initialized to have �m =
(μ0, μ1) = (32768, 32768), and input vector �x = (ξ0, ξ1) =
(65535, 0) was fed to the neurons. The neuron placed at the
left end was set to be the winner neuron, and all weight vector
values after the training of the period of 218 clock cycles were
measured. The amounts of the weight changes represent the
neighborhood function.

From the theoretical update amount expressed in (13), �μ j

that is the actual change of the weight vector element after the
218 clock cycles is computed as:

�μ j = δμ j · 218 (14)

Fig. 13 shows the simulation results, in which μ0’s are
made bigger toward 65536 while μ1’s get smaller toward 0.
Fig. 13 (A) shows that the slope of the neighborhood func-
tion can be controlled by the parameter S, and another
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Fig. 12. Response time of the winner search circuit vs. vector distance,
(A) Q = 13, (B) Q = 16.

TABLE I

CIRCUIT SIZE

parameter A can change the magnitude of the function,
as shown in Fig. 13 (B). The simulation results agree well with
the theoretical value, showing that the triangular neighborhood
function was realized by the proposed circuit.

B. FPGA Implementation

The proposed SOM was implemented on an FPGA, and
the experiment was conducted to investigate the on-chip
learning of the proposed hardware SOM. Fig. 14 shows
the experimental system implemented on an FPGA (Xilinx
Virtex-6 / XC6VSX315TFF1759-2). The system included the
hardware SOM, training controller, memory, and frequency
modulators. The hardware SOM consisted of the neurons
examined by the VHDL simulations in the previous section,
and the training controller supervised the training of the SOM.

The implemented SOM was configured as follows:
• the number of neurons was 256 (16 × 16),
• the dimension of the vectors was D = 3,
• the precision of ξi and μi, j was P = 16,

Fig. 13. Amount of frequency shift change vs. distance winner neuron,
(A) A=2000, (B) S=150.

TABLE II

PERFORMANCE OF THE PROPOSED SOM ( fCK = 67.0 MHZ)

• the bit-length of the register in the DCO was L = 17,
• the constant value of the winner search circuit was

NX = 3(= D),
• the register size of the winner search circuit was Q = 12,
• the number of training iterations was 256 (H = 0−255),

where H is the epoch count,
• using H as its argument, the neighborhood function para-

meters were generated by training controller as follows:
A = 3072 − 8 × H (A : 3072 → 1024),

S = 512 + 2 × H (S : 512 → 1024).

The memory contained 4096 3-dimensional training vectors,
which was addressed by the training controller. The vector
elements ξ0, ξ1, and ξ2 read from the memory are sent to the
frequency modulators to generate the carrier signals X0, X1,
and X2. The DCO discussed in Section III-B was used as the
frequency modulator. The mode of the system was initially
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Fig. 14. FPGA configuration.

TABLE III

COMPARISON WITH OTHER HARDWARE SOMS

set to Search mode. When the Stop signal was activated,
the mode switched to Update mode, and the S values and
signal E0 = 1 were fed to the SOM for A clock cycles, and
the weight vectors were updated. On completion of the update,
the memory address increased and the mode was switched to
Search mode again. On-chip learning proceeded by repeating
these two modes. After 256 epochs, the mode was switched
to Dump mode, where the controller generated �wX and �wY

signals so that all weight vectors were read one by one through
the μBU S . Further, the vectors and other selected signals were
transferred to a PC through Xilinx ChipScope Pro.

Hardware resource utilization of the implemented FPGA is
summarized in Table I.

C. On-Chip Learning

The on-chip learning performance of the proposed SOM
was investigated using five types of learning datasets (Random,

Triangle, 16 × 16 mesh, Donut, Butterfly), each of which
consisted of 4096 vectors. Fig. 15 shows the transitions of
the weight vectors during the on-chip learning. As shown
in the figure, the proposed SOM extends the weight vector
well from the initial value while maintaining the topology
between the neurons so as to cover the entire training vector
space, and the SOM successfully learned five vector sets. Of
these five datasets, the 16 × 16 mesh was the most difficult
one for SOM to learn because the SOM not only extends
the weight vectors to the training vector space, but also the
individual weight vectors must be placed in the corresponding
256 vector clusters. Thus, use of this dataset made it easy
to determine whether the learning succeeded. Failure of the
learning could be easily judged if any of the weight vectors are
misplaced. Therefore, this dataset was used as reference data
for experimental evaluation, and the neighborhood function
parameters A and S used in this experiment were chosen so



HIKAWA: HARDWARE SOM BASED ON DFLL AND TRIANGULAR NEIGHBORHOOD FUNCTION 1255

Fig. 15. Weight vectors during the on-chip learning of the proposed SOM, at (A) H = 1, (B) H = 2, (C) H = 3, (D) H = 4, (E) H = 8, (F) H = 256,
(G) H = 256 (different angle view).

that the SOM could successfully learn the 16×16 mesh dataset.
It should be noted that the previous DFLL-SOM [54] could
not successfully learn this 16×16 mesh dataset.

All weight vectors were initialized to the same value. Thus,
all vector distances to the very first input vector were the same,
and it was impossible to determine the winner in this case.
However, all the on-chip learning was successful because the
proposed priority circuit worked well and selected one winner
from the winner candidates.

For comparison purposes, learning behavior of the original
SOM algorithm discussed in Section II was examined by using
the same datasets used in Fig. 15. The original algorithm
was implemented in software using the Euclidean vector
distance shown in (4) and the Gaussian neighborhood function

in (7). All computations for the SOM were carried out by
floating-point arithmetic. The learning rate α and radius σ
were programmed as follows:

α = 0.7 · (1 − H/256) (α : 0.07 → 0.0),

σ = 2.0 · (1 − H/256) (σ : 2.0 → 0.0),

where H : 0 → 255.
Transitions of the weight vectors during the learning are

shown in Fig. 16, which are very similar to those of the
proposed SOM in Fig. 15. Therefore, it is considered that the
proposed SOM based on the triangular neighborhood function
and pulse mode operation has compatible functionality as the
original SOM algorithm.
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Fig. 16. Weight vectors during the learning of original SOM algorithm, at (A) H = 1, (B) H = 2, (C) H = 3, (D) H = 4, (E) H = 8, (F) H = 256,
(G) H = 256 (different angle view).

As shown in (11) and Fig. 12, the search time of the
proposed winner search circuit is variable with respect to the
vector distance, so the actual learning time differs for different
learning data. The details of the number of clock cycles for
the learning is shown in Fig. 17 (A). The average numbers of
clocks used in both the winner search and vector update for
one input vector are plotted in the figure. The number of clocks
for vector update was determined by the neighborhood func-
tion parameter A, which decreased as the learning progressed.
Thus, the update time decreased as the learning progressed.
Fig. 17 (B) is an enlarged view of the learning shown in
Fig. 17 (A), showing that it took a longer time for the SOM
to find winners because of the large vector distances in the
early stage of the learning. Note that the weight vectors

corresponding to Fig. 17 (B) are shown in Fig. 15 (A)-(E).
Fig. 17 (B) indicates that the winner search is gradually getting
shorter as learning progresses.

The highest operating clock frequency was measured by
using the 16×16 mesh as the reference dataset, and the highest
frequency was 67 MHz. Speed of the proposed SOM and the
number of clocks required for the learning of five datasets are
presented in Tab. II. The speed is expressed in million updates
per second (MCUPS). The performance is computed from the
number of weight vector elements, the number of the learning
iterations, the number of clock cycles, and the clock frequency.

In terms of the operating speed, the performances of the
hardware SOMs in the literature are summarized in Tab. III.
Compared to the previous work [54], and the operating speed
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Fig. 17. Average number of clocks for each instance at epoch G . (A) The
number of clocks for search and update operations, (B) The number of clocks
for search operation in early stage of learning.

of the proposed SOM was improved to be about twice as fast.
However, it can be seen that the operation speed is consid-
erably slower than that of other hardware SOMs. The other
hardware SOMs were based on the arithmetic computation
architectures. Whereas [50], [54], and the proposed hardware
SOMs were based on the frequency/phase modulated pulse
signals, and computation was done by DPLL/DFLL which
requires a large number of clocks. Thus the number of clocks
to process a single input vector is quite large, which is the
reason of the low performance.

V. CONCLUSION

This paper proposed a very unique hardware SOM archi-
tecture, in which vectors were represented by frequency mod-
ulated pulse signals, and the SOM computation was carried
out by controlling the DFLLs. Winner search was carried
out by taking advantage of the frequency modulated signal.
The triangular neighborhood function was implemented by
distributing enable signals for the DFLLs. The proposed
winner search and neighborhood function circuits were tested
by VHDL simulations. It was confirmed that the winner search
circuit responded in proportion to the vector distance, and
the response time was consistent with the theoretical value.
The winner neuron was determined by competition between
neurons in terms of the fastest response time.

The computing components for the SOM were described by
VHDL and examined by the VHDL simulations, then the SOM
was implemented on the FPGA to test the on-chip learning of
the SOM. The VHDL simulation of the neighborhood function
revealed that the proposed circuit provided the triangular
function that agreed well with theory. Learning experiments
were conducted by using five types of learning datasets. The
results of the experiments showed the SOM’s on-chip learning
capability with the topology-preserving nature.

Since the DFLL used in the proposed SOM controlled the
frequency of the carrier signal digitally, its clock frequency
must be much higher than that of the carrier signal. Therefore,
the frequency of the carrier signals were much slower than the
clock frequency, and the operating speed of the SOM could
not be made higher. Though its speed needs to be improved,
the proposed architecture is a unique one based on pulse
signals. The purpose of this study was to develop the hardware
SOM that mimics the biological brain by using pulse mode
operation like a spiking neural network. It was verified that the
SOM with unsupervised learning can be realized with neurons
communicating with each other using frequency-modulated
pulse signals.

From the viewpoint of mimicking the brain, analog circuit
implementation, i.e., use of analog PLL, is desired as future
work.
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